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Introduction by the Organisers

The workshop New Perspectives on the Interplay between Discrete Groups in Low-
Dimensional Topology and Arithmetic Lattices was held June 22 – June 26, 2015.
The participants were specialists in areas ranging from arithmetic groups to to-
pological quantum field theory, with common interest in arithmetic aspects of
discrete groups arising from topology.

The mornings of the first two days of the meeting were devoted to longer lectures
by senior participants aimed at surveying the new developments in their respective
areas of research. These lectures were given by Alexander Lubotzky (on arithmetic
representations of mapping class groups), Julien Marché (on topological quantum
field theory), Eduard Looijenga (on algebraic-geometric aspects of mapping class
groups) and Joachim Schwermer (on automorphic structures). All the remaining
talks were reports on recent progress on one of the themes of the meeting.

The meeting showed significant progress in the field and enhanced the many
connections between its subbranches. The workshop was attended by researchers
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from around the world, mainly ranging from postdocs to senior scientific leaders
in their areas.

Thursday afternoon was reserved to short lectures by very recent graduates.
On Monday evening, there was an introductory gathering giving each participant
the opportunity of a short presentation of some of the research interests.

The meeting took place in a lively and active atmosphere, and greatly benefited
from the ideal environment at Oberwolfach.

Acknowledgement: The MFO and the workshop organisers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Combinatorial models for mapping class groups

Tara E. Brendle

(joint work with Dan Margalit)

In 1997 Ivanov proved that the automorphism group of the complex of curves asso-
ciated to a surface S is isomorphic to the extended mapping class group Mod(S),
for most surfaces [9]. He applied this work to show that the abstract commen-
surator of Mod(S) is also isomorphic to Mod(S), and also gave a new proof of
Royden’s theorem that the isometry group of Teichmüller space is isomorphic to
Mod(S).

Ivanov’s work generated a flurry of activity, with similar results obtained by sev-
eral different authors for various other simplicial complexes associated to surfaces.
By the work of Farb, Irmak, Ivanov, Kida, Korkmaz, McCarthy, Papadopoulos,
Schmutz Schaller, Yamagata, and Brendle–Margalit, the automorphism groups of
the following curve complexes are all known to be isomorphic to the extended map-
ping class group (with finitely many exceptions in each case): the systolic complex
of curves [16], the complex of nonseparating curves [5], the pants complex [14], the
cut system complex [7], the Torelli complex [4], the complex of separating curves
[1], the truncated complex of domains [15], the arc complex [8], the arc and curve
complex [12], the ideal triangulation graph [13], and the complex of hole-bounding
curves and hole-bounding pairs [6, 11].

Ivanov then posed a metaconjecture stating that every “sufficiently rich” com-
plex associated to a surface S has Mod(S) as its group of automorphisms [10].
In recent joint work with Dan Margalit, we resolve Ivanov’s metaconjecture for a
wide class of complexes. Roughly speaking, these simplicial complexes have ver-
tices corresponding to isotopy classes of a specified collection of connected compact
subsurfaces of S, with edges corresponding to disjointness up to homotopy. The
curve complex is an example of such a complex; one simply takes all annuli as the
collection of subsurfaces.

We give two characterizations of sufficient richness for such complexes. The
first is topological: it gives a short list of easy-to-check combinatorial criteria for
the objects that generate the complex. The second is algebraic: sufficient rich-
ness is equivalent to the complex admitting no exchange automorphisms, that is,
automorphisms interchanging two vertices of the complex while fixing all others.
Exchange automorphisms were first observed by McCarthy–Papadopoulos as ob-
structions to Ivanov’s metaconjecture for the so-called “complex of domains” of
a surface with boundary [15]; the result obtained here shows that exchange auto-
morphisms are the only obstruction for this class of complexes.

As one application of this work, we recover a theorem of Bridson–Pettet–Souto
[3] stating that the abstract commensurator of each term in the Johnson filtration
of the mapping class group is isomorphic to Mod(S) (the case of the Torelli group
is originally due to Farb–Ivanov [4]; the case of the Johnson group is originally due
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to Brendle–Margalit [1, 2]). We further show that if N is any normal subgroup of
Mod(S) containing an element with “small” support, then Aut(N) ∼= Mod(S).
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Non semi-simple TQFTs

Francesco Costantino

We will start by recalling the definition of Topological Quantum Field Theory
(TQFT) and in particular of its byproducts: quantum invariants of 3-manifolds
and quantum representations of mapping class groups. After this general intro-
duction we will recall the main properties of the famous “quantum representations
of mapping class groups” associated to the SU(2)-TQFTs constructed by Reshet-
ikhin and Turaev ([3]) and also by Blanchet, Habegger, Masbaum and Vogel ([1])
using skein theory. We will compare these properties with those of the new family



Discrete Groups in Low-Dimensional Topology and Arithmetic Lattices 1707

of representations associated to the new “non semi-simple TQFTs” we construc-
ted recently in collaboration with Christian Blanchet, Nathan Geer and Bertrand
Patureau ([2]). In particular, we will point out one crucial property of these new
representations: namely that the order of the action of Dehn twists is infinite; this
contrasts sharply with the behavior of the former representations.
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Asymptotics of matrix coefficients of quantum representations

Renaud Detcherry

The classical constructions of TQFTs from the Reshetikhin-Turaev invariants as-
sociates to any closed oriented surface Σ a sequence of finite dimensional Hermitian
vector spaces Vr(Σ) on which the mapping class groupMCG(Σ) acts projectively.
These projective representations ρr of the mapping class groups are called the
quantum representations. Also the alternative definition of Blanchet, Habegger,
Masbaum and Vogel constructed natural basis (ϕα)α∈Ir associated to any pair of
pants deomposition of the surface Σ. Finally, simple closed curves γ on Σ induce
curve operators T γ

r ∈ End(Vr(Σ)).
Although the definitions of these TQFTs by Reshetikhin and Turaev is based
on combinatorial calculations from surgeries presentations of 3-manifolds, they
were inspired by the work of Witten who gave a formal definition of TQFTs from
quantum Chern-Simons theory with gauge group SU2. The approach of Witten,
using path integral also yielded an asymptotic expansion for quantum invariants
of closed 3-manifolds Zr(M) in terms of Reidemeister torsion and Chern-Simons
invariants.
This talk attempts to give an asymptotic formula for matrix coefficients of the form
〈ρr(φ)ϕα, ϕβ〉 where φ ∈ MCG(Σ) and ρr are the quantum representations. We
use the approach of geometric quantification to turn the combinatorial model of
TQFT of Reshetikhin and Turaev into a geometric model, where the vector spaces
Vr(Σ) are represented as spaces Hr ⊂ H0(M,Lr) of holomorphic sections of pre-
quantizing complex line bundle L over an open dense subsetM of the SU2 charac-
ter variety M(Σ) = Hom(π1Σ, SU2)/SU2. Then we show that curve operators T γ

r

in this framework are Toeplitz operators of principal symbols the trace function
fγ(ρ) = −Tr(ρ(γ)). We can then use the analytic properties of Toeplitz operators
to give an estimation of basis vectors ϕα, and of some pairings 〈ϕα, ρr(φ)ϕβ〉. The
formula obtained is reminiscent of Witten’s asymptotic expansion conjecture.



1708 Oberwolfach Report 30/2015

Generic properties of finitely generated subgroups of SLn(Z)

Elena Fuchs

Given a subgroup Γ of GLn(Z) with Zariski closure Γ in GLn(C), Γ is called a thin
group if it is of infinite index in Γ ∩GLn(Z).

Such groups have become of great interest in number theory in the last decade,
particularly after the development of the Affine Sieve by Bourgain–Gamburd–
Sarnak in [BGS]. The main purpose of the sieve in their work is to answer the
following kind of question.

Suppose one is given a finitely generated subgroup Γ ≤ GLn(Z), a vector v ∈
GLn(Z), and a nonzero polynomial f(x) ∈ Z[x1, . . . , xn]. When does there exist
an r ∈ N such that the set

Ov(f, r) := {w ∈ Γv | f(w) has at most r prime factors}

is Zariski-dense in Zcl(Γv)? The answer is, as shown in [BGS], essentially when Γ
satisfies a rich combinatorial property having to do with expander graphs. This
property depends only on the Zariski closure of Γ, and hence has nothing to do
with whether or not the group is thin. To answer the question above, Bourgain–
Gamburd–Sarnak count points in balls in Ov(f, r), which in the context of thin
groups was very much a new tool: previously such counting was only considered
in the case where the group Γ is arithmetic.

With these new methods which apply to thin groups has come a surge of interest
in studying such groups in their own right. One important question that has been
considered is how to tell whether a given finitely generated group (given in terms
of its generators) is thin. While this problem is probably too hard to answer in
general, [FMS], [SVe], and [BT] have answered this question in the context of
certain hypergeometric monodromy groups.

In this report, we describe a related question of a slightly different flavor: is a
generic finitely generated subgroup of SLn(Z) thin? Specifically, we discuss joint
work with Rivin [FR] which shows that the generic 2-generator subgroup of SLn(Z)
is not only thin, but free when generic is defined appropriately.

Similar questions regarding subgroups of SLn(Z) generated by random elements
of combinatorial height at most X – i.e. elements obtained by a random walk of
length X on the Cayley graph Cay(SLn(Z), S) where S is a fixed finite set of gener-
ators of SLn(Z) – have been previously addressed by Rivin in [R1, R2] and by Aoun
in [A]. In fact, Rivin considers a much broader family of lattices in semisimple
Lie groups beyond SLn(Z), and Aoun’s results apply also to finitely generated
non-virtually solvable subgroups of GL(V ) where V is a finite dimensional vector
space over an arbitrary local field K.

Aoun’s result in the context of SLn(Z) that any two independent random walks
on SLn(Z) generate a free group implies that with this combinatorial definition
of genericity, a finitely generated subgroup of SLn(Z) is generically of infinite
index in SLn(Z) if n ≥ 3. Combining this with Rivin’s result in [R1] that in the
combinatorial model a generic finitely generated subgroup of SLn(Z) is Zariski
dense in SLn(C), we have that thinness is generic in the combinatorial setup.
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One might expect then, that generic thinness will also be true if one starts with
the following Euclidean model. Let G = SLn(Z), and let BX denote the set of all
elements in G of norm at most X , where norm is defined as

(1) ‖γ‖2 := λmax(γ
tγ)

where λmax denotes the largest eigenvalue. Choose two elements g1, g2 uniformly
at random from BX and consider

lim
X→∞

µX({g = (g1, g2) ∈ G2 | Γ(g) is of infinite index in G})

where Γ(g) = 〈g1, g
−1
1 , g2, g

−1
2 〉, and µX is the measure on G × G induced by the

normalized counting measure on B2
X . If the above limit is 1, we say that the generic

subgroup of G generated by two elements is infinite index in G. In this model, two
randomly chosen elements do generate a Zariski-dense subgroup, and one might
guess that, just as in the combinatorial setting, two randomly chosen elements of
G in the Euclidean model will form a ping-pong pair with probability tending to
1 (i.e. that the generic 2-generator subgroup of G is free in particular). However,
we use Breuillard-Gelander’s [BG] characterization of ping-pong for SLn(R) over
projective space to show that while this is the case for n = 2, it is not true if n > 2
(see [FR]), and so whether or not thinness is generic in this model is still an open
question.

