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Introduction by the Organisers

Several decades after its invention, quantum field theory (QFT) remains the basis
of the theoretical understanding of elementary particle physics, and an important
tool in the study of condensed matter systems, making it a topic of prime interests
for many physicists. But in view of the rich mathematical structure of QFT, and
the many different formulations it allows, QFT is by now also a field of research
in mathematics, acting as a bridge for the interchange of ideas, concepts and
methods between mathematics and theoretical physics. On the one hand, it is
widely expected that new mathematical insights are needed in order to make
further progress on the many open questions in QFT, regarding for example the
mathematical status of concrete field theoretic models. On the other hand, the
structures found within QFT provide a major stimulus and incentive for pushing
forward the current frontiers of mathematics.
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The workshop “Recent mathematical developments in quantum field theory”
focused on several topics connected to this interplay between physics and mathe-
matics.

A particularly well developed area within QFT is the field of conformal QFT,
in which the usual Poincaré symmetry group is dramatically enlarged to the con-
formal group, leading to many special features and simplifications. The simplifi-
cations are particularly drastic in two spacetime dimensions, and, as a result, such
theories can to some extent be classified, and many models are more or less exactly
solvable. As a striking example of this, Teschner gave a talk on the solution of
Liouville field theory on a two-dimensional cylinder.

Recently, also the analysis of conformal field theories in more than two di-
mensions by “bootstrap methods” has again been a very active area of research.
Schomerus reported on this program and explained how solutions can be ap-
proached by mapping conformal blocks of 4-point functions to quantum mechanical
eigenfunctions of a specific Pöschl-Teller Hamiltonian in one dimension.

Complementary to explicit model constructions, there exist also (several) well-
developed operator algebraic approaches to conformal field theory. Kawahigashi
gave a talk on chiral heterotic theories within the operator-algebraic formulation
of conformal field theory, and Carpi reported on recent progress in understanding
the relations of this approach with the one based on vertex operator algebras.

In the absence of conformal invariance, the construction of models with non-
trivial interaction becomes even harder. Depending on the type of model, several
different methods have been developed, such as functional integral methods, renor-
malization group approaches, operator product expansions, inverse scattering, or
operator algebraic methods. A number of talks in the workshop presented current
developments in these subjects: Fröb gave a talk on the operator product expan-
sion in Yang Mills theory as a short-distance expansion in a perturbative setting,
and in particular presented novel functional equations for these quantities which
can be used to construct them order-by-order in perturbation theory, and possibly
even non-perturbatively. The talk of Imbrie focused on the use of renormalization
group methods in the construction of the eigenstates of a many-body Hamiltonian
displaying the phenomenon of many-body localization. While his concrete model
was non-relativistic, the methods are related to those of constructive QFT which
feature a delicate diagrammatic analysis involving large versus small field decom-
positions. The talk by Knörrer described an ongoing long-term research program
(in collaboration with Balaban, Feldman and Trubowitz) on the construction of
correlation functions and thermodynamic quantities for an interacting Bose gas,
based on a functional integral representation. This model is a non-relativistic, yet
very ambitious test case for renormalization group techniques developed originally
for QFTs since it aims in particular at a rigorous control of spontaneous symmetry
breaking and the Goldstone modes related to Bose-Einstein condensation.

A completely different perspective on the construction problem in QFT was
given by Jäkel, who presented a research program aiming at the construction of
QFTs on deSitter space with the help of Tomita-Takesaki modular theory, where
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the interaction is meant to be encoded not in terms of a Lagrangian density, but
rather in terms of a suitable vector from the canonical cone of a von Neumann
algebra w.r.t. the “vacuum” state. Also the talk by Cadamuro was dedicated
to the construction of certain (integrable) two-dimensional QFTs using operator
algebraic techniques, this time focusing on inverse scattering theory and bound
states. In such integrable models, the (two-particle) S-matrix is simple enough to
be usable as a meaningful description of the interaction.

In a general QFT in higher dimensions, this is far from being true, and also
the understanding of scattering theory is by no means as complete as in the non-
relativistic case of quantum mechanics. Dybalski gave a talk on the current state
of the art regarding asymptotic completeness in QFT.

In the last 10 years, interesting progress has been made in the study of the
“Grosse-Wulkenhaar model”, a four-dimensional QFT which was originally mo-
tivated by QFT on a (Euclidean) non-commutative space. This model has seen
several variations and refinements, and can now be formulated as a QFT on the
usual (commutative) four-dimensional Euclidean space. As Wulkenhaar explained
in his talk, this model shows certain aspects of integrability despite living in higher
dimensions, and there is partial evidence that it might be possible to translate it
to a Minkowski QFT by a Wick rotation.

Another talk related to constructive field theory was given by Chandra, who
reported on recent progress in the theory of stochastic PDEs. Such theories have
a close relationship with QFTs on Euclidean space, and in fact can be seen as an
alternative route to a (non-perturbative) construction of such models. In his talk,
he reviewed some of the recent progress in this area due in particular to Hairer,
Gubinelli, and others. He then explained how a BPHZ theorem can be formu-
lated within Hairer’s theory of regularity structures for certain types of stochastic
PDEs corresponding to super-renormalizable QFT models, providing thus a new
approach to these types of QFTs at the non-perturbative level.

The third main topic of the workshop was the question about the combina-
tion of QFT with gravity, a subject that has attracted considerable attention for
decades. Several approaches exist, ranging from studying QFT on fixed but curved
Lorentzian spacetimes, string theory, loop quantum gravity, to attempts of estab-
lishing quantum theories of gravity by quantization of classical general relativity.

Hack reported on a research program on a perturbative quantization of grav-
ity and applications to cosmology, making use of the framework of perturbative
algebraic quantum field theory. A very different approach to the problem of quan-
tizing gravity in four dimensions was presented by Rivasseau: “Tensor field theory”
draws its inspiration from Regge calculus, random matrix theory and 2D gravity,
and views quantum gravity as a theory of random geometries formulated in terms
of random tensors, which is then investigated with renormalization group methods.

Bär and Sanders gave talks within the setting of quantum field theories on
curved but classical spacetimes. Bär presented a new type of index theorem for
Dirac operators on globally hyperbolic spacetime with spin structures and dis-
cussed how this result can be applied to understanding anomalies. Sanders’ talk
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was about a generalization of so-called “modular nuclearity conditions” to QFT
on curved spacetimes and the use of this concept for characterizing states as well
as for obtaining estimates on entanglement entropies.

At the interface of conformal field theory and QFT on curved spacetimes there
also lies research on the famous AdS-CFT correspondence. We had three talks on
different aspects of this subject. Gottschalk reviewed the correspondence in the
Euclidean setting and presented particular results in a model example for this the-
ory based on the Liouville model. Samberg talked about p-adic AdS-CFT which
can be seen as a toy model for the more familiar Euclidean AdS-CFT. Following
well-known methodology in number theory, the idea is to replace the continu-
ous hyperbolic space given by the Euclidean AdS by a discrete hyperbolic space,
namely, an infinite tree whose conformal boundary is most elegantly described in
terms of the field Qp of p-adic numbers. Also related to the AdS-CFT correspon-
dence, Zahn gave a talk about a holographic relation concerning a massive scalar
field on (d+ 1)-dimensional Minkowski space with a d-dimensional boundary.

The topic of QFT on curved spacetimes was also the subject of a special evening
lecture by Wald. His talk was devoted to the question of “information loss” in the
context of black hole evaporation, and gave a critical overview of the lively debate
of this question in the current literature/media.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Lessons from Liouville field theory

Jörg Teschner

Most interacting quantum field theories have been constructed in the sense of
formal power series in coupling parameters only. The fact that the perturbative
expansions of quantum field theories generically do not converge raises interesting
questions. One may, in particular, wonder if information on non-perturbative
effects is necessary in order to characterise quantum field theories completely on
the non-perturbative level. Exactly solvable examples like the Liouville theory
(LFT) defined classically on Euclidean two-dimensional manifolds Σ by the action

(1) S =

∫

Σ

d2z

π

(
∂zφ∂z̄φ+ πµe2bφ

)
,

may allow us to gain insights into such issues.

1. Exact results on LFT

There is a set of known exact results that characterise the LFT completely as a
conformal field theory. Two pieces of information are crucial

• Spectrum: The Hilbert space is H ≃
∫ ⊕
R+ dP VP ⊗ V̄P , where VP (resp.

V̄P ) is the irreducible unitary representation of the Virasoro algebra with
generators Ln (resp. L̄n), central charge c = 1 + 6Q2, Q = b + b−1, and
highest weight vectors vP (resp. v̄P ) satisfying LnvP = δn,0(Q

2/4+P 2)vP
(resp. L̄nv̄P = δn,0(Q

2/4 + P 2)v̄P ).
• Observables: The local observables can all be obtained from the fields
Vα(w, w̄) on the Euclidean cylinder with coordinates w = τ + iσ which
are quantum counterparts of exponential functions e2αφ(w,w̄). The fields
Vα(w, w̄) are fully characterised by the properties

[Ln, Vα(w, w̄)] = enw(∂w +∆n)Vα(w, w̄) ,(2)

[L̄n, Vα(w, w̄)] = enw̄(∂̄w̄ +∆n)Vα(w, w̄) ,(3)

allowing us to calculate arbitrary matrix elements from the particular ma-
trix elements

C
(
Q
2 + iP, α, Q2 + iP ′) := 〈P |Vα(0, 0) |P ′ 〉 |P 〉 = vP ⊗ v̄P .(4)

An explicit formula for the function C(α3, α2, α1) was proposed in [1, 2].
It was shown in [3] that the theory fully characterised by the function
proposed in [1, 2] satisfies the usual consistency conditions like locality
and crossing symmetry. The exact formula for C(α3, α2, α1) displays a
remarkable symmetry under b → b−1 which seems difficult to understand
using standard quantum field theoretical methods.
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2. Standard perturbative approaches

One of the earliest approaches to construct LFT was based on canonical quanti-

sation. Splitting
∫ 2π

0
dσ
2π : e2bφ(σ,0) := e2bφ0 +

∫ 2π

0
dσ
2π

(
: e2bφ(σ,0) : −e2bφ0

)
, where

φ0 =
∫ 2π

0
dσ
2π φ(σ, 0), allows one to define a perturbative expansion of the matrix

elements Nb(k, β, k
′) := 〈 bk |Vbβ(0, 0) | bk′ 〉 in powers of b2. The terms up to or-

der b10 have been calculated in [4]. The results have been compared with the first

terms in the asymptotic expansion of C(Q2 +ibk, bβ, Q2 +ibk
′) in powers of b2 in [5].

Perfect agreement was found. It was furthermore shown in [5] that the expansion

of C(Q2 + ibk, bβ, Q2 + ibk′) in powers of b2 is not convergent.
Expansions around classical solutions have also been studied, see [6, 7] and

references therein. Such expansions can be in particular be used to define an
expansion of C(bη1, bη2, bη3) in powers of b. It was observed that the resulting
expansion is very sensitive to the renormalisation prescriptions. In the case of
LFT it turns out to be necessary and sufficient [6, 7] to specify a definition of
the propagator at coinciding points. There exists a choice which allows one to
reproduce the leading coefficients in the expansion of C(bη1, bη2, bη3) [7].

3. Expansion in powers of µ

Expansions in powers of µ have not much been studied. This was believed to be
useless as it was known for quite a while that the function C(α3, α2, α1) has a

simple µ-dependence proportional to µ1+b−2−b−1(α1+α2+α3). A way out is to con-
sider matrix elements such as 〈 p |Vα(w, w̄) |ψ 〉 , where |ψ〉 is a linear combination
of Virasoro primaries of the form

∫
dp ψ(p)|p〉. ψ(p) can be taken from a suitable

space of test functions which are, in particular, analytic in the upper half-plane.
The perturbative expansion of 〈 p |Vα(w, w̄) |ψ 〉 in powers of µ can be defined in
the usual way. It turns out that the coefficients of this expansion have singular-
ities at rational values of b2. This indicates that the theory having the matrix
elements defined in this way will not be well-defined as a quantum field theory on
the non-perturbative level.

Applying the same procedure to the action S =
∫
d2z
π

(
∂zφ∂z̄φ + πµe2bφ +

πµ′e2b
−1φ
)
, with µ̃ chosen such that the relation πγ(b−2)µ′ = (πγ(b2)µ)b

−2

is
satisfied, it may be shown that the resulting expansion in powers of µ is non-
singular for all values of b2. The singularities caused by the two interaction terms

πµe2bφ and πµ̃e2b
−1φ cancel each other completely. One may use this observation

to construct a well-defined expansion in powers of µ that coincides with the same
type of expansion obtained using the exact results.

