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Introduction by the Organisers

Technological advances in recent years have led to the opportunity to routinely
collect highly detailed data which can be used to improve our understanding and
control of infectious disease spread. This in turn created a need for novel math-
ematical modelling and statistical analysis. This workshop was based around
this broad area, and included two special focus topics, namely molecular typing
data and networks. Modern molecular typing techniques have become cheaper and
more widespread, with the consequence that field data from outbreaks of infectious
disease are increasingly likely to contain highly detailed genome sequence infor-
mation. The mathematical challenges include integrating complex sequence data
into phylogenetic analyses combined with information on disease spread within
small clusters and large communities over time. Integration of such methods can
produce more detailed insight to transmission chains in populations. A related
problem is in understanding the evolutionary selective pressure that the vaccines
put on pathogens. Recent developments in data gathering have increased the
potential of graph models and network theory to understand which aspects of con-
tact structure are essential for the spread of epidemics and for the planning of
control measures. Integrating the theory of network structures with sequence data
to refine understanding of actual transmission patterns stands at the forefront of
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research on transmission dynamics of infectious diseases. This workshop has fo-
cused on the mathematic, statistical, and algorithmic challenges posed by the new
technologies for understanding the spread of infectious diseases and for planning
and analyzing studies of interventions.
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Abstracts

Emerging epidemics among a population of households

Frank Ball

(joint work with Lorenzo Pellis, Laurence Shaw, and Pieter Trapman)

We consider a stochastic SIR (susceptible → infective → removed) model for the
spread of an epidemic among a population partitioned into households. In the
first part of the talk, which is based on joint work with Lorenzo Pellis and Pieter
Trapman, we use branching processes to define the basic reproduction number R0

for this epidemic model (Pellis et al. [1]) and show inequalities comparing R0 with
previous reproduction numbers for this model. The comparisons imply that, unless
all households have size ≤ 3, vaccinating a fraction 1−R−1

0 of the population with
a perfect vaccine is insufficient to be sure of preventing a large outbreak and they
lead to sharper, easily computed bounds for the critical vaccination coverage than
were previously available.

In the second part of the talk, which is based on joint work with Laurence
Shaw, we consider estimation of the within-household infection rate λL from data
on the number of removed cases in households during the emerging, exponentially
growing phase of an epidemic. We show that using the usual final size distribution
for an epidemic in a single household leads to λL being appreciably underestimated
and use multitype branching process theory to develop an asymptotically unbiased
estimator.

References

[1] L. Pellis, F. Ball and P. Trapman, Reproduction numbers for epidemic models with house-
holds and other social structures. I. Definition and calculation of R0, Mathematical Bio-
sciences 235 (2012), 85–97.

Patterns of cross-reacting antibodies against influenza A viruses
revealed by protein micro array

Michiel van Boven

(joint work with Dennis te Beest, Erwin de Bruin, Sandra Imholz, Jacco
Wallinga, Peter Teunis, Marion Koopmans)

Epidemics of influenza A differ substantially in size and in the age distribution
of cases. These differences result from varying levels of pre-existing immunity for
the strain that is seeding the epidemic or pandemic. In this presentation I will
estimate patterns of infection and immunity before and after the pandemic of 2009
by analysis of two cross-sectional population-based serological surveys. Samples
were analyzed by a protein microarray test using hemagglutinin (HA1) of different
influenza A viruses as antigen. It appears that the microarray is more sensitive
than the hemagglutination inhibition assay, is able to provide estimates both of
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infection rates and levels of immunity, and allows for a consistent classification
of individual sera. Specifically, mixture model analysis of the micro array data
yield high estimates of the attack rate in children under the age of ten years and
low attack rates in older adults. Bivariate analyses of micro array data yield
comparable attack rate estimates, and enable consistent and precise classification
of individual samples as belonging to immune or recently infected persons. We
show that a high ratio of A/2009 to A/1918 antibody concentrations is indicative
of recent infection, while a low ratio is indicative of pre-existing immunity, even if
the A/2009 response is high. Population estimates of immunity are low in children
aged 5-9 years, and increase monotonically with age. I will discuss the implications
for the role of antibody mediated immunity shaping influenza A epidemic patterns.

Inference in epidemics with different types of data, with a view
towards genetics

Tom Britton

Classical data for making inference of epidemics relies on observing diagnosis of all
or a sample in some community together with information of community structure
like households and similar. Quite often there is also temporal information such
as date of symptoms and similar. Recently, sequencing infected individuals, using
phylogenetic analysis, enables estimation of the transmission tree. In the current
ongoing project we investigate how much is gained by combining these types of
data. The conclusion seems to be that, also observing the transmission tree enables
inference for new parameters and possible deviations from a model, but that not
so much is gained if the applied model is correct. Methodology involves likelihood
and martingale theory.

Integrating phylogenetics and epidemiology in the study of HIV

Simon D.W. Frost

Human immunodeficiency virus type 1 (HIV-1) is perhaps the most widely studied
organism in viral phylodynamic studies, which aim to combine the epidemiology
of viral transmission with the evolution of the virus, and for good reason. Not
only is HIV-1 infection a significant public health issue, but a vast amount of se-
quence data has been generated over a period of decades, which when combined
with the clock-like nature of HIV-1 evolution, allows fairly accurate reconstruction
of past transmission events. Insights that have been gained by HIV-1 sequence
analysis include identifying the timing of origin of HIV-1 epidemics, identifying
period of exponential epidemic growth, and identification of transmission clusters
of infection. To date, rather simple models underlie the analysis of viral sequence
data, which consider neither the detailed natural history of viral infection, nor the
biased way in which sequence data is typically collected. Moreover, while stan-
dard epidemiological models consider dynamics going forwards in time, standard
coalescent models for evolution consider dynamics backwards in time. Using HIV
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as an example of a model phylodynamic system, I will show how the shape and
structure of the phylogenetic tree can be modelled using simple compartmental
epidemiological models. These present insights into the meaning of the popula-
tion genetic effective population size or N e for epidemics. I show how the peak
of N e may not coincide with the peak of infected individuals, and how the level
of asymmetry in the phylogenetic tree may be influenced by heterogeneity in in-
fectiousness at different stages of infection, and by the presence of a core group.
I will also present stochastic versions of these models that try to reconcile the
forwards-time nature of epidemiological models and the backwards-time nature
of coalescent models, and will show how the likelihood of a series of coalescent
intervals under a stochastic model may be estimated via constrained simulations.
Finally, I will focus on some of the many challenges in phylodynamics, including
how to incorporate recombination, selection, and within-host evolution.