However, if one “symmetrizes” the ball of radiusX in a natural way, by imposing
a norm bound on both the matrix and its inverse, we show in [FR] that two
elements chosen at random in such a modified model will, in fact, be a ping-pong
pair over a suitable space with probability tending to 1, and hence, in this modified
setup, the generic subgroup of SLn(Z) generated by two elements is thin. This
modified Euclidean model is identical to the one described above, but BX will be
replaced by

(2) B′
X(G) := {g ∈ G | g, g−1 ∈ BX},

and the measure µX is replaced by µ′
X , the normalized counting measure on (B′

X)2.
With this notation, we show the following.

Theorem 1 ([FR]). Let G = SLn(Z) where n ≥ 2, and let B′
X(G) and µ′

X be as
above. Then we have

lim
X→∞

µ′
X({(g1, g2) ∈ (B′

X(G))2 | 〈g1, g2〉 is thin}) = 1

We remark that it is very natural to consider the region B′
X , rather than the

usual ball BX : it is in fact a more suitable analog of Aoun’s combinatorial setup,
in which an element of combinatorial height X has inverse whose combinatorial
height is also X (unlike the Euclidean ball model, in which an element of norm X
can have inverse of much larger norm).

We now briefly describe the methods used to prove Theorem 1, which are also
the methods used to show that generically two elements chosen at random in the
original Euclidean model do not form a ping-pong pair.
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Consider the Cartan decomposition of SLn(R), namely that it decomposes as

SLn(R) = KAK

where K = SOn(R) is the maximal compact subgroup of SLn(R) and

A = {diag(ej1 , . . . , ejn) | ji ∈ R, ji ≤ ji+1,
∑

i

ji = 0}.

Specifically, any element g ∈ SLn(Z) can be written as

(3) g = kgagk
′
g

where kg, k
′
g ∈ K and ag ∈ A. The matrix ag is uniquely determined by g: it

is the diagonal matrix with the eigenvalues of gtg on the diagonal, ordered from
highest to lowest.

We recall the definition of a ping-pong pair from [BG] below (see [BG] for a
description of the metric used on projective space, as well as certain properties of
the action of PSLn(R) on Pn−1(R)).

Definition 2. Two elements g1, g2 ∈ SLn(R) are called a ping-pong pair if both
g1 and g2 are (r, ǫ)-very proximal with respect to some r > 2ǫ > 0, and if the
attracting points of gi and g−1

i are at least distance r apart from the repulsive

hyperplanes of gj and g−1
j in Pn−1(R), where i 6= j.

In the above definition, an element γ ∈ SLn(R) is said to be (r, ǫ)-very proximal
if both γ and γ−1 are (r, ǫ)-proximal. Namely, both γ and γ−1 are ǫ-contracting
with respect to some attracting point vγ ∈ Pn−1(R) and some repulsive hyperplane
Hγ , such that d(vγ , Hγ) ≥ r. Finally, γ is called ǫ-contracting if if there exists
a point vγ ∈ Pn−1(R) and a projective hyperplane Hγ , such that γ maps the
complement of the ǫ-neighborhood of Hγ into the ǫ-ball around vγ .

In fact, Proposition 3.1 in [BG] gives a necessary and sufficient condition for γ
to be ǫ-contracting can be stated simply in terms of the top two singular values
of γ:

Theorem 3 (Proposition 3.1 [BG]). Let ǫ < 1/4 and let γ ∈ SLn(R). Let
a1(γ) and a2(γ) be the largest and second-largest singular values of γ, respect-

ively (i.e. largest and second-largest eigenvalues of γtγ). If a2(γ)
a1(γ)

≤ ǫ2, then γ is

ǫ-contracting. More precisely, writing γ = kγaγk
′
γ , one can take Hγ to be the pro-

jective hyperplane spanned by {k′−1
γ (ei)}ni=2, and vγ = kγ(e1), where (e1, . . . , en)

is the canonical basis of Rn.

Conversely, suppose γ is ǫ-contracting. Then a2(γ)
a1(γ)

≤ 4ǫ2.

The strategy in [FR] is then to consider the probability that this condition
on the top two singular values will be satisfied both by a random element as
defined above and by its inverse. The idea is, rather than to compare the number
of elements in SLn(Z) in a ball which are ǫ-contracting to the total number of
elements in the ball, to compare the measures of the analogous sets in SLn(R),
using Haar measure on SLn. This becomes a problem in analysis of bounding
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certain integrals from above and below. Since this is essentially identical to the
comparison over Z by Theorem 1.4 of [EM] once one proves that the sets
(4)

CX,η := {diag(α1, . . . , αn) | αi ∈ R, X ≥ α1 ≥ ηα2; α2 ≥ α3 ≥ · · · ≥ αn,
∏

i

αi = 1}

where η > 16 is fixed make up a well-rounded sequence of sets (for two equivalent
definitions of well-roundedness, see [EM]). In this way, one finds that in the usual
Euclidean model the probability of a large gap between the kth and k+1st singular
value is positive but small whenever k < n− 1 (it goes to 0 if one lets n tend to
infinity), but that the probability tends to 1 for k = n − 1. Note that the gaps
between singular values aside from the top two are relevant for us because if one

considers the action of SLn(R) on P(
∧k(Rn)) for a suitable k ≥ 1, any of these

gaps can be shifted up to a gap between the top two singular values. However, for
our purposes we need both the randomly chosen element and its inverse to have a
large gap between the top two singular values, and the best we can do, even after
considering actions on these larger spaces, is to prove that there is a positive but
small probability that an element chosen at random out of a usual Euclidean ball
will be ǫ-contracting.

We hence turn to the symmetrized ball model as defined in (2). Here one has
that the probability of a large gap between the middle two singular values of a ran-
domly chosen element tends to 1, meaning that both an element chosen uniformly
at random in the symmetrized model, and its inverse, will be ǫ-contracting with

probability tending to 1 when one considers the action of SLn(R) on P(
∧k

(Rn)),
where k = n/2 if n is even, and k = (n+1)/2 if n is odd. Again, this is computed
using Theorem 1.4 in [EM] and after proving that the relevant sequences of sets
are all well-rounded.

One then has to show that the other conditions for ping-pong hold with probab-
ility tending to 1. Namely, we need that the fixed points and repelling hyperplanes
of the two generators that were chosen uniformly at random are spaced far apart
with probability tending to 1. Since these points and hyperplanes associated to an
ǫ-contracting element γ are determined just by kγ and k′γ where γ = kγak

′
γ , this

can be proven using the following equidistribution theorem of Gorodnick–Oh:

Theorem 4 ([GO]). Let G = SLn(R) and Γ = SLn(Z). Let Ω1,Ω2 be Borel
subsets of K with boundaries of measure zero. Let A′

X ⊂ A be the elements of A
belonging to B′

X . Then

#(Γ ∩ Σ1A
′
XΣ2) ∼X→∞

V ol(Σ1A
′
XΣ2)

V ol(G/Γ)
= ν(Σ1)ν(Σ2) ·

V ol(G′
X)

V ol(G/Γ)
,

where ν is the probability Haar measure on K.

This is essentially Theorem 1.6 in [GO] stated in the context relevant to us, and
upon proving that the sequence of regions B′

X is well rounded. Combining this
strategy with the one above of showing that ǫ-very-contraction is generic, we are
able to prove Theorem 1.
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We end by noting that, while there are many reasons why the symmetrized ball
model is a natural one, one still wants to show generic thinness in the usual ball
model. This is widely expected to be true. However, whether or not a generic
finitely generated group should be generically free in this model is unclear and, if
it is not, one would need an entirely new method of approaching thinness.
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Most hyperbolic manifolds are non-arithmetic

Tsachik Gelander

(joint work with Arie Levit)

A celebrated result of Margulis asserts that finite volume locally symmetric man-
ifolds of rank > 1 are arithmetic. Corlette and Gromov–Schoen extended this
result to rank one spaces, with the two exceptions of real and complex hyperbolic.

A remarkable paper of Gromov and Piatetski-Shapiro establishes the existence
of a non-arithmetic (real) hyperbolic manifold of finite volume, in any given di-
mension.

We prove that in fact almost all hyperbolic manifolds are non-arithmetic, with
respect to a certain way of counting. Recall that two manifolds are commensurable
if they share a common finite cover. Fixing the dimension d > 3, and counting
up to commensurability, we show that the number of non-arithmetic hyperbolic
d-manifolds of volume bounded by V is superexponential in V , while the number
of arithmetic ones tends to be polynomial.
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Integral TQFT and modular representations

Patrick M. Gilmer

(joint work with Gregor Masbaum)

Let p = 2d + 1 be a prime greater than three. If p ≡ 1 (mod 4), this story is a
little more complicated than described below. Let Σ be a surface of genus g with
at most one colored point (colored 2c from the set of colors {0, 2, · · · , p− 3}). We
recall the definition of the integral TQFT module S(Σ) inside the SO(3) TQFT
vector space V (Σ). One has that V (Σ) is a Q[ζp]-vector space and S(Σ) is the
Z[ζp]-submodule of V (Σ) generated by the collection of all vacuum states. This
is a free Z[ζp]-module according to [1, 2]. Then F (Σ) = S(Σ)/(1 − ζp)S(Σ) is
a vector space over F (the field with p elements) equipped with a representation
of the mapping class group of Σ. There is an irreducible subrepresentation de-
noted F odd(Σ) with an irreducible quotient F (Σ)/F odd(Σ) [3]. These two irreps
factor through Sp(2g,F) [4]. Let K be the algebraic closure of F. Our main new
result identifies these irreps by the highest weights of the unique Sp(2g,K) K-
representation with p-restricted highest weight which restricts to F odd(Σ) ⊗ K
and (F (Σ)/F odd(Σ)) ⊗ K. We refer to these weights as the highest weights of
F odd(Σ) and F (Σ)/F odd(Σ). The highest weight of F odd(Σ) is (d−2) ωg+ωg−3

if c = 0, and is (d− c− 1) ωg +(c− 1) ωg−1 +ωg−2 otherwise. The highest weight
of F (Σ)/F odd(Σ) is (d− c− 1) ωg + c ωg−1. If g ≤ 2, interpret an appearance of
ωi with i < 0 to mean that the representation is zero.
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Modular embeddings for triangle and Veech groups

Robert A. Kucharczyk

(joint work with John Voight)

For this extended abstract a Fuchsian group will always be a discrete subgroup of
finite covolume in SL2(R). If ∆ is a Fuchsian group, the quotient ∆\H (here H

is the upper half plane) is a Riemann surface of finite type and hence possesses a
unique structure as a smooth complex algebraic curve C. To relate geometric and
arithmetic properties of ∆ to those of C is a difficult task in general. Much more
is known when ∆ is arithmetic. For instance, for any abstract field automorphism
τ of C the curve τ(C) is given by τ∆\H for another arithmetic Fuchsian group
τ∆, see [3, 7]. Furthermore, τ∆ is a congruence subgroup if and only if ∆ is, and
in this case there is a very explicit description of τ∆.
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In this talk we presented a class of Fuchsian groups slightly enlarging the class
of arithmetic groups and containing many interesting examples which still enjoys
similar properties: the semi-arithmetic Fuchsian groups with modular embeddings.
A Fuchsian group ∆ ⊂ SL2(R) is semi-arithmetic if (after possibly passing to a
finite index subgroup) all traces tr δ for δ ∈ ∆ lie in the ring of integers oK of
some totally real algebraic number field K ⊂ R. If this is the case then the oK-
subalgebra O = oK〈∆〉 ⊂ SL2(R) generated by ∆ is an order in a quaternion
algebra B = KO over K.