4. Concluding remarks

Exponential interactions like those appearing in Liouville theory have been studied
by the methods of constructive field theory in the work [8]. Within this framework
it was shown that there exists a real number b∗ such that exponential interactions
like e2bφ are trivial for b > b∗. The exact solution yields a definition for LFT that



Recent Mathematical Developments in Quantum Field Theory 2077

is well-defined and non-trivial for all values of b. It would be interesting to resolve
this apparent discrepancy.

It is not clear at this stage if there exists an unambiguous resummation of the
expansion in powers of b. However, our observations concerning the expansion
in powers of µ indicate that there exists a basically canonical way to cancel the
singularities at rational values of b2 which occur in the µ-expansion. The necessary
modification is non-perturbative in b, and can not be seen in any expansion in
powers of b. The cancellation mechanism for the singularities in the µ-expansion
offers an explanation for the remarkable self-duality of LFT under b→ b−1.
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The integrable conformal bootstrap in d > 2

Volker Schomerus

(joint work with M. Isachenkov)

Conformal quantum field theories capture the universal low energy behavior of
important quantum systems (e.g. 3D Ising model). While many 2-dimensional
models have been solved, there exist no analytical techniques so far to compute
e.g. the exact critical exponents of higher dimensional systems.

The conformal bootstrap programmewas designed in the 1970s to make progress,
but the mathematical difficulties of the equations could not be overcome at the
time. More recently, numerical studies of these equations were shown to provide
results of remarkable precision.

In my talk, I described a new approach to the kinematical input of the analytic
bootstrap programme. In particular, I showed that the so-called conformal blocks
of scalar 4-point functions, which play a central role in the bootstrap programme,
can be mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland
model. The latter describes two coupled particles in a Pöschl-Teller potential.
Their interaction, which depends smoothly on the dimension, is integrable. The
observation brings in new analytical tools, mosty developed since the 1980s, that
could lead to exact solutions of the conformal bootstrap programme.
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Relative tensor products of heterotic full conformal field theories

Yasuyuki Kawahigashi

Recall a subfactor of M is described with a Q-system (θ, v, w), a triple of an
endomorphism of M and isometries v ∈ Hom(id, θ), w ∈ Hom(θ, θ2) satisfying the
following identities:

v∗w = θ(v∗)w ∈ R+,

θ(w)w = w2.

A Q-system is also called a C∗-Frobenius algebra of a C∗- category containing θ
as an object.

Let {A1(I)}, {A2(I)} be completely rational local conformal nets in the sense of
[17]. Each describes a chiral conformal field theory on S1. Let C1, C2 be the finite
dimensional representation categories of {A1(I)}, {A2(I)}, respectively. They are
modular tensor categories by [17]. A full conformal field theory {B1(I × J)} is
described with a local Q-system (θ, v, w) with θ ∈ C1 ⊠ Crev

2 as in [16], where
“rev” means the braiding structure is reversed. Such θ has a decomposition⊕

λ∈C1,µ∈C2
Z1
λµλ ⊠ µ̄. The full conformal field theory {B1(I × J)} has a triv-

ial representation theory if and only if Z1 has the modular invariance property,
S1Z

1 = Z1S2, T1Z
1 = Z1T2, where S1, S2 are the S-matrices of C1, C2, respectively

and T1, T2 are the T -matrices of C1, C2, respectively. This fact was conjectured by
Rehren [23] and proved by Müger [21] and Kawahigashi-Longo independently. We
say that the Q-system is Lagrangian when this modular invariance property holds.

If C1 = C2, then Z1 is a usual modular invariant matrix. It is easy to see
that the modular invariance property is preserved under multiplication of two
modular invariants except for the normalization property Z00 = 1. Then it has
been observed a product of two modular invariants often decomposes into a sum of
modular invariants. For example, for SU(2)17, we have three modular invariants,
labeled as A17, D10, E7 and here A17 is the identity matrix. We have the following
“fusion rules” among these.

D10 ⊗D10 = 2D10,

D10 ⊗ E7 = E7 ⊗D10 = 2E7,

E7 ⊗ E7 = D10 ⊕ E7.

The fusion rules of this type were studied in [11] and understood in [13] and
[14] through braided products of Q-systems and Rehren’s construction [22] of a
Q-system based on α-induction [20], [24], [4], [5], [6], [7], [8], [9], [10]. He we would
like to make a more direct construction of this type of “relative products” without
assuming C1 = C2.

Suppose we have local Lagrangian Q-systems (θ1, v1, w1) on C1⊠Crev
2 with θ1 =⊕

λ∈C1,µ∈C2
Z1
λµλ⊠µ̄ and (θ2, v2, w2) on C2⊠Crev

3 . with θ2 =
⊕

µ∈C2,ν∈C3
Z2
µνµ⊠ ν̄.

Then we have the following result.
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We have a decomposition Z1Z2 =
∑
k Z

3,k of a matrix product Z1Z2, where

each
⊕

λ∈C1,ν∈C3
Z3,k
λν λ ⊠ ν̄ is the endomorphism part of a local Lagrangian Q-

system.
This gives an irreducible decomposition of a relative tensor product of two Q-

systems over a modular tensor category C2. There is a formal similarity between
this construction and the product considered in [3] in connection to [2]. This
construction also has some similarity of the fusion of defects considered in [1]. We
hope to clarify the meaning of the similarity.

The above construction is done on the level of Q-systems and modular tensor
categories. The meaning in the context of full conformal field theory is also not
clear.

In [15], we connected a local Lagrangian Q-system to a gapped domain wall
between topological phases [18]. From this viewpoint, our construction is regarded
as a mathematical realization of the notion of “composition” of two gapped domain
walls in [18].
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Representations of conformal nets and vertex operator algebra
modules

Sebastiano Carpi

(joint work with Mihály Weiner and Feng Xu)

Vertex operator algebras (VOAs) and conformal nets give two different axiomati-
zations for chiral two-dimensional conformal field theory (chiral CFT). VOAs are
mainly of algebraic nature [4, 5, 8, 10]. A VOA (over C) is a complex vector space
V together with a linear map V ∋ a 7→ Y (a, z) satisfying certain assumptions
related to the underlying CFT interpretation. The vertex operators Y (a, z) =∑

n∈Z
a(n)z

−n−1 are formal power series with coefficients a(n) ∈ End(V ) or, equiv-

alently, operator-valued formal distributions on S1 = {z ∈ C : |z| = 1}. They
should be interpreted as the quantum fields of the theory. The map a 7→ Y (a, z)
is called the state field correspondence and among its properties we mention here
the so called Borcherds identity which is deeply related with the locality property
of quantum fields [8].

On the other hand conformal nets are defined in terms of operator algebras
on Hilbert spaces and hence they are mainly functional analytic objects [6, 9].
They are the chiral CFT version of algebraic quantum field theory (AQFT) [7]. A
conformal net A on S1 is a map I 7→ A(I) from the set I of open, non-dense, non-
empty intervals of the unit circle S1 into the family of von Neumann algebras acting
on a fixed Hilbert space (the vacuum Hilbert space) satisfying certain assumptions
which, also in this case, are related to the underlyng CFT interpretation. Among
these assumptions we mention here locality which means that the von Neumann
algebras associated to any pair I1, I2 ∈ I of disjoint intervals commute.

Despite their significant mathematical differences, these two formulations show
their common CFT origin through many structural similarities. Moreover, many
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interesting chiral CFT unitary models can be considered from both point of view
with similar outputs. However, a direct general connection between unitary VOAs
and conformal nets has been studied for the first time only recently by Y. Kawahi-
gashi, R. Longo, M. Weiner and me in [1]. For every sufficiently nice unitary VOA
V we have shown how to define a corresponding conformal net AV and how to
recover V with its VOA structure from AV .

We shortly outline the construction. Let V be a simple unitary VOA [1, 3] whose
vertex operators satisfy certain energy bounds and let f ∈ C∞(S1) be a smooth
complex valued function on the circle. Then, every operator valued distribution
Y (a, z), z ∈ S1, gives rise to a closed (unbounded) operator Y (a, f) acting on the
Hilbert space completion HV of V (the smeared vertex operator). Moreover, for
every open interval I ∈ I, the family of operators {Y (a, f) : a ∈ V, f ∈ C∞

c (I)}
generates a von Neumann algebra AV (I) on HV , i.e. the smallest von Neumann
algebra with which every operator in the family is affiliated. Then, V is said to
be strongly local if the map I 7→ AV (I) satisfies locality. It turns out that if
V is strongly local then AV satisfies also remaining properties and hence it is
a conformal net. Many known examples of unitary VOAs such as the unitary
Virasoro VOAs, the unitary affine Lie algebras VOAs, the known c = 1 unitary
VOAs, the moonshine VOA V ♮, together with their coset and orbifold subVOAs,
have been shown to be strongly local in [1] and it has been conjectured that every
simple unitary VOA is strongly local.

VOAs and conformal nets have very interesting representation theories (the-
ory of superselection sectors) but these play only a marginal role in [1]. A first
important step towards the analysis of the representation theory aspects of the
map V 7→ AV has been recently made by M. Weiner, F. Xu and me [2]. Let
V be a strongly local VOA and let AV be the corresponding conformal net.
A VOA module for V is a complex vector space M together with linear map
a 7→ YM (a, z) =

∑
n∈Z

aM(n)z
−n−1, aM(n) ∈ End(M), from V into the set of operator

valued formal distributions on M , which is compatible, in an appropriate sense,
with the vertex operator algebra structure of V . In particular the represented
vertex operators YM (a, z) satisfy the Borcherds identity on M .

On the other hand, a representation π of AV is a family {πI : I ∈ I} where
each πI is a representation of the von Neumann algebra AV (I) on a fixed Hilbert
space Hπ . If π is locally normal, i.e. if every πI is continuous with respect to
the σ-weak topology (the natural topology of von Neumann algebras), then, each
representation πI naturally extends to the unbounded closed operators affiliated
with A(I). In particular, if f ∈ C∞

c (I) then πI(Y (a, f)) is a well defined closed
operator on Hπ. This is the starting point for the notion of strongly integrable
module introduced in [2].

Let M be a VOA module for the strongly local VOA V . We assume that M
is unitary, i.e. that it has a scalar product (·|·)M which is compatible with the
unitary structure of V , see [3]. Furthermore, we assume that the represented
vertex operators YM (a, z) satisfy energy bounds similar to those of the vertex
operators Y (a, z). Then we can consider the represented smeared vertex operators
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YM (a, f), f ∈ C∞(S1). In [2] M is defined to be strongly integrable if there exists
a (necessarily unique) locally normal representation πM of the conformal net AV

such that πMI (Y (a, f)) = YM (a, f) for all a ∈ V , all I ∈ I and all f ∈ C∞
c (I).

The corresponding map M 7→ πM and its inverse preserve unitary equivalence,
direct sums and irreducibility. Moreover, using free Femi field constructions, one
can give many interesting examples of strongly integrable modules. In particular
all the VOA modules of the type A unitary affine VOAs and the related coset
VOA modules are strongly integrable. As a consequence, various results previ-
ously obtained by Feng Xu for the representation theory of type A diagonal coset
conformal nets by means of subfactor theory methods [11, 12] can be transported
to the VOA setting giving a solution of various long standing open problems in
VOA representation theory. In this way we obtain e.g. a solution to certain purely
VOA irreducibility problems for diagonal type A coset VOA modules thanks to
the power of subfactor theory.
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AdS/CFT correspondence in the Euclidean setting - triviality for the
exponential interaction

Hanno Gottschalk

(joint work with Horst Thaler)

The AdS/CFT correspondence [1] relates expected values from type II string the-
ory on the AdS space with the expected value of Yang Mills theory on its con-
formal boundary. As already motivated by Witten [2], scalar quantum fields are
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frequently used as a toy model for this conjecture. However, in contrast to the
usual definition of effective actions via the Laplace transform of a functional mea-
sure, here source terms are related to the prescription of boundary values at the
conformal boundary

(1) Z(h)/Z(0) =
1

Z(0)

∫
e−S0(φ)−VΛ(φ)δ(∂φ− h)Dφ,

where S0(φ) =
1
2

∫
Hd

|∇φ|2 +m2φ2 dgx is the Euclidean action of the free, scalar

massive field and VΛ(φ) =
∫
Λ : exp(αφ) : dgx is an exponential interaction term

with bounded infra red cut off region Λ. Also, dgx stands for integration wrt the
metric on Hd and ∂φ is the restriction of φ to the conformal boundary ∂cHd of
Hd, the d−dimensional hyperbolic space, which is the Euclidean analogue of the
Lorentzian AdSd space. For a rigorous theory of Wick rotation from AdSd to Hd
confer [3, 4].