Untangling human and animal transmission cycles of vector-borne
infections

Sebastian Funk

Many vector-borne infections can be transmitted between animals and humans.
The epidemiological roles of different species can vary from important reservoirs
to dead-end hosts. Here, we present a method to identify transmission cycles in
different combinations of species from epidemiological and ecological field data.

We applied this method to synthesise data from Bipindi, Cameroon, a histori-
cal focus of gambiense Human African Trypanosomiasis (HAT, sleeping sickness),
a disease that has often been considered to be maintained mainly by humans.
We estimated the basic reproduction number R0 of gambiense HAT in Bipindi
and evaluated the potential for transmission in the absence of human cases. We
found that under the assumption of random mixing between vectors and hosts,
gambiense HAT could not be maintained in this focus without the contribution of
animals. When using the distributions of species among habitats to estimate the
amount of mixing between those species, we found indications for an independent
transmission cycle in wild animals. This suggests that elimination strategies may
have to be reconsidered as targeting human cases alone would be insufficient for
control, and reintroduction from animal reservoirs would remain a threat.

Our approach is broadly applicable and could reveal animal reservoirs critical
to the control of other infectious diseases.

On the design of data surveillance strategies for control of epidemics

Gavin Gibson

This talk describes joint work with Max Lau, George Streftaris and Hola Adrakay
(Heriot-Watt University) and Glenn Marion ( BioSS) on the use of latent resid-
uals in the Bayesian framework to test and compare spatio-temporal models for
epidemics and to investigate the effectiveness of momitoring remival strategies. A
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key issue in modelling epidemics in space and time is to be able to distinguish the
spatial transmission kernel, which characterises the spatial nature of the dispersal
of the pathogen from infective to susceptible individuals. Knowledge of the spatial
transmission kernel is important when selecting potential control strategies, for
example based on eradication of susceptibles within a radius of a newly discov-
ered infection. It is challenging to compare the fit of models that employ different
spatial transmission kernels and techniques such as Bayesian model choice can
be complicated to implement. In this talk we present an approach that extends
the concept of model testing using posterior predictive model checks. Specifically
we show how it is possible, using non-centred parameterisations, to define latent
processes to which classical tests can be applied in order to assess the validity of
the selected model. We show that the process can be defined so that the resulting
tests are sensitive to misspecification of the spatial kernel. Moreover we show how
the imputed process can be used to provide diagnostics of the nature of the mis-
match between model and data. The methods are illustrated using simulated data
sets and using a data set on the spatio-temporal dynamics of an invasive plant
species in the UK. We also consider how non-centred parameterisations can be
used to reduce the amount of simulation required to compare competing control
strategies. By comparing the effectiveness of different control strategies applied to
realisations of epidemics that share the same system parameters and latent resid-
uals, we describe work in progress that suggests that such a coupling approach
has the potential to deliver more efficient estimation of the expected difference in
outcomes between control strategies.

Missing dimension in measures of disease intervention impacts

M. Gabriela M. Gomes

(joint work with Marc Lipsitch, Gael Kurath, Andrew R. Wargo, Graham F.
Medley, Carlota Rebelo, Antonio Coutinho)

Immunological protection, acquired from either natural infection or vaccine, varies
between hosts, reflecting underlying biological mechanisms and affecting popula-
tion level protection. Distributions of susceptibility and protection entangle with
pathogen dose in a way that can be decoupled by adequately representing the
dose dimension in the study design. The two extreme distributions of vaccine
protection have been termed leaky (equally protects all hosts) and all-or-nothing
(totally protects a proportion of hosts). Leaky vaccines are predicted to allow
greater pathogen prevalence [1]. Leaky protection induced by natural pathogen
exposure generates a threshold in transmission above which infection persists al-
most unchanged in a population where everyone has been immunized, contrasting
with the all-or-nothing regime where population effects of immunity are more no-
ticeable and less sensitive to baseline transmission [2]. These extreme distributions
can be distinguished in vaccine field trials from the time-dependence of infections
[3]. Frailty mixing models have been proposed to estimate the distribution of pro-
tection from time to event data [4]. However, results are not comparable across
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regions unless there is explicit control for baseline transmission [5]. We provide
a rationale for how comparability can be attained, and trial efficiency enhanced,
by adopting study designs and estimation procedures that integrate multiple pop-
ulations, covering a wide range of transmission intensities. Distributions of host
susceptibility, and acquired protection, can be estimated from dose-response data
generated under controlled experimental conditions [6]–[7] and natural settings
[8]. These distributions can guide research on mechanisms of protection, as well
as enable model validity across the entire range of transmission intensities. We
argue that a shift to a dose-dimension paradigm is urgently needed in infectious
disease science and public health.
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Sequential Monte Carlo methods for inferring transmission dynamics
from pathogen genetic sequences

Edward Ionides

Sequential Monte Carlo (SMC) algorithms [6]–[2] typically operate on partially
observed Markov process (POMP) models. The Markov process {X(t)} may take
values in an arbitrary space χ, with transition probabilities depending on a real
vector-valued parameter Θ. Data y1, ...,yN are obvserved at times t1,...,tN and are
modeled as being realizations of random variables Y1,...,YN which are conditionally
independent given {X(t)} having conditional density fYn|Xn

(·|·; Θ). POMP mod-
els have repeatedly been proposed as a general framework for modeling biological
systems,since they provide a reasonable tradeoff between generality and tractabil-
ity. In the context of phylodynamic inference, the state of the Markov process may
be a tree, with branches and leaves being added through time. SMC methodol-
ogy was proposed independently by multiple groups in the 1990s, simultaneously
called particle filtering, bootstrap filtering, Monte Carlo filtering, sequential im-
portance sampling, and the condensation algorithm. It was used in physics and
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chemistry since the 1950s: marketed as ”Poor man’s Monte Carlo” [7]. In modern
theory, SMC and Markov chain Monte Carlo (MCMC) have similar asymptotic
guarantees. SMC provides an alternative to MCMC for many computations, and
for dynamic systems SMC is often preferred. An SMC algorithm consists of a
swarm of particles evolving according to the stochastic dynamic system. Particles
consistent with data are propagated; those inconsistent with data are pruned. The
propagation and pruning are done in such a way that SMC approximates an ideal
nonlinear filter, and in particular SMC gives unbiased likelihood estimates, with
more particles giving reduced variance. A recursive description of a basic SMC
algorithm is as follows:

[Filter at time n+1]. Suppose inductively that we have a swarm of J particles,
{XF

n,j, j = 1, ..., J} whose distribution is a good approximation to the conditional

distribution of X(tn) given data up to time tn. In that case, we say that {XF
n,j, j =

1, ..., J} gives a numerical solution to the filtering problem at time tn.
[Predict at time n + 1]. Each particle XF

n,j is simulated forward from time tn
to time tn+1. The resulting swarm, denoted {XP

n+1,j, j = 1, ..., J} represents the

distribution ofX(tn+1) given data up to time tn. We say that {XP
n+1,j, j = 1, ..., J}

is a numeric solution to the prediction or 1-step prediction or 1-step forecasting
problem at time tn+1.