Let ̺1, . . . , ̺g : K → R be the distinct field embeddings, and assume they are
ordered in such a way that ̺1 is the identity and thatB splits at ̺j , i.e. B⊗K,̺j

R ≃
M2(R), if and only if j ≤ r. For each j ≤ r fix some R-algebra isomorphism
B ⊗K,̺j

R → M2(R). Then (̺1, . . . , ̺r) embeds the group O
1 of units in O with

reduced norm one into SL2(R)
r , and the image is a lattice Γ ⊂ SL2(R)

r operating
on Hr.

Definition 1. With the preceding notation, a modular embedding for ∆ is a holo-
morphic map f : H → Hr which is equivariant for the natural inclusion ϕ : ∆ →֒ Γ.

A modular embedding F : H → Hr descends to a regular map f : ∆\H → Γ\Hr

of algebraic varieties: ∆\H underlies an algebraic curve and Γ\Hr underlies a
quaternionic Shimura variety, i.e. a (possibly twisted) Hilbert–Blumenthal variety.
Today only three classes of examples are known.

(i) If ∆ is arithmetic, then Γ is commensurable to ∆ and after passing to
finite index subgroups we may choose Γ = ∆ and F = id. More generally
this setup yields (twisted) diagonal embeddings H → Hr and Hirzebruch–
Zagier cycles, see [4].

(ii) If ∆ is a triangle group then there always exists a modular embedding
for ∆. This embedding was constructed in [2] by three different methods:
via Schwarz triangle maps, via hypergeometric differential equations and
via period maps for certain special families of abelian varieties. The arith-
metic aspects of these modular embeddings will be studied in [5], compare
also [1].

(iii) If ∆ is the Veech group uniformising a Teichmüller curve (see [6]) then
there exists a modular embedding by [6] (genus two) and [9] (arbitrary
genus). In this case Γ is always an arithmetic subgroup of SL2(K). These
modular embeddings are studied in [10].

In [4] a geometric criterion is proved for a map f : C → S from a smooth complex
curve C to a quaternionic Shimura variety S to arise from a modular embedding.
For sake of simplicity we only state the cocompact case. Let S(C) = Γ\H with Γ
a torsion-free congruence subgroup of O1. Then the cotangent bundle of Hr splits
naturally as a direct sum of line bundles coming from the r factors H, and since
O
1 preserves this decomposition, it descends to a decomposition

Ω1
S/C =

r
⊕

j=1

Mj .
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Theorem 2 (K. [4]). Let C be a smooth projective curve, let S be a quaternionic
Shimura variety and let f : C → S be a regular map. Then f is covered by a
modular embedding F : H → Hr if and only if the line bundle f∗

M1 is isomorphic
(as an algebraic line bundle on C) to the canonical bundle ωC .

This theorem is proved using Simpson’s correspondence between variations of
Hodge structure and Higgs bundles developed in [12]. As a corollary, if τ is an
abstract field automorphism of C and if f : C → S is covered by a modular em-
bedding, then so is τ(f) : τ(C) → τ(S). In [4] an adelic formalism for modular
embeddings, compatible with that for Shimura varieties and automorphic bundles
as in [8], is developed, and this corollary is made more explicit.

References

[1] Pete L. Clark and John Voight, Algebraic curves uniformized by congruence subgroups of
triangle groups (2015), arXiv:1506.01371

[2] Paula Cohen and Jürgen Wolfart, Modular embeddings for some nonarithmetic Fuchsian
groups, Acta Arith. 56 (1990), no. 2, pp. 93–110

[3] Koji Doi and Hidehisa Naganuma, On the algebraic curves uniformized by arithmetical
automorphic functions, Ann. of Math. (2) 86 (1967), pp. 449–460

[4] Robert A. Kucharczyk, Modular embeddings and automorphic Higgs bundles, in preparation
[5] Robert A. Kucharczyk and John Voight, Canonical models for triangle modular curves, in

preparation
[6] Curtis T. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer.

Math. Soc. 16 (2003), no. 4, pp. 857–885
[7] James S. Milne, The action of an automorphism of C on a Shimura variety and its special

points, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhuser Boston, Boston,
MA, 1983, pp. 239–265

[8] James S. Milne, Automorphic vector bundles on connected Shimura varieties, Invent. Math.
92 (1988), no. 1, pp. 91–128
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Pseudo-Anosov stretch factors and homology

Christopher J. Leininger

(joint work with Ian Agol and Dan Margalit)

A pseudo-Anosov homeomorphism of a surface f : S → S is a homeomorphism
which in certain preferred local coordinates (defined off of a finite, f -invariant set)
is given by (x, y) 7→ (λx, λ−1y) for some λ > 1; see [9]. The number λ = λ(f) is
an invariant of f called the stretch factor.

Themapping class group of S, denoted Mod(S), is the group of isotopy classes of
orientation preserving homeomorphisms of S. For the closed orientable surface of



1716 Oberwolfach Report 30/2015

genus g, Sg, the group Mod(Sg) is the (orbifold) fundamental group of the moduli
spaceMg. Thurston’s classification theorem [9, 24] implies that the pseudo-Anosov
elements of Mod(Sg) (that is, the elements with pseudo-Anosov representative)
are precisely those infinite order elements with geodesic representatives in Mg,
with respect to the Teichmüller metric. Moreover, the length of the geodesic
corresponding to [f ] ∈ Mod(Sg) is exactly log(λ(f)). In particular, the length
spectrum of Mg is

L(Sg) = {log(λ(f)) | f : Sg → Sg pseudo-Anosov}.

According to work of Ivanov [15] and Arnoux–Yoccoz [4], this is a closed discrete
subset of R. In particular there is a smallest element denoted ℓg. While the exact
value of ℓg is only known for g = 1 and g = 2 (see [25, 6]), in general it is unknown.
On the other hand, Penner [19] described the behavior of ℓg as g → ∞:

Theorem (Penner). For all g ≥ 1 we have ℓg ≍ 1
g .

This means that there are constants 0 < C1 < C2 <∞ such that C1

g ≤ ℓg ≤ C2

g .

Penner’s constants are explicit, and since publication of his paper [19], the value
of C2 has been improved, with the best known constants coming from the work of
Hironaka [14], Aaber–Dunfield [1], and Kin–Takasawa [16].

We are interested in qualitative information about the elements realizing ℓg.
More broadly, we want to understand the qualitative information about the pseudo-
Anosov homeomorphisms f : Sg → Sg with log(f) ≍ 1

g . To this end, we investigate

how the stretch factor λ(f) is related to other invariants of f . Perhaps the most
studied, classical invariant is the action on the first homology f∗ : H1(Sg) → H1(Sg)
(here we take H1(Sg) = H1(Sg;R) ∼= R2g, but our results remain valid with other
coefficients; see [3]).

The stretch factor is related to the action on homology by the following; see [9].

Theorem (Manning). For any pseudo-Anosov f : S → S, we have λ(f) ≥ λ(f∗),
where λ(f∗) is the spectral radius of the linear transformation f∗.

This is very useful as it provides a simple method for showing that λ(f) is large.
There are, however, pseudo-Anosov homeomorphisms f : S → S with f∗ = Id
(see [24]). In this case, the inequality may provides no information. In fact,
the Torelli group, I(S) < Mod(S), consisting of those elements represented by
homeomorphisms f with f∗ = Id, is quite large and contains many pseudo-Anosov
elements. In [8], the stretch factors of the pseudo-Anosov homeomorphisms in the
Torelli group were analyzed. Writing

ℓIg = min{log(λ(f)) | f : Sg → Sg pseudo-Anosov, and f∗ = Id}

we may state the main result of [8], which provides a sharp contrast to Manning’s
and Penner’s results.

Theorem (Farb–Leininger–Margalit). For all g ≥ 2, ℓIg ≍ 1.

Ellenberg [7] asked whether there was a “linear interpolation” between Penner’s
result and this one, in terms of the dimension of the fixed subspace of homology.
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More precisely, let κ(f) = dim(Fix(f∗)), where Fix(f∗) < H1(S) is the subspace
of elements fixed by f∗. Then we set

ℓg(k) = min{log(λ(f)) | f : Sg → Sg pseudo-Anosov, and κ(f) ≥ k}.

Note that ℓg(0) = ℓg and ℓg(2g) = ℓIg . The main result of [3] answers Ellenberg’s
question with the following.

Theorem (Agol–Leininger–Margalit). For all g ≥ 2 and 0 ≤ k ≤ 2g, we have
ℓg(k) ≍

k+1
g . More precisely,

.00031

(

k + 1

2g − 2

)

≤ ℓg(k) ≤ 12 log(2)

(

k + 1

2g − 2

)

.

The proofs of both inequalities appeal to the rich geometric structure of the
mapping torus of a pseudo-Anosov homeomorphism, drawing on the results from
[2, 4, 5, 10, 11, 12, 13, 17, 18, 20, 21, 22, 23]. For complete details, see [3].
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Some algebraic geometry related to the mapping class group

Eduard Looijenga

This is a summary of the talk I gave in response to the request of the organizers
of this workshop to survey the algebro-geometric aspects of the mapping class
group. I am grateful to them for asking me to do so, as this led me to revisit
(and to rethink) a few these connections. But the reader be warned that although
I have tried to tailor this survey to an audience of geometers of a non-algebraic
denomination, it remained one au goût du jour and consisted in the end more of
asking questions than of stating results.

