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Introduction by the Organisers

The workshop Adaptive Statistical Inference, organised by Mark Low (Wharton),
Axel Munk (Gottingen) and Alexandre Tsybakov (Paris) was attended by over 50
participants. The majority of the talks presented at this workshop can be clustered
in the following thematic groups: adaptive nonparametric estimation in regression
and machine learning, adaptation to the unkown sparsity in high-dimensional mod-
els, adaptive testing, adaptation to the unknown function in statistical inverse
problems, adaptation for confidence and credible sets. Two larger survey talks
have been given by O. Lepski on ” Adaptive estimation over anisotropic functional
classes via oracle approach” and by A. van der Vaart on ”Confidence in Credible
Sets”. PhD students presented their work in a ” Young researcher’s session” Tues-
day evening. On Wednesday a memorial session dedicated to the remembrance of
Laurent Cavalier (Marseille) was held.

Adaptive nonparametric estimation.

The talk of Oleg Lepski deals with adaptive estimation in gaussian white noise
model. It gives a classification of optimal rates of convergence of estimators on
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anisotropic Besov and Nikolskii classes under L,-norms. The method is based on
new oracle inequalities for aggregation of linear estimators.

The talk of Lucien Birgé concentrates on adaptation to unknown distribution
of errors in nonparametric regression. A universal procedure is suggested that
adaptively achieves the optimal rates in the Helliger distance independently of the
form of the noise.

Johannes Schmit-Hieber studies the problem of simultaneous adaptive estima-
tion in Lo and L., norms, and he suggests a new procedure based on wavelet
thresholding that achieves this task.

Alexander Rakhlin addresses the problem of comparison of the behavior of min-
imax risk in nonparametric estimation and minimax regret in statistical learning,
showing that the rates for both quantities coincide when the complexities of the
underlying functional classes are not too large.

Victor-Emmanuel Brunel gives a new insight into adaptive nonparametric es-
timation of convex sets and convex polytopes. He derives the optimal rates of
convergence on classes of polytopes and suggests an adaptive procedure attaining
this rate.

High-dimensional inference in regression models.

The talk of Arnak Dalalyan reports some refined results on the behavior of the
Lasso estimators in high-dimensional linear regression when the Gram matrix of
the problem is of low rank. In particular, the estimators are shown to automatically
adapt to small rank in the sense of improving the prediction error.

The talk of Sara van de Geer is devoted to asymptotic confidence intervals for
the parameters of high-dimensional linear regression based on Lasso type estima-
tors.

Guillaume Lecué shows that the restricted eignevalue assumption, which is cru-
cial for the study of Lasso-type methods, holds under weaker moment conditions
than the sub-gaussianity supposed in the previous work.

Olga Klopp shows that varying coefficients models can be embedded into the
framework of random matrix regression models. She proposes methods of esti-
mation in this setting and derives optimal rates of convergence up to logarithmic
factors.

Peter Bithlmann suggests an estimation procedure in high-dimensional mixture
regression model. He introduces a summary parameter characterizing the mixture
and studies the rates of estimation of this parameter when the dimension can be
much larger than the sample size.

High-dimensional matrix models and graphical models.

The talk of Florentina Bunea deals with the problem of estimation of large
covariance matrices having a banded structure. She introduces a new method,
which is computationally feasible and adaptively attains the optimal rates both in
Frobenius and operator norm.

Bin Yu discusses in her talk the problem of community detection in networks
via a spectral clustering algorithm with regularisation. She shows adavantages
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of the regularised algorithm as compared to the non-regularised one in terms of
relaxing the assumptions on the model.

The talk of Anru Zhang is devoted to matrix completion in the situation when
only a subset of rows and columns of an approximately low-rank matrix are ob-
served. A new method of matrix recovery is proposed and it is shown that it
achieves the optimal rate over certain classes of approximately low-rank matrices.

Harrison Zhou considers the problem of estimation of the individual entries of a
precision matrix in Gaussian graphical model. He characterizes the conditions on
the maximum degree of the graph, the dimension of the model and the sample size
n such that each entry of the matrix can be adaptively estimated at the parametric
\/n rate.

Adaptive testing hypotheses.

The talk of Michael Nussbaum discusses the methods of adaptive nonparametric
testing on Sobolev ellipsoids of unknown radius.

Cristina Butucea considers testing hypotheses about large matrices observed in
gaussian white noise. She derives minimax separation rates of testing the presence
of a small cluster in such a matrix.

Statistical inverse problems.

Thorsten Hohage discusses Poisson inverse problems and highlights the contri-
butions of Laurent Cavalier. He extended his work to nonlinear operators and
analyzed nonlinear Tikhonov regularisation in this conetxt. To this end he showed
an uniform exponential deviation inequality for the sup over a class of functionals
of a Poisson proces.

Housen Li extended a multiscale estimation technique due to Nemirovski to de-
convolution problems. He introduced a new estimator and a variational technique
which allows to prove adaptation over a large scale of functions.

Tengyuan Liang studies the properties of the atomic norm constrained min-
imization procedure for the general statistical inverse problem setting. He also
provides a lower bound on the minimax risk for this setting, which depends on
dimension, sample size and volume ratio driven by the geometry of the model.

Adélaide Olivier studies nonparametric estimation of the division rate function
for a size-structured particle model from observing the life lengths of the particles
that lived before a fixed time. She proposes a nonparametric estimator that attains
the minimax optimal rate.

Markus Reiss analyzes the risk hull technique in an inhomogeneous sequence
model. Estimation becomes first of all a model selection problem. He shows that
the risk hull method gives adaptation to the unknown sparseness. Computational
issues for the resulting estimators is addressed. This is based on previous joint
work with Laurent Cavalier.

Confidence and Adaptation

Lutz Diimbgen revisits the classical problem of confidence bands for distribution
functions. He constructs tighter confidence bands as the usual ones. This approach
unifies the benefits of Kolmogoroff’s and Berk-Jone’s bands. To this end the



724 Oberwolfach Report 13/2014

local uniform sub-excponential condition is established which allows to prove an
exponential inequality of the sup of a calibrated process satisfying this condition.

Max Sommerfeld considers the problem of confidence statements for modes and
their location in the context of circular data. He extends the SiZer methodology
to this case and characetrizes the wrapped Gaussian kernel as the only one which
generates a circular scale space. The connection to topological data analysis is
highlighted.

Aad van der Vaart disucsses the question to what extend adaptation of credible
sets can be achieved in the Bayesian nonparametric setting. He focuses on the
empirical Bayes method to cope with unknown smoothness. This is analyszed in
a sequence model which resembles polynomial degree of ill posedness. It is shown
that a minimax contraction rate of the posterior in Soboloev classes is obtained.
However, this has to fail when the smoothness index is unknown. Counterexam-
ples for the validity of empirical Bayes are shown and weaker formulations of the
problem are discussed. To this end the polished tail condition is introduced and a
certain form of adaptation for empirical Bayes credible sets is shown.