[Filter at time n+1]. Drawing a random sample of size J with replacement
from {XP

n+1,j, j = 1, ..., J}, with the sampling weight for XP
n+1,j proportional

to fYn+1|Xn+1
(yn+1|X

P
n+1,j ; Θ) gives a swarm {XF

n+1,j, j = 1, ..., J} which is a
numerical solution to the filtering problem at time tn+1.

SMC gets the statistician only part of the way toward inference on unknown pa-
rameters or model selection: it estimates latent dynamic variables, and integrates
them out to approximate the likelihood, for a given model and given parameter
values, and using these noisy and computationally expensive likelihood evalua-
tions in Bayesian or frequentist inference is tricky. The issue has inspired much
research over the past decade. Iterated filtering [10],[9] aims to maximize the like-
lihood by adding a random walk in parameter space. Particle MCMC [1] aims
to simulate a posterior distribution by using an SMC estimate of the likelihood
in an MCMC investigation of the parameter space. Iterated filtering and particle
MCMC both inherit from SMC an important property: they require simualation
from the dynamic model but they do not require explicit computation of transi-
tion probabilities. This is called the plug-and-play property [5],[8]. Plug-and-play
facilitates model development (we can simualate from many models of interest for
which transition probabilities are hard to compute). Plug-and-play also facilitates
software development: inference software, such as the R package pomp [11], can
simply takes as an argument code to generate simulations. Other plug-and-play
methods, such as synthetic likelihood [18] and approximate Bayesian computation
(ABC) [17] have been developed recently. Iterated filtering, building on SMC,
allows effective inference for a wide range of disease transmission models: exam-
ples include malaria [13], measles [8] and cholera [12]. References to many more
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examples are available at http://en.wikipedia.org/wiki/Iterated filtering. Spatial-
temporal and high dimensional systems remain a challenge for SMC. Genetic data
is a new frontier. Rasmussen et al. [15] developed a method for SMC-based infer-
ence conditional on a phylogeny, by showing that if uncertainty in the phylogeny
is negligible then a coalescent process on this phylogeny can be used as a mea-
surement model for applying SMC techniques to stochastic dynamic transmission
models. This reduces the problem to nonlinear time series analysis, where the
data are a time series of the number of coalescent times in small, discrete time
intervals. Some uncertainty in the estimated phylogeny can be accounted for,
but mutually consistent estimation of the phylogeny and the transmission model
is currently unresolved. Bouchard-Côté et al. [4] used SMC with a tree-valued
Markov process to estimate a phylogeny, by building a phylogeny backwards in
time, so a ”particle” is a forest of trees that combine down to a single large tree
as the filtering proceeds. SMC for joint estimation of transmission dynamics and
phylogeny is also possible, as shown by preliminary results (in collaboration with
Alex Smith and Aaron King). Each particle is a transmission tree of all infected
individuals in a population. Tree growth follows the forward-time dynamic model
for disease tranmission. Observations are assignments of sequences to branches
on the tree. Currently, we can filter simulated data from simple models with, say,
100 observed sequences. Some improvements are expected through refining the
code, but an important open question is whether fundamental algorithmic devel-
opments could enable, say, 1000 sequences and 20-parameter models. This will
involve grappling with the curse of dimensionality, which in the context of SMC
is the problematic fact that the basic SMC algorithm becomes exponentially more
challenging numerically as the dimension of the state increases [3]. Hope for re-
solving the curse can be found in the observation that SMC could in principle also
require a number of particles exponential in the length of the time series. This is
infeasible, but is avoided when the Markov process has temporal mixing proper-
ties [14]. Recent work by Rebeschini and van Handel [16] shows the possibility of
developing new SMC algorithms that take advantage of weak spatial coupling to
avoid the curse. In the phylodynamic context, weak coupling arises when lineages
interact only through competition for susceptibles, and we are investigating the
construction of practical algorithms based on the advances of [16]. It has been
said that genetic data ’decorrelate’ the lineages, but ecological competition still
exists and can be critical.
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[10] Ionides, E. L., Bretó, C., and King, A. A. Inference for nonlinear dynamical systems, Pro-
ceedings of the National Academy of Sciences of the USA 103 (2006), 18438–18443.
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Survival analysis, who-infected-whom, and phylogenetics in infectious
disease epidemiology

Eben Kenah

Statistical methods for infectious disease data based on generation or serial inter-
vals fail to account for information contributed by uninfected person-time and for
competing risks of infection. These problems are solved by methods based on con-
tact intervals, which are times between the onset of infectiousness and infectious
contact. These allow parametric, nonparametric, and semiparametric analyses of
infectious disease transmission data using methods adapted from survival analysis.
When who-infects-whom is not observed, these estimators are sums or averages
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over all possible transmission trees. A phylogenetic tree linking pathogen ge-
netic sequences provides partial information about who-infected-whom. Here, we
describe an algorithm for finding all possible transmission trees consistent with
epidemiologic data and a pathogen phylogeny.

Bayesian non-parametric inference for epidemic models

Theodore Kypraios

Despite the enormous attention given to the development of methods for efficient
parameter estimation, there has been relatively little activity in the area of non-
parametric inference. That is, drawing inference for the quantities which govern
transmission, i) the force of infection and ii) the period during which an individ-
ual remains infectious, without making certain modelling assumptions about its
(parametric) functional form or that it belongs to a certain family of paramet-
ric distributions. In this talk we describe three approaches which allow Bayesian
non-parametric inference for the force of infection; namely via Gaussian Process,
Step Functions, and B-splines. We illustrate the proposed methodology both with
simulated and real datasets.

