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Abstract. Isogeometric Analysis (IgA) is a new paradigm which is designed
to merge two so far disjoint disciplines, namely, numerical simulations for
partial differential equations (PDEs) and applied geometry. Initiated by the
pioneering 2005 paper of one of us organizers (Hughes), this new concept
bridges the gap between classical finite element methods and computer aided
design concepts.

Traditional approaches are based on modeling complex geometries by com-
puter aided design tools which then need to be converted to a computational
mesh to allow for simulations of PDEs. This process has for decades pre-
sented a severe bottleneck in performing efficient simulations. For example,
for complex fluid dynamics applications, the modeling of the surface and the
mesh generation may take several weeks while the PDE simulations require
only a few hours.

On the other hand, simulation methods which exactly represent geometric
shapes in terms of the basis functions employed for the numerical simulations
bridge the gap and allow from the beginning to eliminate geometry errors.
This is accomplished by leaving traditional finite element approaches behind
and employing instead more general basis functions such as B-Splines and
Non-Uniform Rational B-Splines (NURBS) for the PDE simulations as well.
The combined concept of Isogeometric Analysis (IgA) allows for improved
convergence and smoothness properties of the PDE solutions and dramati-
cally faster overall simulations.

In the last few years, this new paradigm has revolutionized the engineering
communities and triggered an enormous amount of simulations and publica-
tions mainly in this field. However, there are several profound theoretical
issues which have not been well understood and which are currently inves-
tigated by researchers in Numerical Analysis, Approximation Theory and

Applied Geometry.
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Introduction by the Organisers

Isogeometric Analysis (IgA) is a new paradigm which has been mainly established
in the engineering sciences over the past eleven years. It merges two so far disjoint
disciplines, namely, numerical simulations for partial differential equations (PDEs)
and applied geometry. This new concept was initiated by the pioneering 2005
paper of one of us organizers (Hughes) and bridges the gap between classical finite
element methods and computer aided geometric design concepts.

Traditional approaches to solve PDEs on complicated domains are based on
modeling complex geometries by computer aided geometric design tools. These
need to be converted to a computational mesh to allow for simulations of PDEs.
This process has for many decades presented a severe bottleneck in performing
efficient simulations, even though computers have become more and more powerful.
For example, for applications involving complex fluid dynamics, the modeling of
the surface and the mesh generation (“by hand”) may take several weeks while
the PDE simulations require only a few hours.

The main idea of Isogeometric Analysis which overcomes this bottleneck is the
following. For exactly representing geometric shapes, one typically employs piece-
wise polynomials or rational functions as basis functions. If the same functions
are used for the numerical simulations of the PDEs, one eliminates geometry er-
rors. The new paradigm consists of leaving traditional finite element approaches
behind and employing instead more general basis functions such as B-Splines and
Non-Uniform Rational B-Splines (NURBS) for the PDE simulations as well. The
combined concept of Isogeometric Analysis (IgA) allows for improved convergence
and smoothness properties of the PDE solutions and dramatically faster overall
simulations.

In the last few years, this new paradigm has revolutionized the engineering
communities and triggered an enormous amount of simulations and publications
mainly in this field. However, there are several profound theoretical issues which
have not been well understood and which are currently investigated by researchers
in Numerical Analysis, Approximation Theory and Applied Geometry. These
problems firstly concern multiscale techniques for variational problems discretized
by B-splines and NURBS, namely,

• multilevel solvers;
• hierarchical spaces, adaptivity;
• construction of non-tensor product functions;
• error estimation, convergence and complexity estimates;
• quadrature.

For example, the issue of constructing optimal preconditioners independent of
the polynomial degree of the basis functions is except for involved auxiliary space
methods a hot topic. A-posteriori error estimation and the possibility to develop
adaptive methods with respect to both the mesh and the polynomial degree is not
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mathematically understood in the IgA framework. A bottleneck for computations
for variational formulations of PDEs even on uniform grids is currently the set-up
of linear systems of equations which require highly efficient quadrature rules for
B-splines and NURBS.

A second thematic focus of the Mini-Workshop addressed the recent revival of
collocation methods, which provide significant advantages by employing higher or-
der B-Splines and NURBS in combination with an IgA framework. These methods
have been popular some decades ago in the numerical PDE community but have
then been essentially abandoned, due to a largely missing mathematical foundation
with respect to, e.g., error estimates. They are still used in applications, e.g., in
boundary element methods. Collocation methods are based on point evaluations
of the PDE in strong form. In principle, this is a dramatic advantage over varia-
tional formulations which require efficient quadrature rules. Collocation schemes
also allow for quick evaluations of nonlinearities. These advantages have recently
triggered new and promising work in all fields of computational mechanics.

So far, an error analysis for collocation methods exists only for PDEs on one-
dimensional domains or under very high smoothness assumptions on the PDE
solution. For higher dimensions, the issue how to select the collocation points
to derive corresponding estimates is not understood. This entails that also a
convergence and complexity theory is not yet available.

The goal of the Mini–Workshop Mathematical Foundations of Isogeometric
Analysis organised by Thomas J.R. Hughes (Austin), Bert Jüttler (Linz), Angela
Kunoth (Köln) and Bernd Simeon (Kaiserslautern) was to bring together some
leading scientists from IgA and the mathematically relevant fields. We wanted
to start with brainstorming in an atmosphere of a small workshop with not too
many participants who are a nice blend of researchers with various backgrounds.
The Mini-Workshop was well attended with 17 participants with broad geographic
representation.

The participants were experts who are strong in approximation theory (Lyche,
Oswald), numerical analysis and multiscale methods (Demlow, Kunoth, Langer,
Mantzaflaris, Sangalli, Simeon), applied geometry and geometric design (Har-
brecht, Jüttler, Manni, Mourrain, Peters) together with researchers in the en-
gineering sciences with a strong mathematical background in modeling and nu-
merics (Evans, Hughes, Reali). In addition, a young Bachelor student (Akpinar)
presented promising first results for approximations of high-dimensional integrals.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Numerical Integration: Quasi-Monte-Carlo Methods for Integrands in

Besov Spaces with Dominating Mixed Smoothness

Nur Sema Akpinar

(joint work with Angela Kunoth and Tino Ullrich)

The field of Quasi-Monte-Carlo methods for functions from spaces with charac-
teristic smoothness, specifically, Besov spaces with dominating mixed smoothness,
has gained more and more attention over the last few years. I started studying
this topic in preparation for my bachelor thesis [1] (supervised by Angela Kunoth)
based on the recent paper [6]. The problem is to construct cubature formulae for
integrals in d space dimensions,

(1) I(f) :=

∫

A

f(x)dx,

where A ⊆ R
d and f : A → R is a given multivariate function. Prominent examples

stem from financial mathematics where d = 360 occurs from certain financial
instruments over a period of thirty years, or solving partial differential equations
with stochastic/parametric coefficients by means of Galerkin-type schemes for the
parameters (see the abstract by Angela Kunoth).

Typical approximations are based on quadrature rules of the form

(2) IN (f) :=
1

N

∑

xi∈X

αi f(xi)

with pre-determined points xi from a point set X ⊂ A with cardinality N and
some given weights αi. Classical integration formulae like Newton-Cotes’ rules
which are based on approximating the integrand by polynomials of degree r − 1
in every space dimension yield for ‘smooth’ integrands with a total of N cubature
points an error

(3) |I(f)− IN (f)| . N−r/d,

i.e., the error can be bounded by a constant depending on the smoothness of f
times N−r/d. This detereorating rate as d tends to infinity is commonly called the
“curse of dimensions”. A simple remedy is to employ instead Monte-Carlo methods
which yield (in expectation) an error of order N−1/2 independent of the dimension
d by evaluating the integrand at N randomly chosen points. This approach works
for any integrand that allows for point evaluations. Due to its simplicity, it is
widely used for many practioneers in Computational Physics or Chemistry. On
the other hand, this rate is often considered to be unacceptibly low, specifically
in the case of PDEs with possible countable infinite stochastic parameters which
would require N evaluations of the PDE in each parameter to reach an error rate of
N−1/2 with respect to this parameter. In fact, one can reach with Quasi-Monte-
Carlo methods faster convergence rates of the worst-case error over all possible
point sets X , for functions f belonging to a certain class with smoothness r > 0,
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specifically, the Besov space with dominating mixed smoothness defined by mixed
differences of order 2. Functions in Besov spaces allow for isolated singularities
and can, therefore, be considered as generalizations of standard Sobolev spaces.