Miscellaneous topics.

Robert Nowak studies the recovery of the best arm in multi-armed bandit prob-
lems. This work suggests a rate optimal algorithm, which is a modification of the
upper confidence bound procedure using a finite sample version of the law of the
iterated logarithm.

Laszlo Gyorfi closes the workshop by discussing an open problem for stationary
gaussian time series. ”Is it possible to learn the best predictor almost surely in a
strongly consistent way?” Partial answers are given.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

A robust adaptive estimator for regression
LUCIEN BIRGE
(joint work with Yannick Baraud and Mathieu Sart)

Our purpose is to present a new method for adaptively estimating a regression
function when little is known about the shape and scale of the errors and that
can cope with error distributions as different as Gaussian, Uniform, Cauchy or
even with a unimodal unbounded density. To be more precise, let us describe the
framework we want to deal with.

We observe n independent random variables X,..., X,, each X; with an un-
known distribution P; on a measurable space (£, <) and our aim is to use
the vector X = (X1,...,X,,) of observations to estimate their joint distribution
P = ®._, P, that is to find a random approximation f’(X) = Qi P, (X) of P
based on the observed variables X;. To measure the quality of the approximation
of P by P we need a distance on the set of product measures on 2. It is known
from Le Cam’s work that a very convenient one is that (here denoted by h) derived
from the Hellinger distance h:

(Bn0)-Ermar 15 (o vy

We recall that the Hellinger distance h is the bounded distance on the set of all
probabilities on 2~ given by

[dr  [|dT
h2(R,T) — du < 1,
(R, ( m dﬂ) [

where p is an arbitrary positive measure which dominates both R and T', the result
being independent of the choice of u. R R

We measure the quality of an estimator P by its quadratic risk Ep[h?(P(X), P)]
with respect to the distance h, the notation Ep meaning that X has the joint
distribution P. This framework is suitable for the analysis of fixed design regression
models on R™, for which 2~ = R with X; = f; + & for 1 < i < n, the ¢
being assumed to be i.i.d. with density p with respect to the Lebesgue measure
p. Therefore X; has density p(- — f;) with respect to p and X the density s =
Q" 1 p(- — f;) with respect to u®".

The simplest case of fixed design regression occurs when the function i — f; is
constant and equal to 8 € ©® C R. It corresponds to the case of i.i.d. variables X;
with density p(-—6) and to a parametric model with a single translation parameter

0. The problem is then to find an estimator § = a(X) for 6 so that

. d
P =P with —%=p(-—0).
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If 6y obtains, that is P = ng " the quadratic risk of P or, equivalently, of é\, writes
Bo, [1 (P, P)] = B [k (Py. Pu )]

where Ey stands for E pon- Since the risk is a function of the unknown parameter
0p, a common way (although not the only one) of evaluatmg the performance of an

estimator 6 is via its maximum quadratic risk Ry () = supgee Eo[nh? (Py, Pp)].
This leads to the notion of minimax risk for the problem at hand:

Ry (©) = inf sup Ey [nh2 (Pg, P,
0 60€O

where the infimum runs over all possible estimators 0 of 6. An optimal estima-
tor 6 is therefore one that minimizes RM(g). Unfortunately, computing R/ (O)
exactly is generally an intractable optimization problem and we merely look for
approximately optimal estimators ] satisfying

sup Ey [nh2 (Pg, Pg)} < CRM(@),
0eO

where C' is a constant which does not depend on n.

Typically, classical estimators based on empirical moments or quantiles or the
Maximum Likelihood Estimator do satisfy such requirements only in special cases
(depending on the properties of p) and not the same for all estimators. Our new
construction provides a rather general solution to this problem for all unimodal
densities p when p is known but it can also deal with the case when p is only
approximately known. It is based on a family of models S which are approximating
sets for the unknown parameter f and it tends to select the best model (the
one providing the best compromise between the approximation error of f by the
model and the estimation error on the model, which usually depends on its size)
among all of them. This construction is based on an estimation of the differences
h%(t,s) —h?(t',s) for all points t, t’ belonging to the union of all available models.
The relevant estimator for this quantity has been designed by Baraud in [1].

The complete construction and the analysis of its performance are to be found
in arXiv : http://arxiv.org/abs/1403.6057. The procedure also applies to
other statistical frameworks like density estimation and regression with a random
design.

REFERENCES

[1] Y. Baraud, Estimator selection with respect to Hellinger-type risks, Probab. Theory Relat.
Fields 151 (2011), 353-401.
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Adaptive estimation of convex polytopes and convex bodies
VICTOR-EMMANUEL BRUNEL

We are interested in two models. The first one consists of observing a sample
of i.i.d. random variables, with uniform distribution on some unknown subset of
R% d > 1. The second one consists of a regression setup, where the regression
function is the indicator on some unknown subset of R%, d > 1.

In both cases, we estimate the unknown set under two possible assumptions.
First, we assume that the unknown set is a convex polytope with r vertices, and
r > d+ 1 is a known integer. Second, we assume that the unknown set is any
convex body, and we give the corresponding minimax rate of convergence. In
the polytopal case, if r is not known, we propose an adaptive estimator which
achieves the same rate of convergence as in the known r case. In addition, we
show that this adaptive estimator achieves the optimal rate of convergence in
case of misspecification, i.e., when the true set is not a polytope, but any convex
body. To finish, we discuss the optimality, in terms of rate of convergence, of our
estimators in the polytopal and known r case.

REFERENCES

[1] V.-E. Brunel, Adaptive Estimation of Convex Polytopes and Convex Sets from Noisy Data,
Electronic Journal of Statistics 7 (2013), 1301-1327.

[2] V.E. Brunel, Adaptive estimation of polytopal and convexr support, Submitted.
(arXiv:1309.6602)

[3] V.E. Brunel, A wuniversal deviation inequality for random polytopes, Submitted.
(arXiv:1311.2902)

[4] A. P. Korostelev, A? B. Tsybakov, Minimaz Theory of Image Reconstruction, Springer, NY
(1993).

A new approach for large-scale inhomogeneous data
PETER BUHLMANN

(joint work with Nicolai Meinshausen)

Our goal is to construct an estimator which can deal with inhomogeneities in large-
scale data where the sample size and the dimension might be very large. Besides
the challenge of dealing with heterogeneous data, we aim for a procedure which is
computationally feasible for large scales.