The rise and fall of HIV in Africa: A challenge for mathematical
modeling

Nico J.D. Nagelkerke

Many parts of sub-Saharan Africa have experienced large HIV epidemics with rapid
onsets, generally attributed to a combination of factors related to high risk sexual
behavior. In several countries the adult prevalence of HV exceeded 20%. In the
rest of the world, even places where the same (sexual) risk factors appeared to be
present, the HIV prevalence in the general population has remained substantially
lower. In several African countries, however, HIV prevalence and incidence are
declining rapidly; declines that began prior to widespread therapy or implemen-
tation of any other major biomedical prevention. This change has been construed
as evidence of behavior change, but direct evidence for behavior changes of an
extent and timing that would explain this decline is lacking. Here, we look at
the structure of current mathematical models and argue that the common ”fixed
risk per sexual contact” assumption implies the conclusion of substantial behavior
changes. We argue that this assumption ignores reported non-linearities between
exposure and risk. Taking this into account we propose that some of the decline
in HIV transmission may be part of the natural dynamics of the epidemic, and
that several factors that have traditionally been ignored by modelers for lack of
precise quantitative estimates may well hold the key to understanding epidemio-
logical trends. Most importantly heterogeneity in susceptibility has been largely
ignored, despite empirical evidence for its importance. This heterogeneity not only
changes our understanding of the course of the epidemic but also has a bearing on
the design of transmission studies.
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MCMC for a birth-death-mutation (BDM) model

Peter Neal

A birth-death-mutation (BDM) model has been used by a number of authors to
model the evolution of a tuberculosis epidemic in San Francisco in the early 1990s.
The observed data is assumed to be a cross-sectional study of the tuberculosis
outbreak. It is impossible to write down the likelihood for the model without
substantial, non-trivial data augmentation which prohibits the use of standard
MCMC algorithms. However it is trivial to simulate a realisation of the BDM
model and ABC algorithms have been used to estimate the parameters of the BDM
model. Starting from the ABC perspective that simulation is straightforward, we
construct an MCMC algorithm which uses simulation. Specifically we use a non-
centered parameterisation which enables us to treat the simulation process as a
data augmentation problem and takes similar amounts of time per iteration as
the ABC algorithms. The MCMC algorithm is successfully applied to the San
Francisco tuberculosis data.

How much epidemiology can we infer from phylogeny

David A. Rasmussen

Population geneticists have long recognized that genealogies contain useful infor-
mation about the demographic history of a population, especially with respect to
past population dynamics and population structure. This has lead to the develop-
ment of several coalescent-based methods for inferring historical demography from
genealogies. The coalescent in essence provides a probability distribution on trees
under a certain demographic model, and therefore allows likelihood or Bayesian in-
ference of demographic parameters from genealogies. Coalescent methods can also
be applied to genealogies of infectious pathogens, allowing epidemiological dynam-
ics and parameters to be inferred from sequence data. While it is well understood
how different demographic processes like population growth or population struc-
ture affect the shape of genealogies, it is much more difficult to quantify how much
information genealogies contain about demography. I propose that genealogies are
in general highly informative about past population dynamics, and therefore it
should be possible to infer past demographic changes relatively easily from genealo-
gies. On the other hand, estimating parameters relating to population structure
precisely from genealogies may be much more difficult, especially in weakly struc-
ture populations. As an illustrative example, I use the case of dengue serotype 1
(DENV-1) to show how much information can be obtained from genealogies about
historical epidemiological dynamics. Dengue provides an interesting case study
because earlier studies found that population dynamics estimated from dengue
genealogies correspond poorly with dengue dynamics observed in hospitalization
data. Earlier work had failed to detect any signal of dengues strong seasonal dy-
namics in southern Vietnam, suggesting that there is insufficient information in
genealogies to estimate population dynamics on the relevant time scale. I show
that the inability to accurately estimate dengues seasonal dynamics may actually
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be due to using a coalescent model for inference that does not properly take into
account the spatial structure of the dengue population. Using coalescent models
that take into account spatial structure, I show that it is possible to reconstruct
historical dynamics of DENV-1 consistent with patterns in time series data. Es-
timating parameters relating to population structure from genealogies appears to
be more difficult than estimating historical dynamics. I demonstrate this using ge-
nealogies simulated under different demographic scenarios, varying the strength of
seasonality by varying how much mixing occurs between different subpopulations
in the demographic model. These simulations show that if population structure is
strong, the structure of the population strongly impacts the shape of the genealogy
and so it is relatively easy to estimate parameters relating to population structure
from the genealogies. On the other hand, if population is weak, lineages in the
genealogy will move rapidly between populations. The rapid movement of lineages
between populations means that observing the location or state of a lineage at the
time of sampling provides little information about the past state of the lineage.
There is therefore a high degree of uncertainty in the state of a lineage over the
majority of the tree, which makes population structure difficult to estimate from
a genealogy. However, how much information a genealogy contains about popula-
tion structure can be highly dependent on the sample size. Increasing the sample
size can greatly improve our ability to estimate parameters relating to population
structure. Therefore, while it may be possible to reconstruct population dynamics
from a limited number of sampled lineages, inferring the structure of a population
from genealogies may require much larger sample sizes.

How epidemiology interacts with ecology

Mick Roberts

(joint work with Hans Heesterbeek)

It has been a paradigm in ecology that large complex ecosystems tend to be
unstable [3], although the nature of the interaction between species is a strong
determinant of persistence [1, 4]. Recently, Dobson speculated that “Parasites
look increasingly viable as the ‘missing links’ in food webs, the ‘dark matter’
that helps stabilize otherwise unstable structures (presentation at Isaac Newton
Institute for Mathematical Sciences, 20/8/2013).

We have developed a differential equation model that describes how infectious
diseases may alter the interactions between populations in a complex food web [5].
The stability matrix at the infection-free steady state partitions into a community
matrix, that determines ecological stability, and a matrix that determines epidemi-
ological stability. Furthermore, this second matrix may be used to construct the
next generation matrix in the usual way [2], and to determine which species are
reservoirs of infection.

