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Introduction by the Organisers

The workshop Stochastic Analysis in Finance and Insurance, organised by René
Carmona (Princeton), Martin Schweizer (Zürich) and Nizar Touzi (Paris), was
held May 4 – May 10, 2014. The meeting had a total of 50 participants from all
over the world with a deliberately chosen mix of more experienced researchers and
many younger participants.

During the five days, there were a total of 24 talks with many lively interactions
and discussions. In addition, there were three blocks of short communications, as
explained below.

The topics presented in the talks covered a very wide spectrum. Some of the
major developments included a focus on optimal transport problems in connec-
tion with robust pricing and hedging, microstructure and other modelling issues,
aspects of numerical computations in high-dimensional systems, and as always a
number of foundational questions. To stimulate discussions and maximise interac-
tions, talks were deliberately not organised into groups by major topics. A short
overview of the talks given day by day looks as follows.
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Freddy Delbaen in the first talk of the workshop presented some new structure
results on monetary utility functions (or equivalently risk measures) with a view
towards requirements imposed or discussed by regulators and practitioners. Miklós
Rásonyi presented new results on hedging, arbitrage and optimality for portfolio
choice in financial markets with superlinear frictions. Jan Ob loj discussed a robust
approach to pricing and hedging and showed how trading restrictions can lead there
to the emergence of financial bubbles. Josef Teichmann gave a new convergence
result for the Emery topology on semimartingales and explained how this could
be used to give a streamlined and structured proof of the fundamental theorem of
asset pricing. Chris Rogers proposed a very simple Bayesian approach to inference
and action in financial econometrics which deals in a simple and unified way with a
number of otherwise not well addressed issues. Finally, Olivier Guéant combined
ideas from optimal control and option pricing to account for effects arising from
execution costs and market impact.

Jean Jacod started the second day with an overview of backward stochastic
differential equations (BSDEs) driven by a multivariate point process, and showed
how such equations can be solved in a pathwise manner by a kind of backward
recursion. Yuri Kabanov presented a new result on tradable local martingale
deflators which could be viewed as a weak formulation for a fundamental theorem
of asset pricing in frictionless markets. Sebastian Herrmann proposed a simple
and tractable model for optimal investment in a setting where the underlying asset
price process has a bubble, described by a combination of a Black–Scholes type
model with a single-jump local martingale. He showed how this problem could be
solved fairly explicitly and gave rise to a number of interesting phenomena. Nicole
El Karoui used stochastic progressive utilities to describe and analyse models for
long-term decision making (e.g. for question about mortality or pension funds) in
a stochastic environment.

Tuesday afternoon was devoted to the traditional excursion to Sankt Roman;
this was moved forward by one day from the usual Wednesday afternoon schedule
in view of the weather forecast for the second half of the week (and this decision
turned out to have been very wise).

On Wednesday, Mete Soner presented a continuous-time duality for robust
hedging in models where price processes are assumed to be RCLL (or càdlàg).
Christoph Czichowsky explained how optional strong supermartingales arise in the
treatment via duality techniques of the problem of optimal portfolio choice under
transaction costs. In addition, there were a number of short communications in
a format which was introduced (and judged to be very successful) in an earlier
meeting. Each presenter had 10 minutes to explain his result, which were then
followed by 5 minutes of questions and discussion. This idea of explaining in a
nutshell some current problems or results again met with great success; the list of
speakers for giving a short presentation very quickly grew to a total of 15 names,
and the corresponding talks were scheduled on Wednesday morning, Thursday
morning and Thursday afternoon. Wednesday afternoon continued with Terry
Lyons who showed how one could use sophisticated mathematical tools to extract
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in a very systematic way information from sequential data, without any a priori
knowledge of the data or even the information contained in it. Finally, François
Delarue gave a derivation of the master equation arising in mean field games
and sketched a way to prove the existence of a classical solution to this forward-
backward system of PDEs.

Thursday started with David Hobson who presented a number of results on fake
diffusions, i.e. martingales whose univariate marginals (which in financial terms
are determined by the prices of plain vanilla options) match a given family of
probability measures with certain properties (again dictated by financial require-
ments). Tom Hurd presented the Gai–Kapadia model for systemic risk and gave
some formal computations for obtaining the default probability distribution af-
ter a number of default cascade steps. A second block of short communications
followed, leading again to intense discussions that continued into the afternoon
and in the evenings. Dan Lacker then gave some new results on mean field games
with a common noise term, which appear in (approximate) equilibria of symmetric
stochastic differential games. Umut Çetin presented some recent developments in
the microstructure models of Kyle and Glosten–Milgrom. The day was closed by
a third block of short communications.

On the last day, Xiaolu Tan discussed martingale optimal transport with con-
straints on the one-dimensional marginals and explained some new ideas on how
to connect such problems to Skorohod embeddings. Arturo Kohatsu-Higa gave
a probabilistic representation of the parametrix method and explained how this
could be used for numerical computations e.g. of prices for exotic options. Shigeo
Kusuoka gave an overview of Monte Carlo methods for pricing Bermuda deriva-
tives, highlighting in particular advantages and shortcomings of some alternative
but competing approaches. Monique Jeanblanc presented a number of examples
to illustrate some very subtle issues arising in the study of arbitrage theory in
connection with an enlargement of filtration, as for example needed in the context
of credit risk. Dylan Possamäı studied the properties of the solutions of back-
ward stochastic differential equations (BSDEs) with a view towards obtaining in
particular the existence of a density for both the state as well as the integrand
processes. Finally, Mathieu Rosenbaum gave a number of limit theorems for nearly
unstable Hawkes processes that appear in the context of microstructure modelling
in financial markets.

Like in the workshop three years before, there were an enormous number of
discussions, interactions and exchanges. Everyone felt privileged to be able to
spend a highly productive and creative week at the unique place that has been
created in Oberwolfach, and to profit from the excellent infrastructure, support
and scientific environment. In particular, the younger participants and the first-
time visitors to Oberwolfach unanimously said that the actual experience of the
workshop and the overall scientific atmosphere still exceeded their already high
anticipations.
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As organisers and on behalf of all participants, we want to express, like in the
last workshop three years earlier, our gratitude to the Mathematisches Forschungsin-
stitut Oberwolfach for giving us the opportunity of having this very successful
workshop. We hope that we shall be able to come back at some time in the future.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.