A moduli space of curves. Let S be an oriented surface of hyperbolic type, in
the sense that it has finite Betti numbers and each connected component has
negative Euler characteristic. We consider complex structures on S compatible
with the given orientation that make it in fact a nonsingular complex algebraic
curve (in other words, a compact Riemann surface minus a finite subset). The
group Diff+(S) of orientation preserving diffeomorphisms of S acts in an evident
manner on this space of complex structures. The Teichmüller space T(S) of S is
the orbit space of the identity component Diff◦(S) of this group, in other words,
the space of isotopy classes of such structures. It is a basic fact that T(S) is
contractible and comes with a natural structure of a complex manifold. The
action of Diff+(S) on T(S) clearly descends to one of the mapping class group
Γ(S) := Diff+(S)/Diff◦(S) of S. This action is proper and virtually free and hence
the orbit space is M(S) = Γ(S)\T(S) is an orbifold that is a virtual Eilenberg-Mac
Lane space for Γ(S). In particular, H•(Γ(S)) ∼= H•(M(S)) (in this note we shall
always take (co)homology with Q-coefficients).
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Deligne-Mumford compactification. A compact 1-dimensional submanifold A ⊂ S
is necessarily a disjoint union of a finitely many embedded circles. Say that A is
admissible if S − A is of hyperbolic type (this includes the case A = ∅). Then
Γ(S − A) and T(S − A) are defined and only depend on the isotopy class (i.e.,
the Diff◦(S)-orbit) [A] of A. We express this by sometimes writing Γ(S − [A])

and T(S− [A]) instead. Consider the disjoint union of the T(S) of the Teichmüller
spaces T(S−[A]), where [A] runs over all the admissible isotopy classes. The group
Γ(S) acts in this union and the Γ(S)-stabilizer of T(S − [A]) maps to a subgroup
of Γ(S − [A]) of finite index with kernel the (free) abelian group generated by
the Dehn twists along the connected components of [A]. There is a natural Γ(S)-
invariant topology on T(S) which has the property that the closure of T(S −
[A]) meets T(S − [B]) if and only if [A] is represented by a union of connected

components of B. In view of the preceding, the action of Γ(S) on T(S) is not
proper (unless the only admissible A is the empty set, but this happens only when

S is a thrice punctured sphere). Yet the orbit space M(S) has a natural complex

orbifold structure extending the one on M(S). With this structure, M(S) is even
projective. In particular, it is compact and this explains the noun in its name:
the Deligne-Mumford compactification of M(S). The boundary M(S) − M(S) is
a normal crossing divisor (in the orbifold sense) whose natural partition (which
counts the number of branches passing through a given point) coincides with the

partition inherited from T(S). The stratum T(S − [A]) has an algebro-geometric
interpretation: it parametrises complex structures on the quotient of S obtained
by contracting each connected component of A to a point such that this point
becomes an ordinary double point.

A virtue of this approach is that it behaves in a straightforward manner under
passage of subgroups of finite index: if Γ ⊂ Γ(S) is of finite index, then MΓ :=

Γ\T(S) will be a finite cover of M(S) and MΓ := Γ\T(S) is a projective orbifold
compactification of MΓ with a normal crossing boundary in the orbifold sense
such that the evident map MΓ → M(S) is like a ramified cover (a finite, flat
and surjective morphism). In particular, MΓ is quasi-projective, so that Hk(Γ) ∼=
Hk(MΓ) comes with a mixed Hodge structure whose weights are ≥ k and ≤ 2k.

Purity of stable classes. We now take S connected. Precisely, given nonnegative
integers g, n with 2g − 2 + n > 0, we fix a compact connected oriented surface
Sg of genus g and pairwise distinct points x1, . . . , xn on Sg. Then Sg,n := Sg −
{x1, . . . , xn} is hyperbolic in the sense above. The connected component group of
the group of orientation preserving diffeomorphisms of Sg which fix each xi can
be regarded as a normal subgroup of Γ(Sg,n) with factor group the permutation
group of degree n. We denote this group Γg,n and write Mg,n for MΓg,n

. If we
choose x = xn+1 ∈ Sg,n, then we have a forgetful map Mg,n+1 → Mg,n (fill x
back in) which may in some sense be thought of as a universal family of punctured

Riemann surfaces. This naturally extends as a morphism π : Mg,n+1 → Mg,n

between their Deligne-Mumford compactifications whose restriction over Mg,n,
π : π−1Mg,n → Mg,n may, again in some sense, be understood as a universal
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family of pointed Riemann surfaces: the difference π−1Mg,n −Mg,n+1 consists of
the images of pairwise disjoint sections s1, . . . , sn of π. Each si extends to a section
s̄i of π̄ that takes it values in the Deligne-Mumford boundary1.

A complex structure on Sg,n defines one on T ∗
xSg,n. This gives rise to a line

bundle L on Mg,n+1, whose Chern class we denote by ψ̄ ∈ H2(Mg,n+1). From this

class we obtain tautological classes on Mg,n: ψ̄i := s∗i (ψ̄) ∈ H2(Mg,n) of Hodge

type (1, 1) (i = 1, . . . , n) and κ̄r := π̄∗(ψ̄
r+1) ∈ H2r(Mg,n) of Hodge type (r, r)

(r = 1, 2, . . . ). Here π̄∗ is ‘integration along the fibers’ (when we use Poincaré
duality on both source and target to identify cohomology with homology, then
this is just the induced map on homology). These classes define a homomorphism
of graded Q-algebras:

Q[K1,K2, . . . ]⊗Q[Ψ1,Ψ2, . . . ,Ψn] → H•(Mg,n).

The theorem of Madsen-Weiss tells us (when combined with the theorems of Harer)

that its composite with the restriction mapH•(Mg,n) → H•(Mg,n) is an isomorph-
ism in degrees < 2g/3. Before this was proved, it was shown by Pikaart [5] that

H•(Mg,n) → H•(Mg,n) is onto in this range (so that the mixed Hodge structure on
this part of H•(Mg,n) is ‘pure’). A simple instance of Pikaart’s argument appears
in the following observation.

Suppose M is a nonsingular complex variety and M is a nonsingular compac-

tification such that D := M −M is a normal crossing divisor. If the first Chern

class of the normal bundle of Dreg in M is nonzero on every connected component

of Dreg, then the map H1(M) → H1(M) is an isomorphism. In particular, when

H1(M) 6= 0, then there exists a nonzero holomorphic differential on M .

As Putman noted [6], this applies to the orbifold M = MΓ and its Deligne-
Mumford compactification when Γ ⊂ Γg,n of finite index and g ≥ 3. This is of
interest in view of the Ivanov conjecture which states that then H1(Γ) = 0. So

when the conjecture fails for Γ, then MΓ admits a nonzero holomorphic differential
(as an orbifold). This leads us to ask:

Question 1. Let for g ≥ 2, ∆g ⊂ Γg be a subgroup of finite index that is
‘sufficiently natural’ in its dependence on g (for instance, the kernel of the Γg-

action on H1(Sg;Z/m) for a fixed m). Is then Hk(M∆g
) → Hk(M∆g

) ∼= Hk(∆g)

onto (or equivalently, is Hk(∆g) pure) when g ≫ 0?

Representations of the mapping class group. The Birman exact sequence

1 → π1(Sg,n, x) → Γg,n+1 → Γg,n → 1

can be regarded as the fundamental group sequence of the fibration Mg,n+1 →
Mg,n. Let K ⊂ π1(Sg,n, x) be a subgroup of finite index that is normal in Γg,n+1

and put G := π1(Sg,n, x)/K (a finite group) andNK := Γg,n+1/K. We have then a

1To be precise, s̄i is induced from a section of T(Sg,n+1) → T(Sg,n) that is given by an

embedded closed disk D ⊂ Sg − {x1, . . . , x̂i, . . . , xn} whose interior D̊ has been endowed with

a complex structure and contains xi and x: compose the isomorphism T(Sg,n) ∼= T(Sg,n r D)
defined by the natural isotopy class of diffeomorphisms Sg,n → Sg,n r D with the embedding

T(Sg,n rD) →֒ T(Sg,n+1 − ∂D) ⊂ T(Sg,n+1) defined by the complex structure on D̊.
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G-covering SK → Sg,n and NK can be understood as the group of mapping classes
of SK that lift one of Sg,n. Such lifts are unique up to a covering transformation
and the exact sequence 1 → G → NK → Γg,n → 1 expresses this fact. The

group NK acts on G by group automorphisms; the kernel N ♭
K of this action is

the centraliser of G in NK and is clearly of finite index in NK . The covering
SK → Sg,n extends naturally to a ramified covering SK → Sg (with SK a compact

oriented surface) so that HK := H1(SK) defines a symplectic representation ρK :
NK → Sp(HK) with ρK(N ♭

K) ⊂ SpG(HK). This makes ρ(N ♭
K) appear as the

monodromy of a family CK → MΓ with fiber SK , where Γ ⊂ Γg,n is the image of

N ♭
K . According to Deligne such a representation is semisimple. Hence the Zariski

closure GK ⊂ Sp(HK) of ρ(NK) is also semisimple with its identity component
G◦
K mapping to SpG(HK). We pose the following questions without offering a

conjectured answer.

Question 2. Is H
G

◦

K

K = {0}, when g ≥ 3? This is a reformulation of a question
asked by Putman-Wieland [7]; they showed that a yes answer implies that the
Ivanov conjecture holds in genus ≥ 4. This question is also of interest to algebraic
geometers because this property is detectable infinitesimally via the period map:

a theorem of Deligne [2] implies that the Hodge structure that we get on H
G

◦

K

K

when we give Sg a complex structure is independent of that complex structure. As
Avila-Matheus-Yoccoz observed (personal communication), the answer is no for
g = 2: an example is provided by the cyclic cover of degree 6 of the Riemann
sphere which totally ramifies in 6 distinct points; such a cover factors through the
degree 2 cover, which is in fact the general genus 2 curve (this example appears in
the work of Deligne-Mostow).

Question 3. Do we have G◦
K = SpG(HK)?

Question 4. Is ρ(NK) arithmetic in GK?

Note that a ‘yes’ to Q3 implies also a ‘yes’ to Q2 and so the Ivanov conjecture
would then follow for g ≥ 4. Some time ago [4] I proved that the answer is yes
for both Q3 and Q4 when n = 0 and G abelian. The recent work of Grünewald-
Larsen-Lubotsky-Malestein [3] should furnish many examples with n = 0 and G
non-commutative.

Potential quantum representations. Let α ⊂ Sg,n be an oriented embedded circle
and denote by τα the associated Dehn twist. Every connected component α̃ of
p−1α has the same degree mα over α and hence τ̃α :=

∏

α̃/α τα̃ is lift of τmα
α which

lies in N ♭
K . The action of this lift on HK is a unipotent transformation given by

the Picard-Lefschetz formula. Its associated 1-parameter subgroup of GK is

Tα : Ga →֒ GK , Tα(λ) : v 7→ v + λ
∑

α̃/α

([α̃] · v)[α̃].

The subgroup DK ⊂ GK generated by such 1-parameter groups is a normal con-
nected subgroup of GK that is defined over Q. Hence DK is also semisimple.
Marco Boggi and I [1] observed that the subspace PK ⊂ HK spanned by the
classes [α̃] that are obtainable as above (so with also α varying) is the symplectic
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perp of HDK

K . By Deligne’s semisimplicity theorem, PK must then be nondegen-
erate for the symplectic form on HK so that we have a symplectic decomposition

HK = PK⊕HDK

K with the second summand containing the (possibly trivial)H
G

◦

K

K .
In view of the dependence of Q3 on the Ivanov conjecture, it is more reasonable

to first address the following

Conjecture. For g ≥ 3, DK = SpG(PK) and ρ(NK) ∩DK is arithmetic.