In [5], Dütsch and Rehren conjectured that (1) can be equivalently expressed
in terms of an ordinary QFT-like generating functional

(2) Z̃(h)/Z̃(0) =
1

Z̃(0)

∫
e−S0(φ)−VΛ(φ)e

∫
∂cHd

∂φhdxDφ.

such that Z̃(ch)/Z̃(0) = Z(h)/Z(0) for some constant c > 0. Here it is important
that both prescriptions of the AdS/CFT correspondence use different boundary
conditions for the Laplace operator at the conformal boundary.

In subsequent mathematical work [7], mathematical definitions for both ex-
pressions (1) and (2) have been given in terms of rigorously defined Gaussian
functional integrals perturbed by an exponential interaction with cut-off Λ in di-
mension d = 2. Also the equivalence of both theories, as proposed by Rehren and
Dütsch, is established. The conformal invariance of the resulting boundary theory
and further structural properties like reflection positivity have been proven as well,
under the hypothesis of the existence and uniqueness of the thermodynamic limit
Λ ր Hd.

As already observed in [8], the thermodynamic limit in the AdS/CFT case is
quite different from the thermodynamic limit in standard constructive QFT [6].
For the case of polynomial interactions with ultra-violet cut-off we proved the
triviality of the boundary theory using hypercontractivity estimates.

In a recent work [9], we investigated the thermodynamic limit for the Euclidean
AdS/CFT correspondence for the case of exponential interaction. By standard
techniques one can show that

(3) Z̃(ch)/Z̃(0) = e
1
2α+(h,h)

∫
e−VΛ(φ+cH+h)dµ+(φ)

where µ+ is a Gaussian measure of the distributions over Hd prescribed by the
covariance function of bulk -to-bulk propagator G+, whereas H+ is the so called
boundary-to-bulk propagator and α− a certain boundary-to-boundary propagator.
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Using the structure of the exponential interaction, we see that

(4) VΛ(φ+ cH+h) =

∫

Λ

: exp(αφ(x)) : eαcH+h(x)dgx.

For massive theories with test function h(ξ) > 0, ξ ∈ ∂cHd, we realize that the
space-dependent coupling constant eαcH+h(x) diverges, as H+h((z, ξ)) → ∞ as
z → 0 in the half-space model of H2 with conformal boundary at z = 0, x = (z, ξ).

Since the divergence of coupling constants only takes place in the denominator
of (2), one expects a very different scaling behaviour of Z̃Λ(ch) as compared with

the sum over states Z̃Λ(0) as Λ ր Hd. Using decoupling inequalities [6] and
hyperbolic triangulations of the disk model of H2, we can in fact rigorously show
[9] that this leads to

(5) Z̃Λ(ch)/Z̃Λ(0) → 0

for some sequences Λ ր Hd. We conclude that either the thermodynamic limit, if
it exists, is trivial.

Whether this observation of triviality can be cured by procedures like holo-
graphic renormalization [10] is left for future investigation.
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p-adic AdS/CFT

Andreas Samberg

(joint work with S. S. Gubser, J. Knaute, S. Parikh, P. Witaszczyk)

A p-adic analog of the AdS/CFT correspondence [1, 2, 3] is constructed. Moti-
vations for investigating the possibility of a discrete version of AdS/CFT stem,
among others, from segmented strings [4, 5] and tensor networks associated with
holography [6]. Within string theory, p-adic numbers and related trees had already
been considered in lieu of real worldsheets almost 30 years ago [7, 8, 9]. For details
on the results reported on here see [10].

Let p be a prime number. The field Qp of p-adic numbers is the completion
of the rational numbers by inclusion of the limits of all Cauchy sequences with
respect to the ultrametric induced by the p-adic absolute value |x|p := p−vp(x).
Here, the valuation vp(x) ∈ Z for non-zero x ∈ Q is uniquely defined by writing

x = pvp(x) ab with a ∈ Z and b ∈ N and p ∤ a, b, and additionally |0|p := 0. Every

p-adic number x ∈ Qp now has a unique series expansion, x = pvp(x)
∑∞

n=0 anp
n

with ‘digits’ an ∈ {0, 1, . . . , p − 1} and a0 6= 0, and still vp(x) ∈ Z. The norm
defined via |·|p is extended in the obvious way to Qp. The ring of p-adic integers
is defined as Zp := {x ∈ Qp | vp(x) ≥ 0}, and Up := {x ∈ Zp | vp(x) = 0} = Z×

p

denotes the set of units in Zp.
A tree of coordination number p + 1, the Bruhat–Tits tree [11], is naturally

associated with the p-adics Qp, as illustrated in Fig. 1. A ray through the tree
corresponds, via choice of the valuation (which means choosing a bush on the main
trunk, drawn in red) and choices of digits, to a p-adic number. The Bruhat–Tits
tree takes the role of the bulk in ordinary AdS/CFT, and its boundary is seen to
be Qp ∪ {∞} = P1(Qp). We introduce a depth coordinate z0 on the tree, taking
the discrete values z0 = pω for ω ∈ Z. At fixed z0, the equivalence relation x ∼ y
iff x− y ∈ z0Zp partitions Qp into countably many equivalence classes of the form
z + z0Zp (arranged on a horizontal slice in Fig. 1). Every such equivalence class
is uniquely associated with a node on the tree. We thus use tuples (z0, z) with
z ∈ Qp as our bulk coordinates.

So far, we have a tentative setup for an analog to AdS2/CFT1. Aiming for
higher-dimensional versions AdSn+1/CFTn, we would like to have trees with a
boundary that is an n-dimensional vector space over Qp. Let us denote the unique
unramified degree-n field extension of Qp by Qq where q = pn. As is well known,
there is a unique extension of the valuation and norm on Qp to Qq which we denote
by vq(·) and |·|q, respectively. Qq can be constructed by adjoining to Qp a primitive
(pn − 1)-th root of unity (see for instance [12]). In fact, Qq is an n-dimensional
vector space over Qp, and its projective completion Qq∪{∞} = P1(Qq) is naturally
realized as the boundary of a Bruhat–Tits tree with coordination number q + 1.

There is a natural action of PGL(2,Qq) = GL(2,Qq)/Q
×
q on P1(Qq) via frac-

tional linear transformations x 7→ (αx+ β)/(γx+ δ) where α, β, γ, δ ∈ Qq. Corre-
lators that we compute holographically below have transformation behavior under
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Figure 1. The Bruhat–Tits tree for Qp with p = 2. Coordinates
(z0, z) with z0 = pω, ω ∈ Z, and z ∈ Qp are used to label the nodes
on the tree.

this group analogous to the behavior of correlators in real Euclidean AdS/CFT
under conformal transformations.

We study an interacting massive-scalar model on the tree, defined by the action

(1) S[φ] = ηp
∑

〈ab〉

1

2
(φa − φb)

2 + ηp
∑

a

(
1

2
m2
pφ

2
a +

g3
3!
φ3a +

g4
4!
φ4a

)
,

where a and b label nodes on the tree and 〈ab〉 indicates that the sum is over
nearest-neighbor sites, i. e., over the edges. ηp, m

2
p, g3, and g4 are real constants.

Employing the usual AdS/CFT prescription we compute the boundary-theory 2-
and 3-point correlators as well as the 4-point correlator arising from bulk contact
diagrams. To this end, the bulk-to-bulk and bulk-to-boundary propagators in the
bulk theory need to be determined first. The bulk-to-bulk propagator G(a, b) for
two bulk points a, b is the Green’s function of the free part of the equation of
motion associated with Eq. (1), while the bulk-to-boundary propagator K(a, x),
where a is a node on the tree and x ∈ Qq, is a limit of G(a, b) subject to a certain
normalization condition. We derive expressions for G and K that are analogous
in structure to the well-known results in ordinary AdS/CFT but are considerably
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simpler in details. Knowledge of K allows to construct bulk solutions φ(z0, z) from
boundary data φ0(z). The on-shell bulk action Son-shell can then be expressed in
terms of φ0(z). The conjectured fundamental relation of AdS/CFT posits that
exp(−Son-shell[φ0(z)]) is the generating functional for correlation functions of the
operator O(z) dual to the bulk field φ; the latter’s boundary data φ0(z) is the
source conjugate to O(z). Details and subtleties in applying this in the context of
our construction can be found in [10].

The results for the 2- and 3-point correlators are

〈O(x1)O(x2)〉p = ηp
p∆

ζp(2∆− n)

ζp(2∆)

ζp(2∆− n)

1

|x12|2∆q
,(2)

〈O(~x1)O(~x2)〉∞ = η∞(2∆− n)
ζ∞(2∆)

ζ∞(2∆− n)

1

|~x12|2∆
,(3)

〈O(x1)O(x2)O(x3)〉p = −ηpg3
ζp(∆)3 ζp(3∆− n)

ζp(2∆− n)3
1

|x12x23x13|∆q
,(4)

〈O(~x1)O(~x2)O(~x3)〉∞ = −η∞g3
ζ∞(∆)3 ζ∞(3∆− n)

2 ζ∞(2∆− n)3
1

(|~x12||~x23||~x13|)∆
.(5)

Besides our p-padic results we have also given the results from ordinary AdSn+1/
CFTn, indicated by a formal subscript ‘∞’. We have written xij := xi − xj ,
and analogously for ~xij . Using the local zeta functions ζp(s) := 1/(1 − p−s) and

ζ∞(s) := π−s/2 Γ(s/2) in the expressions above, we observe striking similarities
between the p-adic correlators and the corresponding correlation functions in or-
dinary AdS/CFT. Furthermore, we observe a match between the p-adic 4-point
correlator and the leading logarithmic term in the 4-point correlator in ordinary
AdS/CFT. These close analogies might point to some interesting underlying adelic
structure that appears certainly worth exploring further.
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Interacting Quantum Theories on de Sitter Space

Christian Jäkel

(joint work with João C.A. Barata and Jens Mund)

In 1975 Figari, Høegh-Krohn and Nappi [4] constructed the P(ϕ)2 model on the
two-dimensional de Sitter space

dS
.
=
{
x ∈ R1+2 | x20 − x21 − x22 = −r2

}
, r > 0 .

In this talk, I will present a novel construction of this model [1], which emphasizes
group theoretic and operator algebraic aspects.

I will start with a brief discussion of the causality structure of de Sitter space.
In the sequel, I will describe the free classical dynamical system in both its co-
variant and its canonical form, and present the associated quantum one-particle
KMS structures. The latter are related to representations of O(1, 2). While a
covariant representation of O(1, 2) was provided by Bros and Moschella in [3],
the unitary irreducible representations of SO0(1, 2) for both the principal and the
complementary series on the Hilbert space spanned by wave functions with sup-
port on a (closed) space-like geodesic are due to the authors. Second quantisation
provides a description of free bosons on the de Sitter space in terms of canonical
fields ϕ and canonical momenta π associated to the Cauchy surface. This formu-
lation is unitarily equivalent to the one provided in [3] by Bros and Moschella. It,
however, remains to justify that the Fock zero-particle vector Ω◦ represents the
physically relevant de Sitter vacuum state. This is not completely obvious: on de
Sitter space, there is no global time evolution (in terms of a one-parameter group
of automorphisms) and hence no natural notion of energy. Consequently, one can
not require that the vacuum state is a state of minimal energy. One may still
require that a de Sitter vacuum state is invariant under the action of the Lorentz
group. But in itself, this requirement does not guarantee the necessary stability.
The so-called the geodesic KMS condition proposed by Borchers and Buchholz [2]
ensures stability: it requires that the restriction of the vacuum state to the wedge

W1
.
=
{
x ∈ dS | x2 > |x0|

}
,

is a thermal state with respect to the dynamics provided by the one-parameter
group t 7→ exp(itL◦) of boosts which leaves the wedge W1 invariant. The unique
rotation invariant state satisfying this condition is the one induced by the Fock
vacuum vector Ω◦. The temperature of this thermal state is thereby fixed, and it
is the Hawking temperature T = (2πr)−1.