We consider a mixture of regressions model:

(1) Y;=X'Bi+e& (i=1,...,n),

where Y; € R, X; € RP, and the regression coefficient vector B; € RP? is allowed
to change for every subject i = 1,...,n. The B,;’s are random variables from a
distribution Fp. We always assume that the ¢;’s are uncorrelated from the X;’s
and the X;’s are independent from the B;’s so that there is no information from
X to the mixture regression coefficients B. The following examples fit to the
framework.
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Known groups of observations. Every sample corresponds to a group g C
{1,...,n}, and there are G such groups which build a partition of {1,...,n}.
In every group g, we assume that B; = b, for all i € g. Thus, the model in (1) is
a finite mixture of G regression coefficients with known mixture components.

Correlated B;’s. When having strong positive correlation among neighboring
B;’s (neighboring w.r.t. the sample ordering i), we have a smooth trend for the
regression coefficients B;’s (w.r.t. 7). The model in (1) is then a random coefficient
linear model with smooth trend.

Contaminated samples. We might assume that a large fraction (1 — ¢) of the
B;’s assumes a fixed value b, and there is a smaller fraction ¢ of outliers where B;’s
can take other values in R?. The model (1) can then be viewed from the viewpoint
of robust statistics for guarding against some outliers, and the (groups of) outliers
are unknown.

In [1] the following main issues are covered: (i) a definition of a new “maximin”
parameter byaximin Which is an important “summary quantity” of all the possible
values B; so that prediction and interpretation in heterogeneous models remains
powerful; (ii) establishing estimation rates for the “maximin” parameter by aximin,
covering also the high-dimensional setting where the dimension p might be much
larger than sample size n; (iii) showing that the estimator can be computed, in
some circumstances, with a very efficient linear program allowing for very large
scales.

REFERENCES

[1] N. Meinshausen and P. Bithlmann, Maximin effects in inhomogeneous large-scale data,
Preprint.

Convex banding of the covriance matrix
FLORENTINA BUNEA
(joint work with Jacob Bien and Luo Xiao)

The estimation of large covariance matrices of a random vector with entries that
are or can be ordered is an intensely studied problem in stochastic processes, spatial
statistics and general high dimensional inference. When the population matrix is
banded or approximately banded, a number of theoretically and practically optimal
estimators have been proposed in the last six years. With very few exceptions,
the theoretically optimal estimators are not adaptive, and the estimates that are
practically performant do not have established theoretical properties. Moreover,
most existing theoretical analyses are restricted to population covariance matrices
with bounded operator norm.

We introduce a new estimator, the hierarchically banded estimator, which is the
solution of a computationally feasible convex optimization problem. During this
procedure, one successively penalizes nested triangular corners of the current can-
didate estimate, using the sample covariance matrix in the first step. Since these
ensembles are nested, the new penalty is not a simple variation on the existing
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group-type penalties and poses new challenges. We show that the procedure can be
implemented successfully and efficiently. The proposed estimator achieves, adap-
tively, the minimax optimal convergence rates in Frobenius and operator norm.
These results are established over classes of banded or semi-banded population
matrices, and members of these classes are allowed to have diverging operator
norm.

Formally, we assume to have observed Xi,..., X, independent copies of a p-
dimensional vector X with mean zero and covariance matrix . We assume that
the marginals of X have sub-Gaussian distribution. We let ¥ denote the sample
covariance matrix. For a given tuning parameter A\, we define our estimator as

(1) P = argmin { | P — S|% + AP35, |
where || - || p is the Frobenius norm, and
p—1 | ¢
P10 = 3 | 3wl P 3
(=1 \ m=1
with

Vi
L—m+1’
and s,, = {(j,k) : |j — k| = p—m}. In [1] we showed that, although the
original convex problem (1) is not separable, its dual is. We therefore employ a
Block Coordinate Descent algorithm to solve the dual, and use the primal-dual
relationship to reconstruct the solution to (1).

The following theorem shows that our estimator can also be regarded as a ta-
pering estimator. However, the tapering function is not pre-specified in functional
form prior to estimation, as in existing work, and is implicitly and recursively
defined as below, in a fully data-dependent manner.

Theorem 1. The conver banding estimator, P can be written as a tapering
estimator with a Toeplitz, data-dependent tapering matriz, P=TxX:

. I for m = p (diagonal)
sm 1, for1<m<p-1

We,m = for1<m</l, 1<i<p-1,

Hf mowg,, +[Ve]+
where 0y satisfies \2 = S0 (w;”‘#HR“) 12, RV =S and for 6 =1,...,p—2,
m
and for each m < /£, we have

@) pesn - e po
" Wy + [V f]+ "

and 1,, € R™ denotes the vector of ones.

Immediate consequences of this theorem are: (1) The estimator P is, as desired,
banded; (2) P is positive definite, with high probability.

We showed in [1] that, if the population covariance matrix has bandwidth K,
this value will be recovered by the bandwidth of the estimator, with high proba-
bility, under minimal signal strength conditions on the entries of X.
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The following theorem is an oracle inequality, with leading constant one for the
bias term. It shows that the proposed estimator achieves the best bias-variance
trade-off with respect to the Frobenius norm, with high probability.

Theorem 2. If max; ; |2;;| < M, for some constant M and X\ = x+/logp/n then,
with high probability,

A K(B)pl 1
1Pzl < int {Is - Bl + o B ] 2 EOED
BeRpXxp n n

for some constant C1, and where K (B) denotes the bandwidth of a generic matriz
B.

From this theorem one obtains immediately the minimax optimal rates, up to
logarithmic terms, over the class of exactly banded matrices and over the class of
approximately banded matrices:

P>
1P = Zlly < CK log(p)/n,
D

and
P-x|? logp 2+
P =S o () B
P n
Moreover, Theorem 2 shows that this rate analysis can be performed directly over

the unifying framework provided by the class of semi-banded matrices, which we
introduced in [1] and give below:

3 (k)= {z  max|Sy;| < M and [ — B|% < CpK log p/n, }
ij

for some banded B with bandwidth K, and some constant C' > 0.

We also show that, over the class of banded matrices with possibly diverging
bandwidth K, our estimator achieves adaptively the minimax rate in operator
norm, up to logarithmic factors:

|1 P = %|op < CK+/logp/n,

with high probability, under a minimal signal strength condition.

REFERENCES

[1] J. Bien, F. Bunea and L. Xiao, Convezx banding of the covariance matriz, on arXiv, (2014).

[2] L. Xiao, F. Bunea On the theoretical and practical merits of the banding estimator for large
covariance matrices, on arXiv (2014).