Presumably the results of [3] imply that for n = 0 this conjecture has a positive
answer when asked for the part of PK on which G acts through a quotient with
at most g − 1 generators.

Notice that the group GK acts on HDK

K via the semisimple Q-group GK/DK .
Since Γg,n is generated Dehn twists, NK is generated by lifts of Dehn twists and
as we just saw, any lift of τα ∈ Γg,n in NK maps to a torsion element of GK/DK

of order divisible by mα. On the other hand, the image of NK in GK/DK is also
Zariski dense and so we ask:

Question 5. Are there any examples for which HDK

K 6= 0 and if so, with G◦
K/DK

acting nontrivially on it?

The cases covered by [4] and [3] do not produce such examples, for we then have

PK = HK so that HDK

K = 0 (and Q3 is equivalent to our conjecture). I have no
idea what the situation is in general2, but I would in fact be pleased if the answer
to the stronger version of Q5 were yes. For we then obtain representions of NK

(some of which could define a projective representation of Γg,n) in H
DK

K with the
property that the lifts of Dehn twists act with finite order and since the quantum
representations also have this property, it is then natural to ask:

Question 6. Is any quantum representation of the mapping class group (i.e.,
one arising from the theory of conformal blocks) obtained as a complex subrepres-
entation of this type?

The quantum representations are also conjectured to be unitary and indeed,
we would then expect this inner product to come from the intersection pairing on

H
G

◦

K

K (yielding a compact factor of G◦
K/DK(R)).

References

[1] M. Boggi, E. Looijenga: In preparation.
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2After my talk Julien Marché referred me to his Mathoverflow posting of January 2012
(http://mathoverflow.net/questions/86894/), where he asks (in the somewhat more restricted
context of no ramification) whether PK = HK . Boggi and I had been wondering about that,
too. Note that in view of the example mentioned above, we have to assume in our setting (where
we allow ramification) that g > 2. It is a bit of a scandal that the answer is not known.



Discrete Groups in Low-Dimensional Topology and Arithmetic Lattices 1723

[6] A. Putman: A note on the abelianizations of finite index subgroups of the mapping class

group. Proc. Amer. Math. Soc. 138 (2010), 753–758.
[7] A. Putman, B. Wieland: Abelian quotients of the mapping class group and higher Prym

representations, J. Lond. Math. Soc. 88 (2013), 79–96.

Arithmetic quotients of the mapping class group

Alexander Lubotzky, Justin Malestein

(joint work with Fritz Grunewald, Michael Larsen)

It is a classical theorem that there exists a surjective homomorphism Mod(Σg) →
Sp(2g,Z) arising from the action of the mapping class group, Mod(Σg), on H1(Σg,
Z). We show that this is only one example in a rich collection of virtual arith-
metic quotients of Mod(Σg). Specifically, we produce a “machine” which, for any
finite group H with fewer than g generators and an irreducible Q representation
r, produces an arithmetic group G(O), a finite index subgroup Γ < Mod(Σg),
and a representation ρH,r : Γ → G(O) whose image is of finite index. The clas-
sical representation Mod(Σg) → Sp(2g,Z) corresponds to the choice of the trivial
representation of H .

The algebraic group G is produced, for nontrivial representations r, as fol-

lows. The group ring Q[H ] is isomorphic to a product Q ×
∏ℓ

i=1Ai of simple
Q-algebras where the factors are in one-to-one correspondence with irreducible Q

representations ri. We equip the module A2g−2
i with an Ai-valued skew-Hermitian

sesquilinear form such that on an Ai basis x1, . . . , xg−1, y1, . . . , yg−1 all pairings
are zero except that 〈xj , yj〉 = −〈yj , xj〉 = 1 for all j. The algebraic group G

is AutAi
(A2g−2

i , 〈−,−〉). (More details about G are available in [1]). By input-
ting various pairs H, r into our machine, we produce the following types of virtual
arithmetic quotients.

Corollary 1 ([1]). For all g ≥ 1 and m ∈ N, there exist virtual surjections of
Mod(Σg) onto arithmetic groups of type Sp(2m(g − 1)), SU(m(g − 1),m(g − 1)),
and SO(2m(g − 1), 2m(g − 1)).

The representations ρH,r are easy to define but difficult to understand. Given a
surjective map p : π1(Σg) → H where H is a finite group, there is a corresponding

regular (Galois) cover Σ̂ → Σg with deck group H . Any mapping class preserving
ker(p) and acting trivially as an automorphism on H can be lifted to a mapping

class of Σ̂ which lies in the centralizer of H . Modulo some technical details, there
is a well-defined homomorphism on a finite index subgroup Γ → CentMod(Σ̂)(H),

and we can compose to get a representation ρH,p : Γ → CentSp(2ĝ,Q)(H). By a

theorem of Chevalley and Weil, it follows that H1(Σ̂,Q) ∼= Q2 ⊕ Q[H ]2g−2 as a
Q[H ]-module. With some work, one can show that the target group decomposes as

a product Sp(2g,Q)×
∏ℓ

i=1 AutAi
(A2g−2

i , 〈−,−〉) for an appropriate sesquilinear
skew-Hermitian form 〈−,−〉.
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Theorem 2 ([1]). Let g ≥ 3 and suppose p is φ-redundant. Then the map ρH,p,i

which is the projection of ρH,p onto the factor G = AutAi
(A2g−2

i , 〈−,−〉), is a
virtual epimorphism onto G(O).

Here, “φ-redundant” means that p factors through a surjective map φ : π1(Σg) →
Fg to p′ : Fg → H where p′ kills some generator of Fg. Going back to our machine,
given an H with fewer than g generators and an r, one can find a φ-redundant
p : π1(Σg) → H , and then ρH,r = ρH,p,i where i is the index of the factor Ai corres-
ponding to r. In an earlier paper, Looijenga showed, for the special case of abelian
H (without requiring p to be φ-redundant), that ρH,p is a virtual epimorphism [4].

One difficulty in establishing surjectivity is that it is unclear what lifts of (powers
of) Dehn twists generate. In addition to analyzing a few Dehn twists, one key step
in our proof uses the φ-redundancy of p to relate the problem to one on Aut(Fg).
In [2], Grunewald and Lubotzky study virtual representations of Aut(Fg) to G(O)
where G = GLg−1(A

op
i ). These representations are defined in a similar manner as

for Mod(Σg), and they show (in the case of redundant maps Fg → H) that the
image contains a finite index subgroup of the elements of reduced norm 1 in G(O).
After some work, one can use this to deduce that the image of ρH,p (for Mod(Σg))
contains a large number of parabolic elements. Combining this with the image of
some Dehn twists and some further arguments, one can deduce arithmeticity. (See
[1] for details.)

Our theorem can be used to recover an earlier result of Masbaum and Reid
that every finite group is the quotient of a finite index subgroup of Mod(Σg) for
all g ≥ 1 [7]. In earlier works, the representations ρH,p were used to prove that
Mod(Σ2) virtually maps onto a free group [8, 3] and that pseudo-Anosov classes
are generic in the Torelli subgroup of Mod(Σg) [6, 5].

In general, it remains open whether or not ρH,p is virtually surjective (onto
each component of) CentSp(2ĝ,Z)(H) for arbitrary H, p. While it is unclear what
the answer should be, an affirmative answer (that includes surfaces with a single
boundary component) would, via a result of Putman and Wieland [9], prove a
conjecture of Ivanov that mapping class groups (for g ≥ 3) do not virtually surject
onto Z.

As ρH,p is a generalization of the classical Sp(2g,Z) representation, so is each
kernel a generalized “Torelli” group. Moreover, as established in [1], these are
different from the terms of the Johnson filtration. Thus, we may now investigate
all these new “Torelli” groups as we have investigated the original Torelli group.
E.g. are they finitely generated? Can we compute their first homology groups or
cohomological dimension, etc.?
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Introduction to quantum representations of mapping class groups

Julien Marché

I reviewed some motivations and examples of constructions of finite-dimensional
unitary and projective representations of the mapping class group of a surface of
genus g.

The geometric origin of such representations comes from the “quantization of
character varieties”. Given a compact Lie group G, the character variety is the
space of conjugacy classes of representations of the fundamental group of the
surface into G. This space is a singular symplectic manifold on which the mapping
class group acts naturally. There are various procedures for quantizing the space at
level k and the action, which produce the so-called quantum representations. I gave
the example of the group U(1), which can be written down explicitly using theta
functions and produces the discrete metaplectic representations. Then I presented
a procedure called “universal construction” which constructs a representation of
the mapping class group from an invariant of closed 3-manifolds. With some luck,
this gives quantum representations. I developed two examples, one being related to
the case of a finite group G, the other one – more involved – using spin structures
and the Rochlin invariant of 3-manifolds. These representations already present
general features of quantum representations; that is, Dehn twists have finite order
and the matrices have entries in some cyclotomic ring of integers.

Then I explained one possible construction of the quantum representations for
SU2 at level k which rely on the combinatorics of the Kauffman bracket at a
root of unity of order 4k. One can find an explicit basis for this vector space
whose dimension is given by the Verlinde formula, which I recalled. Finally, I
listed the main properties of these representations and finished my talk with three
open questions, the detection of Thurston’s classification of mapping classes, the
arithmeticity of the image of quantum representations and the τ -property for the
family of quantum representations.
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Constructing hyperbolic four-manifolds

Bruno Martelli

(joint work with Alexander Kolpakov)

As a consequence of Margulis’s Lemma, every finite volume complete hyperbolic
n-manifold M is diffeomorphic to the interior of a compact n-manifold N with
(possibly empty) boundary ∂N = X1 ⊔ . . . ⊔ Xk. Each Xi has an induced flat
metric (unique up to rescaling), and the end of M near Xi is a cusp, that is a
portion isometric to Xi× [0,+∞) where the slice Xi× t is just the flat Xi rescaled
by e−2t.

In particular, each Xi admits a flat metric and hence by Bieberbach’s Theorem
it is finitely covered by an (n− 1)-torus. Using Selberg’s Lemma, up to passing to
a finite cover we can ensure that every Xi is indeed an (n− 1)-torus.

Complete hyperbolic manifolds – with or without cusps – exist in every dimen-
sion n ≥ 2. Moreover, in every dimension n ≥ 4 there are only finitely many ρn(V )
of them with volume bounded by V . It is then natural to estimate the growth of
the function ρn(V ): the following result was proved in [1].

Theorem 1. For every n ≥ 4 there are constants 0 < C1 < C2 such that

CV lnV
1 < ρn(V ) < CV lnV

2

for all sufficiently big V .

As we mentioned above, the theorem is also valid if we restrict our attention
either to closed, or to cusped hyperbolic n-manifolds only.

Thanks to this theorem, we know that there are plenty of cusped hyperbolic n-
manifolds in every dimension n, and we now would like to refine this investigation
by controlling the number of cusps.

Let ρcn(V ) be the number of complete hyperbolic n-manifolds with exactly c > 0
cusps with volume smaller than V . What do we know about the function ρcn(V )?
We can contribute in [2] with an answer in dimension n = 4.