René Carmona
Martin Schweizer

Nizar Touzi



Stochastic Analysis in Finance and Insurance 1283

Workshop: Stochastic Analysis in Finance and Insurance

Table of Contents

Umut Çetin
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Density analysis of BSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302
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Abstracts

Recent developments on the microstructure models of Kyle and
Glosten–Milgrom

Umut Çetin

The seminal works of Kyle [1] and Glosten and Milgrom [2] aim at understand-
ing the formation of prices in a financial market with asymmetrically informed
traders. In an equilibrium framework they study how the private informations
of the agents disseminate to the market and affect the market liquidity, and how
bid-ask spreads emerge. The key to the analysis is the characterisation of the
equilibrium strategies, if they exist, of the informed traders. From a mathemat-
ical point of view, optimal strategies of the informed traders correspond to the
constructions of certain bridge processes in a Markovian framework. It turns out
that the existence of equilibrium depends on a positive answer to the following

question: Suppose that Zt = Z0 +
∫ t

0 σ(s)a(Zs) dBs is a diffusion, where a is a
sufficiently regular function and σ is deterministic. Let W be another Brownian
motion independent of B. Can we find a function α : [0, 1] × R× R such that the
following three conditions hold?

(1) There exists a strong solution on [0, 1) to

Yt =

∫ t

0

a(Ys) dBs +

∫ t

0

α(s, Ys, Zs) ds.

(2) Yt =
∫ t

0
a(Ys) dB

Y
s , where BY is a Brownian motion with respect to the

natural filtration of Y .
(3) limt→1 Yt = Z1.

In this talk we discuss the solution of the above problem and its further extensions
along with the applications to financial equilibrium with asymmetrically informed
agents.

References

[1] Kyle, A.S., Continuous auctions and insider trading, Econometrica, 53, 1985, 1315–1335.
[2] Glosten, L.R. and Milgrom, P.R., Bid, ask, and transaction prices in a specialist market

with heterogeneously informed traders, Journal of Financial Economics, 14, 1985, 71–100.
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Strong supermartingales and portfolio optimisation under transaction
costs

Christoph Czichowsky

(joint work with Walter Schachermayer)

Portfolio optimisation is one of the classical problems in mathematical finance and
gives answers to the question how to invest optimally into a financial market. In
this talk (that is based on [3]), we understand this problem as the one to maximise
the expected utility from terminal wealth in a financial market with proportional
transaction costs. Trading under transaction costs means here that whenever one
buys stocks, one has to pay a higher ask price (1 + λ)St, but only receives a
lower bid price (1 − λ)St when selling them, where λ ∈ (0, 1) denotes the size of
transaction costs.

Following the seminal works [1, 4] we investigate this concave maximisation
problem by convex duality. The corresponding dual variables are then all pairs

(Q, S̃) of frictionless arbitrage-free price processes S̃ = (S̃t)0≤t≤T evolving in the
bid-ask spread [(1−λ)S, (1+λ)S], and equivalent martingale measures Q for those.
As our results allow to model the mid price S = (St)0≤t≤T by a general càdlàg
(right-continuous with left limits) stochastic process, our findings are surprisingly
different from what can be expected from the frictionless case [4] or the case [1]
of continuous price processes under transaction costs. The reason for this is that
one needs a different limit to ensure the existence of a dual optimiser. For this,
we have identified the notion of convergence in probability at all finite stopping
times as a suitable topology to work with. In [2], we provide an extension of
Komlós’ subsequence theorem for those frictionless arbitrage-free prices, their left
limits, and pathwise Riemann–Stieltjes integrals that works directly on the level
of stochastic processes in that topology and price. Here the limits of the price
processes and their left limits turn out to be an optional and a predictable strong
supermartingale, respectively, which are two classical notions from the general
theory of stochastic processes. Using these results as a substitute for compactness
allows us to establish the existence of a dual optimiser. To obtain the interpretation
of the latter as a generalised shadow price process for which the optimal trading
strategy in the original market with transaction can be realised by frictionless
trading, we need to extend the dual optimiser to a pair of two processes. One
is needed for the approximating frictionless price process and another one for the
result of trading before predictable events that is given by the limit of the left limits
of the approximating frictionless price processes. Moreover, we give two examples
that illustrate how and why new phenomena arise and that the generalised shadow
price has to be of that form.

References

[1] J. Cvitanić and I. Karatzas. Hedging and portfolio optimization under transaction costs: a
martingale approach. Math. Fin., 6(2):113–165, 1996.

[2] C. Czichowsky and W. Schachermayer. Strong supermartingales and limits of non-negative
martingales. Preprint, 2013.
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[3] C. Czichowsky and W. Schachermayer. Duality theory for portfolio optimisation under trans-
action costs. Working paper, 2014.

[4] D. Kramkov and W. Schachermayer. The asymptotic elasticity of utility functions and op-
timal investment in incomplete markets. Ann. Appl. Probab., 9(3):904–950, 1999.

The master equation for mean field games

François Delarue

(joint work with René Carmona, Jean-François Chassagneux, Dan Crisan)

Mean field games theory was introduced by Lasry and Lions in 2006 in order to de-
scribe asymptotic Nash equilibria among a population of players interacting with
one another in a mean-field way and submitted to cost constraints; see [1]. Asymp-
totically, equilibria may be described by means of a system made of a forward
Fokker–Planck equation and a backward Hamilton–Jacobi–Bellman equation. It
turns out that whenever uniqueness of the equilibria holds, this forward-backward
system admits a decoupling field solving a PDE on the Wasserstein space of prob-
ability measures. The purpose of this talk is to show how to derive the shape of
this equation, see [2], and to indicate a way to prove the existence of a classical
solution by means of stochastic flows, see [3].

References

[1] P. Cardaliaguet, Notes on mean-field games, unpublished notes from the lectures at the
Collège de France by P. L. Lions, 2012.

[2] R. Carmona, F. Delarue, The master equation for large population equilibriums, technical
report, 2014.

[3] D. Crisan, J.-F. Chassagneux, F. Delarue, The master equation for large population sto-
chastic control and lifted flows above the Wasserstein space, technical report, 2014.

Monetary utility functions with convex level sets

Freddy Delbaen

(joint work with F. Bellini, V. Bignozzi, J. Ziegel)

Monetary utility functions are — except for the expected value — not of von
Neumann–Morgenstern type. In case the utility function has convex level sets in
the set of probability measures on the real line, we can give some characterisation
that comes close to the vN–M form. For coherent utility functions, this was solved
by J. Ziegel. The general concave case is more complicated. With some extra weak
compactness property, Stefan Weber could settle this case already in 2004. We
can now give a complete characterisation. Having convex level sets can be seen as
a weakened form of the independence axiom in the vN–M theorem.

The notation is the standard notation of probability theory: (Ω,F ,P) is an
atomless probability space, L∞ the space of bounded random variables modulo
equality a.s. L1 is the space of integrable random variables modulo equality a.s.
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Utility functions are defined on L∞ and the convex set of their laws (or distribu-
tions) is denoted by the set Pc. We use the following concept:

u : L∞ → R is called a monetary utility function if

(1) u(0) = 0 and u(ξ) ≥ 0 if ξ ≥ 0,
(2) for a ∈ R and ξ ∈ L∞: u(ξ + a) = u(ξ) + a,
(3) u is concave,
(4) u(ξn) ↓ u(ξ) for ξn ↓ ξ.