[3] T. Cai, C-H. Zhang and H. Zhou Optimal rates of convergence for covariance matriz esti-
mation, The Annals of Statistics 38, (2010).
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Tests for high-dimensional sparse matrices
CRISTINA BUTUCEA
(joint work with Yuri I. Ingster, Ghislaine Gayraud)

The talk is based on the papers [1] and [2], concerning sharp minimax tests in
high-dimensional matrices containing a sparse signal structured as a submatrix.
In [1], we have a N x M matrix

Y, =sij+&;,1=1,...M,j=1,...,N,

with §;; i.i.d. with standard Gaussian distribution, and s;; € R. We test the null
hypothesis that there is no signal in the large matrix against the alternative that
there exists some submatrix of size n X m with significant elements in the sense
that s;; = a > 0. We propose a test procedure and compute the asymptotical
detection boundary a so that the maximal testing risk tends to 0 as m, M — oo,
n, N — oo, p=n/N — 0and ¢ = m/M — 0. We prove that this boundary
is sharp minimax asymptotically under some additional constraints. Relations
with other testing problems are discussed. We propose a testing procedure which
adapts to unknown (n,m) within some given set and compute the adaptive sharp
rates.

In [2], we generalize the previous results to matrix-valued Gaussian sequence
model, that is, we observe a sequence of high-dimensional M x N matrices of
heterogeneous Gaussian random variables z;; 5 for i € {1,.... M}, j € {1,..., N}
and k € Z. The standard deviation of our observations is ek® for some ¢ > 0 and
s > 0. This model can be seen as a Gaussian white noise model where the signal
is an additive function of M x N coordinates and observed in a mildly ill-posed
inverse problem.

We give sharp rates for the detection of a sparse submatrix of size m x n with
active components. A component (i, ) is said active if the sequence {z;; 1 }r has
mean {60;;x}r within a Sobolev ellipsoid of smoothness 7 > 0 and total energy
>k 07, larger than some r7. Our rates involve relationships between m, n, M
and N tending to infinity such that m/M, n/N and € tend to 0, such that a test
procedure that we construct has asymptotic minimax risk tending to O.

We prove corresponding lower bounds under additional assumptions on the
relative size of the submatrix in the large matrix of observations. Except for
these additional conditions our rates are asymptotically sharp. Lower bounds for
hypothesis testing problems mean that no test procedure can distinguish between
the null hypothesis (no signal) and the alternative, i.e. the minimax risk for testing
tends to 1.

REFERENCES

[1] C. Butucea and Yu.l. Ingster, Detection of a sparse submatriz of a high-dimensional noisy
matriz, Bernoulli 19 (2013), 2652-2688.

[2] C. Butucea and G. Gayraud, Sharp detection of smooth signals in a high-dimensional sparse
matriz with indirect observations, (2013), arxiv:1301.4660
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On the Prediction Loss of the Lasso and Total Variation Penalization
ARNAK S. DALALYAN
(joint work with Mohamed Hebiri and Johannes Lederer)

In recent years, considerable effort has been devoted to establishing sharp the-
oretical guarantees for the prediction performance of the Lasso. Although for a
variety of settings various types of risk bounds are already available, the predic-
tion performance of the Lasso is still not completely understood. In this work, we
improve the sharpest known risk bounds to gain new insight into the prediction
performance of the Lasso.

We study the prediction performance of the Lasso only for Gaussian linear
regression models with deterministic design. More specifically, the model reads as

(1) y=Xp"+¢§ £~ N,(0,1,),

where y := (y1,...,yn)' € R" is the response vector, X := (x!,..., xP) € R"*P
the design matrix (for which we assume, without loss of generality, that ||z7]|3 < n
for all j € {1,...,p}), £ € R™ the noise vector, and I,, denotes the identity matrix.
We recall that the Lasso is any solution of the convex optimization problem

- 1
9 Lasso : { - X 2 A }
@) B € avgmin { -1y — X3 + MBI }.

that can be efficiently solved even for very large values of p and n. The magni-
tude of the tuning parameter A > 0 determines the amount of penalization and,
therefore, has a crucial influence on the performance of the Lasso.

The main findings of the present work (see [1] for more details) can be summa-
rized as follows.

(1) We prove that the Lasso estimator used with the universal choice of the

tuning parameter A = /2log(p)/n has a prediction loss at least propor-
tional to % x rank(X), where rank(X) is the rank of X.

(2) For sparse vectors 3° with support J* = {j € {1,...,p} : B; # 0} and
for covariates that are strongly correlated in the sense that all irrelevant
covariates {z’ : j ¢ J*} are close to the linear span of relevant covariates
{x/ : j € J*}, we show that choosing a tuning parameter A that is sub-
stantially smaller than the universal one leads to a considerable gains in
terms of prediction loss. We present a simple manner to incorporate the
geometry of the covariates into the tuning parameter that provides fast
rates of prediction when the covariates are strongly correlated.

(3) For really sparse vectors, that is, for s* considerably smaller than n (for
example, s* is fixed and n — o0), there are methods that satisfy fast
rate bounds for prediction irrespective of the correlations of the covari-
ates. For Lasso prediction, we exhibit a counter-example showing that
it is impossible to get fast rate bounds without imposing some relatively
strong constraints on the correlations of the covariates. This is true even
if we allow for oracle choices of the tuning parameter \, that is, if we allow
for A that depend on the true regression vector 3* and the noise level o*.
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(4) Finally, previously known results imply fast rates for prediction with the
Lasso in the following two extreme cases: First, when the covariates are
mutually orthogonal, and second, when the covariates are all collinear.
But how far from these two extreme cases can a design be such that it still
permits fast rates for prediction with the Lasso? For the first case, the
case of mutually orthogonal covariates, this question has been thoroughly
studied in the literature, whereas there were only a few results in the
second case. We fill this gap by proving that if the irrelevant covariates
are within a constant (Euclidean) distance of the linear span of the relevant
covariates, then the Lasso atteins the fast rates of prediction.

As a consequence of the obtained risk bounds, we show that the total-variation
penalized least-squares estimator achieves the nearly parametric rate (logn)?/n
when the unknown signal is piecewise constant.
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Worst possible sub-directions in high-dimensional statistics
SARA VAN DE GEER

This work is motivated by the need for confidence intervals in high-dimensional
models. For the standard linear model a de-sparsifying technique has been intro-
duced in [4] This technique has been extended to generalized linear models in [2].
We examine further extensions. As an example, consider an n X p data matrix X
consisting of i.i.d. rows with distribution P. Let 3 be the empirical inner product
matrix, and g := ES be the theoretical inner product matrix. We are interested
in estimating the precision matrix g := ¥5'. Let O be an estimator, for exam-
ple based on the graphical Lasso or the node-wise Lasso. Then as de-sparsified
version, we propose

C':')de—spa.rsiﬁed - é) + éT - é‘)Tié

One can now decompose:

@de—sparsiﬁed - @O - _@O(Z - EO)@O — remip — remsy

where

N N

rem; = (0 —09)T(E-0"1)0 = (0 -0y (26 1)
and
rems (= @0(2 — Zo)(é — é())

The first term is linear in 3 — ¥y and deriving asymptotic normality for each of its
entries is straightforward. The challenge is now to prove that the two remainder
terms can be neglected. For the graphical Lasso, this problem is studied in [1].