Theorem 2. For every c ≥ 1 there are constants 0 < C1 < C2 such that

CV lnV
1 < ρc4(V ) < CV lnV

2

for all sufficiently big V .
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This shows in particular that there exist hyperbolic 4-manifolds with any given
number c > 0 of cusps, that they are actually infinitely many, and that their
number grows with V as much as possible.

The question of estimating ρcn(V ) in higher dimension remains widely open: for
instance, no example of a single-cusped n-manifold is apparently known in any
dimension n ≥ 5. One should compare with the following striking result of Stover
[4]:

Theorem 3. For every c > 0 there are only finitely many commensurability classes
of arithmetic hyperbolic manifolds (of any dimension!) with at most c cusps.

This shows in particular that there are no c-cusped arithmetic hyperbolic man-
ifolds above a certain dimension n that depends only on c, for every c > 0.

The proof of Theorem 2 uses a peculiar and beautiful four-dimensional right-
angled polytope C, the ideal 24-cell. This regular hyperbolic Coxeter polytope
has already been used successfully to provide the largest census of hyperbolic
four-manifolds known in the literature [3]: the Ratcliffe–Tschantz paper contains
a table of 1171 hyperbolic cusped manifolds, all obtained by pairing the facets of
C. All the manifolds in this table have either 5 or 6 cusps.

To build plenty of hyperbolic four-manifolds with any given number c > 0 of
cusps, we note that C has 24 octahedral facets, naturally distributed into three
sets of eight pairwise disjoint ones, which we color respectively in blue, red, and
green. We can pick any regular 8-valence graph G as a pattern and glue some
copies of C along the blue facets via this pattern. Then we double the boundary
of the resulting object along the red facets, and then we double again along the
green ones. The result is a cusped hyperbolic four-manifold, whose number c of
cusps can be controlled combinatorially by choosing carefully the initial gluings of
the blue facets.

There are more than Cv ln v regular 8-valence graphs with v vertices, hence via
this method we can construct more than CV lnV manifolds with volume at most
V . To prove that different graphs G give rise to non-isometric manifolds, we prove
that G is intrinsically determined by the canonical Epstein–Penner decomposition
of the manifold.
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Maximal representations of complex hyperbolic lattices

Maria Beatrice Pozzetti

In the talk I discussed the results of [8] about maximal representations of a com-
plex hyperbolic lattice Γ with values in SU(m,n). It is well known that lattices
in SU(1, p) = Isom(Hp

C) are in general not superrigid, for example some complex
hyperbolic lattices surject onto nonabelian free groups, and hence their repres-
entation theory is extremely wild. In general not much is known about linear
representations of these groups.

A Lie group H is Hermitian if its associated symmetric space X admits a
complex structure. If the target of a representation ρ of Γ has this property, it is
possible to use the Kähler form ωX of X to define a characteristic invariant on the
representation variety Hom(Γ, H), the socalled Toledo invariant T (ρ). In the case
of cocompact lattices the definition of T (ρ) is straightforward:

T (ρ) =
1

p!

∫

Γ\Hp

C

f∗ωX ∧ ωp−1
H

p

C

for any ρ-equivariant map f : Hp
C → X (it is easy to check that, since X is con-

tractible, the definition of T does not depend on the choice of f). The situation is
more delicate in the case of nonuniform lattices, but Burger and Iozzi managed to
show [1], with the aid of bounded cohomology, that in all cases T (ρ) is well defined
and satisfies the Milnor–Wood inequality |T (ρ)| ≤ rk(X)vol(Γ\Hp

C). Representa-
tions for which the equality holds are particularly interesting and are referred to
as maximal representations.

Maximal representations of lattices in SU(1, p) are conjecturally rigid if p > 1,
for target of rank one this was proven independently by Koziarz and Maubon [6]
and by Burger Iozzi [2], extending previous results of Goldman and Millson [4]
and Corlette [3]. In the case of cocompact lattices Koziarz and Maubon were also
able in [7] to prove rigidity for maximal representations in classical Hermitian Lie
groups of rank 2. In [8] I confirmed, under some mild nondegeneracy hypothesis,
that maximal representations of complex hyperbolic lattices are superrigid:

Theorem 1. Let Γ be a lattice in SU(1, p) with p > 1. If m is different from
n, then every Zariski dense maximal representation of Γ into SU(m,n) is the
restriction of a representation of SU(1, p).

In particular this implies that the only Zariski dense maximal representation of
a complex hyperbolic lattice is the lattice embedding in SU(1, p), and in general
all maximal representations in SU(m,n) are diagonal embeddings up to factors of
tube type in the Zariski closure and homomorphisms in the compact centralizer of
the image. A notable corollary of Theorem 1 is the following local rigidity theorem,
which is a generalization of a result of Klingler [5]:

Corollary 2. Let Γ be a lattice in SU(1, p), with p > 1, and let ρ be the restriction
to Γ of the diagonal embedding of m copies of SU(1, p) in SU(m, pm+ k). Then ρ
is locally rigid.
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The strategy of my proof of Theorem 1 is similar Margulis’ proof of superrigidity
for higher rank lattices: in order to show that a representation ρ : Γ → H extends
to the group G in which Γ sits as a lattice, it is enough to exhibit a ρ-equivariant
algebraic map φ : G/P → H/L for some parabolic subgroups P of G and L of
H . The only compact SU(1, p)-space is the boundary ∂Hp

C consisting of isotropic
lines for the Hermitian form defining SU(1, p), in the case of SU(m,n) the compact
space that turns out to be relevant to this problem is the socalled Shilov boundary
Sm,n which identifies with the set of maximal isotropic subspaces of Cm+n. If
p > 1 and n > m these two spaces carry an interesting incidence structure: given
two (transversal) points x, y in such a space the line containing them is the subset
of isotropic subspaces contained in the linear span 〈x, y〉. In the case of ∂Hp

C this
incidence structure was first studied by E.Cartan, who called these lines chains.

Exploiting work of Clerc and Ørsted and properties of bounded cohomology,
Burger and Iozzi proved that a measurable boundary map that is equivariant with
respect to a maximal representation needs to preserve this incidence geometry and
hence the main step in my proof of Theorem 1 is the proof of the following theorem
which seems, at first glance, unrelated.

Theorem 3. Let p > 1, 1 < m < n and let φ : ∂Hp → Sm,n be a measurable map
whose essential image is Zariski dense. Assume that for almost every triple with
dim〈x, y, z〉 = 2, it holds dim〈φ(x), φ(y), φ(z)〉 = 2m. Then φ coincides almost
everywhere with a rational map.

In the talk I also explained one main idea in the proof of Theorem 3 for which
I here refer to [8].
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The high dimensional cohomology of SLnO

Andrew Putman

(joint work with Thomas Church, Benson Farb)

Let O be a number ring and let ν be the virtual cohomological dimension of SLnO.
We discussed the following two contrasting theorems, which appear in our paper
[1] (joint with Church and Farb). Denote by clO the class number of O.

Theorem 1. dimQ Hν(SLnO;Q) ≥ (clO− 1)n−1.

Remark 2. Theorem 1 is classical and not particularly difficult for n = 2. Diffi-
culties arise for n ≥ 3 because of the complicated topology of the boundary of the
Borel–Serre compactification of the associated locally symmetric space.

Theorem 3. Assume that clO = 1. Also, assume either that O ⊂ R or that O is
Euclidean. Then Hν(SLnO;Q) = 0.

Remark 4. Theorem 3 was originally proved by Lee–Szczarba [2] when O is Euc-
lidean. However, our proof is quite different from their proof; indeed, our proof is
also able to show vanishing for certain nontrivial coefficient systems.
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4-manifolds can be surface bundles over surfaces in many ways

Nick Salter

1. A brief tour of surface bundles

Definition 1. A surface bundle is a fiber bundle

Σg → E → B

with fiber Σg, a surface of genus g. For the purposes of the talk, B (and hence E)
will be a smooth manifold, and also g ≥ 2.

The fundamental invariant associated to a surface bundle is its monodromy
representation.

Definition 2. Let Σg → E → B be a surface bundle. The monodromy represent-
ation is the homomorphism

ρ : π1B → Mod(Σg)

that records the isotopy class of the diffeomorphism obtained by parallel transport-
ing the fiber over the basepoint around loops in B (here Mod(Σg) denotes the
mapping class group of Σg).
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Surface bundles appear in various contexts in 4-dimensional topology.

Theorem 3 (Chern, Hirzebruch, Serre). Suppose

M → E → N

is a fiber bundle with M,E,N all closed oriented manifolds. Suppose the action of
π1N on H∗(M) is trivial. Then the signature σ(E) is computed as

σ(E) = σ(M)σ(N).

(This formula is valid even when the dimensions of M,E,N are not all divisible
by 4, under the stipulation that σ = 0 in these cases).

An example of Atiyah and Kodaira shows that the assumption on the action of
π1N on H∗M is necessary.

Theorem 4 (Atiyah, Kodaira). There exists a 4-manifold E that is the total space
of a surface bundle over a surface, for which σ(E) 6= 0.

The construction proceeds by taking a suitable fiberwise-branched coveringE →
Σg ×Σg of a product. The key is to equip Σg with a free involution τ , so that for
each z ∈ Σg, the points z, τ(z) are distinct. As z varies in Σg, this parametrizes
different points of branching, giving rise to a nontrivial surface bundle. In fact,
one can check that the projection onto either factor in Σg ×Σg yields two distinct
surface bundle structures on E.

2. The monodromy-topology dictionary

The classifying space BDiff(Σg) for surface bundles has a remarkable property.

Theorem 5. BDiff(Σg) is an Eilenberg-MacLane space K(Mod(Σg, 1).

Corollary 6. Σg-bundles over B are in 1 − 1 correspondence with monodromy
representations ρ : π1B → Mod(Σg).

This raises the question of translating between geometric and topological prop-
erties of surface bundles on the one hand, and algebraic/geometric/dynamical
properties of the monodromy representations on the other. The main question
of the talk is in this spirit: what properties of the monodromy representation are
related to the existence of more than one surface bundle structure on the total
space?

3. Multiple fiberings in dimensions 3 and 4

After Thurston, it is known that if M3 fibers as a Σg-bundle over S1, and if
b1(M) ≥ 2, then M in fact has infinitely many distinct surface bundle structures.
The situation in 4 dimensions is quite different.

Theorem 7 (F.E.A. Johnson). Every 4-manifold E fibers as a surface bundle over
a surface in finitely many ways.1

1I am glossing over when I consider two fiberings to be equivalent. Fiberwise-diffeomorphism
is suitable for these purposes.
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Johnson’s argument provides an upper bound on the number of fiberings that
is superexponential as a function of d = χ(E), the Euler characteristic.

4. Obstructions

The following theorems provide obstructions for a surface bundle over a surface
to admit additional fiberings; these criteria are decidable using only the datum of
the monodromy representation.

Theorem 8 (S—). Let Σg → E → Σh be a surface bundle with monodromy ρ.
Suppose the invariant fiber cohomology (H1Σg)

ρ = {0}. Then E has no other
fiberings.