The utility function u is completely characterised by the acceptance set

A = {ξ | u(ξ) ≥ 0},

indeed u(ξ) = sup{y | ξ − y ∈ A}. If u is also positively homogeneous, hence
coherent, A is a cone and there is a closed convex set S of probability measures
Q ≪ P such that

u(ξ) = inf {EQ[ξ] | Q ∈ S} .

In general, Fenchel duality yields the result of Föllmer–Schied: There is a convex
lower semicontinuous function c, defined for all Q ≪ P, taking values in R+ and
such that

u(ξ) = inf{EQ[ξ] + c(Q) | Q ≪ P}.

If the infimum is a minimum for all ξ, then the set {Q | c(Q) ≤ m} is weakly
compact in L1 for all 0 < m < ∞, and conversely. If this property holds, we refer
to it as the weakly compact case. This is also equivalent to u(ξn) ↑ u(ξ) for ξn ↑ ξ

or to u(ξn) → u(ξ) for ξn → ξ and sup ‖ξn‖∞ < ∞.
If u(ξ) only depends on the law of ξ, then we say that u is law determined or

law invariant . This is equivalent to c(Q) = c(Q′) as soon as dQ
dP

and dQ′

dP
have the

same distribution or law. In that case one can show easily (using the law of large
numbers) that for any sub-σ-algebra C ⊂ F and any ξ ∈ L∞: u(EP[ξ | C]) ≥ u(ξ).

There seems to be an interest in law determined utilities since many people
associate uncertainty with a probability law on the outcome. In case u is law
determined, u factorizes over Pc and we write u(µ) where µ ∈ Pc. No confusion
because of this abuse of notation will arise.

We say that u has convex level sets if u(µ) = u(ν) implies for all 0 ≤ λ ≤ 1
that

u(λµ + (1 − λ)ν) = u(µ) = u(ν).

This is a weak form of the independence axiom in the von Neumann–Morgenstern
theory. This axiom says that if µ ∼ ν — meaning the economic agent is indifferent
between the lotteries µ and ν — then for every κ ∈ Pc and every 0 ≤ λ ≤ 1:
λµ + (1 − λ)κ ∼ λν + (1 − λ)κ.

The property of having convex level sets is a consequence of the property called
elicitability. This concept from statistics plays a role when dealing with estimation
and convergence properties. The property of elicitability does not have to be
defined on Pc, but can be defined on any set of probability laws that is closed
under taking convex combinations. Also the mapping φ below can be replaced by
a set-valued function.
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Let Pc be the convex set of probability measures with bounded support (laws
of elements of L∞). If

φ : P → R

is a function, then we say that φ is elicitable if there is a function

s : R× R → R

such that for all µ ∈ P :
∫

s(φ(µ), x)µ(dx) = inf
y∈R

∫
s(y, x)µ(dx).

Examples: for s(x, y) = (x − y)2 we find the expected value; for s(x, y) = |x − y|
we get the median (or better the set of medians).

The relation with monetary utility functions (not necessarily coherent but only
concave) is explained as follows. [Pisa lectures 2000, Osaka lecture notes 2008]

Let ϕ : R → R be concave, increasing and ϕ(0) = 0. Put

A = {ξ | E[ϕ(ξ)] ≥ 0}

and let

u(ξ) = sup{y | ξ − y ∈ A}.

In other words, u(ξ) is the solution of the equation

E[ϕ(ξ − y)] = 0.

u(ξ) can also be obtained as the minimum of

y →

∫

R

Φ(x− y)µ(dx),

where µ is the law of ξ and Φ(x) =
∫ x

0
ϕ(t) dt. Clearly these utilities are elicitable.

u is coherent if the function ϕ is homogeneous. This means it is of the form: there
are numbers

0 < γ ≤ β

and
ϕ(x) = βx for x ≤ 0; ϕ(x) = γx for x ≥ 0.

Stefan Weber’s result is phrased using some different notations, but one can
show that it is equivalent to the following. Weber only uses some continuity for
Bernoulli variables, but one can show the equivalence.

Suppose that u has convex level sets in Pc and satisfies the weak compact-
ness property; then u is of the form as in the previous section, i.e., there is a
nondecreasing concave function ϕ : R → R such that A = {ξ | E[ϕ(ξ)] ≥ 0}.

The construction of ϕ is nontrivial. The basic ingredient is to argue that the set
D = {µ | u(µ) ≥ 0} is “closed” and convex in Pc. Also the set C = {µ | u(µ) < 0}
is convex. Since C ∩D = ∅ one can hope to use the separation theorem. However
several technicalities arise.

For coherent utilities Johanna Ziegel could sharpen the result as follows. If u is
coherent and has convex level sets, then

either u = ess inf
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or u has a weakly compact scenario set.
The latter means that there is a Young function Φ such that ξn → ξ in LΦ implies
u(ξn) → u(ξ). Using the result of Stefan Weber, this implies that u is an expectile.

For general concave monetary utility functions, the alternative between the
weakly compact case and the ess inf is wrong. We can prove that either u is
ess inf or there is −∞ ≤ k < 0 and a concave increasing function φ : (k,+∞) → R

with φ(0) = 0 such that A = {ξ | E[φ(ξ)] ≥ 0}. The function φ should take
the value −∞ for x < k. What happens at the point k can be characterised as
well, but this goes beyond this summary. We have numerous examples for which
k > −∞.

If k = −∞, we are back in the weak compact case. If φ takes finite values on
R, then for 0 ≥ k > −∞ we can make a perturbation such that

A = {ξ | E[φ(ξ)] ≥ 0 and ξ ≥ k}.

However, not every u with convex level sets is of this form. Our approach uses the
same techniques as in Weber’s theorem, but we must use more precise separation
theorems.

The basic lemma is to show that if there is k < 0 and a > 0 such that

{α | 0 ≤ α ≤ 1 : u(αδk + (1 − α)δa) ≥ 0} 6= {0},

then the same property holds for every a > 0. Also in that case for

α(k, a) = max{α | 0 ≤ α ≤ 1 : u(αδk + (1 − α)δa) ≥ 0}

we have

u(α(k, a)δk + (1 − α(k, a))δa) = 0 and not just ≥ 0.

References

[1] F. Bellini, V. Bignozzi, F. Delbaen, J. Ziegel, Forthcoming
[2] F. Bellini, B. Klar, A. Müller, E. Rosazza-Gianin, Generalized quantiles as risk measures,

Dipartemento di Statistica e Metodi Qualitativi, Università di Milano Bicocca, preprint.