Two simple examples illustrate this approach. The first of these is a model of the
rinderpest, wildebeest, grass interaction, where the inferred dynamics qualitatively
match the observed phenomena that occurred after the eradication of rinderpest
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from the Serengeti ecosystem in the 1980s. The second example is a prey-predator
system, where both species are hosts of the same pathogen. It is shown that
regions for the parameter values exist where the two host species are only able to
coexist when the pathogen is present to mediate the ecological interaction.
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The impact of disease-related mortality during epidemics in small
communities

Lisa Sattenspiel

When populations are very small, it is difficult to design and analyze appropriate
mathematical models to address important questions about the spread of disease
at the population level. One relatively new approach to this problem is to develop
agent-based computer simulation models that can incorporate the most essential
characteristics of the population as well as the stochasticity that is so important
for small populations. This talk described the structure of an agent-based model
designed to study the spread of the 1918-19 influenza pandemic in a small fish-
ing community in the Canadian province of Newfoundland and Labrador. The
talk also presented results from sensitivity analyses of the model, with a focus on
the impact of disease-related mortality. Sensitivity results discussed in the talk
included a comparison of different versions of the model, including versions with
a) completely random movement of individuals on the model space, b) partial di-
rected movement where fishermen and children moved on a daily basis to boats and
school, respectively, while all other agents moved within their houses only, c) full
directed movement, where all agents moved among different locations within the
simulated community according to a specified timetable and movement scheme,
and d) full directed movement with disease-related mortality added to the model.
Results showed that both full and partial directed movement resulted in much
faster epidemic spread and higher levels of infection than did random movement.
One initially surprising result is that simulations using mortality levels character-
istic of the 1918-19 influenza pandemic on the island of Newfoundland differed
very little from those using the same type of movement but no mortality. This is
due to the fact that the modeled community is so small (503 people) that only 4
deaths would be expected at the observed rate of mortality. An analysis of the
impact of higher probabilities of death indicates that at very low levels of mortality
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and with high probabilities of transmission, nearly everyone becomes infected, but
very few die. The proportion of cases that die increases rapidly as mortality levels
increase, however, and at high levels of mortality, nearly everyone infected dies.
However, because transmission chains end with the death of an agent, in this case
a significant fraction of agents never become infected (see figure). These results
suggest that the major impact of a disease like influenza is less a consequence
of disease-related mortality than it is of the extent of disease-related illness and
the disruptions in life due to the large number of cases that can occur and the
alterations in behavior that accompany illness.

Quantifying the relationship between shedding and transmission for
Escherichia coli O157 in feedlot cattle

Simon E. F. Spencer, Thomas E. Besser, Rowland Cobbold, Nigel P.

French

Abstract. In this study we were able to quantify the relationship between shed-
ding and transmission of E. coli O157 in cattle. We achieved this by fitting a non-
Markovian stochastic SIS (Susceptible-Infected-Susceptible) transmission model
that accounts for indirect infections from historic shedding. By considering in-
formation from multiple tests we were able to simultaneously estimate the test
sensitivities alongside the unobserved colonisation status for each individual ani-
mal throughout the study. Our results were based on a 99 day longitudinal study of
160 animals undergoing natural infection and housed within a commercial feedlot
setting.
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In the literature much has been made of the role that ‘supershedding’ individuals
might play in the transmission dynamics of E. coli O157. However we found little
evidence of a disproportionate contribution to transmission from high-shedding
individuals. We were able to learn further about the transmission dynamics from
a subset of E. coli samples for which additional genetic typing data were available.
There was clear evidence of strains being transmitted within pens as well as the
invasion of new strains from outside the pens. Since all of the samples remain
frozen in storage, we have been able to design and carry out an additional study
that utilizes this kind of genetic information more effectively.

Introduction. Shiga toxin-producing Escherichia coli O157 (STEC O157) con-
tinue to present a serious threat to public health in many countries around the
world[1]. The severe haemorrhagic diarrhoea and serious sequelae associated with
infection can result in loss of life[2] and, although STEC O157 are associated with
a relatively low incidence compared to other enteric zoonoses, they present a major
burden to the economies of many countries.

There has been much discussion in the literature of the role and importance
of so called supershedders in transmission and the maintenance of infection in
cattle[1]. These are defined as animals shedding relatively large concentrations
of STEC O157 in their faeces, usually between 103 and 104 /g for an extended
period[3]. They are considered to be responsible for a disproportionate amount of
transmission.

In this study, we present the first formal consideration of the relationship be-
tween the concentration of STEC O157 shed in faeces and transmission, using the
results from a large-scale study of natural infection in feedlot cattle. We fitted SIS
(Susceptible-Infected-Susceptible) models that consider in detail the relationship
between shedding and transmission, as well as the diagnostic test characteristics.
We derive the shape of the relationship between shedding and transmission and
provide new insight into the role played by supershedders in the maintenance of
infection in cattle populations.

Methods. The colonisation status of each animal was measured twice weekly
using two diagnostic tests: a Recto-Anal Mucosal Swab (RAMS) and a faecal pat
sample. Each sample was tested for E. coli O157 using culture and PCR and
the concentration of bacteria was estimated. Although we assumed perfect test
specificity, we allowed for the fact that both tests had less than perfect sensitivity.

Markov chain Monte Carlo techniques were used to fit a discrete-time SIS trans-
mission model to these data. This involved inferring the hidden colonisation status
of each animal on each day of the study and enabled the diagnostic test sensitivities
to be estimated. By incorporating the shedding levels into the risk of colonisation
we were able to estimate directly the shape of the relationship between them.

In particular we assumed that the rate of colonisation had the form α+β
∑

i

S
η
i ,

where Si is the level of shedding from individual i in the pen, measured in log10
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cfu. The parameters α and β balance the risk of colonisation from outside the pen
and from individuals within the pen. The parameter η governs the nature of the
relationship between shedding and transmission. If the risk of transmission was
proportional to the number of bacteria shed we would expect η >> 1, whilst if
colonisation status rather than shedding level was the risk factor for transmission
then we would expect η = 0.

We adapted this model further to account for the risk of infection from histori-
cal shedding. We assumed that a fixed proportion of bacteria survive each day in
the environment and these bacteria also pose a risk of colonisation. Notice that
these assumptions yield a non-Markovian model that allows infectious material to
accumulate in the environment which can lead to colonisations later in the study.

Results. The posterior distribution of η was largely below one, providing little
evidence that high shedding individuals contribute disproportionately to the bur-
den of infection. We also inferred a surprisingly short duration of survival of the
bacteria within the environment. Overall we found that the animals must shed
at levels over 104 cfu/g before it is possible for the infection to persist in the pen
without reintroductions from outside. Since the pens used in the study were of
two different sizes we were able to infer that animal density had a strong impact
on transmissibility, which could have future implications for control.

Genetic typing data produced via Pulsed Field Gel Electophoresis (PFGE)
showed evidence of a single strain of E. coli O157 circulating within a pen as
well as occasions where a new strain invaded from outside. The original subset of
samples chosen for genotyping were not selected at random, potentially introduc-
ing bias into the analysis. Since the sampled material remains in frozen storage, we
have been able to design and undertake a more comprehensive genotyping study,
the results from which should be available shortly.