Theorem 9 (S—). Suppose Σg → E → Σh has monodromy contained in the group
Kg generated by twists about separating curves. Then either E ∼= Σg ×Σh, or else
E has no other fiberings.

5. Constructions

To complement the non-existence results of the previous section, the following
theorem provides examples of 4-manifolds that have arbitrarily many fiberings as
surface bundles.

Theorem 10 (S—). For any n, there are distinct integers g1, . . . gn, and a 4-
manifold En such that En fibers over surfaces B1, . . . Bn with fibers of genera
g1, . . . , gn respectively.

The construction methods can be done “efficiently” with respect to the Euler
characteristic of χ(En), in the sense that the above theorem furnishes an expo-
nential lower bound on the number of fiberings, to complement F.E.A. Johnson’s
superexponential upper bound.

The construction method is similar in spirit to that of Atiyah and Kodaira. In
this setting, one performs a fiberwise connect-sum of two product bundles Σg ×
Σg, varying the points of connection as in the Atiyah–Kodaira example. The
two projections Σg × Σg → Σg on each half of the bundle can be coherently
amalgamated, leading to 4 distinct surface bundle structures. This construction
can be suitably generalized to prove Theorem 10.

On arithmetically defined groups and their cohomology – some
examples, and some results

Joachim Schwermer

It was the aim of this talk to give a reasonably detailed account of a specific
bundle of investigations and results pertaining to arithmetic groups, the geometry
of the corresponding generalized locally symmetric space X/Γ attached to a given
arithmetic subgroup Γ ⊂ G of a reductive algebraic group G defined over some
algebraic number field k and its cohomology groups H∗(X/Γ, E), E a rational
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finite-dimensional representation of G. One way to gain insight into the cohomo-
logy of an arithmetic group is the study of Lefschetz numbers of homomorphisms
in cohomology induced be automorphisms of finite order of the underlying algeb-
raic group G/k. Of course, the computation of Euler characteristics is the most
prominent example [attached to the identity] but in most cases the Euler charac-
teristic vanishes; this is a consequence of the fact that in many cases the real rank
of the real Lie group G∞ differs from the one of its maximal subgroups. The idea
to use Lefschetz numbers in such cases goes back to Harder [1] in the case SL2/k;
it was put on firm grounds in the general framework by Rohlfs [5], [6], [7], later
on pursued in [8], [9], [10] in different directions. The method has had various
applications, ranging from the existence of cuspidal automorphic representations
in the case SL3/Q in 1983 [4] to a new proof of the rationality of the values of
the zeta-function ζF , F a totally real number field, at negative integers, a classical
result due to Siegel and Klingen.

As most recent examples for this approach to the cohomology of arithmetic
groups we discussed two results, they regard:

• Involutions of symplectic type on inner forms of the special linear group
over k

• the growth of the first Betti number of arithmetic hyperbolic 3-manifolds.

In the first case, dealt with by Kionke in [2], given a quaternion algebra D defined
over k, the matrix algebra A = Mn(D) is naturally endowed with an involution
τ the first kind, defined by the assignment (aij) 7→ (τc(aij))

t where τc denotes
the canonical involution on D. On the associated reduced norm-one group G,
an algebraic k–group, composition of τ with taking the inverse gives rise to an
automorphism τ∗ of order two on G. The real Lie group, given as the group of
real points of the Q–group Resk/Q(G) obtained by restriction of scalars, is of the
form

G∞ = SL2n(R)
s × SLn(H)r × SL2n(C)

t

where s resp. r denotes the number of archimedean places where D splits resp.
ramifies. The number of complex places is denoted by t. We note [k : Q] = s+r+t.
Let Γ(a) be a torsion-free principal congruence subgroup in G originating with an
integral ideal a in the ring of integers of k. If the rational representation E of
G is equipped with a compatible τ∗-action, the Lefschetz number of τ∗ on the
cohomology is defined. In [2], Kionke obtained the following results regarding this
integral number:

– L(τ∗,Γ(a), E) = 0 if k has at least one complex place, that is, t 6= 0
– If k is a totally real number field, then

L(τ∗,Γ(a), E) = 2−rN(a)n(2n+1)∆red(D)
n(n+1)

2 tr(τ∗|E)

n
∏

j=1

M(j, a, D)

where ∆red(D) denotes the signed reduced discriminant of D andM(j, a, D)
is a product of ζk(1− 2j) with Euler factors depending on the prime ideals
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dividing a and the non-archimedean primes not dividing a which ramify in
D. Moreover, L(τ∗,Γ(a), E) = 0 if and only if tr(τ∗|E) = 0.

This result has various applications, one of them gives a precise formula for the
genus of a compact Riemann surface of the type H/Γ(a). Another one is the result
by Siegel and Klingen alluded to above.

In the second case, dealt with in [3], we are concerned with arithmetically
defined hyperbolic 3-manifolds and corresponding Kleinian groups which originate
with orders in division quaternion algebras defined over some algebraic number
field E. More precisely, let F be a totally real algebraic number field, and let E be
a quadratic extension field of F so that E has exactly one complex place. Let Γ
be an arithmetic subgroup in the algebraic group SL1(D) where D is a quaternion
division algebra over E whose finite set of places ramified in D contains the set of
real places of E. We suppose that the norm NE/F (D), a central simple algebra
of degree 4 over F , has order 1 viewed as an element in the Brauer group Br(F ).
Thus, the F -algebra NE/F (D) is isomorphic to the matrix algebra M4(F ), that
is, it splits. By a result of Albert and Riehm, NE/F (D) splits if and only if there
is an involution of the second kind on D which fixes F elementwise. Let τ denote
this involution of the second kind. By definition of this notion, the restriction of
τ to the centre of D is of order 2, hence τ|E coincides with the non-trivial Galois
automorphism σ of the extension E/F . As Albert has proved, an involution of
the second kind on a quaternion algebra has a particular type. There exists a
unique quaternion F–subalgebra D0 ⊂ D such that D = D0 ⊗F E and τ is of
the form τ = γ0 ⊗ σ where γ0 is the canonical involution (also called quaternion
conjugation) on D0. The algebra D0 is uniquely determined by these conditions.

Then the main result in [3] reads as follows: there are a positive number κ > 0
and a nested sequence {Γi}i∈N of torsion-free, finite index congruence subgroups
Γi ⊂ Γ (whose intersection is the identity) such that the first Betti number of the
compact hyperbolic 3-manifold H3/Γi corresponding to Γi satisfies the inequality

b1(Γi) ≥ κ[Γ : Γi]
1/2

for all indices i ∈ N. Further, Γi is normal in Γ1 for all i ∈ N.
We actually prove more than the existence of such sequences, we explicitly con-

struct them using principal congruence subgroups. The proof of this result relies
on an approach via Lefschetz numbers: The non-trivial Galois automorphism σ of
the extension E/F induces an orientation-reversing involution on the hyperbolic
3-manifold H3/Γ, whenever Γ is σ-stable. In the case the extension E/F is un-
ramified over 2 one can determine the Lefschetz number L(σ,Γ) of the induced
homomorphism in the cohomology of H3/Γ where Γ is a suitable congruence sub-
group in SL1(D). In the general case, one gets the analogous value as a lower
bound for L(σ,Γ). This bound is given up to sign and some power of two as

π−2dζF (2)|discF |
3/2∆(D0)× [K0 : K0(a)],

where ζF (2) denotes the value of the zeta-function of F at 2, |discF | denotes
the absolute value of the discriminant of F , [K0 : K0(a)] denotes a global index



Discrete Groups in Low-Dimensional Topology and Arithmetic Lattices 1735

attached to the congruence subgroup of level a ⊆ OF , and

∆(D0) =
∏

p0∈Ramf (D0)

(NF/Q(p0)− 1)

depends on the set of finite places of F in which the quaternion division algebra
D0 ramifies. In turn, this bound can be used to give a lower bound for the first
Betti number of the hyperbolic 3-manifold in question.

In the classical case of Bianchi groups, that is, these are non-cocompact arith-
metic subgroups of SL2(C) originating with orders in the ring of integers of an
imaginary quadratic number field, a similar result can be obtained but with higher
order of growth, see [3, Thm. 6.1].
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Geometric dimension of mapping class groups and lattices in classical
simple groups

Juan Souto

(joint work with Javier Aramayona, Dieter Degreijse, Conchita Martinez)

Let Γ be an infinite discrete group. A Γ-CW-complex X is said to be a model for
EΓ, or a classifying space for proper actions, if the stabilizers of the action of Γ
on X are finite, and if for every finite subgroup H of Γ the fixed point space XH

is contractible. The proper geometric dimension gdim(Γ) of Γ is by definition the
smallest possible dimension of a model of EΓ. We refer the reader to the survey
paper [9] for more details and terminology about these spaces.

Our aim is to compare the geometric dimension gdim(Γ) of certain virtually

torsion-free groups Γ with their virtual cohomological dimension vcd(Γ). Recall
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that vcd(Γ) is the cohomological dimension of a torsion-free finite index subgroup
of Γ. Due to a result by Serre, this definition does not depend of the choice of
finite index subgroup [5].

In general one has vcd(Γ) ≤ gdim(Γ) but this inequality may be strict. Indeed,

in [8] Leary and Nucinkis constructed examples of groups Γ for which gdim(Γ) is
finite but strictly greater than vcd(Γ). In fact, they show that the gap can be
arbitrarily large.

On the other hand, one has vcd(Γ) = gdim(Γ) for many important classes of
virtually torsion-free groups. For instance, equality holds for elementary amenable
groups of type FP∞ [7], SL(n,Z) [3, 9], outer automorphism groups of free groups
[9, 11], mapping class groups [2], and for groups that act properly and chamber
transitively on a building, such as Coxeter groups and graph products of finite
groups [6]. We add lattices in classical simple Lie groups to this list. The classical
simple Lie groups are the complex Lie groups

SL(n,C), SO(n,C), Sp(n,C)

and their real forms

SL(n,R), SL(n,H), SO(p, q), SU(p, q), Sp(p, q), Sp(2n,R), SO∗(2n)

with conditions on n and p+ q to ensure simplicity:

Theorem 1 ([1]). If Γ is a lattice in a classical simple Lie group, then gdim(Γ) =
vcd(Γ).