More generally, the main issue when studying single components or low-dimen-
sional sub-components of the unknown parameter, is the anti-projection of the
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information for the parameter of interest on the nuisance parameters. To clarify
this in an example, consider the linear model

Y = X8 +¢

and the Lasso

A~

= inq||Y —X8|2 +2
Bi= arg uin { 1Y - X1 + 270311 |,
where |[v||2 := vTv/n. The de-sparsified Lasso is
Bde—sparsiﬁed = B + éTXT(Y - XB)/n
where © is obtained by the node-wise Lasso. One now has the decomposition
Bde—sparsiﬁed - BO = éTXTe/n — remgj
where
rem; = (07% — I)(8 - B%).
This remainder term can be handled using the KKT-conditions. Let now, for
j€{1,...,p}, X; be the j-th column of X and X_; := { X }xx; be the remaining
columns. Let Xjf)X_j := X_;%; be the approximate projection of X; on X_;

obtained using the Lasso for the regression of X; on X_;. Let X;AX_; := X, —

Xjf’X_j = X¢; be the approximate anti-projection. We call ¢; the approximate
worst possible sub direction for estimating 5;). The de-sparsified estimator is

B o emrsifiod = (XGAX )T(Y =X ;B)
j,de—sparsifie (XJAX_j)TXJ

where B—j = {Bk}k;ﬁj.
We show in [3] that

(X;AX_;)Te| N M5l
(XGAX )TX;  (XGAX )X /n

+ rem;

185 — B9 <

whereas .

(XGAX_j) ¢
(X;AX5)TX;
In other words, by de-sparsifying one removes the bias

AllF; 1
(XAX_j)TX;/n
due to the ¢;-penalty on coefficients of the approximate projection of X; on the
other variables. The remainder term rem; is moreover small due to the approxi-
mate orthogonality of Xjle_j and ijX_j.

Consider now a general high-dimensional model. We define worst possible sub-
directions in a similar way and bounds for parameters of interest of the ¢;-penalized
M-estimator that involve the /;-norm of the worst possible sub-direction. This
serves as first step toward de-sparsifying which aims in a first stage at removing

yﬁj,de—sparsiﬁed - 65)| < + rem;.
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this bias and in the second stage at showing that a linear, asymptotically nor-
mal term is dominating the other (remainder) term. As intermediate goal, the
de-sparsified estimator can be used for variable selection without imposing irrep-
resentable conditions.
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Confidence Bands for a Distribution Function: A New Look at the
Law of the Iterated Logarithm

LuTz DUMBGEN
(joint work with Jon A. Wellner)

Let F), be the empirical distribution function of independent random variables
X1, Xo,..., X, with unknown distribution function F' on the real line. It is
well-known that the stochastic process (Fn(:p))x cr has the same distribution as
(én(F (2))), cg» Where G is the empirical distribution of independent random
variables Uy, Us, ..., U, with uniform distribution on [0,1]. This enables us to

construct confidence bands for the distribution function F. A well-known classical
method are Kolmogorov-Smirnov confidence bands: Let

Un(t) = n'/2(Gn(t) —t),
and let x5, be the (1 — o)-quantile of

|Unlloe = sup [Un(t)].
t€[0,1]

Then with probability at least 1 — «,
F(z) € [Fy(z) =+ n_l/inS%] for all z € R.

Equality holds if F' is continuous. Since U,, converges in distribution in ¢ ([0, 1])
to standard Brownian bridge U, /@5% converges to the (1 — a)-quantile kX5 of
|U||so- In particular, these simultaneous confidence intervals have width O(n~=1/2)

uniformly in x € R.
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Another method, based on a goodness-of-fit test by Berk and Jones (1979), was
introduced by Owen (1995): Let &7, be the (1 — a)-quantile of

TP = n sup K(Gn(t),t),
te(0,1)

where

1-s

1-1

for s € [0,1] and ¢ € (0,1). This leads to an alternative confidence band for F:
With probability at least 1 — «,

(1) nK(F,(z), F(z)) < NE,Ja for all x € R.

K(s,t) = slog% + (1 —s)log

As shown by Jager and Wellner (2007), the asymptotic distribution of 727 remains
the same if one replaces K (s,t) by a more general function; in particular, one may
interchange its two arguments. Moreover,

kBT = loglog(n) + 27 'logloglog(n) + O(1).

n,o

From this one can deduce that (1) leads to confidence intervals with length at most

xBJ log1
2(23 F(0)(1 = F(2)))* + 27, where 7, i= =% = (14 0(1)) 22222,

uniformly in « € R. Hence they are substantially shorter than the Kolmogorov-
Smirnov intervals for F'(x) close to 0 or 1. But in the central region, i.e. when F'(x)
is bounded away from 0 and 1, they are of width O(n~'/2(loglogn)'/?) rather than
O(n~'/?). An obvious goal is to refine these methods and combine the benefits of
the Kolmogorov-Smirnov and Berk-Jones confidence bands.

A key for our new procedures is a suitable variant of the law of the iterated

logarithm (LIL). In what follows we consider the logistic function ¢ : R — (0,1),
e’ 1
l = = :
(@) 1+e® e v +1

Further let C, D : (0,1) — [0, 00) be given by

ﬁ = loglog(Ti_W) > 0,
D(t) := log(1+C(t)*) > 0.
Note that C(t) = C(1 —t), D(t) = D(1 —t), and, as t | 0,
C(t) = loglog(1/t) + O(log(1/t)~"),
D(t) = 2logloglog(1/t) + O((loglog(1/t))™").
Note also that

C(t) := loglog

: C(t) . D(t)
im ——— = lim —~%— =
t—1/2 (2t — 1) t—1/2 (2t — 1)4
Now let X = (X (t)):e7 be a nonnegative stochastic process on a set 7 C (0,1).
The following general condition plays a crucial role:
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Local uniform sub-exponentiality (LUSE). There exist a real constant M >
1 and a non-increasing funtion L : [0,00) — [0,1] such that L(c) = 1 — O(c) as
c ] 0, and

(2) Pr(  sup  X(t)>n) < Mexp(~L(e))
tell(a),l(a+c)NT

for arbitrary a € R, ¢ > 0 and n € R.

Theorem 1. Suppose that X satisfies LUSE. For arbitrary v > 1 and L, € (0,1)
there exists a real constant M, > 1 depending only on M, L(-), v and L, such
that

Pr <§27E(X(t) —C(t) —vD(t)) > 7)) < M,exp(—L,n) for arbitrary n > 0.

Example 1. Let X(t) = U(#)?/(2t(1 — t)) with standard Brownian bridge U on
T = (0,1). Then LUSE is satisfied with M = 2 and L(c) = e™°.

