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Abstract. The classical metric theory of statistical models (experiments)
has recently been extended towards an asymptotic equivalence paradigm,
allowing to classify and relate problems which are essentially infinite dimen-
sional and ill-posed. Modern statistical concepts like these are also being
integrated into the emerging field of quantum statistics, which is develop-
ing on the background of technological breakthroughs in quantum engineer-
ing. The workshop brought together leading experts in these areas, with the
goal of establishing a common language, and fostering collaborations between
mathematical statisticians, theoretical physicists and experimentalists.

Mathematics Subject Classification (2010): 62G20, 81P45.

Introduction by the Organisers

The workshop New Horizons in Statistical Decision Theory was the first significant
meeting bringing together researchers from mathematical statistics and quantum
information theory, under the broad umbrella of statistical decision theory. The
aim of the workshop was twofold. The first goal was to review recent progress in
these areas, e.g. in non-parametric regression, confidence intervals, quantum local
asymptotic normality and quantum compressed sensing tomography. The second,
and perhaps more important goal, was to establish a communication platform and
facilitate the exchange of methodology and techniques between the two fields.

Recent progress in quantum information technologies has brought the statisti-
cal analysis of quantum measurements data to the forefront of experimental and
theoretical efforts. The increasing complexity of quantum devices requires a new
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range of statistical methods to deal with large dimensional models, model selec-
tion, measurement design, and reliable confidence intervals. In the same time,
many key statistical concepts from statistical decision theory have been extended
to quantum statistics, bringing the two subjects closer together, and making the
workshop a very timely event.

In recognition of his pioneering work at the interface of quantum theory, in-
formation theory and statistics, the workshop was opened with a presentation by
Alexander Holevo on the recently solved quantum Gaussian optimizers conjecture.
The program contained a mixture of alternating statistics and quantum informa-
tion presentations. To increase the accessibility, the speakers observed the “15
minutes rule” of beginning with a broad overview of the subject. Additionally,
a lively dictionary session was organised on Tuesday, and several open problems
were debated in another session on Thursday. PhD students had the opportunity
to present their results with short presentations in a special evening session.

As organisers we were gratified by the level of engagement of participants on
both sides, lively discussions and emerging collaborations. The excellent atmo-
sphere was facilitated by the working environment at the MFO to which we would
like to express our deep gratitude.

Richard Gill, Madalin Guta and Michael Nussbaum

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Convergence rates of spectral methods for statistical inverse learning
problems

Gilles Blanchard

(joint work with Nicole Mücke)

Consider an inverse problem of the form g = Af, where A : H1 → H2 is a
known operator between Hilbert spaces of real-valued functions on a space X , and
assume that we observe g at some randomly drawn points X1, . . . , Xn which are
i.i.d. according to some distribution PX , and where additionally each observation
is subject to a random independent noise, i.e.

Yi = (Af)(Xi) + εi, i = 1, . . . , n.

The goal is to recover the function f . Here it is assumed that for each point x the
evaluation mapping f 7→ Af(x) is continuous. This setting as well as its relation to
random nonparametric regression and statistical learning with reproducing kernels
can be traced back to the works of G. Wahba and has been studied more recently
in a series of works by Caponnetto, De Vito, Rosasco, Bauer and Pereverzev. In
particular, it can be shown that this setting is geometrically equivalent to the
random nonparametric regression model Yi = h(Xi) + εi, i = 1, . . . , n, wherein
it is assumed that h belongs to a certain reproducing kernel Hilbert space HK

over X , and the goal is to recover the function h with the estimation error being
measured in HK-norm (as opposed to the L2(PX) norm for the standard least
squares regression setting). In this talk we consider the estimation of f from the
observations (Xi, Yi)1≤i≤n by so-called spectral methods. The results we present
concern convergence rates of such methods under Hölder source conditions with
parameter r, and polynomial decay condition (with exponent 1/s) of eigenvalues,
both with respect to an appropriate integral operator defined from A and the mar-
ginal distribution PX . These results extend and complete previously known ones,
in particular the rate O(n− r

2r+s+1 ) for the convergence in H1-norm (or equivalently
in HK-norm for the equivalent random design regression model) as well as a cor-
responding minimax lower bound, both of which had not been established for this
setting.
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Gate-set tomography: calibration-free full characterization of quantum
devices using error-amplifying circuits

Robin Blume-Kohout

(joint work with John K. Gamble, Peter Maunz, Erik Nielsen, Kenneth Rudinger)

Quantum Information & Tomography: Beginning around 1980, it became
apparent that quantum mechanics provides a new and distinct set of rules for
information processing. Information is carried by physical systems (e.g., bits),
and sufficiently small and/or isolated physical systems obey the rules of quantum
theory, not those of classical logic and probability theory. (For example, the law of
the excluded middle – exactly one of A and not-A is true – simply does not hold for
quantum systems.) These rules lead to novel, and sometimes useful, information
processing possibilities. Achieving these capabilities relies on the development of
qubits : physical systems that can be prepared in either of two distinguishable states
(labeled |0〉 and |1〉) and in arbitrary quantum superpositions of them. A useful
qubit must be precisely controllable via quantum logic gates. These are logical
transformations (akin to the classical NOT or NAND gates), usually implemented
by applying electronic or optical control pulses to the qubit. The precision required
to process quantum information demands precise statistical characterization of
these logic gates, a.k.a. quantum tomography. This talk is about a new method
for tomography of quantum logic gates.

Quantum tomography is deeply similar to estimation of: (i) probability distri-
butions over finite sample spaces, e.g. ~p = [p1 . . . pd]; and (ii) stochastic matrices
that act on probability vectors. The key difference is that quantum systems do
not have unique sample spaces. Instead, they can be observed in a continuum
of different ways, and each possible observation corresponds to a distinct sample
space that is not a coarse-graining of any other. Fortunately, there exist linear
relationships between them, which ensure that quantum states for a system with
d distinguishable states can be represented as d × d positive semidefinite density
matrices (ρ). Similarly, quantum logic gates can be represented by d2×d2 process
matrices (G), which are linear maps on density matrices.

The standard methods for tomography (i.e., estimation of the process matrix
for one or more quantum logic gates) are applications of frame theory. The gate is
represented by a d2×d2 matrixG that acts on quantum states, so the tomographer:

(1) devises ways to prepare each of d2 linearly independent states ρi,
(2) repeatedly prepares ρi, and applies the logic gate to it,
(3) measures the resulting states G[ρi] in enough different ways (one for each

sample, since measurement “collapses” quantum states) to obtain infor-
mation about every parameter of G[ρi],

(4) performs statistical analysis on the resulting data to (i) estimate each
G[ρi], and then (ii) estimate the entire matrix G from them.

This procedure works, but is bedeviled by many challenges. Two of the most
significant are: (1) it relies on known input states and measurements, and is only
as reliable and accurate as their calibration; (2) an enormous amount of data is
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required to achieve the desired accuracy of 10−4 or better in every parameter,
because errors scale as 1/

√
N .

Gate-set Tomography: Recent experimental work [1] brought the calibration
problem into stark relief. In response, various researchers (notably at IBM [2])
devised ad-hoc methods for self-calibrating tomography. We developed a rigorous
method called gate set tomography (GST) [3]. It completely solves the calibration
problem, by treating the quantum logic device (e.g. qubit) as a black box, acces-
sible only through buttons and indicator lights whose meaning and function are
strictly unknown to begin. Remarkably, it also provides a tremendous advantage
in efficiency; simulations show that GST can estimate every parameter of a set of
logic gates to within 10−6 using only 5× 106 samples.

GST models an experimental quantum logic device as a black box, equipped
with buttons (to control it) and indicator lights (one of which lights up after the
“measure” button is pressed). Three kinds of buttons exist: (1) one to initialize
in an unknown state ρ; (2) several to apply unknown logic gates G1 . . . GK ; and
(3) one to perform an unknown two-outcome measurement M = {E, 1l − E}. ρ
and E are d × d positive semidefinite matrices (with E ≤ 1l and Tr(ρ) = 1), and
the Gk are completely positive trace preserving (CPTP) linear maps acting on
ρ. Together, these parameters constitute a gateset, a complete description of the
device’s behavior, which is parameterized using the Hilbert-Schmidt vector space
of Hermitian matrices (in which states are row vectors, measurement effects are
column vectors, and gates/operations are matrices) as:

{|ρ〉〉, 〈〈E| , {Gk}}.

The goal of GST is to estimate these parameters as accurately as possible. Ac-
tually, this is not quite possible; there is an unobservable gauge in the gateset.
In quantum theory, Born’s Rule gives the outcome probabilities of each possible
experiment by an expression of the form

(1) Pr(E|ρ,G1 . . .GL) = 〈〈E|GL . . .G1 |ρ〉〉,

which is unchanged under gauge transformations of the form

(2) 〈〈E| → 〈〈E|T−1, |ρ〉〉 → T |ρ〉〉, Gk → TGkT
−1.

Thus, the gateset can only be estimated up to this gauge degree of freedom, which
GST generally fixes by choosing the gauge in which the gateset is closest to the
experimentalist’s intended gates.

Results & Specifics: We have developed a comprehensive suite of algorithms
and computer code for GST on single-qubit systems. (Extensions to larger sys-
tems, with Hilbert space dimension d > 2, are in progress and expected to be
straightforward). At its heart is an algorithm called linear gate set tomography
(LGST). Previous methods (e.g. Ref. [2]) used maximum likelihood to analyze
data from arbitrary experiments (each of which is described by a gate sequence
G1 . . . GL). This method is risky because the likelihood function is complicated,
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non-convex, and multimodal. LGST avoids these difficulties by specifying a par-
ticular set of short-sequence experiments whose results can be transformed into a
consistent estimator using only simple linear algebra.

LGST has near-perfect reliability, but is statistically naive and not very ac-
curate. Long gate sequences, in which a short sequence of gates or germ is re-
peated many times, amplify small deviations in the gates, and make them easy
to detect and estimate. These data cannot be analyzed with linear methods.
However, the linear inversion used in LGST equates to unweighted least-squares
fitting, and properly weighted least-squares (minimizing χ2) approximates maxi-
mum likelihood estimation in the Gaussian limit. We synthesized these ideas into
least squares GST (LSGST), which specifies particular long gate sequences, and
analyzes the data using iterative weighted least-squares refinement of the initial
LGST estimate.

Using these methods, we have analyzed a variety of simulated data, to validate
and calibrate our methods. We have also analyzed experimental data from three
different laboratories. Our simulations showed that LSGST reliably yields an
estimate whose error (RMS per-matrix-element deviation from the truth) scales
precisely as 1/L, where L is the maximum length of gate sequences used. For
L = 8192, using a total of about 5× 106 “clicks” (individual samples) we observed
errors of 9× 10−7.

We analyzed experimental data with sequences of length up to L = 512. GST
produced estimates with far higher precision than any existing technique, thanks
to the 1/L error scaling, and an algorithm to design sets of germs that, when
repeated L times, amplify every gauge-invariant parameter proportional to L.
We estimated these parameters to within 10−4, and discovered that the dominant
source of noise in all three experimental qubits was non-Markovian – i.e., violation
of the [Markovian] gate-set model. We used a detailed χ2 analysis (which assigned
a χ2 badness-of-fit number to each one of the roughly 2000 different experiments
performed) to obtained detailed diagnoses of the non-Markovian noise, and this
information enabled some experimentalists to improve their qubits.
Acknowledgments: Sandia National Laboratories is a multi-program laboratory
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.
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Sparse priors and Bayesian linear regression

Ismaël Castillo

(joint work with Johannes Schmidt-Hieber, Aad van der Vaart)

Consider estimation of a parameter β ∈ Rp in the linear regression model

Y = Xβ + ǫ,(1)

where X is a given, deterministic (n × p) matrix, and ǫ is an n-variate standard
normal vector. We are interested in the sparse setup, where possibly n ≪ p,
and ‘many’ or ‘most’ of the coefficients βi of the parameter vector are zero, or
close to zero. We study a Bayesian approach based on a prior distribution Π that
sets a selection of coefficients βi a priori to zero: the behaviour of the posterior
distribution Π[· |Y ] is investigated under the ‘frequentist’ assumption that the
data Y has in reality been generated according to a given sparse parameter β0.

Specifically, we consider a prior Π on β that first selects a dimension s from a
prior πp on the set {0, . . . , p}, next a random subset S ⊂ {1, 2, . . . , p} of cardinality
|S| = s, and finally a set of nonzero values βS := {βi : i ∈ S} from a prior density
gS on RS . Formally, the prior on (S, β) can be expressed as

(S, β) 7→ πp(|S|)
1
(

p
|S|
)gS(βS)δ0(βSc),(2)

where δ0(βSc) refers to the coordinates βSc := (βi : i ∈ Sc) being zero. We focus
on the situation where gS is a product ⊗g of densities over the coordinates in S,
for g the Laplace density on R with parameter λ that can be chosen in the range

‖X‖
p

≤ λ ≤ 4‖X‖
√

log p,(3)

where ‖X‖ = maxi=1,...,p(X
tX)

1/2
i,i . This is a natural continuation of [2], that

considered the special case where X is the identity matrix and p = n. The general
model (1) is different in that it must take account of the noninvertibility of X and
its interplay with the sparsity assumption, and does not allow a factorization of
the model along the coordinate axes.

To overcome the nonidentifiability of the full parameter vector β in the over-
specified model (1) we borrow from the work on sparse regression within the non-
Bayesian framework, such as [5], [3], [4]. Good performance of the posterior dis-
tribution is shown under compatibility and smallest sparse eigenvalue conditions

For a subset S of {1, . . . , p}, we define its compatibility number φ(S) by

φ(S) = inf
‖βSc‖1≤7‖β‖1

‖Xβ‖2
√

|S|
‖X‖‖βS‖1

.

We say that compatibility in sn-sparse vectors holds if

inf
β: ‖β‖0≤5sn

‖Xβ‖2
√

|Sβ |
‖X‖‖β‖1

≫ 0.