In order to define this space, we consider from now on the situation from [6]
where the integration areaA in (1) equals the two-dimensional torus T2, a subset of
the unit square [0, 1]2 where opposite sides are identified. We define for parameters
0 ≤ p, q ≤ ∞ a Besov space Br

p,q(T
2) with smoothness r on T

2 which is embedded

in the Lebesgue space Lp(T
2) such that its corresponding (quasi-)norm is bounded,

(4) Br
p,q(T

2) :=
{
f ∈ Lp(T

2) : ‖f‖Br
p,q(T

2) < ∞
}
,

where q plays the role of a ‘fine-tuning’ parameter. There are numerous ways to
define such norms. Here we choose the definition in terms of the weighted bivariate
Faber basis from [6] (or, in other terms, tensor products of the piecewise linear, con-
tinuous hierarchical basis known in the finite element community) which is as fol-
lows. Setting N−1 = −1, 0, 1, . . ., let Dj :=

{
0, . . . ,

⌈
2j1

⌉
− 1

}
×
{
0, . . . ,

⌈
2j2

⌉
− 1

}

and define the set of functions F 2 := {vj,k : j1, j2 ∈ N−1, k = (k1, k2) ∈ Dj} with
vj,k(x) := vj1,k1(x1)vj2,k2(x2). Each univariate function is defined as a scaled ‘hat’
function (i.e., a continuous, piecewise linear function),

vji,ki
(xi) :=

{
2ji+1

(
xi − 2−jiki

)
, xi ∈

[
2−jiki, 2

−jiki + 2−ji−1
]
,

2ji+1
(
2−ji(ki + 1)− xi

)
, xi ∈

[
2−jiki + 2−ji−1, 2−ji(ki + 1)

]
,

for i = 1, 2, and 0 elsewhere. Any function f ∈ C(T2) is one-periodic in each com-
ponent, and it is known (see, e.g., the references in [6]) that f can be represented
as

(5) f(x1, x2) =
∑

j∈N2
−1

∑

k∈Dj

d2j,k(f) vj,k(x1, x2)

with expansion coefficients consisting of point evaluations,

d2j,k(f) :=





f(0, 0) if j = (−1,−1), k ∈ Z
2,

cj1 f(2−j1k1, 0) if j = (k1,−1), j1 ∈ N0, k ∈ Z
2,

cj2 f(0, 2−j2k2) if j = (−1, k2), j2 ∈ N0, k ∈ Z
2,

cj1,j2 f(2−j1k1, 2
−j2k2) if j ∈ N

2
0, k ∈ Z

2,

where cj1 , cj2 , cj1,j2 are weighted second order difference operators in x1, x2 and
both x1, x2 direction, respectively; see [6] for details. With this notion, we define
the Besov (quasi-)norm in (4) as

‖f‖Br
p,q(T

2) := ‖f‖Lp(T2) +




∞∑

j1=0

2rj1q sup
|h1|≤2−j1

∥∥∆m
h1,1f

∥∥q
Lp(T2)




1/q

+




∞∑

j2=0

2rj2q sup
|h2|≤2−j2

∥∥∆m
h2,2f

∥∥q
Lp(T2)




1/q
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+




∞∑

j1=0

∞∑

j2=0

2r(j1+j2)q sup
|hi|≤2−ji , i=1,2

∥∥∥∆m,m
h1,h2

f
∥∥∥
q

Lp(T2)




1/q

for m > r > 1/p where ∆m
h1,h2

f denotes the mth order difference operator applied
to f .

Consider now the case that X is a Hammersley point set with N = 2n number
of points. It was proved for the quadrature rule (2) with weights αi = 1 in [6] that
the error of the Quasi-Monte-Carlo method for functions in Br

p,q(T
2) decays as

(6) sup
‖f‖

Br
p,q(T2)≤1

|I(f)− IN (f)| . N−r(logN)1−1/q

for 1 ≤ p, q ≤ ∞ and 1/p < r < 2. Specifically, for q = 1, the log-term disappears.
Thus, by employing Quasi-Monte-Carlo methods on certain deterministic point
sets, the convergence is substantially faster than in the case of the classical Monte-
Carlo method. The proof of (6) is based on the fact that the specific form of the
Faber basis employed in (5) allows one to estimate the left hand side of (3) in
terms of local contributions, i.e.,

|I(f)− IN (f)| =

∣∣∣∣∣∣

∑

j∈N2
−1

∑

k∈Dj

d2j,k(f)Vj,k

∣∣∣∣∣∣

where Vj,k := N−1
∑

xi∈X vj,k(xi)−
∫
T2 vj,k(x)dx, j ∈ N

2
−1, k ∈ Dj .

Employing wavelet characterizations of Besov spaces as in [3], we can extend
the estimate (6) to arbitrary space dimensions d and arbitrary order r [2]. We will
further investigate quadrature rules on more general point sets, so-called ‘digital
nets’ to which the Hammersley type point sets belong as a special case. Finally,
the periodic setting can be replaced by [0, 1]d for which tensor products of the
biorthogonal spline-wavelets on [0, 1] constructed as in [4, 5] can be employed.
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tionen in Besov–Räumen mit dominierender gemischter Glattheit (in German), Bachelor
thesis, Mathematisches Institut, University of Cologne, December 2015.

[2] N. Akpinar, A. Kunoth, T. Ullrich, Optimal cubature in Besov spaces with dominating mixed
smoothness in high space dimensions, Manuscript in preparation.

[3] W. Dahmen, A. Kunoth, Multilevel preconditioning, Numer. Math. 63 (1992), 315–344.
[4] W. Dahmen, A. Kunoth, K. Urban, Biorthogonal spline-wavelets on the interval — Stability

and moment conditions, Appl. Comp. Harm. Anal. 6 (1999), 132–196.
[5] M. Primbs, New stable biorthogonal spline-wavelets on the interval, Results in Mathematics

57(1) (2010), 121–162.
[6] T. Ullrich, Optimal cubature in Besov spaces with dominating mixed smoothness on the unit

square, J. Complexity 30 (2014), 72–94.



350 Oberwolfach Report 8/2016

A Survey of Maximum-norm Estimates for Finite Element Methods

Alan Demlow

Maximum-norm error estimation for finite element methods has been an active
area of research since the 1970’s. Our goal in this talk is to survey the current
state of research in the area, give a brief overview of techniques for proving such
estimates, and discuss extension of existing results to isogeometric methods.

We consider the model problem

−∆u = f in Ω

with homogenous Dirichlet boundary conditions. In addition, let Th be a trian-
gulation of Ω and Sh ⊂ H1

0 (Ω) a standard Lagrange (C0) finite element space of
polynomial degree r, and let uh ∈ Sh be the standard finite element approximation
to u. Let hT = diam T , T ∈ Th, and h = maxT∈Th

hT . We assume throughout
that Th is shape regular, and for the time being that Th is quasi-uniform. The
basic goal of maximum-norm error analysis is to prove the following optimal-order
error estimates:

(ln 1/h)−δ1r‖u− uh‖L∞(Ω) + h‖u− uh‖W 1
∞

(Ω) ≤ Chr+1|u|W r+1
∞ (Ω).(1)

Such estimates are contained in a large number of works by authors including
Nitsche, Rannacher, Scott, Schatz, Wahlbin, and others; we do not give precise
references as our goal is mostly to give an informal overview. It is generally
assumed either that Ω is a convex polyhedral domain in R

2 or R3, or that ∂Ω is
smooth in order to prove such results. Note also that the logarithm factor above
is only present when estimating the error in L∞ (and not in W 1

∞) and only for
piecewise linear elements. In this case it is however known to be necessary [7]. In
addition to optimal-order error estimates, sharper stability estimates are also of
interest and known in many cases:

‖uh‖L∞(Ω) ≤ C(ln 1/h)δ1r‖u‖L∞(Ω), ‖uh‖W 1
∞

(Ω) ≤ C‖u‖W 1
∞

(Ω).

Proofs of the above error and stability estimates are significantly more involved
than corresponding proofs of standard energy or L2 error estimates. To under-
stand the difficulty, recall that when proving error estimates in L2 the first step
is typically to represent the error by duality. That is, we write ‖u − uh‖L2(Ω) =
supv∈L2(Ω)(u − uh, v). For such v, we then solve −∆z = v. Along with standard

tools (Galerkin orthogonality, energy estimates, etc.), the H2 regularity result
‖z‖H2(Ω) ≤ C‖v‖L2(Ω) is a necessary part of the argument. This pathway does
not work as smoothly in L∞, since L1 is not dual to L∞ and the regularity re-
sult ‖z‖W 2

1 (Ω) ≤ C‖∆z‖L1(Ω) does not hold. Two complementary techniques have
been used to circumvent these difficulties, one involving manipulation of weighted
norms and the other involving error representation using a regularized Green’s
function combined with local energy error estimates.

The steps needed to prove maximum-norm a priori error estimates are now
well-established, and can be applied to Galerkin methods for which the discrete
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subspaces satisfy certain basic properties. These include local approximation prop-
erties in a reasonable range of norms (Lp and W 1

p for 1 ≤ p ≤ ∞), local inverse
estimates, and a superapproximation property [8] that largely follows from ap-
proximation and inverse assumptions. Proof of these properties for variational
isogeometric methods appears to be a reasonable simple extension of existing es-
timates. On the other hand, isogeometric collocation methods have also gained in
popularity. Here L∞ Sobolev norms are a natural setting for error analysis, but
the techniques used to prove estimates for Galerkin methods do not immediately
apply. Convergence proofs in such cases remain an open question except in one
space dimension.

Residual-type a posteriori error estimates also have been proved in a number of
works beginning in the mid-1990’s [9, 6, 1, 2, 3]. Let Th now be shape-regular only.
For T ∈ Th, define η∞(T ) = h2

T ‖f+∆uh‖L∞(T )+hT ‖J∇uhK‖L∞(∂T ), where J∇uhK
is the jump in ∇uh across the element boundary. Let also ℓh = maxT∈Th

ln(1 +
1/hT ). Then if Ω is a polyhedral domain in R

2 or R3,

‖u− uh‖L∞(Ω) ≤ Cℓh max
T∈Th

η∞(T ).(2)

To prove such estimates, one represents the error using the standard Green’s func-
tion Gx0 for the continuous problem, that is, (u−uh)(x0) = (∇(u−uh),∇Gx0). A
series of standard manipulations then reduces proof of error bounds to establishing
certain regularity bounds for Gx0 .

As in the priori case, it is natural to ask whether the logarithmic factor in (2)
is necessary. This question is answered in the affirmative in [3], at least in 2D and
when r = 1. The proof yields further insight into maximum-norm error behavior.
Let ‖·‖BMO−∆(Ω) be an operator-adaptedBMO (bounded mean oscillation) norm;
cf [4] for details. BMO is weaker than L∞ but stronger than any Lp norm for
any p < ∞ and so naturally serves as a proxy for L∞ in many situations in PDE
analysis. In addition, in contrast to L∞ it is a reflexive space with its dual space
being the atomic Hardy space H1. Finally, regularity estimates for elliptic BVPs
hold in H1 but not in L1 spaces, that is, ‖D2z‖H1(Ω) ≤ C‖∆z‖H1(Ω).

From a finite element standpoint, it becomes reasonably straightforward to
prove error estimates in BMO once these facts are established. A priori BMO
convergence estimates similar to (1) were given in [5], but with no log factor
present. In [3] we established that for convex polyhedral domains,

‖u− uh‖BMO−∆(Ω) ≃ max
T∈Th

η∞(T ) + osc∞(Th).