Discussion. The main aim of this study was to quantify the relationship be-
tween bacterial shedding levels and the risk of colonisation. We have not been
able to substantiate the hypothesised link between supershedders and high trans-
mission. In future we aim to use model comparison techniques to formally assess
this hypothesis.

The original supershedding hypothesis was based on the idea that persistently
high shedding individuals were colonised by the bacteria at the recto-anal junction
(RAJ), whilst low shedding individuals resulted from amplification of the bacteria
during passage through the digestive tract. Supershedders would therefore con-
stitute an identifiable subgroup of individuals at which control measures could be
targeted. However, the lack of a relationship between high shedding and excess
transmission, coupled with the large number of animals that tested positive in the
RAJ swabs despite low bacterial levels in faeces, suggests that this hypothesis now
needs to be reconsidered.



3208 Oberwolfach Report 55/2013

References

[1] Chase-Topping M et al. (2008). Supershedding and the link between human infection and
livestock carriage of Escherichia coli O157. Nature Reviews, 6, 904–912.

[2] Karmali, MA (2004). Infection by shiga toxin-producing Escherichia coli.Molecular Biotech-
nology, 26, 117–122.

[3] Omisakin F et al. (2003). Concentration and prevalence of Escherichia coli O157 in cattle
feces at slaughter. Appl. Environ. Microbiol. 69, 2444–2447.

Dynamics of influenza and modes of transmission

Nikolaos I. Stilianakis

(joint work with Yannis Drossinos, Marguerite Robinson, and Thomas P. Weber)

The epidemiology of airborne infectious diseases, such as influenza, is charac-
terised by multiple modes of transmission. In the case of influenza three, non-
mutually exclusive, modes of transmission have been identified; airborne trans-
mission mediated by respirable droplet nuclei (aerodynamic diameter da ≤ 10µm),
droplet transmission mediated by inspirable large droplets (10µm ≤ da ≤ 100µm),
and contact transmission mediated by droplets settled in the environment. Their
relative importance and the efficiency of control measures depend, among other
factors, on the inactivation of viruses in different environmental media. On inan-
imate surfaces and in aerosols daily virus inactivation rates are of the order of
1-100 and they can survive several hours, whereas on hands the inactivation rates
are of the order of 1000 and viruses can survive for a few minutes [1]. Understand-
ing the dynamics of transmission of influenza and the relative importance of the
associated modes of transmission is of major interest since it would uncover the
underlying biological and physical processes, and it can be of use for the design of
effective and efficient intervention strategies.

A series of mathematical models that describe the transmission dynamics of
influenza in humans explicitly incorporating the modes of transmission, such as
transmission via respiratory droplets and contact in space and time, were de-
veloped. Droplets dynamics is determined by their physical properties, whereas
population dynamics is determined by, among other properties, the pathogen infec-
tivity and the host contact rates. A fundamental time dependent model suggests
that airborne infections, mediated by respirable droplets, provides the dominant
mode of transmission in middle and long-range epidemics whereas larger, so called
inspirable droplets, be they airborne or settled, characterise short-term epidemics
with high attack rates [2]. The model has the typical population structure of a
susceptible-infected-recovered (SIR) model with the particular feature that it ex-
plicitly describes the dynamics of the pathogen-carrying droplets via the above
described modes. In its general form the fundamental model can be described as
follows.

The emitted polydisperse droplet distribution is divided into l bin, each one
characterised by an average droplet diameter di, an airborne droplet numberDi(t),
and a corresponding number of settled droplets Ci(t). We consider that dj ≥ di
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for j ≥ i. The dynamics of the infection for such a discretised distribution is
described by

dS

dt
= −

l
∑

i=1

Np(di)
[

βdi
qdi

(di)Di + βci qci(di)Ci

] S

N
,

dI

dt
= −

dS

dt
− µII,

dDi

dt
= κiI −

[( B

Vcl

+ c̃di

)

qdi
(di) + µd + θi

]

Di

+
∑

j>i

φjiDj −Di

∑

j<i

φij , i, j = 1, . . . , l ,

dCi

dt
= θiDi −

[(

η + c̃ci
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qci(di) + µc
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+
∑

j>i

φ̃jiCj − Ci

∑

j<i

φ̃ij , i, j = 1, . . . , l,

dR

dt
= µII,

with appropriate initial conditions, e.g., S(0) = S0, I(0) = I0, Dj(0) = 0,
Cj(0) = 0, R(0) = 0, and S + I + R = N , with N the total, constant, population
size and S, I, D, C, and R denoting the populations of susceptible and infected
persons, droplet and settled droplets and recovered population, respectively. In
the equation for the droplets, Di, the last two terms are evaporation terms with
φji the evaporation rate of droplet dj to become droplet di; the penultimate term
models the increase of Di droplets due to evaporation of all larger droplets (j > i),
and the last term its decrease via evaporation to smaller droplets. Similarly, for
settled droplets, (equation for Ci), the same evaporation terms for settled droplets

are denoted by φ̃ij . We neglect non-linear processes that convert smaller droplets
into larger by coagulation and the inverse process of droplet break up.

Extension of the model to a spatio-temporal mathematical model with droplet
transport determined by diffusive and convective processes reveals that respirable
droplets can lead to an epidemic wave propagating through a fully susceptible
population or a secondary infection outbreak for a localised susceptible population.
Droplet diffusion is found to be an inefficient mode of droplet transport leading to
minimal spatial spread of infection. A threshold air velocity above which disease
transmission is impaired, even when the basic reproduction number R0 exceeds
unity, is derived [3].

In a subsequent model, a modelling approach describing the transmission of air-
borne infections, such as influenza, that captures the effect of seasonal pathogen
inactivation on infection disease periodicity reveals that the introduction of season-
ally forced pathogen inactivation rate leads to a time delay between peak pathogen
survival and peak diseases incidence. The observed oscillations are found to have a
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period identical to that of the seasonally forced inactivation rate, the period being
independent of the duration of infection acquired immunity [4].
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Population structure, why bother?

Pieter Trapman

(joint work with Frank Ball, Tom Britton, Jean-Stephane Dhersin, Viet Chi
Tran, Jacco Wallinga)

In epidemiology we are often interested in R0 for emerging infectious diseases. We
discuss how this quantity depends on the population structure and relatively easy
to obtain parameters, such as the shape of the infectivity profile and the Malthu-
sian parameter. We show that population structures such as random (configu-
ration model) networks, household structures and multi-type populations hardly
influence the relationship between the Malthusian parameter and R0.