Recovery. Our main result for estimation of β is as follows. Set φ(β0) := φ(Sβ0).
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Theorem 1. Under compatibility of sn-sparse vectors, for every c > 0,

sup
‖β0‖0≤sn,φ(β0)≥c

Eβ0Π[ β, ‖X(β − β0)‖2 &
√

sn log p |Y ] → 0

sup
‖β0‖0≤sn,φ(β0)≥c

Eβ0Π[ β, ‖β − β0‖1 & sn
√

log p/‖X‖ |Y ] → 0

In words, the posterior distribution achieves the minimax rate for estimation of
β in terms of the ‖ · ‖1-norm over sparse classes. Similar results can be obtained
for ‖ · ‖2 and ‖ · ‖∞ norms, under slightly stronger conditions on X , in line with
results from the frequentist literature.

Model selection. If all nonzero coefficients of β0 are appropriately large (de-
pending on what is assumed on the matrixX), then we can show that the posterior
asymptotically recovers the true model in that Π[S = Sβ0 |Y ] → 1.

Prediction. If estimation of Xβ rather than β is the main goal, then no con-
ditions on X (e.g. compatibility) should be necessary. For a Bayesian-flavoured
method (a pseudo-posterior mean estimator) it was shown in [6] that it was indeed
possible to achieve (nearly-)minimax rates for prediction with arbitrary X . We
find a similar result for the full posterior distribution for priors of the type (2).

Limiting shape of the posterior. Our second main result considers the as-
ymptotic shape of the posterior distribution for ‘small λ’ in (3), namely for

(4)
λ

‖X‖sn
√

log p→ 0,

which can be seen as asking for a ‘flat’ prior on nonzero-coordinates. In the next
statement, ‖ · − · ‖ is the total variation distance between measures.

Theorem 2. Under compatibility for sn-sparse vectors, for λ as in (4),

Eβ0‖Π[· |Y ]−
∑

S

ŵSN(β̂(S),Γ
−1
S )⊗ δSc ‖ → 0

with β̂(S) least square estimate in model S, with covariance Γ−1
S and

ŵS ∝ πp(s)
(p
s

)

(λ
√
2π

2

)s
|ΓS |−1/2e

1
2
‖XS β̂(S)‖22 1|S|≤4sn, ‖β0,Sc‖1.sn

√
log p/‖X‖.

The limiting distribution in Theorem 2 is thus a (random) mixture of normal
distributions of least-squares estimators over specific submodels described in the
indicator function appearing in the expression of the weights ŵS . Under conditions
ensuring exact model selection as discussed above, this mixture degenerates into

a single normal law, the asymptotic distribution of β̂(S0),

Eβ0‖Π[· |Y ]−N(β̂(S0),Γ
−1
S0

)‖ → 0.
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A consequence of this convergence is that, under signal strength conditions guar-
anteeing the above result, credible sets for a given coefficient βi are asymptotic
confidence sets.

A word on simulations. We note that, although computationally more involved
than methods such as the LASSO, simulation from posterior distributions –or
aspects of it– such as the one considered here has recently attracted quite a lot of
attention and promising results have so far been obtained for moderate p (up to a
few thousands). Recent works on the subject include [8], [9], [7].
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Bayes estimator of Bhattacharyya loss via the quantum route

Christopher Ferrie

(joint work with Robin Blume-Kohout)

In statistical decision theory, the Bayes estimators are point estimators which have
average risk optimality properties [1]. The risk is defined through the specification
of a loss function and Bayes estimator is sensitive to this choice. Many common
loss functions have a Bayes estimator which is the mean of posterior distribution.
Generally, Bayes estimators are useful not only to understand Bayeisan optimality,
but they also provide lower bounds the frequentist concept of minimax risk, such
that the greatest lower bound coincides with the frequentist risk. This duality
leads to, for example, numerically efficient algorithms for finding minimax estima-
tor by iterating over Bayesian priors, rather than searching the computationally
intractable space of estimators [2].

Here we will consider a loss function defined through the Bhattacharyya coeffi-
cient, a distinguishability measure on probability distributions. It is often used to
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define distances between probability distributions for applications in, for example,
machine learning (e.g. [3]). In quantum information theory, it is used to define
the fidelity [4, 5], which is the most commonly used distinguishability measure in
both theoretical and experimental studies. It is surprising then that only in a few
special cases is the Bayes estimator actually known. On the other hand, we do not
solve the fully general quantum mechanical problem here. Our result, however, is
sufficiently general to solve its classical analogue.

Suppose we have a die or a finite alphabet or some other finite set whose ele-
ments are selected independently and we wish to estimate the probabilities asso-
ciated to each single trial outcome. If each trial has K potential outcomes, then
the probabilities form a vector ~p which belongs to the K-simplex

(1) △K =

{

(p0, . . . , pK−1)
∣

∣pk ≥ 0 ∀k,
∑

k

pk = 1

}

.

For us, it is really not that important how the data are generated from ~p.
Typically, ~p are considered the bare probabilities for the K events, but we could
also have noisy observations or correlations which are not fundamentally related to
the properties of the die but particular to the way in which the data was generated
or recorded. In any case, we will not find it important what the function form of
the likelihood function Pr(data|~p) is. What is important in the Bayesian decision
theoretic framework is the posterior Pr(~p|data), as we will see next.

From the data, we wish to produce an estimate of ~p, call it ~̂p. We want the

estimate to be “good”. This is formalized through a loss function L(~p, ~̂p), which

gives us a numerical value for “how bad” it is to give an estimate ~̂p when the truth

is ~p. It makes sense then to suppose that L(~p, ~p) ≤ L(~p, ~̂p), such that our task
becomes minimizing the loss function.

There is still a problem in that both the data and ~p are random variables. The
Bayesian solution is to average the loss over the posterior resulting in the Bayes

risk of ~̂p:

(2) r(~̂p) = E~p,data[L(~p, ~̂p(data)].

An estimator which minimizes the Bayes risk is called a Bayes estimator and we

will label it ~̂pB. This estimator depends highly on the loss function one uses.
Consider, for example, loss functions of the form

(3) L(~p, ~̂p) = (~p− ~̂p)TΣ(~p− ~̂p),

where Σ > 0 is a positive definite matrix. For this quadratic loss function the
Bayes estimator is the mean of the posterior distribution [6]

(4) ~̂pB(data) = E~p|data[~p].

As we noted above, the data themselves and the distribution from which they were
generated are not important once the posterior distribution has been calculated
and we will drop this conditional information from now on. Another important loss
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function is the relative entropy (also known as the Kullback-Leibler divergence):

(5) L(~p, ~̂p) =
∑

k

pk log
pk
p̂k
.

Again, the Bayes estimator for this loss function is the mean of the posterior
distribution [7].

The loss function we consider here is related to the Bhattacharyya coefficient,
B,

(6) B(~p, ~̂p) =
∑

k

√

pkp̂k,

as follows

(7) L(~p, ~̂p) = 1−B(~p, ~̂p)2.

The particular form we choose (one minus the square) is inherited from quan-
tum information theory. And, using introductory quantum information theoretic
techniques [8], we show that the Bayes estimator for this loss function is

(8) ~̂p = (a20, a
2
1, . . . , a

2
K−1),

where the vector ~a = (a0, a1, . . . , aK−1) is the eigenvector associated with the
maximal eigenvalue of the matrix with entries E~p[

√
pjpk].
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Weak local asymptotic normality in the quantum domain

Akio Fujiwara

(joint work with Koichi Yamagata, Richard D. Gill)

Suppose that one has n copies of a quantum system each in the same state de-
pending on an unknown parameter θ, and one wishes to estimate θ by making
some measurement on the n systems together. Given the measurement, we have a
classical parametric statistical model, though not necessarily an i.i.d. model, since
we are allowed to bring the n systems together before measuring the resulting
joint system as one quantum object. A question naturally arises: what is the best
we can do as n → ∞? The objective of this work is to study this question by

http://dx.doi.org/10.1137/0908028
http://dx.doi.org/10.1103/PhysRevD.23.357
http://dx.doi.org/10.1080/09500349414552171
http://dx.doi.org/10.1093/biomet/62.3.547
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extending the theory of local asymptotic normality (LAN) to quantum statistical
models. For details, consult [9]. (See also [1, 2, 3, 4, 5, 8] for related works.)

Given a d×d real skew-symmetric matrix S = [Sij ], let CCR (S) be the algebra
generated by a set of observables X := (X1, . . . , Xd) satisfying the canonical
commutation relation (CCR):

√
−1

2
[Xi, Xj ] = SijI (1 ≤ i, j ≤ d).

A state φ on the algebra CCR(S) is characterized by the characteristic function

Fξ{φ} := φ(e
√
−1ξiXi),

where ξ = (ξi)di=1 ∈ Rd. A state φ on CCR (S) is called a quantum Gaussian state
[6], denoted by φ ∼ N(h, J), if the characteristic function takes the form

Fξ{φ} = e
√
−1ξihi− 1

2 ξ
iξjVij ,

where h = (hi)
d
i=1 ∈ Rd and V = (Vij) is a real symmetric matrix such that the

Hermitian matrix J := V +
√
−1S is positive semidefinite. When the canonical

observables X need to be specified, we also use the notation (X,φ) ∼ N(h, J).
Suppose we are given, for each n ∈ N, a density operator ρ(n) and a list

of observables X(n) := (X
(n)
1 , . . . , X

(n)
d ) on a Hilbert space H(n). We say the

sequence
(

X(n), ρ(n)
)

converges in law to a quantum Gaussian state (X,φ) ∼
N(h, J), denoted as (X(n), ρ(n)) 

q
N(h, J), if the quasi-characteristic function [7]

of (X(n), ρ(n)) converges to that of N(h, J), that is,

lim
n→∞

Tr ρ(n)

(

r
∏

t=1

e
√
−1ξitX

(n)
i

)

= φ

(

r
∏

t=1

e
√
−1ξitXi

)

,

for any finite subset {ξt}rt=1 of Cd.
We say a pair of density operators ρ and σ on a Hilbert space H are mutually

absolutely continuous, ρ ∼ σ in symbols, if there exists a selfadjoint operator L
that satisfies

σ = e
1
2Lρ e

1
2L.

We shall call such a selfadjoint operator L a quantum log-likelihood ratio. When
the reference states ρ and σ need to be specified, L shall be denoted by L (σ|ρ).

A sequence of quantum statistical models {ρ(n)θ ; θ ∈ Θ ⊂ Rd}, each defined on

a finite dimensional Hilbert space H(n), is called quantum locally asymptotically

normal (QLAN) at θ0 ∈ Θ if ρ
(n)
θ ∼ ρ

(n)
θ0

for all θ ∈ Θ and n ∈ N, and the quantum

log-likelihood ratio L(n)
h := L

(

ρ
(n)

θ0+h/
√
n

∣

∣

∣
ρ
(n)
θ0

)

is expanded in h ∈ Rd as

L(n)
h = hi∆

(n)
i − 1

2
(Jijh

ihj)I(n) + o(∆(n), ρ
(n)
θ0

).

Here ∆(n) := (∆
(n)
1 , . . . , ∆

(n)
d ) is a list of observables on H(n) satisfying
(

∆(n), ρ
(n)
θ0

)

 
q
N(0, J),
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I(n) the identity operator on H(n), and o(∆(n), ρ
(n)
θ0

) denotes an infinitesimal resid-

ual term in view of the convergence of quasi-characteristic function [9].
To formulate a quantum extension of Le Cam’s third lemma, we need a device

to handle the infinitesimal residual term in a more elaborate way. Let X(n) =

(X
(n)
1 , . . . , X

(n)
r ) be a list of observables on H(n). We say the pair (ρ

(n)
θ , X(n))

is jointly QLAN at θ0 ∈ Θ if ρ
(n)
θ ∼ ρ

(n)
θ0

for all θ ∈ Θ and n ∈ N, and L(n)
h is

expanded in h ∈ Rd as

L(n)
h = hi∆

(n)
i − 1

2
(Jijh

ihj)I(n) + o

((

X(n)

∆(n)

)

, ρ
(n)
θ0

)

.

Here ∆(n) = (∆
(n)
1 , . . . , ∆

(n)
d ) is a list of observables on H(n) satisfying

((

X(n)

∆(n)

)

, ρ
(n)
θ0

)

 
q
N

((

0
0

)

,

(

Σ τ
τ∗ J

))

,

Σ and J are Hermitian positive semidefinite matrices of size r× r and d×d, and τ
is a complex matrix of size r×d. With this assumption, we can prove the following
quantum version of Le Cam’s third lemma.

Theorem 1. If (ρ
(n)
θ , X(n)) is jointly QLAN at θ0 ∈ Θ, then

(

X(n), ρ
(n)

θ0+h/
√
n

)

 
q
N((Re τ) h, Σ)

for all h ∈ Rd.

In applications, we often handle i.i.d. extensions of a given quantum statistical
model

{

ρθ ; θ ∈ Θ ⊂ Rd
}

on a finite dimensional Hilbert space H. In this case we
have the following strong result.

Theorem 2. If ρθ ∼ ρθ0 for all θ ∈ Θ and L (ρθ|ρθ0) is sufficiently smooth in θ,
then {ρ⊗n

θ }θ is QLAN at θ0, in that ρ⊗n
θ ∼ ρ⊗n

θ0
, and

∆
(n)
i :=

1√
n

n
∑

k=1

I⊗(k−1) ⊗ Li ⊗ I⊗(n−k), (i = 1, . . . , d),

with Li being the ith symmetric logarithmic derivative (SLD) [6] of ρθ at θ0 ∈ Θ,
satisfy the requirement for QLAN. Moreover, given arbitrary observables {Bi}1≤i≤r

on H satisfying Tr ρθ0Bi = 0 for i = 1, . . . , r, the pair (ρ⊗n
θ , X(n)), with

X
(n)
i :=

1√
n

n
∑

k=1

I⊗(k−1) ⊗Bi ⊗ I⊗(n−k), (i = 1, . . . , r),

is jointly QLAN at θ0

An immediate consequence of Theorems 1 and 2 is the following i.i.d. version
of the quantum Le Cam third lemma.