Here osc∞(Th) is the data oscillation which measures the deviation of the data f
from a broken piecewise polynomial space of degree r − 1. Taken together, these
estimates show that BMO is a more natural norm than L∞ from an analytical
(though not necessarily application) standpoint. In the a posteriori context in
particular, we have shown that the error estimator maxT∈Th

η∞(T ) that we have
been using to measure the L∞ norm of the error in fact is an upper and lower
bound (up to nonessential constants and data oscillation) for the BMO norm of
the error. Adaptive finite element methods for L∞ errors thus are actually more
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directly controlling BMO errors. In future research it may be advantageous to
consider BMO as a tool for understanding finite element error behavior in L∞-like
norms.
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Optimality and Approximation: A Quantitative Assessment of the

Approximation Properties of Spline, Polynomial, and Fourier Bases

John A. Evans

(joint work with Ivo Babuška, Yuri Bazilevs, Joseph Benzaken, Jesse Chan, and
Thomas J.R. Hughes)

A fundamental question that arises in numerical approximation is how “optimal”
a given space of approximating functions is. This question involves not only the
approximation rate for a given space but also the constant of approximation. To
make this discussion more precise, consider the following common a priori estimate
arising in the theory of finite elements:

‖u− πnu‖Hk(Ω) ≤ Cn(l−k)/d‖u‖Hl(Ω)

where u ∈ Hs(Ω) denotes some function one wishes to approximate and:

l = min (p+ 1, s)

Moreover, πn : Hs(Ω) → Xn denotes some projection operator onto a space of
approximating functions with n degrees of freedom, p denotes the polynomial de-
gree of this space, and d denotes the spatial dimension. A space of approximating
functions is said to be quasi-optimal if the approximation constant C is indepen-
dent of n, but the question of optimality also involves its actual quantitative value.
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Unfortunately, the value for C is typically unknown and it depends upon, for ex-
ample, both the polynomial degree and inherent smoothness of the underlying
approximating functions.

In this talk, I introduce a quantitative framework for assessing the optimality
properties of a given space of approximating functions. This framework hinges
upon the concepts of distance, deviation, and n-width. Let X be a normed linear
space, x be a member of X , and Xn be a subset of X . We define the distance of
Xn from member x as:

E(x,Xn;X) = inf
yn∈Xn

‖x− yn‖X

and the deviation of Xn from set A as:

E(A,Xn;X) = sup
x∈A

inf
yn∈Xn

‖x− yn‖X

Within the context of approximation theory, Xn is interpreted as the space of ap-
proximating functions while A is interpreted as the space of candidate functions to
be approximated. The question of optimality then is: how close is the deviation of
Xn from set A from the optimal space of approximating functions? To answer this
question, the concept of an n-width was introduced. With the notation established
above, we define the n-width as:

dn(A;X) = inf {E(A,Xn;X) : Xn ⊂ X, dim(Xn) = n}
= inf

Xn⊂X
dim(Xn)=n

sup
x∈A

inf
yn∈Xn

‖x− yn‖X

Then, a space of approximating functions is optimal if its deviation is equal to
the n-width, and to assess its optimality, we simply compare its deviation to the
n-width using the optimality ratio:

Λ(A,Xn;X) =
E(A,Xn;X)

dn(A;X)

If the optimality ratio is Λ(A,Xn;X) = 1, then the space of approximating func-
tions is optimal, and if it is much greater than one, it is far from optimal. While
the concept of n-width is quite useful in defining a quantitative notion of optimal-
ity, it is useless in practice unless it can be computed. Fortunately, in the Hilbert
space setting, both the deviation and n-width can be computed using variational
eigenproblems. Colleagues and I introduced an isogeometric framework for solving
said variational eigenproblems in the one-dimensional setting in 2009 [1], and we
have recently extended this framework to the multi-dimensional setting using a
combination of Cholesky factorization, multigrid-preconditioned conjugate gradi-
ent methods, and Lanczos iteration. This framework allows one to compute the
constant of approximation exactly for a given approximation space. In this talk,
I review both this quantitative assessment framework as well as corresponding
numerical results for splines, polynomial, and Fourier bases.

I finish this talk by trying to answer the following questions using my new
quantitative assessment framework for optimality.
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(1) How accurate and robust are splines of maximal continuity in numerical
approximation?

(2) How accurate and robust are splines of lowest continuity (i.e., classical
finite elements) in numerical approximation?

(3) How do classical finite elements and splines compare?
(4) How do the answers to all of the above depend upon dimensionality?
(5) How accurate and robust are divergence-conforming and curl-conforming

splines in numerical approximation?
(6) Which is better for multi-dimensional approximation: tensor-product poly-

nomials or standard isotropic polynomials?
(7) Which is better for multi-dimensional approximation: tensor-product Fou-

rier bases, Fourier bases “complete” to a given wavenumber, or the minimal
(sparsest) Fourier basis required for exponential convergence?

(8) Are there different situations in which certain polynomial or Fourier bases
may be preferred, and can we quantify said situations?

The answers to these questions certainly have important consequences regarding
the effectiveness of isogeometric analysis as a numerical solution procedure for
partial differential equations [2, 3, 4, 5], but the answers to the above questions also
have important consequences regarding the effectiveness of sparse approximations
for multi-dimensional problems which are relevant in parameter space exploration
and uncertainty quantification [6].
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On Fast Boundary Element Methods for Parametric Surfaces

Helmut Harbrecht

In many situations, practical problems arising from science and engineering can
be formulated in terms of differential equations for an unknown function. If a
Green’s function of the underlying differential operator is known, they may be
reformulated by means of a boundary integral equation

(Au)(x) =

∫

Γ

G(x,y)u(y) d ox = f(x), x ∈ Γ.

The Green’s function G(·, ·) is, for instance, known in case of the Laplace equation,
the Helmholtz equation, and the heat equation. The major advantage of consider-
ing boundary integral equations is the reduction of the problem’s dimensionality,
which especially gives the possibility for easily treating also exterior boundary
value problems.

In general, boundary integral equations are solved by the boundary element
method. However, due to the non-locality of the integral operator A, one usually
ends up with large and densely populated system matrices. Thus, the numerical
solution of such problems is rather challenging. Different approaches have been
proposed to overcome this obstruction, such as the fast multipole method, adaptive
cross approximation, or wavelet matrix compression.

This talk intends to give an overview on fast boundary element methods which
are tailored to the context of parametric surfaces. This means, the surface Γ is
subdivided into several smooth patches

Γ =
M⋃

i=1

Γi

such that the intersection Γi∩Γi′ consists at most of a common vertex or a common
edge for i 6= i′. Moreover, for each patch, there exists a smooth diffeomorphism

γi : � → Γi with Γi = γi(�) for i = 1, 2, . . . ,M,

where � := [0, 1]2 denotes the unit square. This surface representation is in con-
trast to the common approximation of surfaces by flat panels. Nonetheless, para-
metric surface representations are easily accessible from Computer Aided Design
(CAD) and are the topic of recent studies in isogeometric analysis.

We address different issues of fast boundary element methods for the solution
of boundary integral equations on parametric surfaces as considered in [1]–[5].
This includes storage requirements, adaptivity, and higher-order ansatz functions.
In particular, it turns out that the additional information, which is imposed by
the parametric surface representation, enables numerous simplifications and op-
timizations of the underlying data structures and algorithms. Several numerical
examples are provided in order to quantify and qualify the proposed methods.
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Isogeometric Analysis: Overview

Thomas J.R. Hughes

I began the workshop on the mini-workshop Mathematical Foundations of Isogeo-
metric Analysis with an overview of Isogeometric Analysis (IGA). I mentioned that
the field is very young, 10 years old [1], but has grown to the point where it is im-
possible to even briefly mention all the topics that have been pursued to date. On
Thomson Reuters Web of Science, there were zero citations to the topic 10 years
ago, but in 2015 alone there were over 4,500 citations! I started by comparing the
growth of the subject to that of Finite Element Analysis (FEA) in its early years.
Needless to say, it is growing much, much faster than FEA. Then I briefly men-
tioned the original motivation behind the concept and the basic analytical tools
coming from Computer Aided Geometric Design. I discussed their approximation
properties from the perspectives of functional analysis and spectral analysis. I
highlighted the important role of new developments in numerical quadrature, the
renaissance in shell structural analysis, and collocation methods facilitated by IGA.
Then I presented an application to modeling and analysis of a patient-specific heart
valve, and the enormous superiority over an optimized traditional FEA approach.
I spent some time reviewing design-through-analysis procedures, specifically T-
splines, immersed methods, hierarchically refined B-splines, and IGA boundary
element methods. I finished with a few applications to fluid-structure interac-
tion of bioprosthetic heart valves, and the original phase-field theory, that is, the
Navier-Stokes-Korteweg equations, which have already been utilized to simulate
boiling phenomena, and have the potential to represent cavitation. I summarized
the significant opportunities of further mathematical and engineering research in
IGA and presented a list of 11 problems that I would like to see solved. Here they
are:

• Eliminate outliers
• Fix extraordinary points
• Algorithms to automatically generate unstructured surface splines
• Algorithms to automatically generate unstructured volumetric splines
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• Algorithms to determine optimal quadrature rules for unstructured spline
spaces

• Algorithms to automatically construct untrimmed, smooth spaces from
trimmed NURBS

• inf-sup stable spline spaces for incompressible problems (i.e., mappings,
not vector fields)

• Approximation results for immersed (i.e., trimmed) spline formulations
• Prove gamma convergence for fourth-order phase-field theory
• Construct spline spaces that solve the membrane-bending locking problem
• A general mathematical theory of collocation

Obviously, these problems are vaguely defined and they need to be made more
specific, but that is a significant part of all the problems, to define them precisely.
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ANTS: Basis Functions for Partially Nested Spline Refinement

Bert Jüttler

(joint work with Nora Engleitner and Urška Zore)

Truncated hierarchical B-splines, which were introduced in [3] based on earlier re-
sults concerning hierarchical spline refinement [1, 5], have been established as one
of the approaches to perform local refinement in geometric modeling and isogeo-
metric analysis [2]. Besides forming a non-negative partition of unity, these basis
functions possess good properties regarding stability [4], algebraic completeness
[6], and approximation power [7].