Inference of who infected whom using genetic data in the presence of
incomplete sampling: Applications to the HIV epidemic in MSM

Erik Volz

We consider the genealogical structure generated by common epidemiological mod-
els such that each lineage in a genealogy corresponds to a single infected host and
each node corresponds to a transmission between hosts. Call this genealogy the
’transmission genealogy’. Under suitable assumptions about the natural history
and immunological dynamics of a pathogen, the phylogeny of a pathogen will cor-
respond to the transmission genealogy. We show that this is a valid approximation
if super-infection is rare (a host becomes infected once and only once) and if the
effective population size of the pathogen within hosts is very small. Under these
conditions, we outline a coalescent mathematical model (a model which describes
genealogical structure on a retrospective time axis), which relates the genealogical
structure predicted by epidemiological models to phylogenies which may be esti-
mated from pathogen genetic sequence data. This theory enables the estimation of
compartmental model parameters from pathogen genetic data. We present several
applications of this theory. Firstly, we illustrate under what conditions the effec-
tive population size of the pathogen at the epidemic level will correspond to the
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the true prevalence of infection. We show that the correspondence between effec-
tive size and prevalence is good during the early exponential growth period of an
epidemic, but that the correspondence can be very bad if the per-capita incidence
rate changes rapidly through time. Secondly, we fit two simple compartmental
SIR models to a phylogeny of S. aureaus, yielding an estimate of R0 and the early
epidemic growth rate. Thirdly, we fit a complex compartmental model for the
HIV epidemic to a phylogeny estimated from 662 subtype B HIV-1 sequences. By
fitting this model, we estimate that 45% of transmissions likely occur during the
first year of the infectious period. Finally, we discuss applications of the coalescent
models to the problem of inferring the source of infection (transmission pairs) in
large random samples of infected hosts and corresponding pathogen sequences.

The Modeling of Pathogen-Specific Counts for Hand, Foot and Mouth
Disease

Jon Wakefield

(joint work with Cici Chen, Leigh Fisher, Steve Self and Betz Halloran)

In this talk modeling approaches for hand, foot and mouth disease (HFMD) data
collected in China over the period 2009-2010 will be discussed. HFMD is caused
by an acute contagious viral infection and there have been large-scale outbreaks
in Asia during the past 20 years. The disease is mostly in children, with fecal-
oral transmission. Enterovirus 71 (EV71) and Coxackie A16 (CoxA16) are the
most common viruses associated with HFMD. Cases are most infectious during
the first week of acute illness but may continue to shed virus in the stool for
weeks. The data are collected via a surveillance system, and are made available by
the Chinese Center for Disease Control (CDC). The basic data consist of weekly
counts in geographical areas, by age and gender and with an indicator of the
severity of disease (mild or severe). A certain proportion of mild and severe cases
are selected for lab testing, so that the pathogen responsible for disease is known.
Enterovirus 71 (EV71) and Coxackie A16 (CoxA16) are the most common viruses
associated with HFMD. Meteorological data, and other area-level covariates are
also available. The talk has three parts. In the first part, a spline model is
described to inform on the medium to large scale spatio-temporal variability. The
spline regression coefficients are assigned a space-time smoothing prior and the
model is fitted using the integrated nested Laplace approximation (INLA) so that
computation is fast. In the second part of the talk, we consider the joint modeling
of the basic count and pathogen data. For these data, the total number of severe
and mild cases by pathogen are unobserved, but these may be introduced into an
MCMC approach as auxiliary variables. The parameters of primary interest are
(in a generic area and time period): p=Pr(case), qE = Pr( EV71 — case), rE =
Pr( severe — EV71 ) and rC = Pr( severe — CoxA16). The auxiliary variable
scheme is computationally expensive since the unobserved variables have large
support. Hence, as an alternative, we derive estimators for the four probabilities
of interest, along with an associated asymptotic variance-covariance matrix. The
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sampling distribution of the estimator is then used as a likelihood, with a space-
time smoothing prior at the second stage of a hierarchical model. The aim then is
to model the (logits of the) probabilities as a function of covariates and time, to
understand the interplay (competition) between the pathogens. The next step is to
introduce space, so that the space-time dynamics can be modeled. Finally, in the
third part of the talk, we consider the design of a vaccine trial for EV71 HFMD.
In particular we consider matched pairs of areas with individuals in one control
area being given placebo, and individuals within the other area being randomized
to either placebo or vaccine, according to some fixed fraction. This is an example
of a two-stage randomization since areas and individuals are randomized. Within-
area dependence in the binary indicator of disease may be dealt with via random
effects or sandwich estimation. With this design direct, indirect, total and overall
vaccine effects may be estimated with simulations being used to assess the power as
a function of different numbers of pairs, and the fractions vaccinated within areas.
Estimators and standard errors of the attack rates are available as a function of
p, qE, rE and rC.

Pathogen Evolutionary Genomics to Learn About Transmission

Daniel Wilson

The revolution in DNA sequencing capacity has led to the production of enor-
mous amounts of information concerning the genomic diveristy of pathogens pop-
ulations. There is great interest in exploiting this source of information to learn
about transmission dynamics. Simple approaches compare the evolutionary diver-
gence between pairs of genomes, measured in terms of mutational differences, to
impose thresholds that exclude transmission between genomes that are too dis-
tantly related. However, this is unlikely to represent the most efficient use of
whole pathogen genomes, and does not easily incorporate accompanying epidemi-
ological information. To fully exploit this rich source of data, we need to develop
formally integrated evolutionary and epidemiological models that are amenable
to likelihood-based inference and based on biologically explicit assumptions. In
this talk, I will discuss the idea of using meta-populations to develop such joint
evolutionary-epidemiological models, and then apply them to learn about trans-
mission dynamics in Hepatitis C Virus, Staphylococcus aureus and Foot and
Mouth Disease Virus. For population-level dynamics, I will review coalescent-
based work well suited to analysing genomes sampled at random from large popu-
lations. For individual-level dynamics, I will introduce an importance sampling ap-
proach that attempts to perform inference under the structured coalescent model.
Looking ahead, I will discuss how this latter approach might be generalized to
incorporate epidemiological observations, to allow us to reconstruct transmission
dynamics using all the information available.
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A generalized approach to reconstructing transmission networks for
communicable diseases using densely sampled genomic data