2312 Oberwolfach Report 41/2014

Corollary 1. Given any set of observables {Bi}1≤i≤r on H satisfying Tr ρθ0Bi = 0

for i = 1, . . . , r, let X
(n)
i be as in Theorem 2. Then
(

X(n), ρ⊗n
θ0+h/

√
n

)

 
q
N((Re τ) h,Σ)

for all h ∈ Rd, where Σij = Tr ρθ0BjBi and τij = Tr ρθ0LjBi with Li being the ith
SLD at θ0.

It is crucial to observe that the choice of operators {Bi}1≤i≤r in Corollary 1 is
arbitrary. To put it differently, one can design the limiting quantum Gaussian shift
model N((Re τ) h,Σ) at will. This fact plays a key role in proving the asymptotic
achievability of the Holevo bound [9].
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[1] Gill, R. D. and Guţă, M., On Asymptotic Quantum Statistical Inference. IMS Collections
From Probability to Statistics and Back: High-Dimensional Models and Processes 9 (2012)
105–127.
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The fundamental problem of forensic statistics (sparsity, and “less is
more”)

Richard Gill

(joint work with Dragi Anevski, Stefan Zohren, Maikel Bargpeter, Giulia Cereda)

I report here on joint work with Dragi Anevski and Stefan Zohren, see Anevski,
Gill and Zohren (2013), and as yet unpublished work with master student Maikel
Bargpeter and with PhD student Giulia Cereda.

The slides of my talk can be found on “slideshare”: http://www.slideshare.net/
gill1109/a-walk-in-the-black-forest-during-which-i-explain-the-fundamental-problem-
of-forensic-statistics.

Just recently, Piet Groeneboom has got interested in this subject and I expect
him to publish some interesting new results in the near future.
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Roughly speaking, the “fundamental problem of forensic statistics” is to give
a decent estimate of 1/ps, or more meaningfully, of − log10(ps), where ps is the
probability of an event which has not yet been observed. A point estimate is not
enough, we must also quantify the imprecision of our estimate. The subscript
s stands for “species”. We are given a sample of animals or other organisms,
each animal in the sample belongs to some species, and we are interested in the
probability of a particular species (presumably, rare) which did not turn up in
our sample. The number of possible species is very large. In forensic science,
the “species” (plural) in question would typically be DNA profiles, not of autoso-
mal DNA but, for instance, of Y-chromosome or mitochondrial DNA. Because of
the absence of recombination, Y-chromosome profiles (called Y-STR profiles, see
http://yhrd.org) are distributed with a small number of distinct profiles having
quite high probabilities (the most common has probability one in twenty) and very
many distinct profiles having rather small probabilities. Imagine now we have a
data-base, thought of as a random sample of size a few thousands, from a pop-
ulation of interest; and we have a new case, in which a DNA trace found at the
scene of the crime matches the DNA profile of a primary suspect, identified on
other grounds. The specific profile in the case does not occur in our data-base so
it is rare; the fact of the match between crime-scene and suspect is strong evidence
against our suspect. But how strong?

The term “fundamental problem of forensic mathematics” was coined by foren-
sic scientist Charles Brenner who introduced his own solution to this problem,
inspired by the famous Good-Turing estimator. The Good-Turing problem is to
estimate the probability that when we augment our data-base sample with one new
element, it will turn out to belong to a new species (a species not yet observed in
the data-base).

More formally, we have a database of size n, modelled as a single observation
X ∼ Multinom(n,p) where p = (ps : s ∈ S), X = (Xs : s ∈ S), S is a very large
set of species, and ps is the probability of an animal of species s. We are interested
in a particular species s such that Xs = 0, this is the new species which has turned
up in a new crime case. There is a large literature in forensic statistics describing
various different approaches to this problem, none of them very satisfying from
the mathematical statistical point of view.

In my talk, I described some new approaches to the problem based on two sets
of ideas. The first set of ideas is based on the Good-Turing approach to estimating
probabilities related to extending the sample from size n to n + 1. The famous
Good-Turing estimator of the probability that the new item would belong to a
different species from all previously observed is just the relative frequency in the
data-base of animals of species which are only observed once. The second set of
ideas comes from methodology introduced by computer-scientist Alon Orlitsky, in
the context of information theory, coding and transmission, in which he proposes
to estimate q = rsort(p) where “rsort” stands for “reverse sort” or “sort in de-
creasing order”, by first reducing the data X to the statistic Y = rsort(X), and
then applying the maximum likelihood principle. This typically results in a very
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different estimate of q than is obtained by first applying maximum likelihood, then
applying the functional. In other words, the maximum likelihood estimator of q
based on the reduced data Y is typically not equal to rsort(X/n).

We call the latter estimator, the naive estimator of q. Of course it is not so
naive at all to estimate a functional of a parameter by the same functional of the
MLE; however, it seems that in the present context we encounter an estimation
problem, including the particular functionals of interest, where the “naive” ap-
proach evidently gives bad answers. The reason for the bad behaviour is that we
are in a typical “sparsity” problem: many parameters, not much data. We need
to use extra, sparsity related information . . . or come up with some other clever
idea.

Y = rsort(X) is called the profile, pattern or spectrum of the data-base. If
we are only interested in estimating functionals of p which do not depend on
the identification of the different species with particular elements of S, then we
reduce the complexity of our statistical problem by reducing the data to Y. The
probability distribution of Y only depends on the reduced parameter q. The
possibility arises that for estimating functionals of q, decreasing the complexity of
the statistical problem by this (non-sufficient!) reduction of the data could be of
benefit.

In the forensic statistical problem, we initially observe the database X, which
is then augmented by observing just one or two more animals. Prosecution and
defence offer two different hypotheses to “explain” the additional data which has
turned up in the specific crime case of interest. Under the prosecution hypothesis,
the data-base is increased from size n to size n+ 1, leading to the observation of
one animal of a previously unobserved species. Under the defence hypothesis, the
data-base was increased from size n to n + 2, leading to the observation of two
different animals of the same but previously unobserved species.

Traditionally in forensic statistics, one is interested in the likelihood ratio de-
fined as the ratio of the probabilities of the data arising in the crime under the
two hypotheses of prosecution and defence. If the new species observed is species
s, then these two probabilities are ps and p2s, hence the likelihood ratio is 1/ps.
However, the probability ps is unknown, and earlier researchers have focussed
attention on estimating ps using the database, under a range of modelling as-
sumptions and inference procedures. The problem of quantifying the uncertainty
in the estimate has not been satisfactorily addressed, to date. Under our data re-
duction procedure, and treating the data (on the basis of which a likelihood ratio
must be computed) as being database plus two alternative augmentations, reduced
by “throwing away” the labels of the multinomial categories, i.e., the names of the
species s ∈ S, we obtain a new likelihood ratio equal to the ratio of the following
two probabilities: (1), prosecution, the probability that when a sample is increased
from size n to n+1, the new element belongs to a different species from all preced-
ing observed; (2), defence, the probability that when a sample is increased from
size n to n+2, the two new elements belongs to the same species which is different
from all preceding observed.
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Both of these two probabilities are functionals of the reduced parameter q.
They each can be estimated in a straightforward (but ad hoc) “Good-Turing” like
way, using just the database. Alternatively, we can use the “plug-in” approach:
estimate q, using the database, in Orlitsky fashion (reduced data MLE) and then
plug-in to obtain estimates of the functionals of interest. (Brenner estimates one of
the probabilities in this way; for the other, he prefers a conservative approximation.
We believe that in those cases where the Good-Turing estimator of the second
probability is too unreliable, the Orlitsky approach still does work well. We see
it as a modern alternative to a classical smoothing approach to “higher-order”
Good-Turing estimators).

Initial experiments, and some theoretical work, suggests that we obtain in this
way quite reliable estimates of a meaningful likelihood ratio. We are less ambi-
tious, but, having “lowered our sights” and picked an easier target, we are now
able to do a decent and, most importantly, complete job of statistical inference.
Having estimated q in the Orlitsky way, we can use the parametric bootstrap to
investigate, and report on, the precision of our “target functional”, the base 10
logarithm of the reduced data likelihood ratio.

So far, Anevski et al. (2013) obtained (essentially) weak root-n consistency in
L1 norm of the reduced data MLE of q. Our proof is inspired by a proof-outline
given in one very short paper (a typical computer science conference proceedings
submitted paper) by Orlitsky and his collaborators. It seems to us that the pub-
lished outline proof is strictly speaking clearly wrong; more charitably, one could
say that it is both very cryptic and clearly incomplete. However, this particular
norm is not the one which really interests us. Moreover, the naive estimator has
the same property, so this result does not indicate any superiority of the new es-
timator at all. At best, the result can be considered merely as a “sanity check”.
Numerical experimentation suggests that the reduced data MLE is superior to the
“naive estimator” for estimating functionals of q which depend strongly on the
tail of the distribution. Such estimation problems will also have lower than root-n
rates of convergence. For a number of such functionals is it already evident that
the naive estimator fails dramatically, while the Orlitsky estimator seems to do a
rather good job - an impressively good job, in fact.

So on the theoretical side, we believe that we have stumbled across rather
interesting statistical problems where a lot of further work can be done.

We also followed up suggestions of Orlitsky and his collaborators concerning
computation of the reduced data MLE. The problem can be thought of as a missing
data problem and the Expectation-Maximization (EM) algorithm comes naturally
into view. However, the E step cannot be carried out explicitly in any but the
smallest problems, and has to be replaced by a “stochastic” approximation. Here,
Metropolis-Hastings (MH) seems to the only effective way to go about sampling
from the required conditional distribution. The problem is a problem in combina-
torial probability. However, “realistic” problems from our forensic science applied
field are “large”. EM is slow, and MH is slow; MH within EM is terribly slow. One
can worry whether or not nice looking results are really due to the MLE being so
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good, but are rather merely the result of starting a too slow algorithm at a “nice”
starting point, and stopping long before convergence. Instead of nesting MH in-
side of EM we have experimented with a stochastic approximation (SA) approach
in which MH and EM steps are carried out “in parallel”. This gives some more
confidence that the numerical solutions are the “good solutions” as well as giving
a large range of user-choices for tuning the algorithm to faster convergence. Much
more work needs to be done on these algorithms. Recent work of Piet Groeneboom
has strongly increased our confidence in the numerical results we had obtained,
and will probably give insight into how to improve our optimisation schedules.

Still, the “downside” of our approach is that the statistical estimation is defi-
nitely non-trivial and computer intensive. Here too, new ideas are needed.
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Concentration inequalities for the exponential weighting method

Yuri Golubev

The talk deals with recovering an unknown vector µ ∈ Rn from the noisy obser-
vations

Yi = µi + σ ξi, i = 1, 2, . . . , n,

where ξi are independent Gaussian random variables with Eξi = 0 and Eξ2i = 1.
To simplify technical details, it assumed also that the noise level σ > 0 is known.

In what follows, vectors (µ1, . . . , µn)
⊤ and (Y1, . . . , µn)

⊤ are denoted by µ and
Y . The performance of an estimate µ̂(Y ) = (µ̂1(Y ), . . . , µ̂n(Y ))⊤ is measured
by l2-losses ‖µ̂(Y ) − µ‖2, where ‖ · ‖ denotes the Euclidean norm in Rn, i.e.,

‖x‖2 =
∑n

i=1 x
2
i and 〈·, ·〉 stands for the standard inner product in Rn.

The vector of interest µ is recovered with the help of the family of linear esti-
mates

µ̂h
i (Y ) = hiYi, i = 1, . . . , n, h ∈ H,

where H is a given set of ordered multipliers (filters) [3] such that

• hi ∈ [0, 1], i = 1, . . . , n for all h ∈ H,
• hi+1 ≤ hi, i = 1, . . . , n for all h ∈ H,
• if for some integer k and some h, g ∈ H, hk < gk, then hi ≤ gi for all
i = 1, . . . , n.

In order to construct a final estimate of µ, we compute a convex combination
of µ̂h(Y ), h ∈ H, i.e.,

µ̄w(Y ) =
∑

h∈H
wh(Y )µ̂h(Y ),
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where weights wh(Y ), h ∈ H belong to the simplex

W =

{

wh ≥ 0 :
∑

h∈H
wh = 1

}

.

This method goes back to [5] and often called convex aggregation. The main
goal in this approach is to compute data-driven weights wh(Y ) to minimize the
losses ‖µ− µ̄w(Y )‖ uniformly in µ ∈ Rn.

The standard solution to this problem is based on the unbiased risk estimation
method which works as follows: let W ′ be a subset in W , compute

w(Y ) = arg min
w∈W ′

{

‖Y − µ̄w(Y )‖2 + 2σ2〈h̄w, 1〉
}

,

where h̄w =
∑

h∈H hw
h.

Recall that the unbiased risk estimate of linear estimate H · Y is given by

r̄(Y,H) = ‖Y −H · Y ‖2 + 2σ2〈H, 1〉.
This means that E‖µ−H · Y ‖2 = Er̄(Y,H) + nσ2.

Classical mathematical results in this approach are related to the model selec-
tion method [1]. Denote by W◦ =

{

w ∈ W : w ∈ {0, 1}
}

the vertexes of W and
compute

w◦(Y ) = arg min
w∈W◦

{

‖Y − µ̄w(Y )‖2 + 2σ2〈h̄w, 1〉
}

.

One can easily check that

wh
◦ (Y ) =

{

1, h = h◦(Y ),
0, h 6= h◦(Y ),

where h◦(Y ) = argmin
h∈H

{

‖Y − h · Y ‖2 +2σ2〈h, 1〉
}

.

For the aggregated estimate

µ̄w◦(Y ) = h◦(Y ) · Y
the following theorem holds [3].