Figure 1. A mesh obtained by partially nested hierarchical
spline refinement.

The established construction of truncated hierarchical B-splines starts from a
given sequence of nested spline spaces, and hence it is not possible to pursue inde-
pendent refinement strategies in different parts of a model. In order to overcome
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this limitation, we generalize hierarchical B-splines to sequences of partially nested
spline spaces. This allows us to define basis functions for splines defined on more
general meshes, see Fig. 1 for an example.

We identify assumptions that enable us to define a hierarchical spline basis,
to establish a truncation mechanism, and to derive a completeness result. The
resulting basis functions are denoted as ANTS, which is the acronym of “ANTS
are Not T-Splines”. The application potential of the proposed generalization is
demonstrated by first result on least-squares approximation.
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[3] C. Giannelli, B. Jüttler, and H. Speleers, THB–splines: The truncated basis for hierarchical
splines, Computer Aided Geometric Design 29 (2012), 485–498.
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Adaptive Approximations of Parametric Parabolic PDE-Constrained

Control Problems

Angela Kunoth

(joint work with Max Gunzburger and with Christoph Schwab)

Optimization problems constrained by linear PDEs (partial differential equations)
are challenging from a computational point of view: one needs to solve a system of
PDEs coupled globally in space, and, in addition, globally in time if the underlying
PDE is time-dependent. This global coupling is an unavoidable feature of such
control problems as specified next: typically an adjoint PDE comes into place.

PDE-constrained control problems. Let Y, U be Hilbert spaces over R which
shall host the state y of a system and a control by which the state can be influenced.
Let J : Y ×U → R be a twice differentiable functional, and let K : Y ×U → Y ′ be
a (in y, u Fréchet-) differentiable function where Y ′ denotes the topological dual
of Y . Consider the constrained minimization problem

(1) inf
(y,u)∈Y×U

J(y, u) subject to K(y, u) = 0.

For the constraintsK(y, u) = 0 (the PDE), we assume that there exists a unique
solution y ∈ Y when u ∈ U is given. A typical way to solve (1) is to compute
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the zeroes of the first order Fréchet derivatives of the Lagrangian functional which
is defined by introducing the co-(or adjoint) state p by which the constraints are
appended to the functional J , i.e., L(y, u, p) := J(y, u) + 〈K(y, u), p〉Y ′×Y with
L : Y × U × Y → R. Denoting by Lz(y, u, p) :=

∂
∂zL(y, u, p) and Lzz(y, u, p) :=

∂2

∂z2L(y, u, p) the first and second variation, of L with respect to z = y, u, p, and
assuming that J is quadratic in both y, u and that K is linear in y, u, the necessary
conditions for optimality yield the linear system of equations

(2)



Lyy Lyu K∗

y

Luy Luu K∗
u

Ky Ku 0






y
u
p


 = g ⇐⇒:

(
A B∗

B 0

)(
(y, u)⊤

p

)
= g ⇐⇒: Gq = g

with some right hand side g and C∗ the dual of C. The Hessian of L or the Karush-
Kuhn-Tucker (KKT) operator G has for such linear-quadratic problems constant
entries, and the necessary conditions are also sufficient. Moreover, if J orK do not
contain products yu, one has Lyu = Luy = 0 so thatA is a block diagonal operator.
Typically, the quadratic functional (1) contains inner products so that the resulting
Riesz operators Lyy, Luu are symmetric which implies that A and, thus, G is
symmetric. In all the cases we consider, the operators A : V → V ,B : V → Q′

(for some Hilbert spaces) V , Q are continuous; ImB = Q′; and A is invertible on
KerB so that the saddle point problem (2) has for g ∈ V ′ ×Q′ a unique solution
q ∈ V × Q by the Brezzi-Fortin theory. Thus, we can consider constrained linear-
quadratic minimization problems (1) as symmetric saddle point problems (2) with
a boundedly invertible linear mapping G : V ×Q → V ×Q′ where V := Y ×U and
V := Q. Some standard examples from [7] to which this scenario applies are the
following.

Dirichlet problem with distributed control. Consider the standard weak
formulation of a second order elliptic PDE with homogeneous Dirichlet boundary
conditions. Choosing Y := H1

0 (Ω) and U := Y ′, we consider for given f ∈ Y ′ the
linear operator equation

(3) K(y, u) := Ay − f − u = 0

and the quadratic objective functional

(4) J(y, u) :=
1

2
‖y − y∗‖2Y +

ω

2
‖u‖2Y ′

for a given target state y∗ ∈ Y and any fixed weight parameter ω > 0. We assume
that A : Y → Y ′ is a linear (not necessarily symmetric) boundedly invertible
operator. The norms in (4) can more generally be norms on Hilbert spaces as long
as the constrained optimization system (1) possesses a unique solution.

Denote by R : Y → Y ′ the Riesz operator defined by the inner product (·, ·)Y
inducing ‖ · ‖Y , 〈v,Rw〉Y ×Y ′ := (v, w)Y , v, w ∈ Y . Since (·, ·)Y is symmetric, R is
also. Consequently, the Lagrangian is

(5) L(y, u, p) =
1

2
〈y−y∗, R(y−y∗)〉Y ×Y ′+

ω

2
〈u,R−1u〉Y×Y ′+〈Ay−f−u, p〉Y ′×Y
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implying that the system (2) becomes

(6) G



y
u
p


 :=



R 0 A∗

0 ωR−1 −I
A −I 0






y
u
p


 =



Ry∗
0
f


 ,

i.e., A = diag(R,ωR−1) and B = (A,−I). The system matrix G defined in (6) is
symmetric since R is. Moreover, A is positive definite and B has full rank since,
by assumption, the PDE constraints (3) have a unique solution for given u. Thus,
the resulting saddle point operator G is symmetric and boundedly invertible.

Parabolic PDE with distributed control. The constraint K(y, u) = 0 in
(1) is here a linear parabolic evolution PDE in a variation of the full space-time
weak formulation from [10]. The parabolic operator equation is formulated such
that the resulting operator B is boundedly invertible from X := L2(I) ⊗ Y to
Y ′ := ((L2(I)⊗Y )∩ (H1

T (I)⊗Y ′))′ where H1
T (I) is the closure of the functions in

H1(I) which vanish at end time T and I := (0, T ) denotes the time interval. The
constraints are of the form (3) with the parabolic evolution operator B = ∂t+A in
full weak space-time form in place of A, see [6] for details. Choosing the objective
function then as in (4) with the obvious changes for the norms, i.e., using the
norms for X , Y, we arrive at a system very similar to (6) with symmetric A =
diag(R1, ωR2) with the respectively defined Riesz operators. Finally, the resulting
operator G is a boundedly invertible mapping from Z := X × Y ′ ×X onto Z ′.

Adaptive wavelet methods for the parabolic PDE-constrained control

problem. In view of the fully in space and time coupled system (2), conven-
tional time-stepping methods require an enormous storage. In contrast, adaptive
methods in both space and time which aim at distributing the available degrees
of freedom in an a-posteriori-fashion to capture singularities are most promising.
Employing wavelet schemes for full weak space-time formulations of the parabolic
PDEs, we can prove convergence and optimal complexity for control problems con-
strained by a linear parabolic PDE [6], generalizing the ideas from [4] for control
problems constrained by an elliptic PDEs.

Parametric PDE-constrained control problems. Yet another level of chal-
lenge are control problems constrained by evolution PDEs involving stochastic or
countably many infinite parametric coefficients: for each instance of the parame-
ters, this requires the solution of the complete control problem (2).

Our method of attack is based on the following new theoretical paradigm devel-
oped for elliptic PDEs in [2, 3]. It is first shown for control problems constrained
by evolution PDEs, formulated in full weak space-time form as in [10], that state,
costate and control are analytic as functions depending on these parameters. We
establish that these functions allow expansions in terms of sparse tensorized gen-
eralized polynomial chaos (gpc) bases. Their sparsity is quantified in terms of
p-summability of the coefficient sequences for some 0 < p ≤ 1. Resulting a-priori
estimates establish the existence of an index set for simultaneous approximations
of state, co-state and control for which the gpc approximations attain rates of best
N -term approximation. This entails corresponding sparse realizations in terms of
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deterministic adaptive Galerkin approximations of state, co-state and control on
the entire, possibly infinite-dimensional parameter space, see [7]. We specify in
[8] how to realize these Galerkin approximations by the techniques in [9] and the
realizations in [5] for a single PDE.