Exploring Euclidean methods, I will then describe how one can add an inter-
action. Instead of introducing stochastic processes, which are frequently used in
the literature to describe interacting Euclidean quantum fields, I prefer to work
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directly on the Fock space associated to the free Euclidean field on the Euclidean
sphere. As I will show, the latter contains a rotation invariant vector which rep-
resents the interaction Euclidean vacuum state for the P(ϕ)2 model. This new
Euclidean vacuum state satisfies reflection positivity1 with respect to reflections
leaving invariant a great circle on the Euclidean sphere and thereby gives rise to
a new representation of SO(1, 2) on the two-dimensional de Sitter space.

As the free Euclidean field on the sphere satisfies the Markov property, the
Osterwalder-Schrader reconstruction is given by a projection from the Euclidean
Fock space for the sphere to the canonical Hilbert space for the free massive field
on the de Sitter space, introduced in the first part of my talk. Hence, the inter-
acting vacuum can be represented by a vector in the Fock space associated to the
canonical free field on the de Sitter space. This is not surprising, as the ultravi-
olet problems are tame in 1 + 1 space-time dimensions and the spatial volume is
compact. Physical infrared problems are absent on de Sitter space despite the fact
that Lorentzian perturbation theory is plagued by infrared problems. (We note
that artificial infrared problems were introduced in [4] by an unfortunate choice
of coordinates. However, these infrared problems are absent in our formulation.)
Hence, the P(ϕ)2 model on the de Sitter space is in some sense the simplest model
which satisfies all the basic expectations of an interacting relativistic quantum
(field) theory, such as finite speed of light, particle production, causality, and so
on.

Looking at the more technical aspects, we note that local symmetric semi-groups
techniques [5, 7] are used to justify the existence of the operator sum

(1) L := L◦ + V , V =

∫

S1

r cosψ dψ :P(ϕ(0, ψ)): ,

with P a real valued polynomial, bounded from below. The theory of virtual repre-
sentations [6] is used to prove that the newly defined one-parameter unitary groups
actually give rise to a representation of SO(1, 2). In fact, the boosts t 7→ exp(itL)
together with the free rotations, which preserve the Cauchy surface, generate a
new reducible, unitary representation of the Lorentz group on Fock space. The
resulting interacting quantum field, defined by setting

Φ(x)
.
= U(Λ)ϕ(0)U−1(Λ) , x = Λ

(
0
0
1

)
,

coincides with the free field on the Cauchy surface x0 = 0 and elsewhere on dS it
satisfies the following non-linear equation of motion:

(�dS +m2)Φ = −P ′(Φ) , m > 0 .

The sum given in (1) provides the crucial link between the free and the interacting
quantum field theory, as L is the generator of the modular group which leaves
the von Neumann algebra A◦(W1) for the free field associated to the wedge W1

1This version of reflection positivity thus differs from the pioneering work by Figari, Høegh-
Krohn and Nappi [4], where two antipodal points were taken out of the sphere and reflection
positivity was formulated with respect to a half-circle connecting these two points.
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invariant. The vector representing the interacting vacuum is given by Araki’s
perturbation theory of modular automorphisms:

Ω =
e−πHΩ◦

‖e−πHΩ◦‖
, H := L◦ +

∫ π

0

r cosψ dψ :P(ϕ(0, ψ)): .

The de Sitter vacuum state induced by Ω, characterised by the geodesic KMS con-
dition [2], has some surprising properties. Due to thermalisation effects introduced
by the curvature of space-time, it is unique even for large coupling constants, de-
spite the fact that different phases occur in the limit of curvature to zero (i.e., the
Minkowskian limit).
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Wedge-local fields in interacting quantum field theories with bound
states

Daniela Cadamuro

The construction of interacting quantum field theories is a hard task due to the
complicated structure of local observables in the presence of interaction. In the
class of quantum integrable models in 1 + 1-dimensional Minkowski spacetime the
construction becomes more tractable due to the particular type of interaction.
Integrable models describe systems of relativistic particles subject to elastic scat-
tering, where the momenta of the particles and the particle number are conserved,
yielding infinitely many conserved quantities. As a consequence, the S-matrix is
of “factorizing” type in the sense that the scattering of n particles is the product
of two particle scattering processes.

These models have been treated with various methods. Using the perturbative
approach, one computes the S-matrix elements, and therefore the Green’s func-
tions, of the theory. However, Lagrangians are usually complicated enough that
the construction remains at perturbative level. An exception is the sine-Gordon
model where Fröhlich and Seiler [1] compute the Euclidean Green’s functions and
show that the S-matrix is non-trivial. However, it has not been proven that the
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S-matrix is factorizing. Alternatively, the Form Factor Programme [2, 3] bases
the construction on an inverse scattering problem. One postulates the form of the
S-matrix and, via a list of axioms deduced from physical requirements and consis-
tent with the properties of the S-matrix, constructs the n-point functions of the
theory by expanding them in a series of form factors (i.e., certain matrix elements
of the interacting fields). These yield infinite series expansions whose convergence
is hard to control.

A more recent idea due to Schroer [4] avoids these infinite series by consider-
ing, instead of strictly local operators, observables localized in unbounded wedge-
shaped regions. This weaker localization property allows to construct observables
with a simpler expression in momentum space. Strictly local observables can then
be recovered by taking intersection of the algebras generated by observables in
right and left wedges. Using an abstract argument based on a certain phase space
property called modular nuclearity, one would show that this intersection is non-
trivial. Finally, one would solve the inverse scattering problem by computing the
S-matrix of the input by methods of Haag-Ruelle scattering theory. This operator-
algebraic approach has proved to be successful for the construction of a large class
of integrable models. These are models of bosons with an S-matrix analytic in
the physical strip (a certain region of the momentum complex plane), including
the Ising and sinh-Gordon models with one particle species [5], Federbush-type
models [10] with several particle species; there are also partial results in the O(N)
non-linear sigma models [6, 7].

However, models where S-matrix components have singularites in the physical
strip have not been treated in this framework before. In [8, 9], together with
Y. Tanimoto, I obtained first results in this direction. The models we consider
have S-matrices whose components have a certain pole structure in the physical
strip. Examples are the Bullough-Dodd model, the Z(N)-Ising model, the affine-
Toda field theories, the sine-Gordon and Thirring models. These models are of
interest since a pole in the physical strip is believed to correspond to a bound
state. The idea is that two particles of type α, β can scatter with the exchange of

a unitary factor, the S-matrix component Sαββα(θ1 − θ2), but the type of particles
stays the same in scattering. In this case, the S-matrix is said to be “diagonal”.
We denote with θ1, θ2 the rapidities of the particles α, β, which parametrize their
momenta. The two particles can also fuse into a third particle of type γ in the
following sense:

(1) pmα(θ + iθ(αβ)) + pmβ (θ − iθ(βα)) = pmγ (θ),

i.e., the momenta of two “virtual” particles add to the momentum of a third “real”
particle (the bound particle) which lies on the mass shell. The numbers θ(αβ), θ(βα)
are solutions of this equation, once the masses of the particles are fixed. The bound

state formed would correspond to a pair of simple poles of the component Sαββα(ζ)
in the physical strip 0 < Im ζ < π. These are the s-channel pole, which is located
at ζ = iθαβ = iθ(αβ) + iθ(βα) and the t-channel pole, which arises due symmetry
properties of the S-matrix. The possible fusion processes, that we denote by the
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symbol (αβ) → γ, are characteristic of each model and they form their fusion
tables. Here, we will focus on the Z(N)-Ising model, where the particles are of
type 1, . . . , N − 1, the possible fusions are of the form (αβ) → α+ βmodN , and
the anti-particle ᾱ of a particle of type α is N − α.

For each pair α, β, the component Sαββα(ζ) of the S-matrix is a meromorphic

function on C, fulfilling a number of axioms [9, Sec. 2.1], including unitarity,
crossing symmetry and the Bootstrap equation. As an example, the crossing

symmetry relation reads Sαββα(iπ − ζ) = Sβ̄α
αβ̄

(ζ), for ζ ∈ C. In the Z(N)-Ising

model, the component S11
11(ζ), fulfilling the above properties, is given by

(2) S11
11(ζ) =

sinh 1
2

(
ζ + 2πi

N

)

sinh 1
2

(
ζ − 2πi

N

) ,

and one can construct all the other S-matrix components by using the Bootstrap

equation. Specfically, the components Sαββα with only indices of type 1 and N − 1
have at most two simple poles in the physical strip and no other poles. These
components play a crucial role in the proof of weak wedge-commutativity, as we
will explain below.

For an S-matrix Sαββα analytic in the physical strip, Lechner constructed quan-

tum fields φ, φ′ with the property that they commute when smeared with test
functions supported in the left and right wedge, respectively. This computation

relies on a shift of an integral contour where the integrand contains Sαββα . In the
case where the S-matrix has poles in the physical strip, shifting the integral con-

tour yields the residues of Sαββα , and φ, φ
′ are no longer wedge-local. To overcome

this problem, we introduce a new field φ̃ = φ + χ by adding the so called bound
state operator χ to the field φ, so that the commutator of χ with its reflected
operator (by the action of the CPT operator) χ′ cancels the above residues. χ
acts on a one-particle vector ξβ as follows, if (αβ) fuse into some γ,

(3)
(
χ1,α(f)ξ

)γ
(θ) := −iηγαβf+

α (θ + iθγ(αβ))ξ
β(θ − iθ(βα)),

where the matrix elements ηγαβ are related to the residues of the S-matrix. One
can show that this operator is densely defined and symmetric on a suitable domain
of vectors, but it is not self-adjoint on a naive domain. To prove (weak) wedge-

commutativity, one shows that the commutator of the reflected field φ̃′ with φ̃
vanishes for test functions supported in right and left wedges, respectively, in the
weak sense, i.e. in matrix elements between suitable vectors. In this computation
in the Z(N)-Ising model, the components of the test functions, and therefore the
S-matrix components, are restricted to particles of type 1 and N − 1, limiting the
number of poles in the physical strip. Strong commutativity has not been proven
yet. For this, one would need to show the existence of self-adjoint extensions of
φ̃(f) and φ̃′(g), and select the ones that strongly commute. This is a non-trivial

task, but some progress has been made in the Bullough-Dodd model. φ̃(f) is
also a polarization-free generator but not temperate. In the case of many particle
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species, we can prove the Reeh-Schlieder property only for models with two species
of particles.

In the operator-algebraic approach, we are interested in the following question.
Let us suppose that strong commutativity hold for a certain extension φ̃−. We
consider the von Neumann algebras

(4) A(WL + x) = {eiφ̃(f)− : supp f ⊂WL + x}′′

,

and similarly for the right wedge. Observables localized in bounded regions are
obtained as intersections of von Neumann algebras

(5) A(O) := A(WL + x) ∩ A(WR − y), O =WL + x ∩WR − y.

The problem would then be to show that this intersection is non-trivial, i.e., tech-
nically, that the vacuum of the theory is cyclic and separating for the local algebra.
Finally, Haag-Ruelle scattering theory would be applied to compute the S-matrix
of the input and solve the inverse scattering problem. This would yield a complete
construction of the theory, and is part of our future work.

Concluding, the construction of integrable models with bound states is a new
promising direction in constructive quantum field theory. The Bullough-Dodd
model, the Z(N)-Ising model and affine-Toda field theories are among those mod-
els which we hope to fully construct using operator-algebraic techniques. An in-
teresting problem would be to extend our construction to the sine-Gordon and
Thirring models, comparing our construction to the Euclidean methods in [1]. It
would also be interesting to investigate whether such models can be seen as de-
formation of a free field theory in the spirit of Lechner’s work, as well as to study
the quantum group symmetry of the affine-Toda field theories.
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Generalized Wentzell boundary conditions and holography

Jochen Zahn

Holography has been a main theme in theoretical high energy physics and quantum
gravity in the last two decades. Inspired by the gauge/gravity duality, studies of
holographic aspects were often considering d + 1 dimensional Anti deSitter space
(AdS) and its (conformal) boundary, d dimensional Minkowski space. However,
holography is a generic aspect of quantum field theory on space-times with time-
like boundaries, raising the question which of the properties of holography on AdS
are generic, and which ones are special to AdS. Let us list some of the properties
of holography on AdS:

• The boundary theory is a conformal field theory. This is a generic feature
on AdS [1, 2], independent of the concrete choice of the bulk fields.

• The correspondence maps bulk observables localized in bounded regions
to boundary observables localized in bounded regions.

• For a bulk theory with local observables, the boundary theory will not
fulfill the time-slice axiom [1].

• The boundary conformal field in general has a positive anomalous dimen-
sion. The basic example is the massive scalar field [3].