Theorem 1. Uniformly in µ ∈ Rn

(1) E
∥

∥µ− µ̄w◦(Y )
∥

∥

2 ≤ r◦(µ,H) + Cσ2

√

1 +
r◦(µ,H)

σ2

and

(2) P
{

∥

∥µ− µ̄w◦(Y )
∥

∥ ≥
√

r◦(µ,H) + σx
}

≤ exp(−Cx2),

where r◦(µ,H) = min
w∈W◦

E‖µ̄w(Y )− µ‖2 is the so-called oracle risk and C is a uni-

versal constant.

The main results in this talk concern a generalization of the model selection
approach called Exponential Weighting (EW). Let π ∈ W be a probability dis-
tribution on H (a priory weights). The motivation of the EW is based on the
following ideas :
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• to upper-bound the unbiased risk estimate r̄(Y, h̄w) by

r̄(Y, h̄w) ≤
∑

h∈H
whr̄(Y, h);

• to control the Kulback-Leibler divergence between w(Y ) and π

K(π,w) =
∑

h∈H
πh log

πh

wh
.

Therefore the exponential weights are defined by

wβ(Y ) = arg min
w∈W

{

∑

h∈H
whr̄(Y, h) + 2σ2βK(π,w)

}

,

where β ≥ 0 is often called temperature. With a simple algebra one obtains

wh
β(Y ) =πh exp

[

− r̄(Y, h)
2βσ2

]{

∑

h′∈H
πh′

exp

[

− r̄(Y, h
′)

2βσ2

]}−1

.

In order to mimic the oracle risk r◦(µ,H) with the help of the aggregated
estimate

µ̄β(Y ) =
∑

h∈H
wh

β(Y )µh(Y ),

the following conditions are assumed :

•

πh def
= 1− exp

{

−〈h+, 1〉 − 〈h, 1〉
β

}

, where h+ = min{g ∈ H : g > h}

and πhmax = 1, where hmax is the maximal multiplier in H.
• There exist constants K◦ and K◦ such that

‖h‖2 − ‖g‖2 ≥ K◦
(

〈h, 1〉 − 〈g, 1〉
)

for all h ≥ g,

‖h+‖2 ≤ K◦‖h‖2 for all h ∈ H.

The following theorem controlling the concentration of
∥

∥µ− µ̄β(Y )
∥

∥ is the main
result in this talk.

Theorem 2. If β ≥ 4, then uniformly in µ ∈ Rn

(3) E
∥

∥µ− µ̄β(Y )
∥

∥

2 ≤ rβ(µ,H) + Cσ2;

for any β > 0, uniformly µ ∈ Rn

(4) P
{

∥

∥µ− µ̄β(Y )
∥

∥ ≥
√

rβ(µ,H) + σx
}

≤ exp
[

−Cx2
]

,

where C = C(β,K◦,K◦) is a constant and

rβ(µ,H) = r◦(µ,H) + 2βσ2 log

[

1 +
r◦(µ,H)

σ2

]

.
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The proof of Theorem 2 is essentially based on [4] and [2]. Notice also that
Equation (3) improves substantially the upper bound in (1), whereas the concen-
tration inequalities for the model selection method (2) and for the EW method
(4) are almost equivalent.
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Conditional limit theorems for products of random matrices

Ion Grama

(joint work with Emile Le Page, Marc Peigné)

Let G = GL (d,R) be the general linear group of d×d invertible matrices w.r.t. or-
dinary matrix multiplication. If g is an element of of G by ‖g‖ we mean the op-
erator norm and if v is an element of the vector space V = Rd the norm ‖v‖ is
Euclidean. Endow the group G by the usual Borel σ-algebra w.r.t. ‖·‖ . Let µ be
a probability measure on G and suppose that on the probability space (Ω,F ,Pr)
we are given an i.i.d. sequence (gn)n≥1 of G-valued random elements of the same

law Pr (g1 ∈ dg) = µ (dg) . A random walk in G is the product Gn = gn . . . g1. Let
v ∈ V \ {0} be a any starting point. The object of interest is the size of the vector
Gnv which is controlled by the quantity log ‖Gnv‖ . It follows from the results
of Le Page [3] that, under appropriate assumptions, the sequence (log ‖Gnv‖)n≥1

behaves like a sum of i.i.d. r.v.’s and satisfies standard classical properties such as
the law of large numbers, law of iterated logarithm and the central limit theorem.
There is a vaste literature on this subject. We refer to Bougerol and Lacroix [1]
and to the references therein.

Introduce the following conditions. Let N (g) = max
{

‖g‖ , ‖g‖−1
}

, suppµ be

the support of the measure µ and P (V) be the projective space of V.

P1. There exists δ0 > 0 such that
∫

G

N (g)
δ0
µ (dg) <∞,

The next condition requires, roughly speaking, that the dimension of the sup-
port of suppµ cannot be reduced.
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P2 (Strong irreducibility). The support suppµ of µ acts strongly irreducibly
on V, i.e. no proper union of finite vector subspaces of V is invariant with respect
to all elements g of the group generated by suppµ.

We say that the sequence (hn)n≥1 of elements of G is contracting for the pro-

jective space P (V) if limn→∞ log a1(n)
a2(n)

= ∞, where a1 (n) ≥ ... ≥ ad (n) are the

eigenvalues of the symmetric matrix h′nhn and h′n is the transpose of hn.

P3 (Proximality). The closed semigroup generated by suppµ contains a con-
tracting sequence for the projective space P (V) .

In the sequel for any v ∈ V \ {0} we denote by v = Rv ∈ P (V) its direction
and for any direction v ∈ P (V) we denote by v a vector in V \ {0} of direction v.
Define the function ρ : G× P (V) → R called norm cocycle by setting

ρ (g, v) := log
‖gv‖
‖v‖ , for (g, v) ∈ G× P (V) .

It is well known (see Le Page [3] and Bougerol and Lacroix [1]) that under condi-
tions P1-P3 there exists an unique µ-invariant measure ν on P (V) such that, for
any continuous function ϕ on P (V) ,

(µ ∗ ν) (ϕ) = ν (ϕ) .

Moreover the upper Lyapunov exponent

γ = γµ =

∫

G×P(V)

ρ (g, v)µ (dg)ν (dv)

is finite and there exists a constant σ > 0 such that for any v ∈ V\ {0} and any
t ∈ R,

lim
n→∞

Pr

(

log ‖Gnv‖ − nγ

σ
√
n

≤ t

)

= Φ(t) ,

where Φ (·) is the standard normal distribution.
Denote by B the closed unit ball in V and by B

c its complement. For any v ∈ B
c

define the exit time of the random process Gnv from Bc by

τv = min {n ≥ 1 : Gnv ∈ B} .
In the sequel we consider that the upper Lyapunov exponent γ is equal to 0. The
fact that γ = 0 does not imply that the events

{τv > n} = {Gkv ∈ B
c : k = 1, ..., n} , n ≥ 1

occur with positive probability for any v ∈ B
c. To ensure this we need the following

additional condition:

P4. There exists δ > 0 such that

inf
s∈Sd−1

µ (g : log ‖gs‖ > δ) > 0.

Under conditions P1-P4 we prove that, for any v ∈ Bc,

Pr (τv > n) =
2V (v)

σ
√
2πn

(1 + o (1)) as n→ ∞,
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where V is a positive function on B
c. Moreover, we prove that the limit law of

the quantity 1
σ
√
n
log ‖Gnv‖ , given the event {τv > n} coincides with the Rayleigh

distribution Φ+ (t) = 1− exp
(

− t2

2

)

: for any v ∈ Bc and for any t ≥ 0,

lim
n→∞

Pr

(

log ‖Gnv‖
σ
√
n

≤ t

∣

∣

∣

∣

τv > n

)

= Φ+ (t) .

Our proofs rely upon a strong approximation result for Markov chains estab-
lished in [2].

References

[1] Bougerol, P. and Lacroix J. Products of Random Matrices with Applications to Schödinger
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Nuclear-norm regularization for quantum and classical estimation
problems

David Gross

The theory of compressed sensing provides rigorous methods for analyzing the per-
formance of estimators that include a sparsity-enhancing ℓ1-norm regularization
term. Since around 2009, a “non-commutative” version of compressed sensing has
been developed [1, 2, 3]. Here, the aim is to efficiently recover matrices under
a low-rank assumption, most commonly using nuclear-norm regularization. The
program was initially motivated by purely classical estimation problems – e.g.
the influential “Netflix problem” of predicting user preferences in online shops.
However, early on, a fruitful interaction between classical and quantum theory en-
sued: In one direction, it has been realized that low-rank methods lead to rigorous
and very tight performance guarantees for quantum state estimation procedures
[4, 5]. In the other direction, mathematical methods originally developed in the
context of quantum information theory allowed for a significant generalization and
simplification of the rigorous results on low-rank recovery [3, 6].

In this extended abstract, I will focus on one particular aspect of my talk: the
problem of how to efficiently construct tight confidence regions for estimates of
quantum states. This problem featured heavily in discussions during the workshop,
was part of the “open problems” session, and seems to be a very fruitful subject
for collaborations between mathematical statisticians and quantum physicists. My
aim is to briefly sketch the mathematical problem, without going into any detail
or mentioning any of the underlying physics.
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Every quantum system is associated with a dimension d and a d-dimensional
Hilbert space H. Mathematically, its state space is the set S(H) of positive semi-
definite (psd), unit-trace operators on H. They parameterize the statistical model.
To make things more concrete, we assume that a basis of H has been chosen. Pick
a particular state ρ ∈ S(H) and denote its matrix elements w.r.t. to said basis by
θ ∈ Rp, with p := d2. Physical measurements are described by a standard linear
model

(1) Y = Xθ + ǫ,

where the design matrix X ∈ Rn×p depends on the physical procedure used to
perform the measurements, Y ∈ Rn are the observed quantities, and ǫ is a mean-
zero variable describing statistical noise. Quantum mechanics demands that X
fulfill a set of non-trivial positivity constraints, but we are going to ignore these
details here (see e.g. [7]).

The quantum state estimation problem now asks for the construction of estima-

tors θ̂(Y ) and associated confidence regions Ĉ(Y ). The non-trivial aspect here is
to incorporate the psd and unit-trace constraint on the ρ. Practitioners usually
employ either Bayesian methods [8] or numerical maximum-likelihood estimators

[9] for θ̂, together with bootstrap-type methods for finding confidence regions Ĉ.
There is a variety of reasons not to be satisfied with the state of the art. First,

it has been argued [10] that ML-based estimators of Ĉ tend to be optimistic.
Thus, procedures that would produce fairly tight confidence regions in an compu-
tationally efficient way, while being endowed with mathematical sound statistical
guarantees, would be highly desirable. Second, as mentioned in the introduction,
ideas introduced to the quantum estimation problem from the fields of compressed
sensing, low-rank recovery and nuclear-norm regularizations, showed that a fairly
non-trivial structure exists. We believe this makes the problem interesting also
from a purely theoretical perspective.

Indeed, the series of papers [4, 3, 6, 5] has established recovery guarantees
for ρ of known rank, with a particular focus on non-invertible design matrices
X (i.e. n < p). (This program led to a series of new results on non-uniform
[3] and uniform [6] low-rank matrix recovery). The papers [4, 5] also gave first

constructions for adaptive region estimators. These are region estimators Ĉ(Y )
that come close to achieving the mini-max risk for every given value of the rank r,
even if the rank is unknown. The details of these results are somewhat difficult to
compare to related statements appearing in the mathematical statistics literature
(in particular [11]). The first reason is that the authors of [4, 5] were, at the time,
unaware of the existing framework for phrasing such statements and developed
them in an ad hoc manner. The second reason is that both papers also incorporate
to varying degree certain positivity and locality constraints on the design matrix
X . Explaining either constriant in detail is beyond the scope of this extended
abstract. To anyway give a rough idea of the results: Both the scheme in [4]
and in [5] depend on some form of sample splitting. In [4], the idea is to first

estimate the rank r from parts of the data, and then estimate θ̂ and Ĉ making
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use of that information. The approach of [5] is somewhat complementary. There,

it is proposed to first constructs an estimate θ̂ and then employ a scheme called
direct fidelity estimation [12] to construct Ĉ. An issue not completely addressed
in [12] is that the regularization parameter used in the first step already depends

on the rank. In practice, one would use a generous guess for r to obtain θ̂ and
rely on the fact that the fidelity estimation procedure for Ĉ gives results that do

not depend on how θ̂ has been constructed. While this does allow for constructing
rigorously justified confidence regions, the global protocol is somewhat ill-defined,
as no rigorous guidance is offered on how to choose the “generous guess for r” in
the first place.

In the model employed in [5], each row of the design matrixX represents a phys-
ical experiment, which one is generally free to design as one pleases. In particular,
one can decrease the noise (measured e.g. in terms of Var(ǫi)), by repeating any
given experiment a chosen number ki of times. Thus the following setup becomes
natural: Assume that each row of the design matrix X is chosen independently
and uniformly from a fixed orthogonal basis of the set of (d× d)-matrices (e.g. the
Pauli basis [4]). Every such row Xi translates into a quantum experiment that
gives rise to a Bernoulli random variable whose expectation value is proportional
to (Xθ)i (the precise relation depends on the normalization convention). We will
repeat each experiment k times for some number k to be specified later. The
variable Yi is the average over these k experiments. Now assume that the true ρ
has rank at most r and that X has n = Crd log6 d rows, selected uniformly from
the Pauli basis. The question treated in [5] is: How big does k have to be in order
for the risk (measured in nuclear norm) of the nuclear-norm regularized Dantzig
selector estimator to reach a certain prescribed level ǫ? The answer is k = O

(

rd
ǫ

)

.

The paper goes on to describe how to construct a confidence region Ĉ. It will be

a ball of radius ǫ around θ̂, with the radius measured in terms of the fidelity – a
measure broadly equivalent to nuclear norm. In order to achieve it, an additional

O
(

r̂4

ǫ4 d log r̂
)

Bernoulli experiments have to be performed (this statement is greatly
simplified – c.f. [5] for details). Here, r̂ is the rank of the estimate, i.e. a known
quantity.