In the context of isogeometric analysis, these techniques can be combined with
parametric mappings as in [1].
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Multipatch Discontinuous Galerkin Space and Space-time IgA: Error

Estimates and Fast Solvers

Ulrich Langer

(joint work with Christoph Hofer, Angelos Mantzaflaris, Stephen Moore, Martin
Neumüller, Ioannis Toulopoulos)

1. Multipatch DG IGA Discretizations

In the first part of the presentation, we derive error estimates for multipatch
discontinuous Galerkin (dG) Isogeometric Analysis (IgA) approximations

(1) adG(uh, vh) = ℓdG(vh), ∀vh = {vh,i}Ni=1 ∈ VdG,h(Ω),

to heterogeneous elliptic diffusion problems of the form

(2) −∇Ω · (α∇Ωu) = f in Ω, u = gD onΓD, α∇Ωu · n = gN onΓN

on open and closed surfaces Ω ⊂ R
3 (2d manifolds) and in volumetric computa-

tional domains Ω ⊂ R
d, d = 2, 3. We suppose that Ω = ∪N

i=1Ωi has a multipatch
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representation, where every patch Ωi = Fi(Ω̂) is the image of parameter domain

Ω̂, that is (0, 1)2 or (0, 1)3, by the NURBS map Fi : Ω̂ → Ωi. Our numeri-
cal analysis covers low-regularity solutions, graded meshes, non-matching meshes,
and segmentation crimes like non-matching interfaces creating gaps and overlaps,
like illustrated in the figure below. The typical discretization error estimate with
respect to (wrt) the dG-norm ‖ · ‖dG roughly looks like

(3) ‖u− uh‖dG . max{hj/hi} hr + hλ−0.5,

where u is the weak solution of (2), uh is the solution of the dG variational scheme
(1), h = max{hi} denotes the maximal mesh size, hi is the mesh size of the
mesh of the patch Ωi, h

λ denotes the maximum width of the gap with λ ≥ 1,
r = min{l − 1 + (d/2) − (d/q), p}, and p is the underlying polynomial degree of
the NURBS, whereas l ≥ 2 and q ∈ (max{1, 2d/(d+ 2(l − 1))}, 2] are given by
the local regularity of the solution u that is supposed to belong to W l

q at least
patch-wise. The table given below shows the convergence rates of the IgA solution
uh to a smooth solution u wrt the dG-norm for p = 2 and the domain on the
left-hand side (gaps, overlaps, non-matching meshes). The rate is dominated by
the term hλ−0.5 for λ = 1, 2 and 2.5. If λ is larger than 2.5, e.g., 3, than the rate
will not be better than r = p = 2. These observations are in perfect agreement
with our estimate (3).

Convergence rates for different λ

h λ = 1 λ = 2 λ = 2.5
0.03125 0.51 1.52 2.02
0.015625 0.50 1.51 2.01
0.0078125 0.50 1.50 2.00

We refer the reader to our publications [3, 4, 8, 7, 9, 11] for a detailed presentation
of the results and the proofs for the different cases mentioned above.

2. Isogeometric Tearing and Interconnecting Solvers

The second part of the presentation is devoted to the construction and analysis
of new dual-primal IsogEometric Tearing and Interconnecting (IETI-DP) meth-
ods for solving large-scale linear systems Kuh = f

h
of algebraic equations arising

from the dG IgA discretization (1) of heterogeneous diffusion problems (2) on
multipatch domains with non-matching meshes and interfaces like illustrated in
the figure above. In [1], we discuss and analyze the conforming Galerkin multi-
patch IgA, whereas the discontinuous Galerkin multipatch IgA with non-matching
meshes is investigated in [2]. The iteration numbers of a properly scaled Dirich-
let preconditioned conjugate gradient IETI iteration behave like O(1+ log(H/h)),
where H/h = max{Hi/hi} and Hi denotes the scaling of the patch (subdomain)
Ωi, i = 1, . . . , N . The numerical results presented in [1] and [2] confirm this the-
oretical result and show incredible robustness with respect to large jumps in the
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diffusion coefficient α across the interfaces, whereas the condition number of the
preconditioned IETI system depends on p in a moderate way. Our numerical tests
show a logarithmic dependence in 2d and a linear dependence on p in 3d. A new
p robust geometrical multigrid method was proposed and rigorously analyzed in
[5] based on the approximation results provided in [12].

3. Space-Time IGA for Parabolic Evolution Problems

Finally, we analyze new stable space-time IgA methods of the form:

(4) Find uh ∈ V0h : ah(uh, vh) = ℓh(vh) ∀vh ∈ V0h,

for the numerical solution of parabolic diffusion problems like

(5) ∂tu−∆u = f in Q = {(x, t) ∈ R
d+1 : x ∈ Ω(t), t ∈ (0, T )}

with Dirichlet boundary conditions u = uD := 0 on Σ = {(x, t) ∈ R
d+1 : x ∈

∂Ω(t), t ∈ (0, T )} and initial conditions u = u0 := 0 on Σ0 = Ω(0) × {0} in fixed
and moving spatial computational domains Ω resp. Ω(t) ⊂ R

d, where

ah(uh, vh) :=

∫

Q

(∂tuhvh + θh∂tuh∂tvh +∇xuh · ∇xvh − θh∂t∇xuh · ∇xvh) dxdt

+ θh

∫

ΣT

∇xuh · ∇xvh ds,

ℓh(vh) :=

∫

Q

f [vh + θh∂tvh] dxdt,

with some positive θ. The discrete bilinear form ah(uh, vh) is elliptic on the IgA
space V0h = V0h(Q) with respect to the discrete energy norm ‖v‖h = (‖∇xv‖2L2(Q)

+θh‖∂tv‖2L2(Q)+(1/2)‖v‖2L2(ΣT )+θh‖∇xv‖2L2(ΣT ))
1/2. This property together with

a corresponding boundedness property, consistency and approximation results for
the IgA spaces yields an a priori discretization error estimate of the form

(6) ‖u− uh‖h ≤ Chr−1‖u‖Hr(Q),

provided that u ∈ H1,0
0 (Q) ∩ H l(Q) with l ≥ 2, V0h ⊂ H2(Q), and θ is suffi-

ciently small, where r = min{l, p + 1} and p denotes the underlying polynomial
degree of the NURBS used for generating the IgA space V0h(Q). This theoretical
convergence result is confirmed by several numerical experiments with low- and
high-order IgA spaces, see [10] for more details. The parameter θ can be deter-
mined from a constant in an inverse inequality that depends on p and that can
be computed by symbolic methods [6]. In the case of fixed spatial domains, θ can
be chosen as a fixed positive constant, e.g., 0.1 as in our numerical experiments
presented in [10]. The figures below show a moving spatial domain resulting in
a curved space-time cylinder Q where the curved lateral faces are described by
NURBS. The weights corresponding to the control points P1,1,2, P2,1,2 , P2,2,2 and

P1,2,2 are 1/
√
2, whereas the other weights are equal to 1. The corresponding

table on the right-hand side provides the discretization error ‖u − uh‖h and the
corresponding convergence rate for the case p = 4.
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dofs ‖u− uh‖h rates

216 6.18145e-03 2.19
512 4.61833e-04 3.74

1728 2.57814e-05 4.16
8000 1.53822e-06 4.07

46656 9.48130e-08 4.02
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B-splines and T-splines

Tom Lyche

(joint work with Cesare Bracco, Carla Manni and with Hendrik Speleers)

Piecewise polynomials, or splines defined over a region in the plane form an indis-
pensable tool in the sciences, with applications ranging from scattered data fitting
to finding numerical solutions to partial differential equations using isogeometric
methods In this talk we define a generalization of polynomial splines over planar
T-meshes known as Tchebycheffian splines and we address the problem of deter-
mining their dimension. It is worth pointing out that the extension is non-trivial
because the ring structure of algebraic polynomials cannot be used in this general
setting. We show that only the bound on the number of (real) roots of the ele-
ments of the considered space is required. The results strengthens the structural
similarity between algebraic polynomial and general Tchebycheffian spline spaces.

The dimension of polynomial spline spaces on a prescribed T-mesh for a given
component-wise degree p and smoothness r has been addressed by several authors
using different techniques, and it turns out to be a very challenging problem see for
example [1, 3] and references therinn. Lower and upper bounds for the dimension
are known, and an explicit expression has been determined in some special cases.
In particular, the dimension is known for spline spaces over so-called quasi-cross-
cut T-meshes – these are meshes where each edge extends to the boundary – and
for spline spaces with p > 2r under some mild conditions on the T-mesh. On the
other hand, instability in the dimension can occur if the degree is not large enough
with respect to the smoothness.

The dimension problem of spline spaces over T-meshes faces the same difficul-
ties as the dimension problem for polynomial spline spaces of total degree p over
triangulations see [4] and references therein. In the latter case, the dimension is
known for spline spaces over quasi-cross-cut partitions and for spline spaces with
p ≥ 3r + 2. Instability in the dimension has been illustrated for p = 2r. Some
similar results are known for spline spaces of total degree p over general rectilinear
partitions.

Among the various techniques to tackle the dimension problem, one can use
the homological approach proposed in [6], where the techniques for polynomial
splines over triangulations has been fine-tuned for polynomial splines over planar
T-meshes. To this end, we generalize the techniques and the results presented in
[6] for the algebraic polynomial case. More precisely, besides characterizing the
Tchebycheffian spline space as a suitable homology space,

• we provide a dimension formula in terms of combinatorial quantities of
the T-mesh, the smoothness, the dimensions of the underlying extended
Tchebycheff spaces, and homology quantities;

• we derive lower and upper bounds for the dimension (under a specific
assumption on the underlying extended Tchebycheff spaces);

• we provide an explicit expression for the (stable) dimension of spline spaces
over quasi-cross-cut T-meshes, and of spline spaces with p ≥ 2r+1 under
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some mild conditions on the T-mesh; the latter conditions are usually
satisfied by T-meshes of interest in applications and identify a family of
T-meshes larger than the one considered in [6];

• we illustrate that the dimension of Tchebycheffian spline spaces over T-
meshes can be unstable, by generalizing the examples given for the poly-
nomial spline case to some non-polynomial Tchebycheff spaces: the case
of trigonometric and the case of exponential functions.

We start the talk by giving an introduction to Tchebycheff systems and Tcheby-
cheffian B-splines see [5, 7].
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Spectral Analysis of Matrices from Isogeometric Methods

Carla Manni

(joint work with M. Donatelli, C. Garoni, F. Pelosi, F. Roman, S.
Serra-Capizzano, D. Sesana, H. Speleers)

When discretizing a linear PDE by a linear numerical method, the computa- tion
of the numerical solution reduces to solving a linear system. The size of this
system grows when the discretization parameter n increases, i.e., when we refine
the discretization mesh. We are then in the presence of a sequence of linear systems
with increasing size. It is usually observed in practice that the corresponding
sequence of discretization matrices enjoys an asymptotic spectral distribution. The
spectral distribution of a sequence of matrices is a relevant concept. Roughly
speaking, if the sequence of matrices {An} is distributed like the function f then
the eigenvalues of An behave like a sampling of f over an equispaced grid on the
domain of f . In this case, the function f is called the (spectral) symbol of the
sequence {An}.