In the following, we study the holographic relation between a massive scalar field
on d + 1 dimensional Minkowski space with d dimensional time-like boundaries.
Not surprisingly, we find that the boundary field theory is not conformal, and
that the bulk observables localized in bounded space-time regions are mapped to
boundary observables that are delocalized. The first two properties in the above
list thus seems to be specific to AdS. Also in our setting, the time-slice axiom does
not hold for the boundary theory.

Regarding the last point in the above list, it seems obvious that the boundary
field, being the boundary limit of the bulk field, inherits its short-distance behav-
ior. One would this expect that the boundary field generically has an anomalous
dimension. However, it turns out that there are boundary conditions for which
this is not the case. These are so-called generalized Wentzell boundary condi-
tions, which we discuss in this contribution, which is based on [4]. Concretely,
we consider a free scalar field on the (d+ 1)-dimensional space-time M = R× Σ,
with the spatial slices Σ having a boundary ∂Σ. The main example will be the
strip Σ = Rd−1 × [−S, S]. We do not impose boundary conditions by hand, but
supplement the bulk action with an action for the boundary, which is of the same
form. Concretely,

(1) S = Sbk + Sbd = −1

2

∫

M

gµν∂µφ∂νφ+ µ2φ2 − c

2

∫

∂M

hµν∂µφ∂νφ+ µ2φ2

where g is the Minkowski metric on the bulk M and h is the induced metric on
the boundary ∂M . c is a positive constant with the dimension of a length. Similar
actions are used for the description of strings with masses at the ends [5] and,
in the context of the AdS/CFT correspondence, for holographic renormalization
[6, 7]. However, it is interesting to note that in the latter context, the analog
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of c is usually negative, whereas we require a positive c in order to prove the
well-posedness of the Cauchy problem.

Variation of the action (1) yields, upon integration by parts, the equations of
motion

−�gφ+ µ2φ = 0 in M,(2)

−�hφ+ µ2φ = c−1∂⊥φ in ∂M.(3)

Here ∂⊥ denotes the inward pointing normal derivative. Boundary conditions in-
volving second order derivatives are known as generalized Wentzell, Feller-Wentzell
type, kinetic, or dynamical, [8, 9, 10, 11, 12].

From the action (1), one derives the symplectic form

σ((φ, φ̇), (ψ, ψ̇)) =

∫

Σ

φψ̇ − φ̇ψ + c

∫

∂Σ

φψ̇ − φ̇ψ.

It is thus natural to introduce the Hilbert space H = L2(Σ)⊕L2(∂Σ). An element
of H is typically written as Φ = (φbk, φbd), with the scalar product

〈Φ,Ψ〉 = 〈φbk, ψbk〉L2(Σ) + c〈φbd, ψbd〉L2(∂Σ).

Note that for negative c, one would have to work with a Krein space. On H , the
equation of motion (2), (3) can be written as

−∂2tΦ = ∆Φ,

with

∆ =

(
−∆Σ + µ2 0
−c−1∂⊥ · | −∆∂Σ + µ2

)
,

where we encode the boundary condition in the domain

D =
{
(φbk, φbd) ∈ H | φbk ∈ H2(Σ), φbd ∈ H2(∂Σ), φbk|∂Σ = φbd

}
.

One can show that ∆ is self-adjoint.
Given the self-adjoint operator ∆, one may construct energy Hilbert spaces for

Cauchy data in complete analogy to the case of Dirichlet boundary conditions.
Taking the intersection of these, one establishes the existence of a unique smooth
solution for smooth initial data that fulfill certain boundary conditions and are of
finite energy. The restriction to finite energy can be lifted by establishing causal
propagation. This proceeds by identifying bulk and boundary stress energy tensors
fulfilling the dominant energy condition. One shows that no energy flows through
the boundary and thus establishes local energy estimates. Also at this step, the
positivity of c is essential.

Using ∆, it is also straightforward to canonically quantize the system. One
establishes that

• The time-zero fields can be restricted to the boundary.
• The space-time fields are as Wightman-like as possible.
• One may restrict the space-time fields to the boundary, obtaining a gen-
eralized free field φbd.
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• The short-distance singularity of φbd is that of a scalar field in d space-time
dimensions, i.e., it does not have an anomalous dimension.

• The boundary field φbd satisfies the Reeh-Schlieder property but does not
fulfill the time-slice axiom.

• There is a holographic relation between bulk and boundary fields, i.e.,
φbk(f) = φbd(F (f)), where F : S(M) → S(∂M). An analogous map also
exists for Wick powers. It is in general not possible to choose F (f) ∈ D(M)
here, i.e., locality is lost. For the half-space Σ = Rd−1 × [0,∞), locality is
lost even further, as F (f) will in general only be a smooth L2 function.
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The operator product expansion for Yang-Mills theories

Markus B. Fröb

(joint work with Jan Holland and Stefan Hollands)

In a quantum field theory, the operator product expansion (OPE) is the statement
that correlation functions of composite operators OA in any physically reasonable
quantum state |ψ〉 (say, of finite total energy) can be approximated by a sum
over state-independent coefficients CBA1···As (the OPE coefficients) and expectation
values of a single composite operator,

〈OA1(x1) · · · OAs(xs)〉ψ ≈
∑

B

CBA1···As(x) 〈OB(xs)〉ψ ,
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where x ≡ (x1, . . . , xs). The quality of the approximation depends on the state
|ψ〉 and on how many composite operators OB are included on the right-hand
side. All the following theorems apply to arbitrary power-counting renormalisable
(Euclidean) quantum field theories to all orders in formal perturbation theory in
~, and in Ref. [2] we have shown

Theorem 1. The OPE holds as an asymptotic expansion:

lim
τ→0

τ∆

[
〈OA1(τx1) · · ·OAs(τxs)〉ψ −

∑

B : [OB]<D

CBA1···As(τx) 〈OB(τxs)〉ψ

]
= 0 ,

where ∆ ≡ [OA1 ]+ · · ·+[OAs ]−D+δ with an arbitrary δ > 0, and [O] denotes the
engineering dimension of the composite operator O. It holds in all states |ψ〉 which
are obtained by acting with smeared field operators on the vacuum, for massless
theories as long as the smearing does not involve exceptional momenta.

We have furthermore proven in Ref. [2] that the OPE coefficients are well-
defined distributions, and that they are associative,

Theorem 2. For all insertion points xi satisfying

max
1≤i<k

|xi − xk| < min
k<j≤s

|xj − xk| ,

the OPE coefficients fulfill the associative or factorisation property

CBA1···As(x) =
∑

C

CCA1···Ak(x1, . . . , xk)CBCAk+1···As(xk, . . . , xs) .

In particular, this implies that one can perform the OPE for three or more
operators in two or more steps and obtains the same result, as long as one first
performs the OPE for the operators which lie closest together.

In Yang-Mills theories, the basic dynamical field is a Lie-algebra valued one-
form A and the action is given by

S =
1

2

∫
trF ∧ ⋆F ,

where F ≡ dA + ig[A,A] is the field strength, g is a coupling constant and tr
denotes contraction with the Cartan-Killing metric. It is well known that because
of gauge invariance – the invariance of S under A → A − i df + g[A, f ] for any
smooth function f – a direct perturbative quantisation is impossible. The modern
way to deal with this is the Batalin-Vilkovisky formalism, where one introduces
additional fields (e.g., the ghost c and antighost c̄, which are Grassmann and
Lie-algebra valued functions) and antifields A‡, c‡, c̄‡, . . . , for each field, which
have opposite Grassmann parity and form degree to the field. One then defines
an antibracket (·, ·) by linearity and a graded Leibniz rule and by declaring field
and antifield to be conjugate. The action S is also augmented in such a way
that (S, S) = 0, and one checks that the Slavnov-Taylor differential ŝ defined by
ŝF ≡ (S, F ) satisfies ŝ2 = 0 and ŝ d+ d ŝ = 0. We can thus define the cohomology
classes Hg,p(̂s) of local functionals of form degree p and ghost number g [where
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ghost number is additive, 1 for c and −1 for c̄ and 0 for all other fields, and
g(φ‡) = −g(φ) − 1], and the observables of the original Yang-Mills theory are
recovered as elements of H0,p(̂s). The theory defined by the augmented action
can be perturbatively quantised, and the quantum observables are obtained as
elements of H0,p(q̂) where q̂ = ŝ+O(~) is the quantum Slavnov-Taylor differential.
To have a consistent theory, the correlation functions must be well defined on the
cohomology classes, which are the Ward identities in the quantum theory. We have
proven in Ref. [1] that the proper Ward identities hold if the relative cohomology

class (invariant under the global E(4) symmetry) H1,4
E(4)(̂s| d) is empty, and thus in

particular for pure Yang-Mills theory based on a semi-simple Lie algebra.
The Ward identities for the correlation functions translate into Ward identities

for the OPE coefficients, and in Ref. [2] we have proven

Theorem 3. The OPE coefficients fulfil the Ward identity

0 =

s∑

k=1

∑

C

QAk
CCBA1···Ak−1CAk+1···As(x)−

∑

C

QC
BCCA1···As(x)

− ~
∑

1≤k<l≤s

∑

E,w

CBA1···Ak−1EAk+1···Al−1Al+1···As(x)B
E,w
AkAl

∂wxkδ
4(xk − xl)

if H1,4
E(4)(̂s| d) = 0. Here, the coefficients QA

B are defined by

q̂OA ≡
∑

B : [OB ]≤[OA]+1

QA
BOB ,

and the coefficients BC,wAB are defined by

(OA(x),OB(y))~ ≡
∑

C : [OC ]≤[OA]+[OB]−3

OC(x)
∑

w

BC,wAB ∂
w
x δ

4(x − y) ,

where (·, ·)~ = (·, ·) +O(~) is the quantum antibracket, and w is a multiindex.

Especially, this identity implies that the OPE of gauge-invariant operators only
involves gauge-invariant operators on the right-hand side, where a gauge-invariant
operator in the quantum theory is an element of H0,p(q̂).

Lastly, we have also proven in Ref. [2] that one can recursively construct the
OPE coefficients, the quantum Slavnov-Taylor differential and the quantum an-
tibracket as a formal power series in the coupling constant g, given as only input
the corresponding quantities in the free theory and a choice of interaction operator
OI of ghost number 0 and dimension 1 ≤ [OI ] ≤ 4

OI =
∑

A : 1≤[OA]≤4

IAOA ,

which is defined up to a total derivative and fulfills

OI = ∂gS|g=0 +O(g) +O(~) , q̂OI = dO′ .

for some other operator O′. Namely, we have shown that
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Theorem 4. The derivative of the OPE coefficients and the quantum Slavnov-
Taylor differential and antibracket with respect to the coupling constant g reads

~∂gCBA1···As(x) =
∫ ∑

E

IE
[
− CBEA1···As(y,x) +

∑

C : [OC ]<[OB]

CCA1···As(x)CBEC(y, xs)

+
s∑

k=1

∑

C : [OC ]≤[OAk ]
CCEAk(y, xk)CBA1···Ak−1CAk+1···As(x)

]
d4y ,

~∂gQA
B =

∫ ∑

E

IE

 ∑

C : [OC ]≤[OA]

CCEA(y, 0)QC
B −

∑

C : [OB]≤[OC ]

QA
CCBEC(y, 0)


d4y

+ ~
∑

E

IE B̃BEA ,

and

~∂gB̃BA1A2
=

∫ ∑

E

IE
[

∑

C : [OC ]≤[OA1 ]

B̃BCA2
CCEA1

(y, 0) +
∑

C : [OC ]≤[OA2 ]

B̃BA1CCCEA2
(y, 0)

−
∑

C : [OC ]=[OA]+[OB ]−3

B̃CA1A2
CBEC(y, 0)

]
d4y .