N

Example 2. Let X, (t) = nK(G,(t),t). Then LUSE is satisfied with M = 2
and L(c) = e~ ¢. This leads to the following new goodness-of-fit test: The null
hypothesis that F' is equal to a given continuous distribution function F, is rejected
at level « if the test statistic
T (F,) = sug(nK(ﬁ’n(x),Fo(x)) — O(F,(x)) — vD(F,(x)))
TE

exceeds the (1 — a)-quantile of sup, 1)(X,, — C —vD). This test has high power
for a variety of problems. To verify this, the following inequality for K is crucial:

2cz(l —x) +c,

K(z,t) < ¢ implies that |z —t| < { ST =T + .
Example 3. Let 7, = {tn1,tn2,---,tnn} with t,; := i/(n + 1). Further let
Unpi < Upo < -+ < Uy, be the order statistics of Uy, Us,...,U,. Now we define
X (tni) = (n+1)K (tpi, Un.i). Then LUSE is satisfied with M = 2 and L(c) = ™.
This leads to a confidence band for F: Let & = Ry, o be the (1 — o)-quantile of
suan(X'n — C —vD). Further let —00 = X0 < Xpp < Xpo < -+- < X <
Xpnt+1 = 00 be the order statistics of X, Xo,...,X,,. Then with probability at
least 1 — «, the following is true: For 0 < j <n and X,.; <z < X541,

F(z) € [anj, bngl,
where a0 := 0, b,, := 1 and
anj :=min{u € [0,1] : nK (tnj,u) < C(tn;) + vD(ty;) + &} if j >0,
bnj :=max{u € [0,1] : nK (ty j41,u) < Ot j41) + vD(ty j41) + &} if j <n.

It turns out that this confidence band is asymptotically equivalent to Owen’s (1995)
band in the tail regions but substantially more accurate in the central region. Its
maximal width is of order O(n=1/2).
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An open problem on strongly consistent learning of the best
prediction for Gaussian processes

LASzLO GYORFI
(joint work with Alessio Sancetta)

Let {Y,,}>° be a stationary, ergodic, mean zero Gaussian process. The predictor
is a sequence of functions g = {g;}2,. It is an open problem whether it is possible
to learn the best predictor from the past data in a strongly consistent way, i.e.,
whether there exists a prediction rule g such that

(1) lim (E{Y, |Y1,....Yn-1} —gn(Y1,...,Y,_1)) =0 almost surely
n— oo

for all stationary and ergodic Gaussian processes.
In [1] we summarized some positive and negative findings in this respect.
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Inverse Problems with Poisson Data: Pioneering contributions of L.
Cavalier and recent developments

THORSTEN HOHAGE

We consider inverse problems described by an operator equation
(1) Fu)=g
with a possibly nonlinear injective forward operator F' : D(F) C X — L'(M)
where M C R? is a smooth manifold with data. Let u' € D(F) denote the exact
solution, g := F(u'), and suppose that F(u) > 0 for all u € D(F). We assume
that data Gy = Zi\il S, are drawn from a Poisson process with density ¢F(uf),
where t > 0 can typically be interpreted as an exposure time, and study the
convergence of estimators as t — oo. It will be convenient to define G; := G, /t.
Such inverse problems typically occur in photonic imaging applications such as
Positron Emission Tomography (PET), confocal fluorescence microscopy, coherent
x-ray imaging, and inverse scattering problems with low energy densities.
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To our knowledge the setup above was first considered in the paper [2] by
Cavalier & Koo. In this work the authors studied PET, where the forward operator
F' is given by the Radon transform. They obtained the following results: On
projected Besov balls Fp = {u € By, :u > 0,][ullspq < R} with p,q € [1, ]
and s > 2/p the minimax rate for this problem is of order O(t=%/(2*3)). For
known smoothness this rate can be obtained by thresholding of empirical vagulette
coefficients in a wavelet-vagulette decomposition of the Radon transform F'. For
unknown smoothness the rate O((t/Int)=/(25+3)) can be obtained. Later the
results in [2] were extended to more general linear forward operators by Antoniadis
& Bigot [1].

In the following we will study regularization of nonlinear inverse problems (1)
by nonlinear Tikhonov (or penalized maximum likelihood) regularization
(2) Uo € argmin [S(Gy, F(u)) + allu — uo|%] -

ue
Here we assume for simplicity that X is a Hilbert space. ug € X is some initial
guess (e.g. ug = 0). ||lu — up||% can be replaced by more general convex penalty
functionals R(u). Then one obtains convergence with respect to the Bregman
distance of R.

A first idea for the choice of S is the log-likelihood functional Sy(Gy,g) =
Jugdr — [,;In(g)dG,. Note that E[So(Gy,g) — So(Ge,g")] = KL(g',g) (the
Kullback-Leibler divergence) and

50(Ghrg) — So(Gr,g") — KL(g', g) = / —n £-(dG: — gldo)

Our analysis relies on uniform estimates of the right hand side by concentration
inequalities, which are not applicable unless ||g/g'||o is uniformly bounded in g.
Therefore, we introduce a shift parameter 7 > 0, define T (g7, g) := KL(g"+7, g+7)
and S(Gy,9) = S (Gv, 9) = [y 9dz — [, In(g + 7) (AdG; + 7dzx) such that

g+T
gT—l—T

S5:(Grrg) = S.(Grrg') = T, g) = / 2T (4G, - gtda).

Now if

(3) sup [|F'(u)|[ms < 00
ueB

and 7 > 0, then it can be shown based on results in [7] that there exists C' > 0

such that
; (-5)
> — | <expl|——
e
for all ¢,p > 1 (see [8]).

To show rates of convergence for ill-posed problem some sort of smoothness
condition has to be imposed. Since first suggested (with ¢(z) = z) in [5], such
conditions are often formulated in the form of variational inequalities: We assume

(4) P | sup
geEF(*B)

g+T
/ln o +T(th + 7dx)
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that there exists 5 € (0,1] and a concave, increasing function ¢ : [0,00) — R with
©(0) = 0 such that for all u € B

(5) Bllu = ulI* < flu = uoll* = [lu’ = uol® + ¢ (T(F(u"), F(u))) .

We point out that a Holder source condition u' = (F*F)"w with v € (0,1/2] for a
bounded linear operator F' in Hilbert spaces implies a variational source condition
with ¢(t) = LT Moreover, as opposed to standard spectral source condition
ul = ¢(F*F)w, variational source conditions in Hilbert spaces (or equivalent
concepts) even allow sharp converse results [3].