Colin Worby

A key aim in the analysis of infectious disease epidemics is to identify who infected
whom. Achieving this is challenging, since transmission dynamics are generally
unobserved, but a probabilistic estimation of the transmission network based on all
available data offers many potential benefits. In particular, this could lead to im-
proved understanding of transmission dynamics, provide a mechanism to quantify
factors associated with heightened transmissibility and susceptibility to infection,
and help identify effective interventions to reduce transmission. Pathogen typing
can assist in the investigation of transmission routes, and whole genome sequence
(WGS) data offer maximal discriminatory power, potentially leading to more accu-
rate reconstructions than hitherto possible. Such high resolution genetic data also
provide an unprecedented opportunity to investigate the evolutionary behaviour
and population dynamics of pathogens. However, uniting the analysis of genetic
and surveillance data poses several challenges. In particular, many studies using
WGS data have revealed high levels of within-host genetic diversity for common
pathogens. To date, genomic data has primarily been used to analyse transmission
at a population rather than an individual level. The former typically relies on a
broad, low frequency sample of individuals from a large population, with the aim
of estimating past population dynamics over a long period of time. In contrast,
we focus on individual-level transmission, using high-frequency genomic samples
from a subpopulation (eg. hospital, school, jail, farm, community), with the aim
of reconstructing transmission routes over a short period of time. We developed
a generalized approach to transmission network reconstruction. We made no as-
sumptions about the evolutionary dynamics of the pathogen, and did not consider
the phylogenetic relationship between isolates. Instead, we modelled the distribu-
tion of genetic distances observed between each pair of sampled isolates. This offers
a flexible framework in which multiple independent introductions of the pathogen
and within-host diversity may be considered. Each sequenced isolate has both a
genetic distance and an epidemiological relationship to each previously observed
sequenced isolate. We defined the genetic distance to be the number of SNPs be-
tween isolates, though other metrics are possible. The epidemiological relationship
describes how the individuals from whom the isolates were taken are linked in the
transmission network (for instance, individuals could be part of the same trans-
mission chain, m links apart, or may belong to unrelated transmission chains).
This relationship determines the distribution of the genetic distance between iso-
lates intuitively, those who are directly linked would be expected to have isolates
differing by fewer SNPs. We used a stochastic transmission model framework,
whereby susceptible individuals are exposed to a risk of acquisition, dependent on
the number of infectious individuals present in the population at that time. We
supposed that each entry to the population was already infected with probability
p, and that susceptible persons were homogeneous in terms of risk of acquisition.
Let q(t) be the rate at which a given susceptible becomes infected at time t. We
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assumed that pathogen detection was not perfect - positive individuals received a
positive test result with probability z. Test specificity was assumed to be 100%.
A subset of positive isolates was sequenced, and we recorded the genetic distance
between each pair of isolates. We suppose that at the time of the sequencing of
the nth isolate, n-1 genetic distances are generated. These are drawn from a distri-
bution, which depends on the epidemiological relationship between the n-1 pairs
of hosts. One possible model supposes that genetic distances between individuals
belonging to separate transmission chains are drawn from a geometric distribution
with mean µ1, while distances between pairs in the same chain, r links apart, are
drawn from a geometric distribution with mean µ2λ

r. We primarily used this
model, but also experimented with others. If transmission dynamics are perfectly
observed, we have a tractable likelihood, and parameter estimation is straightfor-
ward. However, since we generally do not know the time, or route, of infection,
we augment the parameter space with these missing data, and use a Markov chain
Monte Carlo algorithm to explore the posterior distribution. We applied these
methods to the transmission of MRSA in hospitals, using data collected from in-
tensive care units in the UK, demonstrating the simultaneous estimation of model
parameters and a transmission network. More generally, the approaches we have
developed can be applied to the analysis of disease transmission in a community
where a high-frequency sample of sequence data is available. These methods offer
flexibility not available in previous approaches, such as allowing multiple intro-
ductions of the pathogen into the population, incorporating within-host genetic
diversity, accounting for uncertainty surrounding colonization times, and providing
estimates of uncertainty for each potential transmission route. While we have used
whole genome sequence data, this approach may also be used with lower resolution
genetic data, provided a distance metric between isolates can be defined.

Estimating transmission trees from genetic data

Rolf Ypma

Knowledge on the transmission tree of an epidemic can provide valuable insights
into disease dynamics. The transmission tree can be reconstructed by analysing
either detailed epidemiological data (e.g. contact tracing) or, if sufficient genetic
diversity accumulates over the course of the epidemic, genetic data of the pathogen.
Combining the two disparate data types, genetic and epidemiological data, should
yield the best estimates. We present two likelihood-based frameworks we devel-
oped to integrate these two data types, estimating probabilities of infection by
taking weighted averages over the set of possible transmission trees. In the first,
simple framework, we assume conditional independence between all transmission
event, using a simplified model of mutation, where substitutions happen at in-
fection rather than at a constant rate over time.[1] We show an application of
this approach to a dataset consisting of temporal, geographical and genetic data
on the 241 poultry farms infected in an epidemic of avian influenza A (H7N7)
in The Netherlands in 2003. The combined approach estimates the transmission
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tree with higher correctness and resolution than analyses based on genetic or epi-
demiological data alone, and the estimated tree reveals the relative infectiousness
of farms of different types and sizes. Most remarkably, this approach allows us
to get at the actual mechanism of spread between the farms. This mechanism is
largely unknown. We tested a putative role of wind, by comparing the direction
of estimated transmission events with the direction of wind at that day. We found
a statistically significant correlation, which indicates a wind-mediated mechanism
of spread.[2] We estimated the contribution of this mechanism to be at least 20%
of all infections. In a second, more elaborate, framework, we took into account the
full evolutionary history of the sampled sequences. We show how this history is
captured by the phylogenetic tree, which itself is contained within the transmission
tree.[3] Both the timing and the topology of the two trees can differ. Importantly,
the relationship between the two is governed by the within-host viral dynamics.
Assuming a simple Wright-Fisher type process, we can jointly infer the transmis-
sion tree, phylogenetic tree, within-host dynamics and parameters from genetic
and epidemiological data on an outbreak of foot-and-mouth disease. In many in-
stance, the information in the sequences will not be enough to confidently resolve
the phylogenetic tree and within-host dynamics, in which case simple approxima-
tions such as that in our first framework could be more useful. Approximations
further have the nice property of a considerably reduced computation load, mainly
due to the conditional independence between transmission events.
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