The idea of the proof is as follows. Suppose that Γ is virtually torsion free, that
it has a cocompact model X for EΓ, and suppose for the sake of concreteness that
the action of Γ on X is free. The virtual cohomological dimension of Γ can be
computed as follows

vcd(Γ) = max{n ∈ N | Hn
c (X) 6= 0},

where H∗
c stands for cohomology with compact support. Similarly, combining

results by Lück–Meintrup [10] and Degreijse–Martinez [6] we get that

gdim(Γ) = max{n ∈ N | ∃K ⊂ G finite and s.t. Hn
c (X

K , XK
sing) 6= 0}

as long as for instance vcd(Γ) ≥ 3. Here XK
sing is the subset of XK consiting of

points in X whose stablizer is strictly larger than K.
These results can be applied for lattices Γ in semi-simple Lie groups if we

denote by X the Borel–Serre bordification of the corresponding symmetric space.
It thus follows that in order to prove that the geometric dimension and the virtual
cohomological dimension agree it suffices to show that

(1) Hk
c (Xsing) = 0 for all k > vcd(Γ), and that

(2) Hn
c (X) → Hn

c (Xsing) is surjective for n = vcd(Γ),

where Xsing is the subset of X consiting of points with non-trivial stabilizer.
To explain a simple instance of the proof of the theorem above, suppose that Γ

is a lattice in SLn C for n ≥ 3 and let X be the associated Borel–Serre bordification
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of the symmetric space SLn C/ SUn. It follows from the work of Borel-Serre [4]
that Γ has virtual cohomological dimension

vcd(Γ) = dim(SLnC/ SUn)− rankQ Γ ≥ dim(SLnC/ SUn)− rankR SLnC = n2 − n

On the other hand, a linear algebra computation shows that for any A ∈ SLnC we
have that dimXA ≤ (n− 1)2 which means that automatically we also have

dimXsing ≤ (n− 1)2

Since (n− 1)2 < n2 −n it follows that Hk
c (Xsing) = 0 for all k ≤ vcd(Γ) and hence

(1) and (2) hold. We have just proved the theorem above for lattices in SLnC.

The basic idea we just explained can also be applied to give a different proof of
the following result by Aramayona–Martinez [2]:

Theorem 2 (Aramayona–Martinez). For every surface Σ we have gdim(Map(Σ))
= vcd(Map(Σ)), where Map(Σ) is the mapping class group of Σ.
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Geometric compactifications of locally symmetric spaces of infinite
co-volume

Anna Wienhard

(joint work with François Guéritaud, Olivier Guichard, Fanny Kassel)

Let G be a non-compact semisimple Lie group, K < G a maximal compact sub-
group and X = G/K the Riemannian symmetric spaces associated to G. Then any
discrete subgroup Γ < G acts on X properly discontinuous by isometries, and the
locally symmetric spaceMΓ = Γ\G/K has the structure of a Riemannian orbifold.
If Γ < G is a uniform lattice, the space MΓ is compact. If Γ is a non-uniform,
MΓ is of finite volume. In all other cases MΓ is of infinite volume. When MΓ is of
finite volume, the problem of compactifying MΓ has been well studied and several
compactifications exist (see [BJ05] for an overview). Much less is known in the
case when MΓ is of infinite volume, in particular when G is a Lie group of higher
rank.

We address the question of constructing a geometric compactificationMΓ ofMΓ,
by which we mean that the compactificationMΓ is modeled on a compactification
X of the symmetric space X . We provide such a compactification for a special
class of discrete subgroups of semisimple Lie groups which have nice structural
properties, namely for discrete groups which arise as images of Anosov represent-
ations [Lab06, GW12, GGKW1], or equivalently, which are τmod-asymptotically
embedded discrete subgroups of G in the terminology of [KLPa, KLPb, KLPc].

The class of Anosov representations include many interesting examples:

Example 1. (1) Convex cocompact subgroups: A discrete subgroup Λ < G is
convex cocompact if there exists a convex Λ-invariant subset C ⊂ X on
which Λ acts properly discontinuously and cocompactly. If G is of real rank
one, e.g. SO(1, n) or SU(1, n), then a representation ρ : Γ → G is Anosov if
and only if ρ is faithful with finite kernel and such that ρ(Γ) < G is a convex
cocompact subgroup. When G is of higher rank Anosov representations
provide a meaningful generalization of the notion of convex cocompact
subgroups.

(2) Openness: The set of Anosov representations is open in Hom(Γ, G). Thus
a small deformation of an Anosov representation is again an Anosov rep-
resentation. This applies in particular when we compose an Anosov rep-
resentation ρ : Γ → H into a Lie group of rank one with an embedding of
H into a Lie group G of higher rank. This provides a wealth of examples.

(3) Hitchin representations: When Γ = π1(Σ) is the fundamental group of a
closed surface of negative Euler characteristic, and G is a split real simple
Lie group, the Hitchin component Hit(Σ, G) is a connected component of
the space of representations Hom(π1(Σ), G)/G, which is homeomorphic to
a ball. All representations in the Hitchin component are Anosov [Lab06,
FG06].
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(4) Maximal representations: When Γ = π1(Σ) is the fundamental group of a
closed surface of negative Euler characteristic, and G is a Lie group of Her-
mitian type, then the Toledo number allows us to define the set of maximal
representations Max(Σ, G), which is a union of connected components of
the space of representations Hom(π1(Σ), G)/G. Maximal representations
are Anosov [BIW10, BILW05, GW12] (compare to B. Pozzetti’s report).

(5) Schottky groups/ping pong pairs: Representations arising from Schottky
groups, or more generally from ping pong on flag varieties give rise to
Anosov representation of free groups (compare to E. Fuchs’s report).

We prove the following result for Anosov representations.

Theorem 2. Let Γ be a finitely generated word hyperbolic group. Let G be a
semisimple Lie group and ρ : Γ → G an Anosov representation. Then there exists
a generalized Satake compactification X of X = G/K, and a closed subset C <
X rX such that:

(1) The action of ρ(Γ) on Ω = XrC is properly discontinuous and cocompact.
(2) The quotientM = ρ(Γ)\Ω is a geometric compactification ofM = ρ(Γ)\X.
(3) If Γ is torsion free, then M is homeomorphic to a manifold with boundary.
(4) M is the interior of M . In particular, M is topologically tame.

We introduce the notion of generalized Satake compactifications. These are
constructed in the same way as Satake compactifcations by taking a faithful rep-
resentation of G into PSL(n,C), and embedding G/K as a subset of the space
P(Hn) of projective classes of Hermitian n × n-matrices. However, contrary to
Satake’s original definition, which requires the representation of G into PSL(n,C)
to be irreducible, we allow for reducible representations as well. The class of gen-
eralized Satake compactifications has following nice property. Let Y ⊂ X a totally
geodesic subsymmetric space. Then the closure of Y in a generalized Satake com-
pactification of X is a generalized Satake compactification of Y . Note that this
is not true within the class of Satake compactifications – the closure of a totally
geodesic subsymmetric space of X in a Satake compactification of X is in general
only a generalized Satake compactification.

Remark 3. (1) Note that the Anosov property of a representation ρ : Γ → G
is usually defined with respect to a parabolic subgroup P , and by an
Anosov representation we mean a representation which is Anosov with re-
spect to some proper parabolic subgroup P < G. For special parabolic
subgroups (e.g. minimal parabolic subgroups or maximal parabolic sub-
groups of a specific type) Theorem 2 can be strengthened to the extent
that the compactification X can be chosen to be a genuine Satake com-
pactification. A proof of Theorem 2 together with other results and a
discussion of consequences will appear in [GGKW3].

(2) For special Anosov representations into the symplectic group the compac-
tifications MΓ we construct have been first constructed by Guichard and
Wienhard [GW12].
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(3) Using very different method, Kapovich and Leeb [KL] recently constructed
a geometric compactification for Anosov representations with respect to
minimal parabolic subgroups. They use that the maximal Satake compac-
tification can be realized as the horofunction compactification of a Finsler
metric on X . Such horofunction compactifications of Finsler metrics and
ideas that Satake compactifications can be realized in this way have also
be discussed by Schilling in [S].

(4) Geometric compactifications of the homogeneous spaces Γ\G have been
constructed in [GGKW2].
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Character varieties and representations of the Kauffman bracket skein
algebra

Helen Wong

(joint work with Francis Bonahon)

In the early 1990s, the Kauffman bracket skein module was introduced [13, 11] to
generalize the Jones polynomial in the 3-sphere to arbitrary oriented 3-manifolds.
In the special case of a connected, oriented surface Σ, the Kauffman bracket skein
module of Σ×[0, 1] has the structure of an algebra, which we denote bySA(Σ). The
skein algebra of a surface plays an important role in the skein theoretic version of
the Witten-Reshetikhin-Turaev topological quantum field theory, [1]. For example,
when Σ is closed and bounds a handlebody H , its action on the skein module of
H underpins the quantum representation of the mapping class group mentioned
in other talks in this workshop, e.g. in ones by Julien Marché and Pat Gilmer.

Although the skein algebra originated in quantum topology, it is distinguished
in that it has a relatively well-understood connection with hyperbolic geometry.
In this talk, we assume that Σ is a hyperbolic surface of finite topological type. We
focus on the relationship between the skein algebra SA(Σ) and the SL2C-character
variety, RSL2C = {r : π1Σ → SL2C}//SL2C.

When A = −1, the combined works of Bullock–Frohman–Kania-Bartoszyńska
[7, 8], and Przytycki–Sikora [12] among others show that S

−1(Σ) is isomorphic
to the algebra of C-valued regular functions on RSL2C. For generic values of
A, Turaev [14] used Goldman’s description of the Weil–Petersson–Atiyah–Bott–
Goldman Poisson bracket to interpret SA(Σ) as a quantization of RSL2C. When
A is a certain root of unity, the relationship is even more explicit: there is an
identification of a character in RSL2C to any representation of SA(Σ), as in the
following theorem.

Theorem 1. Let A be a primitive 2N -th root of 1 for N odd. Every finite-
dimensional, irreducible representation ρ : SA(Σ) → EndV is associated to a
unique rρ ∈ RSL2C and numbers pi ∈ C for each boundary component of Σ which
are compatible with rρ.

For details, see [3]. We give a very brief sketch here. A skein in S
A(Σ) which

is “threaded” by the Chebyshev polynomial TN is central in S
A(Σ). The char-

acter rρ (which we call the classical shadow of ρ) is obtained by application of
Schur’s Lemma. The puncture invariants pi are similarly obtained from applica-
tion of Schur’s lemma on small loops around the ith puncture. The compatibility
condition mentioned in the statement of the theorem comes from threading the
puncture loops by TN . For brevity, we suppressed the technical definition, which
can be found in [3].

Very loosely, Theorem 1 says that there is a fibering of the set of finite-dimension-
al, irreducible representations of SA(Σ) over the SL2C-character variety. The next
theorem says that there exists a section.
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Theorem 2. Let A be a primitive 2N -th root of 1 for N odd. For every choice of
r ∈ RSL2C and compatible puncture invariants pi, there exists a finite-dimensional,
irreducible representation ρ : SA(Σ) → EndV whose classical shadow is r and
whose puncture invariants are the pi.

See [5, 4] for details of the construction, which uses the quantum Teichmüller
space of Σ of [9, 10, 2, 6]. We conjecture that there is a Zariski dense open subset of
RSL2C on which the correspondence described in Theorems 1 and 2 is one-to-one.

We end with a quick outline of how a (possibly non-trivial) representation of
the mapping class group can be constructed using the representation ρId which
Theorem 2 associates to the trivial character which maps all of RSL2C to the
identity matrix.
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Institut de Mathématiques de Jussieu
Case 247
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I. R. M. A. R.
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