These results show that non-trivial confidence regions for quantum state estima-
tion can be constructed. In principle, their diameter decreases with the unknown
rank. However, a host of open problems remain: (1) A rigorous protocol that
depends at no point on a rough estimate for the rank has not yet been given (even
though the coverage of the confidence regions of [5] does not depend on that guess).
(2) The analysis seems far from tight. (3) The “sample splitting” approach feels
artificial. (4) There are low-dimensional models other than low-rank which, in
principle, allow for improved confidence regions. Examples are quantum versions
of hidden Markov models [13, 14, 15]. Protocols giving adaptive confidence sets
for those models from physically realistic measurements are still missing.

It is our hope that the discussions initiated during the workshop will lead to
the resolution of some of these questions, possibly along the lines of [11].
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Quantum Gaussian optimizers problem

Alexander S. Kholevo (Holevo)

(joint work with Vittorio Giovannetti, Andrea Mari)

Proving the quantum Gaussian optimizers conjecture is an analytical optimization
problem that arose in quantum information theory some time ago. Its difficulty can
be seen from analogy with the related classical problem of Gaussian maximizers
which has been studied rather exhaustively, see Lieb [6] and references therein.
Consider an integral operator G from Lp (R

s) to Lq (R
s) given by a Gaussian

kernels with the (q → p)− norm

(1) ‖G‖q→p = sup
‖f‖

q
≤1

‖Gf‖p .

Under rather general circumstances this operator is correctly defined, and the
supremum in (1) is attained on a Gaussian function f . Moreover, under some
additional restrictions any maximizer is Gaussian. A difficulty in the optimization
problem (1) is that it requires maximization of a convex function, so the general
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theory of convex optimization is not of great use here. Instead, the solution is
heavily based on a classical Minkowski’s inequality and the related multipicativity
of the classical (q → p)−norms with respect to tensor products of the integral
operators.

The quantum Gaussian optimizers problem refers to Bosonic Gaussian channels
– a noncommutative analog of Gaussian kernels and, similarly, requires maximiza-
tion of convex functions (or minimization of concave functions, such as entropy)
of the output state of the channel. A general conjecture appeared in [5] (see also
[3]) is that the optimizers belong to the class of pure Bosonic Gaussian states.
The conjecture, however natural it looks, resisted numerous attacks for a dozen
of years, for a survey see e.g. [8], [1]. There could be a hope that in solving
the problem one could use the classical “ Gaussian maximizers” results. However
the noncommutative analog of the Minkowski’s inequality is not powerful enough
to guarantee the multipicativity of norms (or additivity of the corresponding en-
tropic quantities). Moreover, the related long-standing multipicativity/additivity
problem in quantum information theory was recently shown to have negative so-
lution in general by Winter, Hayden and Hastings, see [3] for a survey. Instead,
a solution of the quantum Gaussian optimizers conjecture found in [1], [7] uses
completely different ideas based on a thorough study of structural properties of
quantum Gaussian channels. Remarkably, the present solution of the multidi-
mensional quantum Gaussian optimizers problem [2] implies also a proof of the
multipicativity/additivity property in the restricted class of gauge-covariant or
contravariant quantum Gaussian channels.

It would be interesting to investigate a possible development of such an approach
to obtain noncommutative generalizations of the classical “ Gaussian maximizers”
results for (q → p)−norms. Such a generalization could shed a new light to the
hypercontractivity problem for quantum dynamical semigroups and related non-
commutative analogs of logarithmic Sobolev inequalities, see [9] for the case of
finite-level quantum systems.

The solution of the conjecture is restricted to channels that are gauge-covariant
or contravariant with respect to fixed complex structure. Therefore we con-
sider the classical phase space Z consisting of s−dimensional complex column
vectors z . The gauge group acts in Z as multiplication by eiφ, where φ is
phase and the complex-linear operators in Z are represented by complex s ×
s−matrices. The quantized system is described by the displacement operators
D(z) = exp

(

a†z− z∗a
)

, where a is the vector of annihilation operators for s
Bosonic modes in the system Hilbert space.

The action of a Gaussian gauge-covariant channel in the Heiseberg picture can
be described as

(2) Φ∗[D(z)] = D(Kz) exp (−z∗µz) , z ∈ Z,

where K is complex s × s−matrix, µ is Hermitian s × s−matrix satisfying the
condition (see [3])

(3) µ ≥ ±1

2
(I−K∗K) ,
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where I is the unit s× s−matrix.
Denoting by z̄ the column vector obtained by taking the complex conjugate

of the elements of z, the action of the Gaussian gauge-contravariant channel is
described as

(4) Φ∗[D(z)] = D(−Kz) exp (−z∗µz) ,

where µ is Hermitian matrix satisfying the inequality

(5) µ ≥ 1

2
(I+K∗K) ,

Theorem. (i) Let Φ be a gauge covariant or contravariant channel and let f
be a real concave function on [0, 1], such that f(0) = 0, then

(6) Trf(Φ[ρ]) ≥ Trf(Φ[|w〉〈w|]) = Trf(Φ[|0〉〈0|])
for all states ρ and any coherent state |w〉〈w| (the value on the right is the same
for all coherent states by the unitary covariance property of a Gaussian channel.

(ii) Let f be strictly concave, KK∗ > 0, and (3), (5) hold as strict inequalities,
then the equality in (6) is attained only if ρ is a coherent state.

By taking f(x) = −xp, f(x) = −x log x, we obtain that the (1 → p)-norm
‖Φ‖1→p , the minimal Rényi entropy Řp(Φ) and the minimal von Neumann entropy

Ȟ(Φ) of the channel Φ are all optimized by the input vacuum state |0〉〈0|. From
the definitions of gauge-co/contravariant channels (2), (4), it follows that the state
Φ[|0〉〈0|] is gauge-invariant Gaussian with the correlation matrix µ+K∗K/2. The
spectrum of Φ[|0〉〈0|] is computed explicitly [4] leading to the explicit expressions
for these quantities [2].

If Φ1 and Φ2 are both gauge-covariant (contravariant), then their tensor product
Φ1⊗Φ2 shares the same property. The multiplicativity property of (1 → p)-norms
for any two Gaussian gauge-covariant (contravariant) channels Φ1 and Φ2, as well
as the additivity of the minimal Rényi entropies and of the minimal von Neumann
entropy then follows from the product property of the optimizing vacuum state.
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Statistical inference for high-dimensional estimation of the inverse
covariance matrix

Jana Janková

(joint work with Sara van de Geer)

We propose methodology for estimation of large sparse precision matrices and
statistical inference for their low-dimensional parameters in a high-dimensional
setting where the number of parameters can be much larger than the sample size.
Many procedures for estimation of precision matrices have been proposed, which
are typically based on thresholding and hence lead to sparse estimators whose
asymptotic distribution depends on the true unknown parameter and the conver-
gence to the limit is not uniform. This poses a major difficulty in developing
methodology for quantifying the uncertainty of estimation.
We propose a general way of modifying a sparse estimator to obtain an estima-
tor of the precision matrix whose entries have a Gaussian limiting distribution.
This results in a way of constructing confidence regions and hypothesis testing
for low-dimensional parameters. The proposed de-sparsified estimator enjoys rate
optimality in supremum norm over a large class of sparse precision matrices and
thresholding it gives guarantees for variable selection. Similar approach has been
adopted in the context of high-dimensional linear regression [6], [5]. This line of
work is inspired by the semi-parametric theory [1], where one concentrates on a
low-dimensional parameter of interest and considers the high-dimensional part as
a nuisance parameter.
Suppose that we observe an i.i.d. sample X1, . . . , Xn ∼ Np(0,Σ0), where the co-
variance matrix Σ0 ∈ Rp×p is unknown. The goal is to estimate the precision
matrix Θ0 := Σ−1

0 (assuming the inverse of Σ0 exists) in a setting where p ≫ n
and Θ0 is a (sufficiently) sparse matrix with spectrum bounded uniformly in n.
We remark here that the Gaussianity assumption on the design X1, . . . , Xn is
in fact not necessary to establish asymptotic normality and may be relaxed to
a sub-Gaussian tail assumption on the margins of the underlying distribution as
discussed below.
For a constant L ≥ 1 and a sequence sn we define the model

Gn(sn, L) := {Θ ∈ R
p×p : max

i=1,...,p
|{j : Θij 6= 0}| ≤ sn,

1/L ≤ Λmin(Θ) ≤ Λmax(Θ) ≤ L}.
Here sn, the upper bound on row sparsity of Θ0, depends on n, and appropriate
restrictions on sn are presented separately.
To illustrate the procedure to obtain an asymptotically normal estimator of the
precision matrix, consider the nodewise regression estimator [3] with tuning pa-

rameters λj = λ ≍
√

log p/n, j = 1, . . . , p. The nodewise regression estimator Θ̂
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is characterized by the Karush-Kuhn-Tucker (KKT) conditions

Σ̂Θ̂− I + λẐ = 0,

where Σ̂ = 1
n

∑n
i=1XiX

T
i is the sample covariance matrix and Ẑ is a term arising

from the sub-differential of the ℓ1 penalty. We “invert” the KKT conditions with
an approximate inverse Θ̂ of the sample covariance matrix Σ̂ to obtain

Θ̂T Σ̂Θ̂− Θ̂T + Θ̂TλẐ = 0.

Rearranging, one can show under sn = o(n/ log p) and using the ℓ1 rates of con-
vergence of the nodewise regression estimator,

(1) Θ̂− Θ̂TλẐ −Θ0 = Θ0(Σ̂− Σ0)Θ0 + oP (snlog p/n) ,

where maxi=1,...,p |{j : Θ0
ij 6= 0}| ≤ sn. Consequently, under sparsity sn =

o (
√
n/log p) , the remainder term in (1) is of order n−1/2 and the leading term

is asymptotically normal. This suggests to take the de-biased estimator

(2) T̂ := Θ̂− Θ̂TλẐ = Θ̂ + Θ̂T − Θ̂Σ̂Θ̂,

as an estimator of Θ0.

Theorem 1. Suppose that X1, . . . , Xn are i.i.d. N (0,Σ0), where Θ0 := Σ−1
0

exists, Θ0 ∈ Gn(sn, L) where L = O(1) and sn = o(
√
n/ log p). Let T̂ be the

estimator defined in (2) with λj ≍
√

log p/n uniformly in j = 1, . . . , p. Then for
every (i, j) ∈ {1, . . . , p}2 and z ∈ R it holds

lim
n→∞

sup
Θ0∈Gn(sn,L)

|PΘ0

(√
n(T̂ij −Θ0

ij)/σ̂ij ≤ z
)

− Φ(z)| = 0,

where σ̂2
ij := Θ̂iiΘ̂jj + Θ̂2

ij .

Consequently, Theorem 1 establishes uniform convergence of the entries of T̂ to the
Gaussian distribution and thus leads to uniformly (over Gn(sn, L)) valid confidence
regions for low-dimensional parameters of the precision matrix.
Furthermore, when sn = o(

√
n/ log p) one can show that the proposed estimator

achieves the rate n−1/2 for individual entries of T̂ (and
√

log p/n for the maximum
of all entries). When only sn = o(n/ log p), the estimator achieves the minimax
rate bound in supremum norm [4] and hence is in this sense optimal as shown in
Theorem 2 below.

Theorem 2. Suppose that X1, . . . , Xn are i.i.d. N (0,Σ0), where Θ0 := Σ−1
0 ex-

ists, Θ0 ∈ Gn(sn, L) where L = O(1) and sn = o(n/ log p). Let T̂ be the estimator

defined in (2) with λj ≍
√

log p/n uniformly in j = 1, . . . , p. Then for all ε > 0
there exists Cε > 0

sup
Θ0∈G(sn,L)

PΘ0

(

‖T̂ − Θ0‖∞ > Cε max
{

√

log p/n, slog p/n
})

< ε.
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The non-sparse estimator T̂ may be thresholded to obtain exact recovery of the
active set where the coefficients are sufficiently larger than the noise level. Let
S0 = {(i, j) ∈ {1, . . . , p}2 : Θ0

ij 6= 0} be the non-zero set of Θ0, let S
0
τ = {(i, j) ∈

{1, . . . , p}2 : |Θ0
ij | > τij} and Ŝτ = {(i, j) ∈ {1, . . . , p}2 : |T̂ij | > τij} for some

τ = (τij)i,j=1,...,p.

Theorem 3. Suppose that X1, . . . , Xn are i.i.d. N (0,Σ0), where Θ0 := Σ−1
0

exists, Θ0 ∈ Gn(sn, L) where L = O(1) and sn = o(
√
n/ log p). Let T̂ be the

estimator defined in (2), let λj ≍
√

log p/n uniformly in j = 1, . . . , p, τij ≍
σij
√

log p/n and τ̂ij ≍ σ̂ij
√

log p/n, i, j = 1, . . . , p are suitably chosen. Then

lim
n→∞

P(S0
τ ⊂ Ŝτ̂ ⊂ S0) = 1.

Theorem 3 implies that by thresholding T̂ , all variables which are sufficiently high
above the noise level are selected and guarantees no false positives.
We remark that the normality assumption in Theorems 1, 2 and 3 may be relaxed
to (uniform) sub-Gaussianity of the margins of the underlying distribution. More
precisely, it suffices to assume the following.

Condition 1. Let X1, . . . , Xn ∈ Rp be independent, EXj = 0,Cov(Xj) = Σ0 for
j = 1, . . . , n. Suppose that for some constant K = O(1) it holds

max
j=1,...,n

sup
α∈Rp:‖α‖2≤1

Ee|α
TXj |2/K2

= O(1).

The results of Theorems 1, 2 and 3 may be regenerated when the Gaussianity as-
sumption is replaced by Condition 1. Note that in Theorem 1, one needs to replace
σ̂2
ij by a consistent estimator of the asymptotic variance σ2

ij = Var((Θ0
i )

TX1X
T
1 Θ

0
j),

where Θ0
i is the i-th column of Θ0.