(2013)
[3] F. Delbaen, Monetary Utility Functions (Osaka University Press), (2011)
[4] W.K. Newey and J.L. Powell, Asymmetric least squares estimation and testing (1987)
[5] S. Weber, Distribution invariant risk measures, Mathematical Finance, (2004).
[6] J.F. Ziegel, Coherence and elicitability, available at arXiv 1303-1690v2 (2013)

Dynamic utilities and long term decision making

Nicole El Karoui

(joint work with M. Mrad, C. Hillairet)

Motivated by the long term financial problems, we propose to use an adaptive
utility criterion to adjust preferences to new economic information. Then we use
the Ramsey rule to link the discount rate with the marginal utility of consumption
at the economic equilibrium.
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First, we recall the properties of market consistency, forward utilities and their
dynamic characterisation, both as solutions of SDEs or more explicitly as well-
defined from the optimal wealth process and the optimal state price density in
explicit form by

Ux(t, x) = Y ∗
t

(
u′
x(X∗

t (x))−1
)
,

where both processes X∗
t (x) and Y ∗

t (y) are shown to be increasing with respect
to their initial condition. Then we solve an optimisation forward problem with
consumption and use the results to make links with a backward classical optimisa-
tion problem and indifference pricing valuation in both the forward and backward
point of view. Then we use the Ramsey rule to link the marginal utility of con-
sumption (as in the economic point of view) and the classical point of view in
finance where interest rates are expressed in terms of (“indifference”) prices of
zero coupon bonds. Mathematical arguments provide a pathwise version of the
Ramsey rule since

u′
c(c

∗
t )

u′
c(c0)

=
Y ∗
t (y)

y
,

where y = u′
c(c0), and by indifference pricing, the links between the equilibrium

point of view and the financial point of view. Both forward and backward problems
are analysed, showing the strong influence of the maturity τH of the optimisation
problem, suggesting the use of different yield curves for different τH . This diffi-
culty disappears in the forward case, making the problem more consistent. In the
backward case, for a Gaussian economy, we observe a non-standard behaviour for
the investors with maturity τH when τH goes to infinity.

When option pricing meets optimal execution

Olivier Guéant

(joint work with Jiang Pu, Guillaume Royer)

The goal of the talk was to present two papers that account for execution costs and
market impact in option pricing and hedging, in a way that is inspired from the
literature on optimal execution. The first paper [1] is dedicated to vanilla options.
We introduce nonlinear execution costs and market impact, and we look for an
optimal hedging strategy in an expected utility framework. Both cash and physical
settlement are considered. In this framework, the indifference price is obtained
as the solution of a PDE that is the usual Black–Scholes PDE with additional
nonlinear terms. The second paper [2] deals with accelerated share repurchase
(ASR) contracts. These contracts exhibit an Asian payoff with Bermudan exercise
dates and are usually associated with a very large nominal. A numerical method is
presented that uses pentanomial trees with cubic growth of the number of nodes.
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[2] O. Guéant, J. Pu, G. Royer, Accelerated share repurchase: pricing and execution strategy,
working paper, 2014.

Optimal investment in a Black–Scholes model with a bubble

Sebastian Herrmann

(joint work with Martin Herdegen)

How does an investor behave in the presence of a financial bubble? To tackle
this question, we study the problem of maximising expected utility from terminal
wealth for a power utility investor in a simple extension of the Black–Scholes
model.

Our financial market consists of a positive riskless asset (“bond”) B = (Bt)t∈[0,T ]

normalised to 1 and a risky asset (“stock”) S = (St)t∈[0,T ] whose dynamics are
given by

(1)
dSt

St−
= µ dt + σ dWt + dMG

t φ, S0 = 1,

where µ, σ > 0 and MGφ is a martingale of finite variation which has a sin-
gle negative jump at a random time γ independent of the Brownian motion W .
More precisely, G ∈ C2[0, T ) is the distribution function of γ, φ ∈ C2[0, T ), and
each trajectory MG

· φ(ω) follows the deterministic function φ on [0, γ(ω)), jumps
downwards at the random time γ(ω) and is constant on [γ(ω), T ]; cf. [1].

We consider a small investor with initial capital x > 0 and constant relative risk
aversion p > 0, who can trade in this market. Denote by Xπ the wealth process
corresponding to a predictable process π that describes the fraction of the investor’s
wealth invested in the stock. The investor’s goal is to maximise the expected utility

E[U(Xπ
T )] over all strategies π such that Xπ > 0; here, U(x) = x1−p

1−p
for 0 < p 6= 1

and U(x) = log x for p = 1.
We prove existence and uniqueness of the optimal strategy π̂ and its dual min-

imiser Q̂ (an equivalent local martingale measure (ELMM)) and characterise it in
terms of the solution to an integral equation (or to a first-order ODE). Existence
of a solution to this equation is non-trivial since φ may explode at the time horizon
T . Moreover, we decompose the optimal strategy π̂ = πm + πh into its myopic
demand πm and its hedging demand πh. Since our model behaves just as the
Black–Scholes model after the bubble has burst, we can show that 0 ≤ πm ≤ µ

pσ2

and that

πh ≤ 0 for p ∈ (0, 1), πh = 0 for p = 1, and πh ≥ 0 for p > 1.

In particular, the optimal strategy π̂ never involves short-selling if p > 1. In
addition, we give a necessary and sufficient condition on G and φ such that S

becomes a strict local martingale under the dual minimiser Q̂.
Finally, we present numerical illustrations of the optimal strategy and the wel-

fare loss compared to the Black–Scholes model.
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Fake diffusions

David Hobson

Suppose we are given a family of centred probability measures which are increasing
in convex order; for example, they may arise as the marginals of a martingale
diffusion.

The issue is to construct a martingale whose univariate marginals match the
given measures. Assuming only that the target laws have a density which is
differentiable in time, and a dispersion assumption which sees mass leave a central
region, we show how to construct a martingale with the right properties. The key
to the construction is a certain picture. The construction has the special property
that amongst all martingales with the given laws, the process has smallest (in
expectation) total variation.

The Gai–Kapadia model of systemic risk

Tom Hurd

Questions about stability of financial networks, or systemic risk, have obvious
economic importance. This talk aims to present the details of a large network as-
ymptotic result that lies at the core of systemic risk modelling. We focus on pure
default cascades that develop within deliberately simplified models of interbank
networks. These models boil down to accounting for the impact, on the capi-
tal buffers of creditor banks, of shocks sent from defaulting debtor banks. Two
similar models differ in one respect: the Eisenberg–Noe 2001 model assumes no
bankruptcy costs at default, while the Gai–Kapadia 2010 model assumes 100%
bankruptcy losses. Methods of random graph theory going back to Erdös and
Renyi, combined with stochastic balance sheets, lead to the possibility of rigor-
ous analysis of cascades in the Gai–Kapadia 2010 paradigm. We give a formal

computation, for N = ∞, of the default probability distribution {π
(n)
jk } after n

cascade steps for a bank with j debtor banks and k creditor banks. The general
understanding of such a result is that for a “well-behaved” sequence of random

financial networks {G(N)}N=1,2,...,, where N = E[|GN |], the fraction π
(N,n)
jk of (j, k)

banks which are defaulted by n cascade steps will be “approximately π
(n)
jk with

high probability”, that is,

π
(N,n)
jk = π

(n)
jk + o(N)

as N → ∞, in probability.
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Backward differential equations driven by a point process: an
elementary approach

Jean Jacod

(joint work with Fulvia Confortola, Marco Fuhrman)

We consider a BSDE driven by a point process, or a multivariate point process,
and show how to derive a solution of the BSDE by pasting together solutions to
ordinary differential equations.