In this talk we consider a general second-order elliptic Partial Differential Equa-
tion (PDE), {

−∇ ·K∇u+α · ∇u+ γu = f, in Ω,
u = 0, on ∂Ω,
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where Ω ⊆ R
d is a bounded open domain with Lipschitz boundary, K : Ω → R

d×d

is a symmetric positive definite matrix of functions in L∞(Ω), α : Ω → R
d is a

vector of functions in L∞(Ω), γ ∈ L∞(Ω), γ ≥ 0 and f ∈ L2(Ω).
We determine the spectral symbol and we analyze the spectral distributions of

the sequences of matrices arising from isogeometric discretizations based on tensor
product B-splines of degree p := (p1, . . . , pd) for the problem stated above. We
address both Galerkin and collocation methods and, in the spirit of Isogeometric
Analysis (IgA), we also consider a geometry map G : [0, 1]d → Ω, see [2]. The
main tool for computing spectral symbols of PDE discretization matrices is the
theory of Generalized Locally Toeplitz (GLT) sequences, [10].

Recently, in [5, 6, 7, 8] we have proved the following results:

• a spectral distribution exists and is compactly described by a symbol f ;
• the symbol f has a canonical structure incorporating:

– the approximation technique, identified by a finite set of polynomials
in the Fourier variables θ := (θ1, . . . , θd) ∈ [−π, π]d;

– the geometry, identified by the map G in the parametric variables
x̂ := (x̂1, . . . , x̂d) defined on the reference domain [0, 1]d;

– the coefficients of the higher-order differential operator of the PDE,
namely K, in the physical variables x := (x1, . . . , xd) defined on the
physical domain Ω;

• the symbol f is the same in the Galerkin and collocation isogeometric set-
ting, up to a determinant factor | det(JG)|, being JG the Jacobian matrix
of G.

The above analysis has been partially extended to the case of isogeometric dis-
cretizations based on tensor product generalized B-splines of degree p, see [9].

It is worth to notice that the picture described in the second item above is intrin-
sic to the approximation of PDEs by any local method, such as Finite Differences
(FDs) and Finite Elements (FEs). Actually, the formal structure of the symbol
is essentially the same when considering different techniques to approximate the
same problem; see [1, 10] and references therein.

Although the formal structure of the symbol is shared by different approxima-
tion techniques, some of its analytic features are not so common. For instance,
if one of the components of p, say pi, is large, then the symbol f has “numerical
zeros” at the points (x̂, θ) ∈ [0, 1]d × [−π, π]d where θi = π. More precisely, if
θi = π, the value f(x̂, θ) tends to 0 exponentially as pi → ∞. The latter informa-
tion implies that small eigenvalues are related to high-frequency eigenvectors, and
this non-canonical source of ill-conditioning is responsible for the slowdown of all
the standard multigrid and preconditioning techniques when one of the pi grows.

The spectral information provided by the symbol f has been exploited for de-
signing algorithms with convergence speed independent of the fineness parameters
and also substantially independent of the approximation parameters p; see [3, 4].
Indeed, it was possible to construct iterative solvers of multigrid type which are
not only optimal with respect to the mesh-size but also robust with respect to the
approximation degree and the dimensionality of the domain.
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Low-Rank Tensor Methods in Isogeometric Analysis

Angelos Mantzaflaris

(joint work with B. Jüttler, B. N. Khoromskij and U. Langer)

Tensor-product splines are among the most popular approaches to construct mul-
tivariate representations suitable for isogeometric analysis (IGA). In fact, the mul-
tivariate parameterizations in IGA rely almost exclusively on tensor-product rep-
resentations. In the existing isogeometric technology, multivariate tensor-product
spline functions are represented by full coefficient tensors. The number of coeffi-
cients, which have to be stored and processed, grows exponentially with respect
to the spatial dimension. Even with today’s computational power, processing
B-spline functions in several dimensions (for instance 3D or even 4D space-time
simulations) with a few hundreds of knots per direction (i.e., a few billions of basis
functions), is an extremely difficult task. Consequently, in PDE discretizations
the size of the system matrix is subject to the same exponential growth.

The field of tensor calculus and its use in numerical simulation is as recent as
isogeometric analysis [4, 8, 9]. These methods were introduced in order to over-
come the curse of dimensionality, i.e., the exponential complexity with respect to
the spatial dimension of the computational domain. In particular, tensor calcu-
lus enables the separation of variables of multivariate functions, allowing efficient
computations on large scale grids. Recently, the approach has been applied to
the decoupling of multivariate polynomial functions [3]. The advantage of tensor
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methods has been demonstrated for high-dimensional problems. Efficient compu-
tations for a wide class of discrete functions and operators have been made possible.
For instance, in applications in biology, the discretization and solution process of
multi-dimensional steady-state and dynamical problems is made possible with a
logarithmic complexity in the volume size of the computational grid [7].

The very same difficulty of dimensionality is encountered in isogeometric anal-
ysis, in particular in the task of matrix assembly. This task is computationally
more challenging than in the case of traditional finite element methods. Apart
from the rapidly growing matrix size under uniform h−refinement, this is also due
to factors such as the increased degree and the larger supports of the ansatz func-
tions (tensor-product B-splines), that burden the sparsity pattern and bandwidth
of the system matrix. Contrarily to the high-dimensional setting in chemistry or
biology, the problems occur already in three dimensions in our setting.

The standard approach to perform the assembly task in IGA consists in using
Gaussian quadrature, but this does not give optimal runtimes, due to its high com-
putational cost which is asymptotically bounded by O(ndp3d). Several approaches
have been introduced in order to overcome this problem. Firstly, new approaches
reduce the number of quadrature points required per parametric dimension for
exact or sufficiently accurate numerical integration [2, 5, 15]. Secondly, discretiza-
tions via collocation [14] have been studied, but the theoretical foundations of this
mathematical technology are less well understood than in the case of Galerkin
projection. In [1], the sum factorization technique is used for IGA, leading to a
complexity bound of O(ndp2d+1). An efficient direct solver for certain systems in
tensor-product form is used to derive fast IGA preconditioners in [13]. Moreover,
this problem has motivated the use of GPU programming [6] for accelerating the
assembly process.

In another attempt to address this problem we developed an interpolation-based
approach that approximately transforms the integrands into piecewise polynomi-
als and uses look-up tables to evaluate their integrals [10, 11], with complexity
O(ndp2d). Shortly after, this led us to the use of tensor methods to accelerate
the assembly process further [12], notably reducing the complexity to O(Rdnp3),
where the rank parameter R captures the geometric complexity of the tensor-
product patches parameterizing the physical domain. In doing so, we obtained a
compact representation of the matrices that occur in IGA as sums of a small num-
ber of Kronecker products of auxiliary matrices, which are defined by univariate
integrals. This representation, which is based on a low-rank tensor approxima-
tion of certain parts of the integrands, makes it possible to achieve a significant
speedup of the assembly process without compromising the overall accuracy of the
simulation.

The property which allows such low-rank representations in the context of IGA
is the presence of the global (patch-wise) geometry map. This map, which de-
scribes the shape of the computational domain, is one of the main new features
in IGA, compared to the traditional locally parameterized isoparametric finite el-
ements. The tensor-product structure of the map is passed on to the isogeometric
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Figure 1. A B-spline quarter annulus domain (left) and the
“Skeleton functions” of the Jacobian determinant.

Figure 2. Two views of the graph of the Jacobian determinant,
plotted over [0, 1]2.

discretization space that is derived from it. The involvement of this global map-
ping in the discretization of PDEs could be regarded as a disadvantage at first
glance, as opposed to the purely local nature of classical finite elements. However,
using the low-rank representation, we demonstrate that it is possible to benefit
significantly from the regularity of its structure. As an example, consider a quar-
ter annulus described by tensor-product B-splines. In Figure 1, the color field on
the annulus is the value of the Jacobian determinant. The “skeleton functions”
(i.e., the univariate functions) describing the Jacobian determinant is shown on
the right side. The linear function is associated with the first direction, while the
bubble function describes the determinant along the second parametric direction.
In Figure 2 two views of the graph of the Jacobian determinant and its control grid
over the parameter domain [0, 1]2 are shown. The degree is 2 in the first direction
and 4 in the second one. The fact that this determinant is separable as a product
of two functions implies that this shape can be treated as efficiently as a simple
square domain.
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Isogeometric Analysis on Domains of Arbitrary Topology

Bernard Mourrain

Shapes are not always rectangular. They can have holes, assembled components,
. . . In this talk, we investigate isogeometric analysis methods on domains with
arbitrary topology. This raises the questions of how to describe complex domains
and what type of spline spaces we can use to approximate the solutions of Partial
Differential Equations on these domains.

We describe two approaches, which represents these domains as collections of
faces glued along edges.

The first approach consists in using constant glueing functions between faces
that share an edge. We present a type of splines defined over a rectangular mesh
with arbitrary topology, which are piecewise polynomial functions of bi-degree
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(d, d) and Cr parameter continuity. We analyze their dimension and exhibit ba-
sis functions called Hermite bases for bicubic spline spaces. We investigate their
potential applications for solving partial differential equations (PDEs) over a com-
plex physical domain in the framework of Isogeometric analysis. We analyze the
property of approximation of these spline spaces for the L2-norm. Despite the
fact that the basis functions are singular at extraordinary vertices, we show that
the optimal approximation order and numerical convergence rates are reached by
setting a proper parameterization.