Finally, note that the proposed approach for de-biasing a penalized estimator is
not limited to the estimator in [3]. For instance, analogous approach may be ap-
plied to obtain an asymptotically normal estimator and confidence regions based
on the graphical Lasso, which is treated in detail in [2].
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[5] van de Geer, S., Bühlmann, P., Ritov, Y., and Dezeure, R. On asymptotically optimal confi-
dence regions and tests for high-dimensional models. Annals of Statistics, 42(3) (2014), 1166-
1202.

[6] Zhang, C.-H. and Zhang, S. S. Confidence intervals for low-dimensional parameters in high-
dimensional linear models. Journal of the Royal Statistical Society: Series B, 76 (2014), 217–
242.



2330 Oberwolfach Report 41/2014

Quantum versions of the randomization criterion

Anna Jenčová

A classical statistical experiment is a parametrized family E = (X,Σ, {pθ, θ ∈ Θ})
of probability densities on a sample space X . Let F = (Y,Σ, {qθ, θ ∈ Θ}) be
another experiment, we assume that X , Y and Θ are finite sets. The classical ran-
domization criterion due to Blackwell [1] and Törgersen [9], states that ǫ-deficiency
of E with respect F in the sense of [1] is equivalent to

(1) inf
M

sup
θ∈Θ

‖M(pθ)− qθ‖1 ≤ 2ǫ,

where the infimum is taken over all Markov kernels M : X × Y → [0, 1]. Here
ǫ-deficiency is defined by comparison of the average risks of decision rules for the
two experiments, for all decision problems.

A quantum statistical experiment is a family E = (H, {ρθ, θ ∈ Θ}) of density
operators on a Hilbert space H, we assume that |Θ| = n and dim(H) < ∞. Let
F = (K, {σθ, θ ∈ Θ}) be another experiment. In analogy with the classical case,
we want to relate the quantity

(2) inf
α∈C(H,K)

sup
θ

‖α(ρθ)− σθ‖1

to risks of decision rules for the two experiments, here C(H,K) is the set of com-
pletely positive trace preserving maps, or channels, B(H) → B(K), representing
physically meaningful transformations of quantum states. Besides the classical
decision problems, we may consider the quantum ones, introduced by Matsumoto
[7]. These are triples (D,W, E), where D is a Hilbert space (dim(D) < ∞) and
W : θ 7→ Wθ ∈ B(D)+. It is clear that classical decision spaces correspond pre-
cisely to the case when Wθ are mutually commuting.

More generally, we may consider a pair of channels with the same input space,
Φ ∈ C(H0,H) and Ψ ∈ C(H0,K), and the quantity

(3) inf
α∈C(H,K)

‖α ◦Φ−Ψ‖⋄,

where ‖ · ‖⋄ is the diamond norm introduced in [6] as a distinguishability norm for
channels. If Φ has the form Φcq

E : B(Cn) ∋ A 7→ ∑

θ Aθθρθ ∈ B(H) and similarly
Ψ = Φcq

F , then (3) is the same as (2). We next introduce the post-processing
decision problems for quantum channels.

Let L = L(H0,D) be the space of all hermitian linear maps B(H0) → B(D).
With the cone CP of completely positive maps, (L, CP ) becomes an ordered vector
space. We identify its dual by L∗ ≡ L(D,H0) with duality

〈φ, ψ〉 = s(ψ ◦ φ) =
∑

ij

〈i, ψ ◦ φ(|i〉〈j|)j〉

for some orthonormal basis |i〉 of H0. Then CP ∗ = CP , moreover, C(H0,D)
is a base section in CP and ‖ · ‖⋄ is the corresponding norm, [4, 5]. Let ‖ · ‖⋄
be the dual norm. A post-processing decision space is a pair (D,Γ), where Γ ∈
CP (D,H0). The decision space is called classical if Γ is a cq-map: Γ = Φcq

G for
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some G = (G1, . . . , Gdim(D)) ⊂ B(H0)
+. A decision rule for (D,Γ,Φ) is a channel

φ ∈ C(H,D) and its risk is given by RΦ(D,Γ, φ) = 〈φ ◦ Φ,Γ〉.
Definition 1. We say that Φ is ǫ-post-processing deficient with respect to Ψ,
in notation Φ �ǫ Ψ, if for any post-processing decision space (D,Γ) and any
ψ ∈ C(K,D) there is some φ ∈ C(H,D) such that

〈φ ◦ Φ,Γ〉 ≤ 〈ψ ◦Ψ,Γ〉+ ǫ‖Γ‖⋄

If this is holds restricted to classical (D,Γ), we say that Φ is classically ǫ-post-
processing deficient with respect to Ψ, in notation Φ �c

ǫ Ψ.

The following general post-processing randomization criterion can be proved
using the minimax theorem (as in the classical case) and duality of the two norms.

Theorem 1. The following are equivalent.

(i) Φ �ǫ Ψ
(ii) For any Γ ∈ CP (K,H), ‖Ψ ◦ Γ‖⋄ ≤ ‖Φ ◦ Γ‖⋄ + ǫ‖Γ‖⋄
(iii) infα∈C(H,K) ‖α ◦ Φ−Ψ‖⋄ ≤ 2ǫ

This result was proved in [5] in a more general setting, with the cone CP
replaced by a cone P of positive maps, satisfying some natural properties. For
example, P can be CP , the cone of all positive maps, or k-positive maps. For
experiments, we obtain

Theorem 2. The following are equivalent.

(i) E �ǫ,P F
(ii) For any θ 7→Wθ ∈ B(K)+, ‖ΦW,F‖⋄P ≤ ‖ΦW,E‖⋄P+ǫ‖W‖, where ΦW,E(A) =

∑

θ Tr (WθA)ρθ, ‖W‖ =
∑

θ ‖Wθ‖
(iii) infα∈CP

supθ ‖α(ρθ) − σθ‖1 ≤ 2ǫ, where CP is the set of trace preserving
maps in P(H,K).

In particular, for P = CP , this was obtained by Matsumoto [7]. Note that for
any choice of P , all operator-valued loss functions have to be considered in (ii),
only the norm ‖ · ‖⋄P depends on the cone. This suggests that classical deficiency
is not sufficient for randomization criterion even if α is only required positive, as
in fact was shown in [8]. In general, the relation of classical deficiency to (2) or
(3) is not clear, but we have the following extension of a result of Buscemi [2].

Theorem 3. For any ǫ ≥ 0, Φ �ǫ Ψ if and only if Φ ⊗ idK �c
ǫ Ψ ⊗ idK. If

ξ ∈ C(K0,K) is surjective, then Φ �0 Ψ if and only if Φ⊗ ξ �c
0 Ψ⊗ ξ.

Finally, we may consider pre-processings of channels in a similar way and obtain
a corresponding randomization criterion. In particular, the results for POVM’s,
which are a special kind of channels, are related to cleanness defined in [3].
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When is an input state always better than the others?

Keiji Matsumoto

Statistical estimation and test of unknown channels have attracted interests of
many researchers. Below, let {Λθ}θ∈Θ be a family of unknown channels, where
θ ∈ Θ is the unknown parameter. In optimizing the process of inference, one has to
optimize not only the measurement performed upon the output state Λθ ⊗ I (ρin),
but also the input state ρin.

In general, optimal input states depend on whether we are estimating state
or testing hypothesis about unknown channels; they also depend on error mea-
sure, and detail of the setting (Bayesian, minimax, unbiased estimation, Neyman-
Pearson test, etc.).

In some cases, however, the situation is less complicated. For example, [2] deals
with estimation of group transform {Ug}g∈G , where g → Ug is a representation of

the group G and g is unknown and to be estimated. They had shown that there is
an input state which is optimal with respect to any G-invariant loss functions. (In
case of G = SU (d) and Ug = g, maximally entangled states between the input space
and the auxiliary space are optimal.) Meantime, [3] treats estimation of SU (2)
channel by an unbiased estimator, and ‘the loss function’ here is the mean square

error matrix of the estimate θ̂ of the unknown real vector θ which parameterizes
G = SU (2). Since the space of matrices is not totally ordered, the existence of
the minimum is non-trivial. Put differently, if the loss is scalar valued increasing
function of a mean square error matrix, then, maximally entangled states are
optimal. Also, [8] studies discrimination of a pair of generalized Pauli matrices,
and shows maximally entangled states minimize Bayesian error probability for any
prior distributions. In case of qubits, they extended their result to minimax error
probability [10]. Another example of such study is [11], where discrimination of
two unitary operation is discussed. They found that minimizers of Bayesian error
probability and the error probability of unambiguous discrimination are the same.

These results motivate the following definition: we say the input is universally
optimal for the family {Λθ}θ∈Θ, roughly speaking, if it is optimal for all the statis-
tical inferences and for all the loss functions. (The rigorous definition will be given
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later.) We show that a universally optimal state exists (not necessarily uniquely)
in case of group covariant and contravariant channels, unital qubit channels and
some measurement families.

To prove these results, we have recourse to the theory of ”comparison of state
families” [1][7]; we write {ρθ}θ∈Θ �c {σθ}θ∈Θ if the family {ρθ}θ∈Θ is more in-
formative than another family {σθ}θ∈Θ with respect to any kind of statistical
inferences. Then, our target is to prove the existence of the state ρopt with

∀ρ′ {(Λθ ⊗ I) (ρopt)}θ∈Θ �c {(Λθ ⊗ I) (ρ′)}θ∈Θ

Based on these results, some related topics are discussed. The first topic is effect
of entanglement between the input space and the auxiliary space. For example, in
[8][9][10], they study the condition that Bayes risk and minimax risk of discrimi-
nation of two unital qubit channels is smaller on an entangled state than on any
separable state. In our case, it is shown that a maximally entangle is universally
optimal for some channel families. But there might be a separable state which is
as good as maximally entangled states. So we question whether the entanglement
is really needed or not. The second topic discussed is the existence of universally
optimal states under the setting where the given channel can be used for several
times.
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Optimal classification and nonparametric regression for functional data

Alexander Meister

We establish minimax convergence rates for classification of functional data and for
nonparametric regression with functional design variables. The optimal rates are
of logarithmic type under smoothness constraints on the functional density and the
regression mapping, respectively. These asymptotic properties are attainable by
conventional kernel procedures. The bandwidth selector is automatically adaptive.
In this work the functional data are considered as realisations of random variables
which take their values in a general Polish metric space. We impose certain metric
entropy constraints on this space; but no algebraic properties are required.
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Experimental, encoded quantum computation: statistical and
mathematical challenges, right now

Thomas Monz

Advances towards fault-tolerant quantum computation currently suggest that
quantum information ought to be encoded in and distributed over several phys-
ical qubits. Here, the encoding should be efficient, enable error correction, and
allow for manipulation of the quantum information directly within the code-space.
One particular promising approach is to topologically encode quantum informa-
tion. Here, quantum information is encoded such that only global properties of
the system encode information. A topological encoding thus, intrinsically, renders
the system resistant to local perturbations. In the following we will focus on a
particular encoding: the topological colour code [1, 2]. One prominent feature
of the colour code is that the entire Clifford gate set can be implemented in a
transversal way. Here, transversality means that any Clifford gate acting on the
logical, encoded qubit, can be implemented by applying the very same operation
locally on the substituting individual, physical qubits. This property facilitates the
implementation of logical gates in a physical realisation. In addition, the aspect
that gates only need to be applied on the individual substituting qubits, notably
affects error propagation properties and results in high error thresholds on the
order of 1%. An additional useful feature is that the colour code belongs to the
class of Calderbank-Shor-Stean (CSS) stabiliser codes. Here, X/Z errors can be
detected independently, and manifest themselves in the according Z/X stabilisers
of the code. In total, any first realisation of a logical qubit should thus demon-
strate the key features of the encoding: the application of gates directly on the
encoded qubit, and the successful detection of errors.

For the first physical realisation of a topological qubit we focused on the small-
est logical instance consisting of 7 physical qubits, implemented in a system of
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Figure 1. Topological colour code subject to errors: The effect
of X/Z errors on single qubits clearly the corresponding stabilisers
in Z/X. Based on the information of the negative stabilisers, the
location and property of the error can be obtained. Thus, any er-
ror can be uniquely identified, and later on corrected. The figure
above shows how an X error on the second qubit, that has over-
lap both with the red and blue plaquette, affects the Z stabiliser
values of said plaquettes. In a similar fashion, Z and Y errors are
demonstrated and identified on qubits 5 and 3.

trapped Ca-ions [3]. Given the CSS nature of the encoding, the state is an eigen-
state of 3 Z and X stabilisers, acting on trivalent coloured plaquettes (see Fig. 1).
In our realisation we step-wise initialise the logical state plaquette after plaquette.
Subsequently, we demonstrate the error detection capabilities of the code by look-
ing at the expectation values of the different X- and Z-stabiliser of the individual
plaquettes. The effect of an error, namely the change in the sign of the expectation
value of the affected plaquettes, is clearly demonstrated in Fig. 1.

In addition we have been able to apply all Clifford gate operations on the
logical qubit, investigate the coherence properties of the logical qubit and perform
preliminary evaluations on leakage from the code space affecting the qubit during
logical operations. All details about the presented work can be found in Ref. [4]

This work, however, should be considered to motivate discussions in the inter-
disciplinary field of quantum theory, mathematics, and statistics. The presented
system, though only consisting of 7 qubits, exceeds the majority of characteri-
sation methods available to date: the largest quantum state ever subject to full
tomography consisted of 8 qubits, process tomography has only been performed on
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up to 3 qubits. It follows that any attempt to perform process tomography on the
7-qubit operations exceeds the current capabilities by orders of magnitude. While
one might think about applying model-specific tomography methods (for instance
to local, non-entangling operations only), such models would require independent
validation tests to be applied onto the experimental data. Alternatively one could
make use of “Randomized Benchmarking” (RB) [5] on the logical qubit, as the
entire Clifford gate set is directly available in the experiment.