Theorem: (see [8]) Suppose that (3) and (5) hold true. Then with the a-priori
parameter choice rule =X € 0(—p)(t~1/?) the risk is bounded by

(6) Eflia—ul?) =0 (¢ (t712))  to o
Without a-priori knowledge of the function o the Lepskii-type balancing principle
Qbal 1= max{j €N |Jug, — ta, |l < 8- /2 fork=0,...,j— 1}

with o = agr=7, r > 1 leads to the risk bound

(7) E [T — u'?] = O (¢ (@t 2)) ¢ o0

A disadvantage of Tikhonov regularization is the fact that the objective fun-
tional is non-convex in general, and it may have many local minima. An alternative
is to linearize the operator and use a Newton-type method: Choose oy = agp” for
some p € (0,1) and set

ups1 € argmin [S (Gy, F'[ug](u — ug) + Fug)) + apR(u)] .
ue’B
If S and R are convex, a convex optimization problem has to be solved in each
Newton step. Here the choice of the stopping index corresponds to the choice of a.
Under an additional assumption on the local approximation quality of F’ (a tan-
gential cone condition) we can show similar results as for Tikhonov regularization

(see [6]).
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Sparse high-dimensional varying coefficient model: non-asymptotic
minimax study

OLcA KLorp
(joint work with Marianna Pensky)

One of the fundamental tasks in statistics is to characterize the relationship be-
tween a set of covariates and a response variable. In the present work we study
the varying coefficient model which is commonly used for describing time-varying
covariate effects. It provides a more flexible approach than the classical linear
regression model and is often used to analyze the data measured repeatedly over
time.

Let (W, t;,Y;), i =1,...,n be sampled independently from the varying coeffi-
cient model

(1) Y = WTE(t) + o¢.

Here the noise variables ¢; are independent and o is known, W € R? are random
vectors of predictors, f(-) = (f1(-),. .., fp(-))T is an unknown vector-valued func-
tion of regression coefficients and ¢ € [0, 1] is a random variable with the unknown
density function g. We suppose that W and ¢ are independent. The goal is to
estimate vector function f(-) on the basis of observations (W, ¢;,Y;), i =1,...,n.

Since its introduction by Cleveland, Grosse and Shyu [1] and Hastie and Tib-
shirani [3] many methods for estimation and inference in the varying coefficient
model have been developed. Existing methods typically provide asymptotic eval-
uation of the precision of the estimation procedure under the assumption that
the number of observations tends to infinity and is larger than the dimension of
the problem. Recently few authors consider still asymptotic but high-dimensional
approach to the problem. Wei et al. [7] applied group Lasso for variable selection,
while Lian [5] used extended Bayesian information criterion. Fan et al. [2] applied
nonparametric independence screening. Their results were extended by Lian and
Ma [6] to include rank selection in addition to variable selection.

One important aspect that has not been well studied in the existing literature
is the non-asymptotic approach to the estimation, prediction and variables se-
lection in the varying coefficient model. Some interesting questions arise in this
non-asymptotic setting. One of them is the fundamental question of the mini-
max optimal rates of convergence. The minimax risk characterizes the essential
statistical difficulty of the problem. It also captures the interplay between differ-
ent parameters in the model. To the best of our knowledge, our work presents the
first non-asymptotic minimaz study of the sparse heterogeneous varying coefficient
model.
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Modern technologies produce very high dimensional data sets and, hence, stim-
ulate an enormous interest in variable selection and estimation under a sparse
scenario. In the present work, we consider the case when the solution is sparse,
in particular, only few of the covariates are present and only some of them are
time dependent. We consider a quite flexible and realistic scenario where the time
dependent covariates possibly have different degrees of smoothness and may be
spatially inhomogeneous.

In order to estimate f, following Klopp and Pensky [4], we expand it over a basis
(¢1(+)),l=0,1,...,00, in Lo([0,1]) with ¢o(t) = 1. Expansion of the functions
fj(-) over the basis, for any ¢ € [0, 1], yields

L oo
(2) Fi) = audi(t) +p;(t) with pi(t) = > aueu(t).
=0 l=L+1

If (-) = (¢o(-),...,0r(-))T and Ay denotes a matrix of coefficients with elements
Aém) = aj, then relation (2) can be re-written as f(t) = Al'¢(t) + p(t), where
p(t) = (p1(t), -+, pp(t))T. Combining formulae (1) and (2), we obtain the follow-
ing model for observations (W;,¢;,Y;), i =1,...,n:

(3) Y, = Te(AL $(t)WT) + WTp(t;) + 06, i=1,....n.

Below, we reduce the problem of estimating vector function f to estimating matrix
Ay of coefficients of f.

We construct a minimax optimal estimator using the block Lasso which can be
viewed as a version of the group LASSO. However, unlike in group LASSO, where
the groups occur naturally, the blocks in block LASSO are driven by the need to
reduce the variance as it is done, for example, in block thresholding. In particular,
for each function f;, j = 1,---,p, we divide its coefficients into M + 1 different
groups where group zero contains only coefficient a;o for the constant function
¢o(t) =1 and M groups of size d ~ logn where M = L/d. We denote ao = a;jo
and aj; = (a;d1—1)+1," " ,aj.a)’ the sub-vector of coefficients of function f; in
block I, I = 1,---,M. Let K; be the subset of indices associated with a;;. We
impose block norm on matrix A as follows

p M

(4) 1A btock = Y D llajullz.

j=11=0

Observe that ||A|lblock indeed satisfies the definition of a norm and is a sum of
absolute values of coefficients a o of functions f; and lo norms for each of the block
vectors of coefficients aj;, 5 =1,--- ,p,l=1,---, M.

We construct an estimator A of Ay as a solution of the following convex opti-
mization problem

(5) A = arg rr}in {n_l Z (YZ — Tr(ATqb(ti)WiT))Q + (5||A||block} ;

=1

where the value of § is the regularization parameter.
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Our estimator does not require the knowledge which of the covariates are in-
deed present and which are time dependent. It adapts to sparsity, to heterogeneity
of the time dependent covariates and to their possibly spatial inhomogeneous na-
ture. In order to ensure the optimality, we derive minimax lower bounds for the
risk and show that our estimator attains those bounds within a constant (if all
time-dependent covariates are spatially homogeneous) or logarithmic factor of the
number of observations. The analysis is carried out under the flexible assumption
that the noise variables are sub-Gaussian. In addition, it does not require that the
elements of the dictionary are uniformly bounded.
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The restricted eigenvalue assumption under weak moment assumption
GUILLAUME LECUE
(joint work with Shahar Mendelson)

We prove that iid random vectors that satisfy a rather weak moment assumption
can be used as measurement vectors in Compressed Sensing. In many cases, the
moment assumption suffices to ensure that the number of measurements required
for exact reconstruction is the same as the best possible estimate — exhibited by
a random gaussian matrix. In Compressed Sensing (see, e.g., [5] and [8]), one
observes linear measurements y; = <X¢,x0>, ¢t = 1,..., N of an unknown vector
xo € R™, and the goal is to identify xy using those measurements.