The second approach consist in fixing transition maps satisfying some com-
patibility properties. We show that if the functions and the parametrization are
Gr-regular after composition by these transition maps, they induce Cr functions on
the physical domain which can be used for Galerkin-type formulations in the con-
text of Isogeometric Analysis. We analyze the space of geometrically continuous
piecewise polynomial functions, or splines, for rectangular and triangular patches,
with general rational transition maps. To define these spaces of G1 spline func-
tions, we introduce the concept of topological surface with gluing data attached to
the edges shared by faces. The framework does not require manifold constructions
and is general enough to allow non-orientable surfaces. We describe compatibility
conditions on the transition maps so that the space of differentiable functions is
ample and show that these conditions are necessary and sufficient to construct
ample spline spaces. We determine the dimension of the space of G1 spline func-
tions which are of degree ≤ k on triangular pieces and of bi-degree ≤ (k, k) on
rectangular pieces, for k big enough. A separability property on the edges is in-
volved to obtain the dimension formula. We describe an explicit construction of
basis functions attached respectively to vertices, edges and faces; An example of
bases of G1 splines on a simple mesh illustrate the construction.

This talk is based on the two papers [1, 2].
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Linear Finite Elements on Distorted Triangulations

Peter Oswald

The finite element method (FEM) is a workhorse for solving partial differential
equations in a variational setting. FEM theory (approximation by piecewise poly-
nomials) is well-established if the underlying domain partitions are well-shaped,
e.g., locally quasi-uniform and regular. Nevertheless, applications to problems
with boundary and interior layers or more generally to the optimal approximation
of functions on higher-dimensional domains with essential support along lower-
dimensional sets would benefit from the use of distorted partitions. It is widely
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believed that discarding the regularity assumptions is possible only under special
circumstances. It was our goal to look into possible extensions of the theory to
arbitrary partitions. Using the simplest case of linear C0 finite element spaces
VT over finite triangulations T of a bounded polygonal domain Ω ⊂ R

2, we have
investigated how far certain statements valid for families of shape-regular trian-
gulations can be extended to arbitrary triangulations. The following case studies
have been pursued over the years:

Mesh independence of L∞-bounds for the L2-orthoprojector. Denote by
PT the L2-orthoprojector onto VT . As an operator, PT is well-defined on L1(Ω),
with range in C(Ω). Bounds for the norm ‖PT ‖L∞→L∞

are useful in FE analysis,
and immediately imply bounds in other Lq-norms (1 ≤ q ≤ ∞) by duality and
interpolation. In [1], we published explicit examples showing that, in contrast to
the one-dimensional situation and to shape-regular simplicial partitions in higher
dimensions, ‖PT ‖L∞→L∞

may unboundedly grow with the number of triangles |T |
in T . More precisely, we showed that for simple Ω such as a square in R

2

(1) sup
T : |T |≤J

‖PT ‖L∞→L∞
≥ cJ, J → ∞,

for some absolute constant c > 0. This unboundedness result also holds in higher
dimensions. It remains an open question if (1) is sharp, i.e., if there exists a
matching upper bound of the form ≤ CJ with an absolute constant C < ∞.

On the positive side, in [2] we gave some new upper bounds for ‖PT ‖L∞→L∞

that cover a wide range of practically useful distorted triangulations such as
Shishkin and Bakhvalov meshes. Roughly speaking, these upper bounds depend
on the maximal valence of the vertices in T and put restrictions on the possible
growth of area in chains of triangles attached to each other. How subtle estimates
for ‖PT ‖L∞→L∞

depend on the topology and geometry of T is demonstrated on
the example of triangulations obtained by dividing each cell of a tensor-product
partition P of a rectangle into two triangles. While orthoprojectors onto the bilin-
ear finite element space over the tensor-product partition P possess a uniform L∞

bound, the associated PT may or may not inherit this boundedness, depending
on how exactly T is obtained from P . The positive news is that there is a simple
subdivision algorithm applicable to arbitrary such P and resulting in T with a
uniform bound for ‖PT ‖L∞→L∞

. For details and further references, we refer to
[2].

Energy-norm convergence of the Galerkin finite element method for

Laplace’s equation. Consider for simplicity the Poisson problem −∆u = f
equipped with one of the standard boundary conditions on a bounded polygonal
domain Ω ⊂ R

2 and right-hand side f ∈ L2(Ω). It is well-known that if the
solution u is in H2(Ω), and T satisfies certain restrictions (such as the celebrated
maximum angle condition of Babuška and Aziz [3]) then the Galerkin solution
uT ∈ VT comes with an optimal H1 error estimate of the form

(2) ‖u− uT ‖H1 ≤ ChT |u|H2
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in terms of the maximal diameter hT of the triangles in T . In [3], a special
family of triangulations of the unit square Ω = [0, 1]2 was used to show that the
estimate (2) may not hold if the maximum angle condition is violated. A precise
quantitative characterization of this loss of accuracy in the Galerkin method as
well as the question of a possible convergence failure remained open.

Figure 1. Schwarz-Babuška-Aziz triangulation T4,8

In [4], we slightly modified the example from [3], and showed the two-sided
estimate

(3) ‖u− uTn,m
‖H1 ≍ min(1,m/n2), m ≥ n → ∞,

for a Poisson problem with right-hand side f(x, y) = 1 and polynomial solution
u(x, y) = x(1 − x) on the unit square [0, 1]2 (for simplicity, periodic boundary
conditions in y-direction and homogeneous Dirichlet conditions at x = 0, 1 were
assumed). The family of triangulations Tn,m (Fig. 1 shows the case n = 4, m = 8)
was already used in [3] but appeared earlier in work by H. Schwarz (1880). The
proof of (3) is elementary, it shows that the Galerkin method converges in energy
norm to the (smooth) solution of this Poisson problem for this family of distorted
triangulations if m/n2 → 0, otherwise it does not converge. As strange it may
sound, a formal proof of the possible non-convergence of the FEM for a Poisson
problem with smooth solution was missing in the literature. V. Kucera (Prague)
is currently pursuing the quest for more general necessary and sufficient conditions
for convergence of the FEM.

In our talk, we have also briefly mentioned some recent developments in the con-

vergence theory of multiplicative Schwarz methods, a modified version of
the classical Wiener-Halperin alternating direction method. Roughly speaking, a
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spd variational problem on a Hilbert space H of finding u ∈ H such that

a(u, v) = F (v) ∀ v ∈ H (F ∈ H ′ ),

is iteratively solved using a finite or infinite number of auxiliary spd variational
problems with bilinear forms bi(·, ·) on Hilbert spaces Hi, related to the original
space by linear operators Ri : Hi → H . The j-th iteration step of the multiplica-
tive Schwarz method consists of choosing a certain index i, computing the restric-
tion of the residual of the current iterate to H ′

i using the adjoint R′
i : H ′ → H ′

i,
solving the i-th subproblem, and updating the current iterate by this partial in-
verse using appropriate relaxation parameters αj and ωj :

uj+1 = αju
j + ωjRiB

−1
i R′

i(F −Auj).

The recent developments concern greedy and random choices for the choice of i
in the j-th step [5], the application to solving non-symmetric and overdetermined
problems in a least-squares sense (Kaczmarz-type methods, [6, 7]), and the case of
infinitely many auxiliary problems [8]. Due to lack of space we refer to the cited
papers, and the references therein. We note that our investigations in this direction
overlap in many aspects with the huge body of recent research papers on block-
iterative solvers for large-scale convex and non-convex optimization. Our specific
contributions concern the incorporation of overlapping blocks (redundancy) and
the emphasis on the concept of stable space splittings related to preconditioning.
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Design and Analysis for Irregular Quad Layout

Jörg Peters

(joint work with Kȩstutis Karciauskas, Thien Nguyen)

Presently the practical construction of smooth parametric surfaces (and other
manifolds) in computer aided design is based on glueing together a finite number
of surface pieces. Such Gk constructions match, after reparameterization (change
of variables from one surface piece to the next) derivatives (jets) up to kth order;
for example G2 surfaces have continuous curvatures. [15] provides a survey on the
theory of Gk surface construction, including algebraic considerations such as the
valence-dependent vertex enclosure problem and how to derive the reparameteriza-
tion from a Gk surface construction. An alternative to Gk constructions is the use
of singular parameterizations. Singular constructions include generalized subdivi-
sion surfaces (Catmull-Clark surfaces) that are widely used for visualization and
animation (see e.g. [17] for a survey) as well as explicitly singular constructions
[13, 1].

In design, the representation of choice for surface pieces are tensor-product
splines. These piecewise polynomials follow the outlines of an input mesh consist-
ing of quadrilaterals (quads) whose vertices can be interpreted as control points
scaling linear combinations of basis functions. Constructions that include mesh
irregularities, i.e. where three or more than four surface pieces join, have been
known since the late 1980s [12, 2, 14, 11]. However, constructions of least polyno-
mial degree and good shape (measured in terms of highlight lines for an obstacle
course of input meshes [5]) have only recently been developed: for example ex-
plicit recipes – without solving systems of equations – now exist for constructing,
high-quality G2 surfaces of degree bi-6 (or bi-5 when 2 × 2 pieces are permitted
per quad) [7, 6]. These surfaces are linear combinations of B-spline-like functions
for irregular quad mesh layout.

In 2014 a formal proof was given that Gk constructions yield Ck finite elements
when the same reparameterization is used both for the geometry (surface) and
the (analysis) functions [16, 3]. This means that every Gk construction yields
a Ck finite element suitable for the iso-parametric IGA framework. [8] is the
first account of such generalized IGA (gIGA) elements for irregular quad layout
in the literature. The paper also compares the gIGA approach to alternatives
such as methods of classical finite element analysis and analysis using generalized-
subdivision functions.