But also this approach has road-blocks: So far, RB has only been considered
in leakage-free, Markovian systems. In the presented experiment it is not clear
to which degree the system is Markovian (as there exist hardly any experimen-
tally applicable measure for it). Another aspect is that, so far, Markovianity (or
rather correlations) have many been considered in time. For encoded qubits there
may also be spatial correlations, which are, for instance, employed in the field of
decoherence-free subspaces. It is not clear how such spatial correlations may affect
the validity of numbers derived from RB. Finally, there is also leakage from the
code-space to the Hilbert-space of the 7 qubits. This effect has thus far not been
considered the field of RB. Here, leakage needs to be separately taken into account
with respect to other errors resulting from the applied gates. Alternatively to RB
one could try to look into methods such as presented by Robin Blume-Kohout at
the workshop, but also these need to be extended with respect to temporal and
spatial correlations as well as leakage.

The presented work can safely conclude that experimental progress is currently
held back by both numerical, analytical and statistical tools to truthfully evaluate
the system-performance of already moderately-sized systems such as the presented
7-qubit experiment, even more so in the context of logical systems [4]. Within the
framework of the workshop, several hours have been spend on discussing potential
solutions for the presented problems - some of them looking promising and within
current capabilities of experimentalists.
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Nonparametric regression with one-sided error distribution

Natalie Neumeyer

(joint work with Holger Drees and Leonie Selk)

We consider a nonparametric boundary regression model

Yi = g( i
n ) + εi, i = 1, . . . , n,

where the (unobserved) errors ε1, . . . , εn are independent and identically distribut-
ed with cumulative distribution function F that satisfies

F (y) = 1− c|y|α + o(|y|α)
for some α > 0 for y ր 0. The regression function g is assumed to belong to some
Hölder class of order β ∈ (0,∞). We estimate the regression function via mini-
mization of the local integral of a polynomial approximation. More specifically, for
x ∈ [0, 1] let ĝ(x) = p(x), where p is a polynomial of order ⌈β⌉ − 1 and minimizes

∫ x+hn

x−hn

p(t) dt

under the constraints p( j
n ) ≥ Yj for all j ∈ {1, . . . , n} such that | jn −x| ≤ hn. Here

(hn)n is a sequence of bandwidths with hn → 0, nhn/| log hn| → ∞. We obtain
the following uniform rate of convergence,

sup
x∈[hn,1−hn]

|ĝ(x) − g(x)| = O(hβn) +OP

(( | log hn|
nhn

)1/α)

.

The minimal rate OP ((log n/n)
β/(αβ+1)) obtained from hn ∼ ((log n)/n)1/(αβ+1)

is faster than the typical rate OP ((logn/n)
β/(2β+1)) in nonparametric mean re-

gression with regular error distribution if the error distribution is irregular in the
sense that sufficient mass is concentrated near the endpoint (i. e. α ∈ (0, 2)).

For inference on the error distribution let F̂n denote the empirical distribution
function of residuals ε̂i = Yi − ĝ( i

n ), i = 1, . . . , n. If the error distribution F is

Hölder continuous of order α ∧ 1 and β−1 < α < 2 − β−1 holds, the influence
of the regression estimation is negligible, i. e. n1/2(F̂n − F ) converges weakly to a
Brownian bridge composed with F . This result is remarkably different from cor-
responding results on the residual-based empirical distribution function in mean
regression models. It is true for all cases of irregularity α ∈ (0, 2) if the regression
function is smooth enough, and it can readily be used for goodness-of-fit testing.
Applying a bias-reduced and smoothed version of the regression estimator ĝ we
can even extend the result (under suitable choice of smoothing parameters) to the
case α < 3 − 3/(2β) when we either stay away from the boundary or assume a
bounded error density. Details can be found in [1].
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Uncertainty quantification and confidence sets in high-dimensional
statistical models

Richard Nickl

(joint work with Sara van de Geer)

The problem of constructing confidence sets in the high dimensional linear model
with n response variables and p parameters, possibly p ≥ n, is considered. Full
honest adaptive inference is possible if the rate of sparse estimation does not exceed
n−1/4, otherwise sparse adaptive confidence sets exist only over strict subsets of
the parameter spaces for which sparse estimators exist. Necessary and sufficient
conditions for the existence of confidence sets that adapt to a fixed sparsity level
of the parameter vector are given in terms of minimal ℓ2-separation conditions on
the parameter space. The design conditions cover common coherence assumptions
used in models for sparsity, including (possibly correlated) sub-Gaussian designs.
The proof techniques are inspired by Hoffmann and Nickl (2011).
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Optimal error intervals for quantum parameter estimation

Jiangwei Shang

(joint work with Xikun Li, Hui Khoon Ng, Berthold-Georg Englert)

Information-theoretic quantities like purity, fidelity, entanglement, etc. have played
important roles in our understanding of quantum information, quantum commu-
nication and quantum computation. However, these quantities are mathematical
constructs, with no associated ability to measure them directly in the laboratory.
The conventional wisdom is to perform full state reconstruction for the quantum
system and then compute the quantities of interest from the estimated state. Full
state reconstruction is feasible for small quantum systems, but rapidly defies the
best analytical and numerical efforts as the dimensionality of the system grows. It
thus becomes desirable to design new schemes to directly estimate various quanti-
ties of interest, without first going through full state reconstruction.

In our previous work, we have found a very simple construction of optimal error
regions for quantum state estimation [1]. A point estimator, constructed from the
measurement outcomes on a finite set of independently and identically prepared
systems, can never be perfectly accurate; it has to be supplemented with an error
region that summarizes our uncertainty about the guess. Exploiting the natural
correspondence between the size of a region in state space and its prior content,
we showed that the optimal choices for two types of error regions—the maximum-
likelihood region, and the smallest credible region—are both concisely described
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as the set of all states for which the likelihood (for the given tomographic data)
exceeds a threshold value, i.e., a bounded-likelihood region. These error regions are
reminiscent of the standard error regions obtained by analyzing the vicinity of the
maximum of the likelihood function, a construction valid only when a large number
of copies of the state have been observed. Yet, we require no such restriction. Our
error regions are conceptually different from confidence regions, a subject of recent
discussion in the context of quantum state estimation; however, they can serve as
good starting points for constructing confidence regions.

Now, we are interested in extending our construction for error regions to direct
estimation of parameters of interest [2]. Moreover, we know that the best error bars
one can write down for estimating parameters from the tomography measurements
do not usually come from the error regions one first constructs for the estimator
for the state; see Fig. 1 for an example. The immediate task is then to extend our
methods for state estimation to parameter estimation, which becomes possible by
employing the numerical tools that we have developed for sampling in the quantum
state space [3, 4].

In Ref. [2], we propose a systematic method to construct optimal error intervals
for quantum parameter estimation. For given data D, we look for the smallest
credible interval (SCI) with a pre-chosen value of credibility. We show that the SCI
contains all parameters with the likelihood conditional on the parameter exceeding
a certain threshold, which is specified by a fraction of the maximum value of
the likelihood, i.e., a bounded-likelihood interval. Surprisingly, we find that the
results obtained for parameter estimation take very similar forms as those for state
estimation. Specifically, we construct SCIs for the purity and fidelity (with respect
to certain target states) of single-qubit states, as well as for the CHSH quantity
of two-qubit states.

References

[1] J. Shang, H. K. Ng, A. Sehrawat, X. Li, and B.-G. Englert, Optimal error regions for
quantum state estimation, New J. Phys. 15 (2013), 123026.

[2] X. Li, J. Shang, H. K. Ng, and B.-G. Englert, Optimal error intervals for quantum parameter
estimation, in preparation (2014).

[3] J. Shang, Y.-L. Seah, H. K. Ng, D. J. Nott, and B.-G. Englert, Monte Carlo integration
over regions in the quantum state space. I, arXiv:1407.7805 [quant-ph] (2014).

[4] Y.-L. Seah, J. Shang, H. K. Ng, D. J. Nott, and B.-G. Englert, Monte Carlo integration
over regions in the quantum state space. II, arXiv:1407.7806 [quant-ph] (2014).

Multiplier bootstrap for confidence estimation

Vladimir Spokoiny

(joint work with Mayya Zhilova)

In this talk we consider a multiplier bootstrap procedure for the problem of con-
fidence estimation using a quasi maximum likelihood method. A confidence set
is based on a likelihood function taken for a rather general parametric model. A
radius of the confidence set is determined by a multiplier bootstrap. The aim of
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Figure 1. Optimal error intervals for fidelity (with respect to
certain target states) of single-qubit states by direct parameter
estimation (DPE, red curve) and indirect parameter estimation
(IPE, blue curve) respectively. The true fidelity of 0.95 is indi-
cated by the vertical black line. The dotted-dashed horizontal
lines mark out the smallest intervals with 80% credibility that
contain the true fidelity.

the study is to check the validity of the bootstrap procedure in situations with a
large parameter dimension, a limited sample size and a possible misspecification
of the parametric assumption.

Let the data sample Y = (Y1, . . . , Yn)
⊤

consist of independent random obser-
vations and belong to the probability space (Ω,F , IP ). We do not assume that
the observations Yi are identically distributed, moreover, no specific parametric
structure of IP is being required. Consider some known regular parametric fam-

ily {IPθ} def
= {IPθ ≪ µ0, θ ∈ Θ ⊂ IRp} with parameter’s dimension p. This family

induces the log-likelihood process L(θ) of the sample Y:

L(θ)
def
= log

{

dIPθ

dµ0
(Y)

}

.

The (quasi) maximum likelihood estimator θ̃ and the target parameter θ∗ are
defined as follows:

θ̃
def
= argmaxθ∈Θ L(θ), θ∗

def
= argmaxθ∈Θ IEL(θ).
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Define the likelihood-based confidence set as:

E(z) def
=
{

θ : L(θ̃)− L(θ) ≤ z
2/2
}

.

Here the parameter z ≥ 0 determines the size of the confidence set. Let 1 − α ∈
(0, 1) be a fixed required confidence level. We are interested in finding a minimal
possible value of z such that it holds:

IP
{

θ∗ ∈ E(z)
}

≥ 1− α,

this is equivalent to the estimation of the upper α-quantile of the likelihood ra-
tio statistic L(θ̃) − L(θ∗). For this purpose we consider multiplier bootstrap (or
weighted bootstrap) procedure. The idea of the procedure is to mimic a distribu-
tion of the likelihood ratio statistic by reweighing its summands with random mul-
tipliers independent of the data. Let u1, . . . , un be scalar i.i.d. random variables
independent of Y with continuous c.d.f., IEu1 = 1, Varu1 = 1, IE exp(u1) < ∞
(e.g. N (1, 1), exp(1)). Multiply the summands of the likelihood function L(θ)
with the new random variables:

L
❛❜

(θ)
def
=
∑n

i=1
log

{

dIP
❛❜

θ

dµ0
(Yi)

}

ui.

Here the probability distribution is taken conditionally on the data Y, which
is denoted by the sign

❛❜

. The multiplier bootstrap induces the probability space
conditional on the dataY. A simple but important observation is that IE

❛❜

L
❛❜

(θ) ≡
IE
[

L
❛❜

(θ)
∣

∣Y
]

= L(θ), and hence,

argmaxθ∈Θ IE
❛❜

L
❛❜

(θ) = argmaxθ∈Θ L(θ) = θ̃.

In other words, the target parameter in the bootstrap world is precisely known and
it coincides with the maximum likelihood estimator θ̃ conditioned on Y, therefore,

the bootstrap likelihood ratio statistic L
❛❜

(θ̃
❛❜

)−L
❛❜

(θ̃)
def
= supθ∈Θ L

❛❜

(θ)−L
❛❜

(θ̃) is
fully computable and leads to a simple computational procedure for the approxi-
mation of the distribution of L(θ̃)− L(θ∗).

The main results are given in Theorems 1, 2 below. The first statement requires
a so called “small modeling bias” condition (SmB), formulated through a bound on
a relation between the covariance matrices: Var{∇θL(θ

∗)} and Var{∇θL
❛❜

(θ∗) |Y}.
If the parametric family {IPθ} is correct, then the modelling bias is equal to zero.
(SmB) assumes that the true model does not deviate significantly from the para-
metric family. In this case the multiplier bootstrap procedure work if the relation
p3/n is small. If (SmB) does not hold (i.e. the deviation between the true model
and {IPθ} is large), then the multiplier bootstrap continues to apply but becomes
a bit conservative: the size of the constructed confidence sets is increased by the
modeling bias (see Theorem 2). The precise formulations of the results are given
in [1]. They are illustrated with numerical experiments further in the text.

Theorem 1 (Validity of the bootstrap under a small modeling bias).

(1) It holds for all z ≥ p with probability ≥ 1− C1e
−x, C1 ≥ 12, x > 0

∣

∣

∣
IP
{

L(θ̃)− L(θ∗) ≥ z
}

− IP
❛❜{

L
❛❜

(θ̃
❛❜

)− L
❛❜

(θ̃) ≥ z
}

∣

∣

∣
≤ ∆
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for a deterministic ∆ ≤ C2{(p+ x)3/n}1/8 and a generic constant C2.

(2) Moreover, for z
❛❜

α
def
= min

{

z ≥ 0: IP
❛❜

(

L
❛❜

(θ̃
❛❜

)− L
❛❜

(θ̃) ≥ z

)

= α
}

∣

∣IP {θ∗ ∈ E (z
❛❜

α)} − (1− α)
∣

∣ ≤ ∆.

Theorem 2 (Conservativeness of the bootstrap for a large modeling bias).
It holds for all z ≥ p with probability ≥ 1− C1e

−x

IP
{

L(θ̃)− L(θ∗) ≥ z
}

− IP
❛❜{

L
❛❜

(θ̃
❛❜

)− L
❛❜

(θ̃) ≥ z
}

≤ ∆

for ∆, C1 from Theorem 1.

The proofs are based on non-asymptotic square-root Wilks expansions for the
likelihood ratio statistics for bothY and bootstrap cases, non-asymptotic Gaussian
approximation of the Euclidean norm of a random vector, and comparison of
distributions of Gaussian vectors.