More specifically, we have a probability space, a fixed time horizon T , and a
non-explosive point process N with successive jump times S1, S2, . . . (with the
convention Sn = ∞ on the set {Sn > T }). We denote by (Ft) the filtration
generated by N and by A the predictable compensator of N . The BSDE we
consider takes the form

(1) Yt +

∫ T

t

Zs dNs = ξ +

∫ T

t

f(s, Ys, Zs) dAs, t ∈ [0, T ],

where the “generator” f is a predictable function on Ω×[0, T ]×R×R (as usual, we
omit to mention the sample point ω in (1) and below), and the terminal condition
ξ is an FT -measurable random variable.

More generally, we could replace N by a multivariate point process, represented
by a random measure µ(dt, dx) =

∑
n≥1:Sn≤T δ(Sn,χn)(dt, dx), where the Sn are

as above and the χn are random variables taking values in some Polish space E.
Then if ν is the predictable compensator of µ, the BSDE takes the form

(2) Yt +

∫

(t,T ]

∫

E

Z(s, x)µ(ds, dx) = ξ +

∫

(t,T ]

∫

E

f(s, x, Ys−, Z(s, x)) ν(ds, dx).

All results given below for (1) hold for (2) as well, but for simplicity, here we
restrict ourselves to (1).

A solution of (1) is a pair (Y, Z), with Y a càdlàg adapted process and Z a
predictable process. However, at least as soon as A is continuous (that is, all jump
times Sn are totally inaccessible), any solution is such that Y is continuous outside
the times Sn, and on the set {Sn ≤ T } we have ∆YSn

= ZSn
, so actually Z is

completely determined by Y .
Two kinds of assumptions are made:

Assumption (A) on the point process: The compensator A is continuous,
and P[Sn+1 > T | FSn

] > 0 a.s. for all n.

Assumption (B) on the generator: We have
∫ T

0
|f(s, 0, 0)| dAs < ∞ a.s., and

|f(ω, t, y′, z′) − f(ω, t, y, z)| ≤ L′|y′ − y| + L|z′ − z| for two constants L,L′.
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Due to the nature of the filtration generated by the point process, we have
a special structure of the ingredients appearing in (1). Let Hn be the class of
D = {t0, . . . , tn} with 0 = t0 ≤ t1 ≤ · · · ≤ tn and tj ∈ [0, T ] ∪ {∞} and tj < tj+1

if tj ≤ T . With S0 = 0, we also consider the random set Dn = {S0, . . . , Sn}.
First, for each D ∈ Hn, there is a continuous decreasing positive function

t 7→ GD(t) on [0, T ], with GDn
(t) = P[Sn+1 > t | FSn

] on {Sn ≤ T }, and A is

At =

∞∑

n=0

anDn
(t ∧ Sn+1), anD(t) = − logGn

D(t).

Next, for each n ≥ 0, there is a measurable map D 7→ un
D on Hn, with

Sn(ω) ≤ T < Sn+1(ω) =⇒ ξ(ω) = un
Dn(ω).

Next, if Y is càdlàg adapted and continuous outside the times Sn, for each n and
D ∈ Hn, there is a continuous function t 7→ ynD(t) on [0, T ], measurable in D, with

(3) Sn(ω) ≤ t < Sn+1(ω), t ≤ T =⇒ Yt(ω) = ynDn(ω)(t).

Similarly, for each n and D ∈ Hn, there are Borel maps (t, y, z) 7→ fn
D(t, y, z) with

Sn(ω) < t ≤ Sn+1(ω) ∧ T =⇒ f(ω, t, y, z) = fn
Dn(ω)(t, y, z).

The following (simple) lemma is a key point for our analysis.

Lemma A process Y solves (1) if and only if, outside a P-null set, the functions
ynD associated by (3) satisfy for all n and t ∈ [0, T ]:

(4) ynDn
(t) = un

Dn
+

∫ T

t

fn
Dn

(s, ynDn
(s), yn+1

Dn∪{s}(s) − ynDn
(s)) danDn

(s).

If further P[SM+1 = ∞] = 1 for some finite integer (equivalently, N has at most
M points), we also have

(5) t ∈ [0, T ] =⇒ yMDM
(t) = uM

DM
= ξ.

The case of finitely many points: When N has at most M points, (5) gives us
yMD , and then all equations (4) are ordinary (backward) differential equations,
which can be solved recursively in n, starting with n = M : At each stage, un

Dn
is

known, and the coefficient fn
Dn

is Lipschitz, so we have a unique solution as soon

as
∫ T

t
|fn

Dn
(s, 0, yn+1

Dn∪{s}(s))| danDn
(s) is finite, and it can be shown that the latter

condition amounts to having ξ integrable. In other words:

Theorem When N has at most M points almost surely, and if ξ is integrable, (1)
has a unique solution.

The general case: When P[Sn ≤ T ] > 0 for all n, the problem is more difficult
because we cannot start the previous backward ODEs with (5) at some M . The
idea is to “stop” the process N (and A as well) at time Sn∧T , for any given n, and
replace the terminal condition ξ by ξ(n) = ξ 1{T<Sn}. According to what precedes,
we solve in a unique way each stopped equation, and then we let n → ∞. To obtain
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the convergence of the stopped solution toward a solution to (1), we unfortunately
need some a priori estimates, and stronger conditions on ξ.

More specifically, for any α, β > 0 we denote by Lα,β the set of all pairs (Y, Z)
of measurable processes such that

E

[ ∫ T

0

(|Ys| + |Zs|)e
βAsαNs dAs

]
< ∞.

Then one can prove the following:

Theorem Assume that for some β > 1 + L + L′ and α > L, we have

E

[
eβATαNT |ξ| +

∫ T

0

αNseβAs |f(s, 0, 0)| dAs

]
< ∞.

Then (1) admits one and only one (up to null sets) solution (Y, Z) which belongs
to Lα,β.

Finally, one can try to see whether Assumption (A) is really needed. Although
we do not have a full answer to this question, we can mention two interesting
properties:

If A is continuous but P[S1 > T ] = 0 (so the second condition in (A) fails for
n = 0): Assuming further that there is a single point S1, and for the simple
generator f(ω, t, y, z) = z, then as soon as ξ is integrable, for any real y, equation
(1) has a unique solution satisfying further Y0 = y (thus, we – strangely enough
– have exactly one solution if we fix both the terminal condition ξ, and the initial
condition y).

If A is discontinuous: Again in the case of a single point S1, one can show in some
cases that even when ξ is bounded, there might be no solution at all. This is the
case, for example, when S1 takes only the values T (with probability p) and +∞
(with probability 1 − p), and the generator is f(y, z) = y

p
+ g(z), and when ξ = a

if S1 = T and ξ = b if S1 = ∞. In this case, we have infinitely many solutions if
b + pg(a− b) = 0, and none at all otherwise.