In gIGA constructions [8, 4, 10, 9]), each point of the quad mesh acts as a
B-spline-like control point to determine geometric shape or for IGA computations.
The gIGA constructions intentionally do not expose the often asymmetrically-
distributed Bézier degrees of freedom that exist after G1 constraints have been
enforced. Rather they harness them to optimize shape. Practice has to show
whether this strategy is better than to harvest all possible free Bézier coefficients
as degrees of freedom for IGA.
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IGA Collocation, aka “the Ultimate Reduced Quadrature IGA

Method”: Some Results, Applications, and Open Problems

Alessandro Reali

(joint work with Thomas J.R. Hughes)

Isogeometric analysis (IGA) was first introduced in 2005 [1] with the main aim of
bridging Computer Aided Design (CAD) and Finite Element Analysis (FEA). The
basic IGA concept, based on the isoparametric paradigm, consisted of adopting
the same basis functions (splines) used for geometry representations in CAD sys-
tems for the approximation of field variables. The original goal was a cost-saving
simplification of the typically expensive mesh generation and refinement processes
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required by standard FEA. In addition, thanks to the high-regularity properties
of its basis functions, IGA showed a better accuracy per-degree-of-freedom and
an enhanced robustness with respect to standard FEA. Such a superior behav-
ior was exploited in a number of applications ranging from solids and structures
to fluids and fluid-structure interaction [2]. Moreover, the newly available higher
regularity opened also the door to geometrically flexible discretizations of higher-
order partial differential equations in primal form. A well-known important issue
of IGA is related to the development of efficient integration rules able to reduce
the high array formation costs induced by standard Gaussian quadrature, in par-
ticular when higher-order approximations are employed. Ad-hoc quadrature rules
were proposed by several authors, but the development of a general and effective
solution for Galerkin-based IGA methods is still an open problem.

Figure 1. 3D elasticity test [4]. Relative error in H1-seminorm
versus number of degrees of freedom per parametric direction for
IGA collocation (IGA-C) as well as Galerkin IGA (IGA-G) and
FEA (FEA-G).

In an attempt to address the issue above taking full advantage of the special
possibilities offered by IGA and in particular by the available higher regularity,
isogeometric collocation (IGA-C) schemes have been recently proposed [3]. The
main idea of IGA-C consists of the discretization of the governing partial dif-
ferential equations in strong form, within the isoparametric paradigm, reducing
the number of evaluations needed for array formation to only one per degree of
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freedom. The aim is to optimize the computational cost still relying on IGA ge-
ometrical flexibility and accuracy. In general, IGA-C features look particularly
attractive when evaluation and formation costs are dominant, as in the case, e.g.,
of explicit structural dynamics. Detailed comparisons with both IGA and FEA
Galerkin-based approaches were carried out, showing IGA-C advantages in terms
of accuracy versus computational cost, in particular for higher-order approxima-
tion degrees, as it can be, e.g., seen comparing Figures 1 and 2 [4].

Figure 2. 3D elasticity test [4]. Relative error in H1-seminorm
versus computational time for IGA collocation (IGA-C) as well
as Galerkin IGA (IGA-G) and FEA (FEA-G).

Since its introduction, many promising significant works on IGA-C were pub-
lished in different fields, including, among others, phase-field modeling, linear and
nonlinear elasticity, contact, as well as several interesting studies in the context of
structural elements (see, e.g., [5] and references therein).

In particular, IGA-C allows to reach new frontiers for mixed formulations, where
methods that are known to be unstable in the Galerkin framework seem to be
stable and very efficient when combined with IGA-C.

Finally, it has been recently shown that IGA-C can be conveniently combined
with many different spline spaces, able for example to be locally refinable or pos-
sessing other desirable properties not available with classical B-splines or NURBS
(like, e.g., Hierarchical NURBS, T-splines, or Generalized B-splines).
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All these results naturally propose collocation as one of the most promising re-
search directions in the field of IGA, able to combine simplicity and efficiency with
an incredibly high potential. Unfortunately, a sound mathematical understanding
of this approach is still missing, as proven by the lack of mathematical theory for
the multi-dimensional case, currently representing one of the main open problems
in this context.
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Analysis-suitable C1 Multipatch Isogeometric Spaces

Giancarlo Sangalli

(joint work with Annabelle Collin and Thomas Takacs)

Since higher dimensional spline spaces possess a tensor-product structure, the
representation of domains that have a complex geometry is non-trivial. In this
paper we focus on multi-patch representations. While the implementation of C0-
continuity over multi-patch domains is well understood (see e.g. [8, 1, 12] for
strong and [3] for weak imposition of the C0 conditions), C1-continuity is not.
Several studies have tackled the problem of constructing function spaces of C1 or
higher order smoothness, such as [4, 6] for spline spaces, [9] for triangulations and
[10] comparing both. Nevertheless, the construction of smooth isogeometric spaces
with optimal approximation properties on complex geometries is still an open and
challenging problem. This is related to the problem of finding parametrizations of
smooth surfaces having complex topology, which is a fundamental area of research
in the community of Computer Aided Geometric Design (CAGD) over the last
decades.

We review two different strategies for constructing smooth multi-patch geome-
tries and corresponding isogeometric spaces. One possibility is to adopt a geometry
parametrization which is globally smooth almost everywhere, with the exception
of a neighborhood of the extraordinary points (or edges in 3D), see Figure 1 (left).
The other possibility is to use geometry parametrizations that are only C0 at
patch interfaces, see Figure 1 (right). The first option includes subdivision sur-
faces [5] and the T-spline construction in [11] and, while possessing attractive
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Figure 1. Two possible parametrization schemes: C1 away from
extraordinary points (left) and C0 everywhere (right).

features, they seem to possess optimal approximation properties for some config-
urations, but in general lack accuracy [10, 6]. In our work we consider the second
possibility, corresponding to the right part of Figure 1. The construction of C1

isogeometric functions over a C0 parametrization can be interpreted conveniently
as geometric continuity G1 of the graph parametrization. Following this approach,
[7] constructed a basis for the shape functions, then analyzed its dimensionality of
some configurations and numerically tested the order of convergence on h-refined
meshes, obtaining optimal convergence with spline degree 3 or higher and global
continuity C1 on a two-patch bilinear geometry. The authors also show an example
of over-constrained C1 isogeometric spaces on a non-bilinear geometry. We refer
to the latter situation as C1 locking. Bilinear parametrizations of a multi-patch
planar domain have been analyzed in [2], where it was shown that there exists a
minimal determining set with local degrees of freedom for the C1 smooth space if
the polynomial degree is high enough (4 if some additional conditions are fulfilled,
5 otherwise).

Our work further develops the underlying theory in the direction of [2, 7]. Note
that they give explicit charcaterizations in the form of minimal determining sets
[2] or basis constructions [7] whereas we present an implicit characterization of the
continuity conditions and derive restrictions on the function spaces. We moreover
focus on the impact of refinement schemes as they are employed in isogeomet-
ric analysis. Within the isogeometric framework, the concepts of h-refinement,
equivalent to knot insertion, as well as k-refinement, simultaneous elevation of the
polynomial degree and interior smoothness, are the two main concepts to increase
accuracy of the approximating function space. We study these refinement schemes
both theoretically and numerically and point out their limitations. We analyze the
structure of C1 isogeometric spaces over AS G1 two-patch geometries. From that
the optimal order of approximation for p-degree isogeometric functions having C1

continuity across the patch interface and up to Cp−2 continuity in the interface
direction, and infer the C1 locking for Cp−1 continuity. Note that in this paper we
do not give a detailed proof for the approximation error estimates, which may be
the topic of future reserch. We analyze C1 isogeometric spaces constructed over
more general geometries and conclude that h-convergence is suboptimal beyond
AS G1 geometries. The extensions to surface domains and to NURBS are briefly
discussed. Numerical tests on two- and multi-patch domains are reported. A key
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question that remains to be studied is the flexibility of AS G1 parametrizations,
as well as construction methods for AS G1 parametrizations on general geome-
tries. We hope this work offers an innovative point of view which leads to a better
understanding of this difficult question.
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[7] M. Kapl, V. Vitrih, B. Jüttler, and K. Birner. Isogeometric analysis with geometrically
continuous functions on two-patch geometries. submitted, 2015.

[8] S. K. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar. IETI - isogeometric tearing and in-

terconnecting. Computer Methods in Applied Mechanics and Engineering, 247-248(0):201 –
215, 2012.

[9] T. Lyche and G. Muntingh. A Hermite interpolatory subdivision scheme for C2-quintics on
the Powell–Sabin 12-split. Computer Aided Geometric Design, 31(7):464–474, 2014.
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On the Isogeometric Version of the Scaled Boundary Finite Element

Method

Bernd Simeon

(joint work with Sven Klinkel, Lin Chen, Wolfgang Dornisch, Carlo Lovadina)

Recently, a new variant of Isogeometric Analysis has been introduced that dis-
cretizes the partial differential equation at hand based on a type of generalized po-
lar coordinates, thus avoiding the construction of tri-variate NURBS parametriza-
tions [1, 2].

While in the Boundary Element Method, the problem is mapped to the bound-
ary using Green’s function, this Scaled Boundary Method discretizes also the
boundary or surface patches of the domain, respectively, but generates then a
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formulation on a finite number of rays that emanate from an origin in the compu-
tational domain to the control points on the surface. Independent of the spatial
dimension, this leads to a 1D boundary value problem on the rays. However, in
this method a singularity in the origin of the boundary scaling arises that might
affect the performance of numerical methods.

The talk reports on current research for this method class in the context of
Isogeometric Analysis. In particular, a conjecture is formulated:
For certain classes of domains and PDEs (which ones?), the Galerkin projection
in circumferential and radial direction is equivalent with standard isogeometric
discretization for the corresponding polar parametrization.

The figure below illustrates the two concepts. The domain is parametrized via

x = x0 + ξ(N(η)X− x0)

where x ∈ Ω ⊂ R
2 is a point in Cartesian coordinates and x0 the scaling origin or

center point. The new coordinates ξ and η are element of [0, 1]2, andN(η)X stands
for the boundary representation in terms of B-splines (or NURBS) N and control
points X, both arranged in matrices of appropriate dimensions. On the left, the
coordinate transformation generates a 1D problem along the rays (indicated in red)
that run from the origin to the control points. On the right, the parametrization
directly induces a mesh.

Figure 1. Sketch of polar coordinate system and isogeometric mesh
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