Numerical results. Below we show the results of numerical experiments il-
lustrating the nice performance of the multiplier bootstrap procedure. In all the
experiments we took the same number of samples: 104 data samples for estima-
tion of quantiles of the likelihood ratio, 104 {ui} samples and 104 data samples
for estimation of quantiles of the bootstrap likelihood ratio. The sample size is
n = 50.

1) The first experiment checks, how well the procedure works in the case of
the correct model. Let the data be i.i.d., Yi ∼ N (2, 1), then L(θ) = −∑n

i=1(Yi −
θ)2/2. Table 1 shows the effective coverage probabilities of the quantiles estimated
using multiplier bootstrap. The second row contains the range of the nominal
confidence levels: 0.99, . . . , 0.75. The first left column describes the distribution
of the bootstrap weights: N (1, 1) or exp(1). The rows below the second one show
the frequency of the event: “quantile of the real likelihood ratio ≤ quantile of the
bootstrap likelihood ratio”.

Table 1. Coverage probabilities for the correct i.i.d. model

Confidence levels

L(ui) 0.99 0.95 0.90 0.85 0.80 0.75

exp(1) 0.99 0.94 0.89 0.83 0.78 0.73
N (1, 1) 0.99 0.95 0.89 0.84 0.80 0.75

2) In the second experiment we consider constant regression model with mis-
specified heteroscedastic errors: Yi = 2 + σiεi, i = 1, . . . , n. The i.i.d. errors
εi ∼ Lap(0, 2−1/2) s.t. IE(εi) = 0, Var(εi) = 1. The coefficients σi are determin-

istic: σi
def
= 0.5 {4− i (mod 4)}. The quasi-likelihood function is the same as in

the first experiment: L(θ) = −∑n
i=1(Yi − θ)2/2, i.e. it is misspecified, since it

corresponds to the i.i.d. standard normal distribution. Table 2 describes the 2-nd
experiment’s results similarly to the table 1.
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Table 2. Coverage probabilities for the misspecified heteroscedastic noise

Confidence levels

L(ui) 0.99 0.95 0.90 0.85 0.80 0.75

exp(1) 0.98 0.93 0.87 0.82 0.77 0.72
N (1, 1) 0.98 0.94 0.88 0.83 0.78 0.73

3) In the third experiment we consider biased regression with misspecified i.i.d.
errors: Yi = β sin(Xi) + εi, εi ∼ Lap(0, 2−1/2) i.i.d. The design points Xi are
equidistant on [0, 2π]. Taking the likelihood function L(θ) = −∑n

i=1(Yi − θ)2/2
yields θ∗ = 0. Therefore, the larger is the amplitude β > 0, the bigger is bias
of the mean constant regression. We consider two cases: β = 0.25 with fulfilled
(SmB) condition and β = 1.25, when (SmB) does not hold.

Table 3. Coverage probabilities for the misspecified biased regression

Confidence levels

L(ui) β 0.99 0.95 0.90 0.85 0.80 0.75

N (1, 1)
0.25 0.98 0.94 0.89 0.84 0.79 0.74
1.25 1.0 0.99 0.97 0.94 0.91 0.87
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Higher order isotropy and lower bounds for sparse quadratic forms

Sara van de Geer

(joint work with Alan Muro)

Let X be an n × p matrix with rows being i.i.d. copies of a random row-vector
X0 ∈ Rp. The theoretical inner-product matrix is Σ0 := EXT

0 X0 (assumed to

exist). We let Σ̂ := XTX/n be the empirical inner-product matrix.
Let m ≥ 2. The random vector X0 is weaklym-th order isotropic with constant

C if for all u ∈ Rp with uTΣ0u = 1 it holds that

P (|X0u| > t) ≤ (C/t)m ∀ t > 0.

We consider lower bounds for quadratic forms of the form uT Σ̂u, where u ∈ Rp,
uTΣ0u = 1 and ‖u‖1 ≤ M with M some constant. We discuss extensions of [2]
to a case with p > n and of [3] to isotropy of any order m > 2. The isotropy
conditions allow for refinements of results in [1] for compatibility constants and
restricted eigenvalues.
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A random variable Z is called Bernstein with constants σ and K if for all
k ∈ {2, 3, . . .}

E|Z|k ≤ k!

2
Kk−2σ2.

Theorem 1 [4].Suppose the entries in X0 are Bernstein with constants σX and
KX and that for some m > 2 the random vector X0 is weakly m-th order isotropic
with constant Cm. Define

(1) Dm := [2Cm]
m

m−1 (m− 1)/(m− 2).

For all t > 0, with probability at least 1− exp[−t]
inf

uTΣ0u=1, ‖u‖1≤M
uT Σ̂u ≥ 1−∆L

n(M, t)

where

(2) ∆L
n(M, t) := Dm

(

16min

{

Mδn,

√

p

n

}

+

√

2t

n

)
m−2
m−1

+
8D2

m

3

(

t

n

)
m−2
m−1

with

δn := σX

√

2 log(2p)

n
+KX

log(2p)

n
.

We now denote for any subset S ⊂ {1, . . . , p} and for u ∈ Rp, the vector

uj,S := uj l{j ∈ S}, j = 1, . . . , p

and we let u−S := u− uS. We let for s := |S| and L > 0 a constant

φ20(L, S) := min{suTΣ0u : ‖uS‖1 = 1, ‖u−S‖1 ≤ L}
be the theoretical compatibility constant and

φ̂2(L, S) := min{suT Σ̂u : ‖uS‖1 = 1, ‖u−S‖1 ≤ L}
be its empirical counterpart. These quantities play an important role in com-
pressed sensing and oracle inequalities for ℓ1-regularized estimators.

Lemma [4]. Under the conditions of Theorem 1 and using its notation we find
that for all t > 0, with probability at least 1− exp[−t]

φ̂2(L, S)

φ20(L, S)
≥ 1−∆L

n((L + 1)
√
s/φ0(L, S), t).

Theorem 1 requires that the entries inX0 are Bernstein, i.e. the variables {X0,j}
are assumed to have sub-exponential tail behaviour. Consider now normalized
design. We normalize each column Xj in X by dividing it by σ̂j , where σ̂

2
j := Σ̂j,j .

Let thus X̃j := Xj/σ̂j , j = 1, . . . , p, X̃ := (X̃1, . . . , X̃p) and

R̂ := X̃T X̃/n.

Consider the normalized empirical compatibility constant

φ̃2(L, S) := min{suT R̂u : ‖uS‖1 = 1, ‖u−S‖1 ≤ L}.
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Using the transfer principle as presented in [3] one can show lower bounds for

φ̃2(L, S) assuming only m-th order isotropy and no further moment conditions on
the entries of X0.
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Reflections on quantum data hiding

Andreas Winter

We consider binary symmetric hypothesis testing of quantum states, ρ vs. σ, with
equal prior probabilities. Even when focusing only on minimum error proba-
bility, this is a very rich problem when the measurements (POVMs) admissible
are restricted in some way, for instance by conservation laws, bounded energy,
etc [1, 2, 3]. Two very interesting restrictions, discussed in the talk, are:

(1) Locality in a composite system (LOCC);
(2) Linear operations and classical processing in continuous variable systems

(GOCC).

Each such restriction M gives rise to a distinguishability norm on states, gen-
eralizing the trace (1-) norm [3]. In particular, (quantum) data hiding refers to
‖·‖M being possibly much smaller than ‖·‖1. Quantum data hiding, originally in-
vented to show a limitation on LOCC in distinguishing globally orthogonal states,
is actually a phenomenon arising generically in statistics whenever comparing a
‘strong’ set of measurements (i.e. decision rules) with a ‘weak’ one. The classical
statistical analogue of this would be secret sharing, in which two perfectly distin-
guishable multi-partite hypotheses appear to be indistinguishable when accessing
only certain marginals. The quantum versions are richer in that for example LOCC
and GOCC allow for state tomography, so the states cannot be come perfectly in-
distinguishable but only nearly so, and hence the question is one of efficiency.
Indeed, there are examples of almost perfectly distinguishable states which under
the constraint are almost indistinguishable:

‖ρ− σ‖1 ≥ 2− ǫ, ‖ρ− σ‖LOCC ≤ ǫ,

‖ρ′ − σ′‖1 ≥ 2− ǫ, ‖ρ′ − σ′‖GOCC ≤ ǫ.

Curiously, in the first case, ρ and σ can be created by LOCC, i.e. they are separable;
in the second case they can be created by GOCC, in fact they are probabilistic
mixtures of coherent states.
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There are two efficiency questions here: (a) How small can ǫ be in relation to
the dimension of the system? Results on this are found in [4, 3] for LOCC. (b)
How much information can be hidden reliably? In [5, 6] it is shown that in a
bipartite d × d-system, asymptotically log d bits can be hidden and that this is
asymptotically optimal.

While it is known that data hiding by separable states is possible (i.e. the state
preparation can be done by LOCC), it is open whether the optimal information
efficiency of (asymptotically) log d bits can be achieved by separable states, or the
best scaling of the hiding quality. Another open question is about generalizing
this to larger number of parties (cf. cryptographic secret sharing).
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Large density matrix estimation for quantum systems based on Pauli
measurements

Harrison Zhou

(joint work with T. Tony Cai, Yazhen Wang, Ming Yuan)

Modern scientific studies often need to learn and engineer quantum systems. Ex-
amples include quantum computation, quantum information and quantum sim-
ulation [Nielsen and Chuang (2000) and Wang (2011, 2012)]. These studies in
particular frontier research in quantum computation generate tremendous interest
in and great demand on quantum tomography. A quantum system is described
by its state, and the state is often characterized by a complex matrix on some
Hilbert space. The matrix is called density matrix. According to quantum physics
the dimension of the Hilbert space and the size of the density matrix usually
grows exponentially with the size of the quantum system. For the study of a
quantum system, it is important but very difficult to know its state. In practice
we may infer the quantum state by performing measurements on the quantum
system. Statistically it is to estimate the density matrix based on measurements
performed on a large number of quantum systems which are identically prepared
in the same quantum state. The quantum literature refers quantum state to-
mography to as the reconstruction of the quantum state based on measurements
obtained from measuring identically prepared quantum systems. Traditionally
quantum tomography employs classical statistical models and methods to deduce
quantum states from quantum measurements. Due to complexity of the prob-
lem, often times these approaches are neither very efficient nor effective from the
statistical or computational point of view. A recent breakthrough establishes a
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deep relationship between quantum tomography and compressed sensing (Gross
et. al. (2010) and Wang (2013)). Compressed sensing develops innovative data
acquisition techniques, efficient reconstruction methods and fast computational al-
gorithms for recovering sparse signals and images from highly under-sampled ob-
servations [see Donoho (2006)]. It turns out that the density matrix reconstruction
for a quantum state can be essentially recast as the matrix completion problem,
which studies the reconstruction of low rank matrices based on under-sampled
observations. Various methods are recently proposed for recovering low rank ma-
trices by minimizing the squared residual sum plus some penalty, and the penalties
used include nuclear-norm penalty [Candes and Plan (2009, 2011), Koltchinskii,
Lounici and Tsybakov (2011) and Negahban and Wainwright (2011)], rank penalty
[Bunea, She and Wegkamp (2011) and Klopp (2011)], the von Neumann entropy
penalty [Koltchinskii (2011)], and the Schattenp quasi- norm penalty [Rohde and
Tsybakov (2011)].

This paper considers the problem of density matrix estimation for a quantum
spin system based on Pauli measurements. specifically we describe a quantum
spin system by the d-dimensional complex space Cd and its quantum state by a
complex matrix on Cd. From the theory of quantum physics, when measuring the
quantum system by performing measurements on some observables which are Her-
mitian matrices, we obtain the measurement outcomes for each observable, where
the measurements are random taking values from all eigenvalues of the observ-
able, with the probability of observing a particular eigenvalue equal to the trace
of the product of the density matrix and the projection matrix onto the eigen-
space corresponding to the eigenvalue. To handle the spin up and down states
of particles in the quantum spin system, we usually employ widely known Pauli
matrices as observables to perform measurements and obtain the so-called Pauli
measurements. Since all Pauli matrices have 1 and -1 eigenvalues, Pauli measure-
ments takes discrete values 1 and -1, and the resulted measurement distributions
can be characterized by binomial distributions. Our goal is to estimate the density
matrix by the Pauli measurements. According to quantum physics, the dimension
d increases exponentially in the number of particles in the quantum system, and
the size of the density matrix may be comparable to or exceed the sample size,
so we need to put the density matrix estimation problem in the framework of
high-dimensional statistics where both dimension and sample size are allowed to
go to infinity. Since Pauli matrices form a basis for all Hermitian matrices, we
assume that the density matrix has a sparse representation under the basis and
then employ thresholding methodology to recover the density matrix based on the
Pauli measurements. We investigate the convergence rates of the proposed den-
sity matrix estimator under spectral norm and Frobenius norm. We establish the
minimax lower bounds for the density matrix estimation problem and show that
the constructed density matrix estimator can achieve the minimax lower bound
and thus optimal.
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The following are the major results.
Theorem 1. Bj , j = 2, . . . , p, has spectral decomposition

Bj = 1 ·Qj+ + (−1) ·Qj−,

with

tr (Qj+) = tr (Qj−) = d/2,

and

tr (BiQj+) = −tr (BiQj−) =

{

d/2, i = j
0, i 6= j

,

which implies
{

B1√
d
, B2√

d
, . . . ,

Bp√
d

}

forms an orthonormal basis.

We assume that
Θ = {β : ‖β‖0 ≤ kn,p + 1} .

and consider a thresholding Procedure. We show that
Theorem 2.

inf
ρ̂

sup
ρ∈Θ

E ‖ρ̂− ρ‖2F ≍ kn,p log p

n
,

under the assumption kn,p ≤ pv for some positive v < 1 and the right hand side is
bounded.

Theorem 3.

inf
ρ̂

sup
ρ∈Θ

E ‖ρ̂− ρ‖2spectral ≍
k2n,p log p

np
,

under the assumption kn,p ≤ pv for some 0 < v < 1/4.
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