Here, the coefficients B̃CA1A2
are in a one-to-one (but somewhat complicated) rela-

tion with the coefficients BC,wAB of theorem 3, and are concretely given by
∫

(OA(x),OB(y))~ d
4x =

∑

C : [OC ]=[OA]+[OB ]−3

B̃CABOC(y) .
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Symmetry Breaking in a Gas of Bosons

Horst Knörrer

(joint work with T.Balaban, J.Feldman and E.Trubowitz)

A report on the status of a program to prove symmetry breaking in the thermo-
dynamic limit of a weakly interacting system of bosons on a three dimensional
lattice. This is joint work with T.Balaban, J.Feldman and E.Trubowitz.
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Having made the standard coherent state functional integral approach rigorous
[1], and having treated the temporal ultraviolet problem [2], we are faced with a
functional integral ∫

eA0(ψ
∗,ψ)

∏

x∈Z/LtZ×Z3/LtZ

dψ∗(x)∧dψ(x)
2πi

whose limit s → ∞, t → ∞ describes the partition function of the system up to
“nonperturbatively small” terms (that is, terms that are smaller than any power
of the coupling constant), and similar expressions for the correlations. Here, ψ is
a complex valued field on X0 = Z/LtZ × Z3/LsZ , the integral is over a set of ψ
that satisfy a “small field bound” (proportional to a positive power of the coupling
constant). The action is of the form

A0(ψ
∗, ψ) = −〈ψ∗, (∂0 +∆)ψ〉 − λV(ψ∗, ψ) + µ〈ψ∗, ψ〉 + p(ψ∗, ψ)

where ∂0 and ∆ are the lattice “time derivative” and spatial Laplacian, respec-
tively. V is a quartic expression for the interaction, λ is the coupling constant,
µ the chemical potential, and the “perturbative correction” p(ψ∗, ψ) is a power
series in the independent fields ψ∗, ψ that converges in the small field region.

In the talk, I described how iterated block spin transformations transform this
functional integral representation for the partition function into one where the
corresponding action has a deep circular potential well (Mexican hat). This can
be seen as the onset of the formation of a Goldstone boson and of symmetry
breaking.

Block spin transformation associates to a function F0(ψ∗, ψ) of fields on X0 a
function B1(θ∗, θ) of fields on the subset X−1 = L2Z/LtZ × LZ3/LsZ3 of X0 as
follows:

B1(θ∗, θ) = 1
N

∫ ∏

x∈X0

dψ∗(x)∧dψ(x)
2πi e−

1
L2 〈θ∗ −Qψ∗ , θ−Qψ〉 F0(ψ

∗, ψ)

where (Qψ)(y) is the average of ψ over a block of sides L2 ×L×L×L centered
at y ∈ X−1, and N is the normalization constant (that depends only on L and the
precise form of Q) that makes the integral of B1 equal to the integral of F0. After
the block spin transformation, we rescale B1 to a function F1 on the unit lattice
Z/Lt−2Z × Z3/Ls−1Z3 .

We apply this transformation with F0 = eA0 and iterate the construction to
obtain functions F1, F2, · · · . The main result is the following representation of
these functions:
For n ≤ O(logL

1
λ) and a positive chemical potential of order λ,

Fn(ψ
∗, ψ) = 1

Zn
eAn(ψ∗,ψ)+pn(ψ∗,ψ) + (nonperturbatively small error)

with a normalization constant Zn and the action

An = −〈(ψ∗ −Qn φ∗n), (ψ −Qn φn)〉+ 〈φ∗n, (∂0 +∆+ µn)φn〉 − Vn(φ∗n, φn)
where
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• Qn is an averaging operator on X0 over blocks of size L2n×Ln×Ln×Ln,
followed by a rescaling to X (n) = Z/Lt−2nZ × Z3/Ls−nZ3 .

• µn ≈ L2nµ is the renormalized chemical potential.
• Vn is approximately λ

Ln times a rescaled V .
• For each pair of fields (ψ∗, ψ) on X (n) satisfying small field conditions,
the “background fields” φ∗n(ψ∗, ψ) , φn(ψ∗, ψ) on Xn are critical points
of the functional

(f∗, f) 7→ 〈(ψ∗−Qnf∗) , (ψ−Qnf)〉− 〈f∗, (∂0+∆+µn)f)〉+Vn(f∗, f)

They are are holomorphic on the set of (ψ∗, ψ) on X (n) that satisfy the
small field conditions.

• The “perturbative correction pn(ψ
∗, ψ) is an analytic function on the

small field domain that does not contain any quadratic terms.

Evaluating the action An at constant fields ψ∗ = z∗, ψ = z one gets a function

proportional to
(
|z|2 − L3n µ

λ

)2 −
(
L3n µ

λ

)2
, which has a circle of degenerate min-

ima (Mexican hat). This structure is generally seen as an indication for symmetry
breaking. The construction as described cannot be continued over n ≈ logL

1
λ ,

because the radius of analyticity for the background fields and of the the per-
turbative correction pn gets smaller than the radius of the potential well. We
presently continue our program by introducing radial and tangential (Goldstone)
fields near a point of the potential well and following a flow in terms of such fields
with techniques similar to those which have led to the result above.

An induction step in our proof of the result above mainly concerns the block
spin integral

∫ ∏

x∈X (n)

dψ∗(x)∧dψ(x)
2πi e−

1
L2 〈θ∗ −Qψ∗ , θ−Qψ〉 eAn(ψ

∗,ψ)+pn(ψ
∗,ψ)

There are the following main issues

• “Large field generates small factors”: If the fields were real (which they are
not) and and θ were large, one would see a nonpertubatively small factor
by the term 〈θ∗ − Qψ∗ , θ − Qψ〉 if ψ is small, or by the quartic term
in An if ψ is large. One has to show that a similar mechanism still works
in the framework of complex fields. Then one can restrict the integral to
(θ∗, θ) that fulfil a small field conditions,

• “Holomorphic form representation” is just the observation that the block
spin integral can be viewed as the integral of the holomorphic differential
form

ω = eAeff (θ∗,θ;ψ∗,ψ)+pn(ψ∗,ψ)
∧

x∈X (n)
0

dψ∗(x)∧dψ(x)
2πı

over the “real” subspace ψ∗ = ψ∗. Here,

Aeff(θ∗, θ; ψ∗, ψ) = − 1
L2 〈θ∗ − Qψ∗ , θ − Qψ〉+An(ψ∗, ψ)
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• To perform stationary phase for this integral, we determine, for each pair
(θ∗, θ) that fulfils small field conditions, the critical points ψ∗cr(θ∗, θ) ,
ψcr(θ∗, θ) of the map

(ψ∗, ψ) −→ Aeff(θ∗, θ; ψ∗, ψ)

It turns out that they are analytic functions of (θ∗, θ), but that they are in
general not real (i.e. ψ∗cr(θ∗, θ) 6= ψ∗

cr(θ∗, θ) , even when θ∗ = θ∗ . This
is due to the first time derivative in the action.

• Stationary phase amounts to writing the integral as a product

(value of integrand at the critical point)× (fluctuation integral)

The value at the integrand looks like eAn+1, but with non renormalized
chemical potential and with incorrect “perturbative correction”.

• The fluctuation variables for the fluctuation integral are fields ζ∗, ζ such
that ψ(∗) = ψ(∗)cr+ζ(∗) . Since ψ∗cr 6= ψ∗

cr , the integral of the holomorphic
form ω over the real subspace leads to an integral in these variables over
a subspace where, in general, ζ∗ 6= ζ∗. The holomorphic form is closed;
we find a “generalized contour” to apply Stokes theorem to replace the
integral by one where ζ∗ = ζ∗. We check that the boundary terms in this
argument are nonperturbatively small.

• The methods of [3] now give a representation for the resulting integral. Its
logarithm contains quadratic parts, which leads to the renormalization of
the chemical potential. Rescaling then completes the induction step.

Progress in this program is documented on http://www.math.ubc.ca/∼feldman/
bec/.
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Constructing the eigenstates of a many-body Hamiltonian: an
RG/KAM approach

John Z. Imbrie

Abstract. For a weakly interacting quantum spin chain with random local interac-
tions, we prove that many-body localization follows from a physically reasonable
assumption that limits the extent of level attraction in the statistics of eigenvalues.
In a KAM-style construction, a sequence of local unitary transformations is used
to diagonalize the Hamiltonian by deforming the initial tensor-product basis into
a complete set of exact many-body eigenfunctions.
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1. What is Localization?

Consider the Anderson model:

Hxy = vxδxy + Jxy, with x, y ∈ Λ ⊂ ZD, and Jxy =

{
γ if |x− y| = 1

0 otherwise.

Here vx are iid random variables; each represents the potential energy of a particle
if it sits at site x. With weak hopping or strong disorder, the diagonal matrix
entries vx are usually much larger than γ, so the Hamiltonian is predominantly
diagonally dominant. As a result, the time evolution exp(itH)(x, y) has a random
walk expansion, which leads to rapid extinction | exp(itH)(x, y)| ≤ γ|x−y| for γ
small. This is called dynamical localization, and it implies an absence of particle
transport. Also, we obtain exponential decay of the eigenfunctions of H .

But resonances can spoil this picture. For example, the matrix
( v1 γ
γ v2

)
has

eigenvectors that are very close to
(
1
0

)
and

(
0
1

)
only when v1 − v2 is not close to

zero. In this case, the eigenvectors resemble the basis vectors. When v1 − v2 is
small, the eigenvectors are a nontrivial mixture of the basis vectors. A similar
situation prevails for the Hamiltonian on Λ, except for a dilute collection of sites
that are resonant, which leads to tunneling and spreading of eigenfunctions. But
as long as resonances do not percolate, localization prevails.

So let us consider a new characterization of localization: There is a way to
“deform” the eigenstates into the basis vectors. Then the eigenstates will “resem-
ble” the basis vectors. This characterization is one that generalizes to many-body
quantum systems.

A Result on Localization. The following result demonstrates exponential decay
of the eigenfunctions of H with integrated bounds uniform in Λ for small γ.

Theorem. There is a p > 0 such that if γ is sufficiently small (depending only
on D ), the eigenfunction correlator obeys the bound

∫
dλ(v)

∑

α

|ψα(x)ψα(y)| ≤ γp|x−y|.

This result was first proven by Aizenman and Molchanov using the fractional mo-
ment method. My recent work [1] gives a proof via multi-scale analysis, and this
forms the basis for a method that works for many-body localization. One defines a
sequence of rotation operators that diagonalize the Hamiltonian. Away from res-
onant regions, these rotations are generated by matrices that decay exponentially
in the distance between the affected sites. We call such operators quasilocal.
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2. Localization in Many-Body Systems

Does the phenomenon of localization persist in a more realistic model with inter-
acting particles? My goal here is to discuss a proof of MBL, modulo an assumption
on level statistics. Consider a random field, random transverse field, random ex-
change Ising model on Λ = [−K,K] ∩ Z :

H =

K∑

i=−K
hiS

z
i +

K∑

i=−K
γiS

x
i +

K∑

i=−K−1

JiS
z
i S

z
i+1.

This operates on the Hilbert space H =
⊗

i∈Λ C2, with

Szi =

(
1 0
0 −1

)
, Sxi =

(
0 1
1 0

)

operating on the ith variable. Assume γi = γΓi with γ small. Random variables
hi,Γi, Ji are independent and bounded, with bounded probability densities.

Assumption LLA(ν, C). Consider the Hamiltonian H in boxes of size n. Its
eigenvalues satisfy

P

(
min
α6=β

|Eα − Eβ | < δ

)
≤ δνCn,

for all δ > 0 and all n.
Remark. One expects Poisson statistics (ν = 1) or repulsive statistics (ν > 1,

like GOE), but not level attraction (ν < 1). Although proving this result seems
to be out of reach at the moment for many-body systems, a promising approach
was presented in [2] in the single-body context.

Theorem. (See [3, 4].) Let ν, C be fixed. There exists a κ > 0 such that for γ
sufficiently small, LLA(ν,C) implies the following estimate:

EAvα |〈Sz0 〉α| = 1−O(γκ),

where E denotes the disorder average, Avα denotes an average over α, and 〈·〉α
denotes the expectation in the eigenstate α. All bounds are uniform in Λ.

Implication. The eigenstates do indeed resemble the basis vectors from whence
they came (i.e. eigenvectors of {Szi }i∈Λ), because 〈Sz0 〉α is close to ±1.

3. KAM Method

We obtain a complete diagonalization of the H by successively eliminating low-
order off-diagonal terms. This is accomplished with rotations that can be written
as a convergent power series, provided nonresonant conditions are satisfied; they
are quasilocal. Resonant regions are diagonalized as blocks in quasidegenerate
perturbation theory.

First Step. Initially, the only off-diagonal term is γiS
x
i , which is local. Let the

spin configuration σ(i) be equal to σ with the spin at i flipped. The associated
change in energy is

∆Ei ≡ E(σ)− E(σ(i)) = 2σi(hi + Jiσi+1 + Ji−1σi−1).



Recent Mathematical Developments in Quantum Field Theory 2105

We say that the site i is resonant if |∆Ei| < ε ≡ γ1/20 for at least once choice
of σi−1, σi+1. Then for nonresonant sites the ratio γi/∆Ei is ≤ γ19/20. A site is
resonant with probability ∼ 4ε. Hence resonant sites form a dilute set (∼ large
field region) where perturbation theory breaks down.