N

Given the measurements matrix I' = N=1/25°7 (X, -)e;, a possible recovery

procedure is the basis pursuit algorithm, defined b;f
& € argmin(||t[|y : Tt = 'zo).

A well known question is to identify conditions on the vectors X, ...., X that
ensure that if zq is s-sparse, that is, if it is supported on at most s coordinates, the
unique minimizer of the basis pursuit algorithm is zq itself. The matrix I" satisfies
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the exact reconstruction property in X, the set of all s-sparse vectors in R", if
every xo € s has this property.

A standard choice of a measurements matrix I' is when X1, ..., Xy are indepen-
dent, isotropic and L-subgaussian random vectors. Recall that a random vector
X in R" is isotropic if for every t € R", E(X, t>2 = ||t||3, and it is L-subgaussian
if for every ¢ € R™ and every p > 2, [(X, )|z, < Ly/DlI{(X,t)||L,.

One may show that if the X;’s are random vectors that are independent,
isotropic and L-subgaussian, then with high probability I" satisfies the exact re-
construction property for s-sparse vectors as long as N 2> slog(en/s) [10], and this
number of measurements cannot be improved (see Proposition 2.2.18 in [7]).

The reason behind this result, and many others like it, is that isotropic sub-
gaussian matrices act on ¥, in an isomorphic way, when N 2 slog(en/s).

Such a property is called the Restricted isometry property (RIP) (see, for ex-
ample [4, 6, 11]). A matrix I' satisfies the RIP in X, if for every t € ¥,

(1 =9)tlz < [ITt]l2 < (1 +9)][t]l2,

for some fixed 0 < 6 < 1.

Proving the RIP for subgaussian matrices uses the fact that tails of linear
functionals <X ,t> decay faster than the corresponding gaussian variable. Thus,
it seemed natural to ask whether the same type of estimates hold in cases where
linear functionals exhibit a slower decay — for example, when X is sub-exponential,
and the linear functionals satisfy that |[(X,t)||, < Lp|[(X,t)||L, for every t € R"
and every p > 2.

Proving the RIP for a sub-exponential ensemble is a much harder task than
for subgaussian ensembles (cf. [3]). Moreover, the RIP does not exhibit the same
behaviour as in the gaussian case. Indeed, one may show that for sub-exponential
ensembles, RIP holds with high probability only when N > slog®(en/s), and this
estimate is optimal as can be seen when X has independent, symmetric exponential
random variables as coordinates [3].

On the other hand, the result in [9] (see Chapter 7 there) shows that exact recon-
struction can still be achieved by isotropic sub-exponential measurement vectors
when N 2 slog(en/s) — the same number of measurements needed for the gaussian
ensemble.

Clearly, this estimate cannot be based on the RIP, and one may ask whether
weaker tail assumptions on the measurement vectors may still lead to exact recov-
ery with the ‘gaussian’ number of measurements.

The main result presented here is precisely in this direction:

Theorem A. There exist absolute constants cg, ¢; and ¢y and for every o > 1/2
there exists a constant c3(«) that depends only on « for which the following holds.
Let X = (x;)!; be a random vector on R™ such that

(1) There are k1, k2, w > 1 that satisfy that for every 1 < j <mn, ||z;|r, =1,
and for p = rglog(wn), [|z;|z, < k1p®.
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(2) There are u, 3 > 0 that satisfy for every t € ¥, N S"~ 1,
P ([(X,t)| > u) > B.

If
N > cpmax {s log(en/s), (cs(a)r1)? (ko 1Og(wn))max{2a_1,1}}

and X1, ..., Xy are independent copies of X, then, with probability at least 1 —
2exp(—c162N) — 1/wr2nr2~1 T = N~1/2 ZfV:1<X¢, ->ez~ satisfies the exact recon-
struction property in X, for s; = cou?fs.

It follows from Theorem A, that a random matrix with iid centered entries
that have variance 1 and an L, moment bounded by p for p = 2logn can be
used as a measurement matrix, and just as in the gaussian case, requires only
N 2 slog(en/s) measurements.

Just as noted for sub-exponential ensembles, Theorem A cannot be proved using
the RIP, and its proof must take a different path.

Note that we proved a stronger result: under the same assumptions as in The-
orem A, the measurement matrix I' satisfies the Restricted eigenvalue assumption
as introduced in [2].
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Adaptive estimation over anisotropic functional classes via oracle
approach

OLEG LEPSKI

We address the problem of adaptive minimax estimation in white gaussian noise
model under L, —loss, 1 < p < oo, on the anisotropic Nikolskii classes. We present
the estimation procedure based on a new data-driven selection scheme from the
family of kernel estimators with varying bandwidths. For proposed estimator
we establish so-called LL,-norm oracle inequality and use it for deriving minimax
adaptive results. We prove the existence of rate-adaptive estimators and fully
characterize behavior of the minimax risk for different relationships between reg-
ularity parameters and norm indexes in definitions of the functional class and of
the risk. In particular some new asymptotics of the minimax risk are discovered
including necessary and sufficient conditions for existence a uniformly consistent
estimator. Consider the sequence of statistical experiments (called gaussian white
noise model) generated by the observation X¢ = {Y,(g), g € L2 (R%, vq) }6 where

1) Y.(g) = / F(Dg(t)valdt) + ¢ / g()W (d).

Here e € (0, 1) is understood as the noise level which is usually supposed sufficiently
small.

The goal is to recover unknown signal f from observation X¢ on a given cube
(—=b,b)4, b > 0. The quality of an estimation procedure will be described by L,-
risk, 1 < p < oo, defined in (2) below and as an estimator we understand any
X*®-measurable Borel function belonging to L, (]Rd, Vd). Without loss of generality
and for ease of the notation we will assume that functions to be estimated vanish
outside (—b,b)<.

Thus, for any estimator fg and any f € L, (Rd, ud) N Lo (]Rd, Vd) we define its
IL,-risk as

) RO 1] = {EP (17~ 119)}" . 0>

Here and later || - [[,,1 < p < oo, stands for || - ||, _pp)e and ]ng) denote the
mathematical expectation with respect to the probability law of X¢.
Let [F be a given subset of L, (Rd, I/d) NLy (Rd, I/d). For any estimator fe define

its maximal risk by Ré”) [fg; IF} = SUP fcf Ré”) [fg; f} and its minimaz risk on F is
given by

(3) ¢e(F) := inf R [f2: ).

Here infimum is taken over all possible estimators. An estimator whose risk is
proportional to ¢.(IF) is called minimax on F.

Let {]Fg, VNS @} be the collection of subsets of L, (Rd, I/d) N Lo (Rd, I/d), 