Arbitrages and progressive enlargement of filtrations

Monique Jeanblanc

(joint work with Anna Aksamit, Tahir Choulli, Jun Deng, Claudio Fontana,
Shiqi Song)

Motivated by reduced form models of credit risk, we study the following problem.
Let F be a given filtration and G the progressive enlargement of F with a default
time τ . All asset prices are supposed to be F-adapted. Assuming that there
are no arbitrages of the first kind when trading with F-adapted strategies, under
which conditions on τ there are still no arbitrages of the first kind when trading
with G-adapted strategies? We give necessary and sufficient conditions before τ ,

based on the F-supermartingales Zt = P[τ > t | Ft] and Z̃t = P[τ ≥ t | Ft]. More
precisely, we prove that there are no arbitrages of the first kind if and only if the
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set {Z̃ = 0 < Z−} is evanescent. For the part after τ , we restrict our attention
to some specific times τ (i.e., honest times which satisfy Zτ < 1) for which we
give also necessary and sufficient conditions, based on the two F-supermartingales

Z and Z̃. We also present classical arbitrages for an honest time in a complete
market.
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On traded local martingale deflators

Yuri Kabanov

(joint work with Kostas Kardaras, Shiqi Song)

In a very recent paper, Takaoka and Schweizer [7] (based on the Takaoka preprint
of 2011) extended to the multi-asset case the following theorem, see [5]:

The NAA1 condition (called also BK, NUPBR) is equivalent to the existence of
a local martingale deflator.

A local martingale deflator is a strictly positive stochastic process whose prod-
uct with any portfolio process is a local martingale. This result is an important
complement to the criterion due to Kostas Kardaras and Ioannis Karatzas [4]:

The NAA1 condition is equivalent to the existence of a supermartingale deflator.

Though Kardaras considered in [5] only a scalar risky process, his result is more
precise:

In any neighborhood of the basic probability measure, one can find an equivalent
probability measure under which there exists a tradable local martingale deflator,
i.e., a portfolio process whose reciprocal is a local martingale deflator.

The original proof by Takaoka proof is based on the change of numéraire tech-
nique and a clever reduction to the FTAP of Delbaen and Schachermayer [1]. It
is interesting to avoid the latter (which is one of the more complicated results of
mathematical finance); as was shown by Kardaras [6], the NAA1 criterion may
serve to get an alternative, purely probabilistic proof of the FTAP.

In the present talk, we show that the multidimensional version of the Kardaras
theorem can be deduced from the Karatzas–Kardaras criterion (we provide a new,
simpler proof of this important theorem using a LLN for stochastic integrals with
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truncated integrands). Our arguments are based on the Delbaen–Schachermayer
theorem on the existence of an equivalent σ-martingale measure [2], which is a
relatively simple probabilistic result. We dispose now of a proof of the latter
which is even simpler than that in [3].
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Probabilistic representation of the parametrix method

Arturo Kohatsu-Higa

(joint work with Vlad Bally)

The parametrix method was discovered by E. Levi in 1907 in order to find solutions
of elliptic partial differential equations. This method was later extended for par-
abolic differential equations with Hölder-continuous coefficients. In this talk, we
develop a probabilistic interpretation of this method for evaluations of test func-
tions of the marginals of a continuous diffusion process using the Euler–Maruyama
(EM) scheme.

The method is based on a Taylor expansion-like method which expands the
solution of the parabolic partial differential equation around a basic Gaussian
density. We introduce two ways of carrying out this idea.

The first one applies directly a Taylor-like expansion on the semigroup of a
continuous diffusion. This requires the regularity of the coefficients but leads to
a first expression of the expectation of the marginal of the diffusion written using
only the EM scheme defined at a random time partition given by an independent
Poisson process.

The second method (see [4]), which relies on the expansion of the dual of the
semigroup operator, leads to a similar expression based on a reversed time EM
scheme which starts at a random initial value given by the test function. This
method requires less regularity on the coefficients. Notably it only requires the
diffusion coefficients to be Hölder-continuous and the drift coefficient bounded and
measurable.
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Both probabilistic representations have infinite variance and therefore some
importance sampling methods have to be introduced if one wants to use these
formulas for Monte Carlo simulation.

As a first financial application, we apply this formula to the price of a barrier-
type option with constant volatility. Through a reflection principle, we see that
this price is equal to the price of a European-type option based on a model with
discontinuous drift coefficient.

Next, we claim that a similar formula to be applicable to stochastic volatil-
ity models will require the analysis of the parametrix method for discontinuous
volatility coefficients. For this reason, we explain why the parametrix method
is applicable to the basic case of a discontinuous diffusion coefficient of the type
σ2(x) = 1 + I{x≥0}.

Time permitting, we may discuss the relation between these formulas with the
multilevel Monte Carlo method, the non-Markovian setting and other possible
extensions of these formulas.
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Monte Carlo method on pricing Bermudan derivatives

Shigeo Kusuoka

(joint work with Yusuke Morimoto, Bank of Tokyo Mitsubishi UFJ, University of
Tokyo)

It is an interesting and practical problem to compute numericallly prices of Amer-
ican derivatives or Bermudan derivatives. Stochastic mesh methods and least
square regression methods (so-called Longstaff–Schwarz methods) are well-known
methods as Monte Carlo solution to this problem. However, each of them has
some good points and some weak points.

As for the stochastic mesh method, the convergence to the true value is clear.
But this method is available only when we know the explicit shape of the transition
density function of the underlying Markov process, and so models to which we can
apply this method are restricted.

As for the least square regression method, this method is available if we can
simulate paths of the underlying Markov process, and so we can apply this method
to a wide class of models. But the convergence to the true value is not clear and
it depends on the choice of families of functions as approximating functions for
value functions.
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In this talk, we show our recent results for both methods on convergence when
we take Hörmander-type diffusion processes as underlying processes. Also, we
introduce a new class of random functions as approximating functions for value
functions in least square regression methods.

The paper with the results for stochastic mesh methods will appear in Adv. Math.
Econ. 18 (2014). The paper on the results for least square regression methods is
in preparation.

Mean field games with common noise

Daniel Lacker

(joint work with René Carmona, François Delarue)

A general characterization is derived for the limits of approximate equilibria of
large-population symmetric stochastic differential games as the number of agents
tends to infinity. It is shown that the equilibrium empirical measures admit limits
in distribution, and every limit is a weak solution of the mean field game (MFG).
Conversely, every weak MFG solution can be obtained as the limit of a sequence of
approximate equilibria in the finite-player games. In other words, the MFG pre-
cisely characterizes the possible limits of the finite-player games, formalizing the
well-established intuition. The proofs use relaxed controls to provide the compact-
ness needed to obtain limits under quite general assumptions, and it is then shown
how to sharpen the characterization of the limit under various additional assump-
tions. In particular, under modest convexity assumptions, versions of the main
theorems are stated with no mention of relaxed controls. Stronger assumptions
yield uniqueness of the weak MFG solution and thus a full convergence result.