Perturbation Theory. Let H = H0 + J with H0 diagonal and J off-diagonal.
Put J = J res + Jper, where J res contains terms J(i) ≡ γiS

x
i with i resonant, and

Jper contains the rest. Then define an antisymmetric matrix

A ≡
∑

nonresonant i

A(i) with A(i)σσ(i) =
J(i)σσ(i)

Eσ − Eσ(i)

.

Using e−A for a basis change, we obtain a renormalized Hamiltonian:

H(1) = eAHe−A = H + [A,H ] +
[A, [A,H ]]

2!
+ . . . = H0 + J res + J (1).

After the change of basis, Jper is gone, while J res remains. The new interaction
J (1) is quadratic and higher order in γ. Note that A(i) commutes with A(j) or
J(j) if |i − j| > 1. Thus we preserve quasi-locality of J (1); it can be written as∑

g J
(1)(g), where g is a sum of connected graphs involving spin flips J(i) and

associated energy denominators.
We also perform exact rotations in small, isolated resonant blocks to diagonalize

the Hamiltonian there. This paves the way for reintegrating such regions into the
perturbative framework in subsequent steps (∼ recycling of large field regions).
The process continues on a sequence of length scales Lk = (15/8)k, with off-
diagonal elements of order γm, m ∈ [Lk, Lk+1) eliminated in the kth step. Letting
k → ∞, we eliminate all off-diagonal terms in H .

Dressing Transformation. The small, quasilocal rotations allow us to label
each interacting eigenfunction with the basis vector it came from. Then one can
apply the inverse similarity transformation to the spin operators Szi and obtain a
complete set of local integrals of motion (LIOMs) that commute with H . In this
way we demonstrate that H is integrable; it is non-ergodic. The existence of a
complete set of LIOMs is one definition of a fully MBL system.

References

[1] J. Z. Imbrie, Multi-Scale Jacobi Method for Anderson Localization, Commun. Math. Phys.
341 (2016), 491–521.

[2] J. Z. Imbrie and R. Mavi, Level Spacing for Non-Monotone Anderson Models, Jour. Stat.
Phys. 162 (2016), 1451–1484.

[3] J. Z. Imbrie, On Many-Body Localization for Quantum Spin Chains, Jour. Stat. Phys. 163

(2016), 998–1048.
[4] J. Z. Imbrie, Diagonalization and Many-Body Localization for a Disordered Quantum Spin

Chain, Phys. Rev. Lett. 117 (2016), 027201.



2106 Oberwolfach Report 36/2016

Integrability in a 4D QFT model

Raimar Wulkenhaar

(joint work with Harald Grosse)

We start from a regularisation of the λφ44-model on noncommutative Moyal space
in finite volume [1],
(1)

S[φ] =
1

64π2

∫
d4x
(Z
2
φ⋆
(
−∆+Ω2‖2Θ−1x‖2 + µ2

bare

)
φ+

λbareZ
2

4
φ⋆φ⋆φ⋆φ

)
(x) ,

where Z, λbare, µbare are functions of renormalised values λ, µ and of the regulators
Ω,Θ,N encoded in the oscillator potential and the ⋆-product. We expand φ(x) =∑

m,n∈N2 Φmnfm1n1(x
0, x1)fm2n2(x

3, x4) in the matrix basis of the Moyal product

fmn(y
0, y1) = 2(−1)m

√
m!
n!

(√
2
θy
)n−m

Ln−mm

(
2|y|2
θ

)
e−

|y|2

θ ,(2)

which satisies fmn ⋆ fkl = δnkfml and
∫

dx
64π2 fmn(x) = V δmn with V := ( θ4 )

2. At

the special point Ω = 1 one then obtains a matrix model S[Φ] = V Tr(ZEΦ2 +
Z2λ
4 Φ4) with E = (Emδmn) =

µ2
bare

2 + 1√
V
diag(0, 1, 1, 2, 2, 2, . . . ) which admits a

natural cut-off N . The resulting partition function Z[J ] =
∫
DΦexp(−S[Φ] +

tr(JΦ)) is merely considered as a device to extract the equations of motions, i.e.
Schwinger-Dyson equations. The matrix model structure induces a refinement
of N -point functions into partitions N = N1 + · · · + NB and a corresponding
expansion

V −2 log
Z[J ]

Z[0]
=

∞∑

B=1

∞∑

1≤N1≤···≤NB

∑

p11,...,p
B
NB

G|p11...p1N1
|...|pB1 ...pBNB |

SN1...NB

B∏

β=1

Jpβ1 p
β
2
· · ·JpβNβpβ1
V Nβ

.

(3)

The Ward identity for the U(N ) group action [2] is used to collapse — in a coupled

limit
√
V ,N → ∞ with their ratio fixed — the tower of Schwinger-Dyson equations

into a self-consistent formula for the 2-point function alone,

G|ab| =
1

Z(Ea+Eb)
− Zλ

(Ea+Eb)

1

V

∑

p∈N2
N

(
G|ab|G|ap| −

G|pb| −G|ab|

Z(Ep−Ea)

)
,(4)

and a hierarchy of linear equations for all higher correlation functions [3]. These

equations are algebraic if one Ni > 2, e.g. G|abcd| = (−λ)G|ab|G|cd|−G|ad|G|cb|

(Ea−Ec)(Eb−Ed) which

proves that the β-function is zero, otherwise (e.g. for G|ab|cd|) complicated but
linear.

In a scaling limit N , V → ∞ with N√
V µ4

= Λ fixed, sums over p ∈ N2
N converge

to Riemann integrals of continuous variables a, b ∈ [0,Λ2], and the finite Hilbert

transform HΛ
a(f) = 1

πP
∫ Λ2

0
f(p) dp
p−a arises. The limit Λ → ∞ requires renormali-

sation which, because of the vanishing β-function, can be directly implemented
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in (4). Noticing that the difference G(a, b) − G(a, 0) satisfies a linear equation,
the solution theory of Carleman-Tricomi gives the renormalised limiting function
G(a, b) in terms of the boundary G(a, 0):

Theorem 1 ([3, 4]). Define τb(a) := arctan
[0,π]

( |λ|πa
b+

1+λπaHΛ
a[G(•,0)]

G(a,0)

)
. Then

G(a, b)=
sin(τb(a))

|λ|πa esign(λ)(H0[τ0(•)]−Ha[τb(•)])
{

1 for λ<0,(
1+Ca+bF (b)

Λ2−a
)

for λ>0.
(5)

Surprisingly, instantons corresponding to solutions of the homogeneous equa-
tion, parametrised by a constant C and a function F (b), live at λ > 0. This
reversal is a consequence of renormalisation, to be discussed below. The remain-
ing equation for G(a, 0) reduces to symmetry G(b, 0) = G(0, b). For λ < 0 one
has

G(b, 0) =
1

1 + b
exp

(
− λ

∫ b

0

dt

∫ ∞

0

dp

(λπp)2 + (t+
1+λπHp[G(•,0)]

G(p,0) )2

)
.(6)

A numerical iteration of (6) converges and shows a phase transition at λc ≈ −0.39
[4]. For λ > 0 the symmetry G(a, b) = G(b, a) is violated if the instantons are
ignored. In [5] we have proved by the Schauder fixed point theorem that a C1

0 -
solution 1

(1+b)1−|λ| ≤ G(0, b) ≤ 1

(1+b)
1−

|λ|
1−2|λ|

exists for − 1
6 ≤ λ < 0.

Returning to the original formulation (1) in position space, we define connected
Schwinger functions on R4 as

µNSc(µx1, . . . , µxN )(7)

:= lim
N ,V→∞

∑

mi,ni∈N2
N

fm1n1
(x1) · · · fmNnN (xN )

(V µ4)−2µ4N∂N logZ[J ]

∂Jm1n1
. . . ∂JmNnN

∣∣∣∣
J=0

.

Inserting (3) one gets a partition into fmn-cycles. Expressing the correlation func-

tions as Laplace-Fourier transform produces
∑∞

m1,...,mN=0

∏N
i=1 z

mi
i L

mi+1−mi
mi (ri)

which we evaluated in [6]. For the choice of zi, the V → ∞ limit is ∼ V 0 for N
odd but ∼ V 1 for N even. Together with the V −1-prefactor in (3) for every B one
arrives at:

Theorem 2 ([6]). Defining Y := limb→0
(1−G(0,b))

b and sβ := N1+ . . .+Nβ−1, the
connected Schwinger functions are given by

Sc(µx1, . . . , µxN )(8)

=
1

64π2

∑

N1+...+NB=N
Nβ even

∑

σ∈SN

( B∏

β=1

4Nβ

Nβ

∫

R4

d4pβ
4π2µ4

e
i〈pβ,

∑Nβ
i=1(−1)i−1xσ(sβ+i)〉

)

× 1

SN1...NB

G
( ‖p1‖2

2µ2(1+Y) , · · · ,
‖p1‖2

2µ2(1+Y)︸ ︷︷ ︸
N1

∣∣ . . .
∣∣ ‖pB‖2

2µ2(1+Y) , · · · ,
‖pB‖2

2µ2(1+Y)︸ ︷︷ ︸
NB

)
.
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Only the face-diagonal matrix correlation functions contribute to the Schwinger
functions in position space. This can be viewed as confinement of noncommuta-
tivity: Whereas interactions involve the complete matrix structure, Schwinger
functions depend only on the projection to the diagonal. Euclidean symmetry is
manifest. The Schwinger functions show a restricted kinematics where scattering
is such that particle momenta are individually conserved, as it is the case in any
integrable model.

We have also pointed out in [6] that reflection positivity of the 2-point function

amounts to a Stieltjes representation G(a, a) =
∫∞
0 dtρ(t)t+a for a positive measure

ρ. This is excluded for λ > 0, whereas we accumulated a lot of evidence that
this is the case for λc < λ ≤ 0. The preferrence of λ < 0 is a renormalisation
effect. The Stieltjes property is related to the anomalous dimension η in Ŝ2(p) ∼

1
(‖p‖2+µ2)1−η/2

. Näıvely we have η > 0, in fact η = +∞, for λ > 0. It turns out

that the renormalised anomalous dimension is positive for λ < 0. Consequently,
there is no hope to construct a rigorous measure for the partition function, which
is why we based our approach on Schwinger-Dyson equations made rigorous.

Our best results so far (not yet published) start from an ansatz G(0, x) =

4F3

(
a,b1,b2,b3
c1,c2,c3

∣∣ − x
)
with 0 < a < 1 and 1 < bi < ci, which is a Stieltjes function.

Optimising for a, bi, ci we came to the conjecture a = 1− 1
π arcsin(|λ|π) which we

were able to prove. Consequently, we expect the critical coupling constant to be
exactly λc = − 1

π . Such a hypergeometric function ansatz solves the fixed point

equation (6) up to an error of 10−8. We can plug it into Theorem 1 and notice that
G(x2 ,

x
2 ) is very close, but not exactly equal, to G(0, x). We thus expect that also

G(x2 ,
x
2 ) is Stieltjes, with an intriguing behaviour of the Källén-Lehmann spectral

measure ρ: There is a mass gap [0, µ2[ but no further gap ]µ2, 4µ4[! Absence of
this second gap — remnant of the cured UV/IR-mixing problem — circumvents
several triviality theorems.

The exact solution of the model, its restricted kinematics, the vanishing of the
β-function and the striking value λc = − 1

π of the critical coupling constant all
support the conjecture that these results are due to a hidden integrable structure.

References

[1] H. Grosse and R. Wulkenhaar, “Renormalisation of φ4-theory on noncommutative R4 in the
matrix base,” Commun. Math. Phys. 256 (2005) 305–374 [hep-th/0401128].

[2] M. Disertori, R. Gurau, J. Magnen and V. Rivasseau, “Vanishing of beta function of non
commutative φ4

4
theory to all orders,” Phys. Lett. B 649 (2007) 95–102 [hep-th/0612251].

[3] H. Grosse and R. Wulkenhaar, “Self-dual noncommutative φ4-theory in four dimensions is

a non-perturbatively solvable and non-trivial quantum field theory,” Commun. Math. Phys.
329 (2014) 1069–1130 [arXiv:1205.0465 [math-ph]].

[4] H. Grosse and R. Wulkenhaar, “Solvable 4D noncommutative QFT: phase transitions and
quest for reflection positivity,” arXiv:1406.7755 [hep-th].

[5] H. Grosse and R. Wulkenhaar, “On the fixed point equation of a solvable 4D QFT model,”
Vietnam J. Math. 44 (2016) 153–180 [arXiv:1505.05161 [math-ph]].