Streams, paths, signatures and the learning of functions

Terry Lyons

Streams of sequential data, where the order of distinct types of events is critical to
understanding, occur widely, and certainly in finance. Signatures of these streams
are transforms of the data into an infinite sequence of coefficients representing the
path as an element of a tensor algebra.

The transformation is tractable and (up to tree-like components) faithful, lead-
ing to an alternative description of the data. The first few terms control the effects
of the stream, while the later terms control the texture.

There is a strong theoretical basis for this transform (see e.g. Hambly and Lyons,
Annals of Mathematics, 2010), but in this context we are interested in explaining
how the way that polynomial functions of path signatures can be rewritten as
linear functionals allows regression to become linear regression.

We apply this to examples of buckets of 500 paths of 30 steps in 4 dimensions,
and use simple regression/least squares lasso to classify the data. This allows
completely blind identification of differences in 2 of the buckets to the others
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which were indistinguishable (the data were normalised to remove the obvious
volatility/volume differences).

The material is exposed in more detail in an arXiv paper with Gyurko, and in
my talk for the ICM in Korea 2014. In fact it contains much mathematics.

Robust framework for pricing and hedging with trading restrictions
and emergence of bubbles

Jan Ob lój

(joint work with A.M.G. Cox, Zhaoxu Hou)

We consider a robust approach to the pricing and hedging of derivatives. Instead of
pre-supposing a probabilistic model, we assume that options are available for trade
at time zero for prices observed in the market. We are interested in implications
this has for the pricing and hedging of an exotic derivative with payoff G, and
we seek to establish a duality result equating the cheapest superhedging strategy
for G to the supremum of expectations of G over all suitably calibrated market
models. This framework, going back to the seminal contribution of Hobson [5],
has been the subject of much recent interest and many papers.

We first consider a discrete-time framework and the case when call or put op-
tions, for all strikes and possibly multiple maturities, are traded. Such a combi-
nation of prices encodes probability measures (µi) which correspond to marginal
distributions of a calibrated market model. Our focus is on the case when the
means of µi, which correspond to the forward prices implicit in the prices of op-
tions, are strictly decreasing. This would normally lead to an obvious arbitrage.
However, we argue that by imposing no-short-selling constraints, such market in-
puts can be accommodated within the robust framework. Further, we incorporate
a parsimonious description of modelling beliefs by allowing to specify a set P of
feasible paths. This has the effect that the superhedging only holds on P and the
calibrated models have to be supported on P. We show that no arbitrage (in the
sense of no weak free lunch with vanishing risk of Cox and Ob lój [3]) is equivalent
to the existence of a calibrated market model. We then study the pricing-hedging
duality. When call options are traded, we establish a general duality result in-
spired by, and using the methods of, Beiglböck, Henry-Labordère and Penkner [1].
In contrast, when put options trade, the trading restrictions may lead to a duality
gap. In a simple one-period model, the gap is equal to

γ(s0 − f0), where γ = lim sup
x→∞, x∈P

G(x)

x
,

and s0 is the spot price, and f0 the forward implicit in the put options. Such
a setting has a natural interpretation as a speculative bubble in which the mar-
ket (superhedging) price is strictly larger than the fundamental price, defined as
supremum of expectations of G over calibrated market models. It also shows
that supermartingales arise as natural discrete-time probabilistic models for such
bubbles.
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Finally, we consider a continuous-time setting. By embedding the discrete-
time setting in continuous time, we obtain analogues of the results above. In
particular, we show that when put options trade and imply a mispricing of the
forward, a bubble arises and market (superhedging) prices may be strictly larger
than the fundamental prices. An arbitrage opportunity does not arise because of
no-short-selling constraints combined with a pathwise superhedging requirement.
We observe that the latter encodes a collateral requirement, akin to the one in
Cox and Hobson [2]. The set of calibrated market models is given by strict local
martingale measures with fixed marginal(s), or more generally and in function of
the class of admissible strategies, the set of supermartingale measures with fixed
marginal(s). In mathematical finance, the modelling of financial bubbles using
local martingale models can be traced back to [4], with subsequent contributions
including [2, 6]. We believe that an important consequence of our work is the
emphasis that local martingale models are intrinsically models which arise due to
trading constraints.
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Density analysis of BSDEs

Dylan Possamäı

(joint work with Thibaut Mastrolia, Anthony Réveillac)

In recent years the field of backward stochastic differential equations (BSDEs) has
been a subject of growing interest in stochastic calculus as these equations natu-
rally arise in stochastic control problems in finance, and as they provide Feynman–
Kac type formulae for semilinear PDEs. Before going further, let us recall that
a solution to a BSDE is a pair of regular enough (in a sense to be made precise)
predictable processes (Y, Z) such that

(1) Yt = ξ +

∫ T

t

h(s, Ys, Zs) ds−

∫ T

t

Zs dWs, t ∈ [0, T ],

where W is a one-dimensional Brownian motion, h is a predictable process and ξ

is an FT -measurable random variable (with (Ft)t∈[0,T ] the natural completed and
right-continuous filtration generated by W ). Since it is not possible to provide
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an explicit solution to (1) (except when h is a linear mapping of (y, z)), one of
the main issues especially regarding the applications is to provide a numerical
analysis for the solution of a BSDE. This calls for a deep understanding of the
regularity of the solution processes Y and Z. Here, we focus on the marginal
laws of the random variables Yt, Zt at a given time t in (0, T ). More precisely,
we are interested in providing sufficient conditions ensuring the existence of a
density (with respect to Lebesgue measure) for these marginals on the one hand,
and in deriving some estimates on these densities on the other hand. This type
of information on the solution is of theoretical and of practical interest since the
description of the tails of the (possible) density of Zt would provide more accurate
estimates on the convergence rates of numerical schemes for quadratic growth
BSDEs. This issue has been rarely studied in the literature, since up to our
knowledge only references [2, 1] address this question. The first results about this
problem have been derived in [2], where the authors provide existence of densities
for the marginals of the Y component only and when the driver h is Lipschitz-
continuous in (y, z), and some smoothness properties of this density. Concerning
the Z component, much less is known since existence of a density for Z has been
established in [1] only under the condition that the driver is linear in z. We revisit
and extend the results of [2, 1] by providing sufficient conditions for the existence
of densities for the marginal laws of the solution Yt, Zt (with t an arbitrary time
in (0, T )) of a qgBSDE with a terminal condition ξ in (1) given as a deterministic
mapping of the value at time T of the solution to a one-dimensional SDE, together
with estimates on these densities. En route to these results, we provide new
conditions for the Malliavin differentiability of solutions of Lipschitz or quadratic
BSDEs. These results rely on the interpretation of the Malliavin derivative as a
Gâteaux derivative in the directions of the Cameron–Martin space. Incidentally,
we provide a new formulation for the characterization of the Malliavin–Sobolev
type spaces D1,p.
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Hedging, arbitrage and optimality under superlinear frictions

Miklós Rásonyi

(joint work with Paolo Guasoni)

In a continuous-time model with multiple assets described by càdlàg processes,
we characterize superhedging prices, absence of arbitrage, and utility maximizing
strategies, under general frictions that make execution prices arbitrarily unfavor-
able for high trading intensity. Such frictions induce a duality between feasible
trading strategies and shadow execution prices with a martingale measure. Utility
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maximizing strategies exist even if arbitrage is present, because it is not scalable
at will. The talk is based on the manuscript [1].
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Estimate nothing

Chris Rogers

(joint work with Moritz Duembgen)

In the econometrics of financial time series, it is customary to take some parametric
model for the data, and then estimate the parameters from historical data. This
approach suffers from several problems. Firstly, how is estimation error to be
quantified, and then taken into account when making statements about the future
behaviour of the observed time series? Secondly, decisions may be taken today
committing to future actions over some quite long horizon, as in the trading of
derivatives; if the model is re-estimated at some intermediate time, our earlier
decisions would need to be revised — but the derivative has already been traded
at the earlier price. Thirdly, the exact form of the parametric model to be used
is generally taken as given at the outset; other competitor models might possibly
work better in some circumstances, but the methodology does not allow them to
be factored into the inference. What we propose here is a very simple (Bayesian)
alternative approach to inference and action in financial econometrics which deals
decisively with all these issues. The key feature is that nothing is being estimated.

Limit theorems for nearly unstable Hawkes processes

Mathieu Rosenbaum

(joint work with Thibault Jaisson)

Because of their tractability and their natural interpretation in terms of market
quantities, Hawkes processes are nowadays widely used in high frequency finance.
However, in practice, the statistical estimation results seem to show that very of-
ten, only nearly unstable Hawkes processes are able to fit the data properly. By
nearly unstable, we mean that the L1-norm of their kernel is close to unity. We
study in this work such processes for which the stability condition is almost vi-
olated. Our main result states that after suitable rescaling, they asymptotically
behave like integrated Cox/Ingersoll/Ross models. Thus, modelling financial order
flows as nearly unstable Hawkes processes may be a good way to reproduce both
their high and low frequency stylized facts. We then extend this result to Hawkes
based high frequency price models. We show that under a similar criticality con-
dition, these processes converge to Heston models. Again, we recover well-known
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stylized facts of prices, both at the microstructure level and at the macroscopic
scale.
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[8] A. Jakubowski, J. Mémin, G. Pagès, Convergence en loi des suites d’intégrales stochastiques
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Martingale optimal transport in the Skorokhod space

H. Mete Soner

(joint work with Yan Dolinsky of Hebrew University)

In this paper, we use the discretization approach to martingale optimal duality to
extend our previous results [1, 2] to the setting of càdlàg processes. The financial
market consists of a savings account which is normalized to unity Bt ≡ 1 by
discounting and of d risky assets with price process St ∈ Rd

+, t ∈ [0, T ], with initial
value S0 = (1, . . . , 1). We assume that each component of the price process is
right-continuous with left limits. D denotes the set of all such trajectories.

For a probability measure µ, let

H = {h(S) = g(ST ) : g ∈ L1(Rd
+, µ)}, L(g) =

∫

Rd
+

g dµ.

On Ω := D, let S be the canonical process and F the canonical σ-field. A prob-
ability measure Q on (Ω,F) is a martingale measure if the canonical process is a
Q-martingale with respect to the canonical filtration. Further let Mµ be the set
of all martingale measures Q such that the probability distribution of ST under Q

is equal to µ.

Definition. A semi-static portfolio is a pair φ := (g, γ), where g ∈ L1(Rd
+, µ)

and γ : [0, T ] × D → Rd is left-continuous and progressively measurable, where
γt(S) denotes the number of shares in the portfolio φ at time t, before a transfer
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is made at this time. A semi-static portfolio is admissible if for every Q ∈ Mµ,
the stochastic integral

∫
γu dSu is a Q-supermartingale. An admissible semi-static

portfolio is called superreplicating if

g(ST ) +

∫ T

0

γu(S) dSu ≥ G(S), ∀S ∈ D.

The (minimal) superhedging cost of G is defined by

V (G) := inf

{∫
g dµ : ∃γ such that φ := (g, γ) is superreplicating

}
.

�

Theorem. For any exotic option

G : D([0, T ];Rd) → R

that is bounded and uniformly continuous in the Skorokhod metric, we have for the
minimal superreplication cost the dual representation

V (G) = sup
Q∈Mµ

EQ[G(S)],

where EQ denotes the expectation with respect to the probability measure Q.
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Martingale transport, Skorokhod embedding and peacocks

Xiaolu Tan

(joint work with Pierre Henry-Labordère, Nizar Touzi, Gaoyue Guo, Sigrid
Källblad)

A peacock is a stochastic process X = (Xt)t≥0 increasing in the convex ordering,
i.e. t 7→ E[φ(Xt)] is increasing for every convex function φ. It follows by Kellerer’s
theorem that X is a peacock if and only if there is an associated martingale
M , which is not unique in general, with the same one-dimensional marginals,
i.e. Xt ∼ Mt in law for every t ≥ 0. Then given a peacock, we consider the
class of all associated martingales and look for the optimal one with respect to
a reward function. The problem is related to the so-called martingale optimal
transport problem and the optimal Skorokhod embedding problem (SEP). We
study the problem using the SEP formulation, and obtain some duality results. As
an application in finance, the dual problem is related to the minimum superhedging
cost of exotic options, using dynamic and static strategies. When the reward
function is given by the expectation of an increasing functional of the running
maximum of the Brownian motion up to the last stopping time in SEP, we give a
study to the optimal SEP as well as to its dual problem.
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A convergence result in the Emery topology and another proof of the
fundamental theorem of asset pricing (FTAP)

Josef Teichmann

(joint work with C. Cuchiero)

We work in the general setting of admissible portfolio wealth processes as intro-
duced e.g. by Y. Kabanov [2]. We show that in this setting, the property “no
unbounded profit with bounded risk” (NUPBR), see [2], implies the so called
(P-UT) property, a boundedness property in the Emery topology which has been
introduced by C. Stricker [4]. Combining this insight with well-known results from
Mémin and S lominski [3] leads to a short variant of the proof of the fundamental
theorem of asset pricing initially proved by Delbaen and Schachermayer [1].
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Département de Mathématiques
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Université de Paris VI
4, Place Jussieu
75252 Paris Cedex 05
FRANCE

Prof. Dr. Walter Schachermayer

Fakultät für Mathematik
Universität Wien
Nordbergstr. 15
1090 Wien
AUSTRIA

Prof. Dr. Martin Schweizer

ETH Zürich
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