[6] H. Grosse and R. Wulkenhaar, “Solvable limits of a 4D noncommutative QFT,”
arXiv:1306.2816 [math-ph].



Recent Mathematical Developments in Quantum Field Theory 2109

The Tensor Track

Vincent Rivasseau

The tensor track is a program to explore (Euclidean) random fields which are
tensors of general rank d. They include as special cases vector (rank 1) and matrix
(rank 2) models. Tensor models were introduced as promising candidates for an
ab initio quantization of gravity. Indeed they are combinatorial objects which do
not refer to any background metric, nor even to any background topology. These
tensors were initially introduced as symmetric in their indices, a feature which for
a long time prevented to investigate rigorously their behavior. In particular in
contrast with the famous ’t Hooft 1/N expansion for random matrix models, there
was until recently no way to probe the large N limit of these symmetric random
tensors at rank d > 2.

The modern reformulation by R. Gurau and collaborators unlocked the theory
by considering un-symmetrized random tensors. Slightly counterintuitively per-
haps, these objects have in fact a larger symmetry than symmetric tensors, and
this larger symmetry allows to probe their large N limit through 1/N expansions
of a new type. Invariants under this symmetry are exactly d-regular edge-colored
graphs.

Random tensor models can be further divided into fully invariant models, in
which both propagator and interaction are invariant, and tensor field theories in
which the interaction is invariant but the propagator is not. This propagator
can also incorporate a further gauge invariance to make contact with group field
theory, in which case we call the model a tensor group field theory.

The first-half of the talk focused on the motivations for random tensors, which
come from random geometry and quantum gravity. The tensor model action is
known to be a natural discretization of the Einstein-Hilbert action and can be con-
sidered therefore as an equilateral form of Regge calculus. The recent associated
field theories have added renormalization, asymptotic freedom and exploration of
the infrared flow to this older picture.

The last point is very important. Indeed a main difficulty in bacground indepen-
dent approaches to quantum gravity is to identify space-time not as “god-given”
initially but as emergent, hence as a condensate phase of a more fiundamental
quantum theory. This is conceptually similar to the difficult problem of deducing
hadronic and nuclear physics from quantum chromodynamics. A fully analytic
solution should not be expected soon, since in physics effective behaviors quali-
tatively different from the bare ones can almost never be computed analytically.
Even for the long-time behavior of the three body problem in Newtonian gravity
or the phase transition of the Ising model in three dimensions (not to mention the
formation of molecules and crystals in the real world), computer simulations are
required at some stage. Therefore it is expected that the investigation of renor-
malization group flows and phase transitions towards an emergent space-time will
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also require numerical as well as analytic tools. Fortunately in the tensor track ap-
proach the models have simple actions and standard field theoretic methods (such
as the functional renormalization group) are available to compute numerically their
renormalization group flows and effective behavior.

Another important bonus of the tensor track approach is that a constructive
analysis of the models is often possible. In the relatively simple case of super-
renormalizable models with a quartic interaction, Borel summability of the free
energy has already been proven on the “stable side” of the coupling constant. The
main tool is the so-called multi-scale loop vertex expansion. It is a constructive
technique which bypasses the more traditional cluster expansions and does not
require any discretization of space-time by regular lattices.

Of course enormous work lies ahead of the tensor track program, which is only
one among many competing approaches to quantum gravity. Among the major
problems to tackle in this approach we can list finding Euclidean axioms including
the right generalization of the Osterwalder-Schrader positivity axiom, to allow in
particular emergence of Lorentzian time and causality; constructive treatment of
more than quartic interactions; renormalization group evolution from the arbores-
cent to more realistic macroscopic phase; consequences of the theory for cosmology
scenarios and for black holes; and addition of the standard model matter fields to
the picture. Altogether we nevertheless have the impression that the tensor track
has matured enough to be taken seriously and explored further. At the physical
level it suggests an emergent space-time scenario with an initial arborescent phase
of the universe. This result should not be immediately discarded as non-physical,
since the richness of subdominant tensor interactions could lead this arborescent
phase to evolve later into geometries closer to our actual universe.

At the mathematical level, the world of tensor models and tensor field theories is
incredibly rich, as tensor interactions encode infinitely many triangulations of any
piecewise linear manifold with boundaries, and in particular distinguish in four
dimensions not only topology, but also smooth structure. They also generalize
non-commutative field theories on Moyal space. Their mathematical exploration
has in fact just begun and will most probably continue for decades to burgeon in
many fascinating directions.

A BPHZ Theorem for Regularity Structures

Ajay Chandra

I introduced Martin Hairer’s theory of regularity structures and then discussed
recent joint work with Hairer on a systematic way to choose renormalization con-
stants and prove corresponding stochastic estimates for this theory, this scheme
is a generalization of the BPHZ renormalization scheme of perturbative Quantum
Field Theory. I began by introducing the Φ4

d stochastic quantization, explaining
that once well-posed it defines an infinite dimensional Markov process which has
the Euclidean Φ4

d QFT measure as an invariant measure.
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I then explained the Da Prato - Debussche method for the Φ4
2 stochastic quan-

tization equation and explained how it completely breaks down when treating Φ4
3.

Regardless of where one truncates the naive perturbative for the solution the fixed
point problem for the remainder is always ill-posed because the remainder has
insufficient regularity to define products that appear in this fixed point problem.

We adopted the point of view that regularity was the wrong property to demand
of our remainder since the regularity of a product of a pair of functions/distribu-
tions, when it can be defined, is determined by the how singular the worst of the
pair is. On the other hand, if we are willing to adopt a more local point of view, the
quality of satisfying homogeneity bound at a specific point behaves better under
the products.

Using this as motivation, we move away from ”global” perturbative expansions
and instead and instead pose the solution problem in a jet of local expansions -
here one generalizes the classical notion of Taylor series by including indetermi-
nants which represent certain Gaussian polynomials (Wild trees) built out of the
linear solution as monomials in addition to classical polynomials. A key idea is
that when the right deterministic and quantitative notion of a distribution being
locally well-approximated by explicit Gaussian processes is combined with a prob-
ablistic algorithm for defining Gaussian polynomials one gets a method of defining
products of this solution. One can view this entire procedure as defining a new
notion of regularity in which certain singular distributions have positive regularity.

After this I described the concept of a “model” which is what allows one to as-
sociate concrete objects to abstract jets. The key content of a model is (a) a map
which associates to each Wild tree indeterminant a concrete space-time distribu-
tion which is the “homogenous incarnation” of that tree and (b) a family of parallel
transport maps which allow one to move this these local expansions from point
to point. In order to define the map of item (a) one must mollify the underlying
driving white noise at some scale ǫ and then subtract renormalization constants
(which diverge as ǫ ↓ 0) in order to guarantee a limit as the mollification is re-
moved. However convergence is not enough, one must also perform “recenterings”
of this process so that these approximations satisfy, uniformly in ǫ, a homogeneity
bound. I then discussed how our BPHZ type theorem used multiscale techniques
from constructive field theory in order to show that one can define an automatic
procedure to perform these renormalizations and check that after recentering one
again gets convergence along with the necessary homogeneity bounds.

Computing certain invariants of topological spaces of dimension three

Wojciech Dybalski

It is well-known that the conventional property of asymptotic completeness fails
in general in quantum field theory due to the possible presence of pairs of oppo-
sitely charged particles in the vacuum sector. However, a generalized concept of
complete particle interpretation which takes this phenomenon into account, was
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formulated in [1, 2]: With the help of suitable asymptotic observables (Araki-
Haag detectors) we construct a canonical ‘charged-particles free’ subspace. The
generalized property of asymptotic completeness requires that it coincides with
the subspace of Haag-Ruelle scattering states. We show that this property holds
in any massive quantum field theory satisfying the Haag-Kastler axioms. Our
result can be reformulated as a criterion for conventional asymptotic complete-
ness which should be sharp in theories with trivial superselection structure. The
crucial technical step is the proof of convergence of the Araki-Haag detectors on
all states from a suitable spectral subspace of the energy-momentum operators.
For a restricted class of detectors this was accomplished in [1, 2] by applying the
quantum mechanical method of propagation estimates in the relativistic setting.
In this talk a novel method will be presented, which applies to a larger class of
detectors. It uses a compactness argument and the observation that the problem
of convergence is non-trivial only on the orthogonal complement of the subspace
of scattering states. (Joint project with C. Gérard).

References

[1] W. Dybalski and C. Gérard: Towards asymptotic completeness of two-particle scattering in
local relativistic QFT. Commun. Math. Phys. 326, (2014) 81–109.

[2] W. Dybalski and C. Gérard: A criterion for asymptotic completeness in local relativistic
QFT. Commun. Math. Phys. 332, (2014) 1167–1202.

Index theory on Lorentzian manifolds and the chiral anomaly

Christian Bär

(joint work with Alexander Strohmaier)

Let M be a Lorentzian manifold with boundary; the boundary is assumed to con-
sist of two smooth and spacelike Cauchy hypersurfaces, one lying in the past of
the other. We assume that M carries a spin structure so that the spinor bundle
SM → M is defined. Moreover, let the dimension of M be even; then the spinor
bundle splits into the two subbundles of left-handed and right-handed spinors,
SM = SLM ⊕SRM . Finally, let E →M be a Hermitian vector bundle, equipped
with a compatible connection. Then we have the bundles of spinors with coeffi-
cients in E, VL/R = SL/RM ⊗ E.

The boundary is a Riemannian manifold and the induced operator on the
boundary is a self-adjoint elliptic differential operator. Therefore the Atiyah-
Patodi-Singer boundary conditions make sense in this Lorentzian setting; they
say

P+(u|∂M ) = 0

where P+ denotes the spectral projector onto the subspace of L2-spinors over ∂M
spanned by the eigenspinors to the non-negative eigenvalues of the boundary Dirac
operator.

The twisted Dirac operatorD : C∞(M,VR) → C∞(M,VL) onM is a hyperbolic
linear differential operator of first order. Usually, index theory is closely tied to
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ellipticity of the operator and hyperbolic operators are not Fredholm. Moreover,
solutions of Du = 0 need not be smooth; they can be very irregular.

In this particular setting however, we have a complete analog to the Atiyah-
Patodi-Singer index theorem [1]:

Theorem 1 (Bär-Strohmaier [2]). Under Atiyah-Patodi-Singer boundary condi-
tions, D is a Fredholm operator. The kernel consists of smooth spinor fields and
the index is given by

ind(DAPS) =

∫

M

Â(M) ∧ ch(E) +

∫

∂M

T (Â(M) ∧ ch(E)) − h+ η

2
.

Here Â(M) is the Â-form computable in terms of the curvature of M and ch is

the Chern character form, an expression in the curvature of E. By T (Â(M)∧ch(E))
we denote the corresponding transgression form and h and η denote the dimension
of the kernel and the η-invariant of the boundary operator, respectively.

There are also important differences to the Riemannian case. First of all, it is
possible to replace the Atiyah-Patodi-Singer boundary conditions by the comple-
mentary anti-Atiyah-Patodi-Singer boundary conditions

P−(u|∂M ) = 0.

In the Riemannian case this would not yield a Fredholm operator. In the Lorentzian
setting the operator turns out to be Fredholm and the same index formula as in
Theorem 1 holds, except for a global sign. Moreover, the index can be written as

ind(DAPS) = dimker[D : C∞
APS(M,VR) → C∞(M,VL)]

− dim ker[D : C∞
aAPS(M,VR) → C∞(M,VL)]

where the subscripts APS and aAPS indicate that (anti-)Atiyah-Patodi-Singer
boundary conditions are imposed. In the corresponding Riemannian formula
the negative term would have to be replaced by −dim ker[D : C∞

APS
(M,VL) →

C∞(M,VR)] (up to a subtlety if h 6= 0).
In the Lorentzian setup the APS-boundary conditions have a natural physical

interpretation in terms of a particle-antiparticle splitting. This allows to use The-
orem 1 to directly derive a geometric formula for the chiral anomaly in quantum
field theory on curved spacetimes without the need to resort to mathematically
fishy arguments such as a Wick rotation. See [3] for details and computed exam-
ples.
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Modular ℓp-conditions for QFT in curved spacetimes

Ko Sanders

(joint work with Gandalf Lechner, Stefan Hollands)

In a very general setting, each state of an algebraic quantum (field) theory gives
rise to a modular operator. This operator can be used to define maps Ξ, whose
ℓp-properties yield an estimate of entanglement entropy [1]. After reviewing the
notions of spacetime and locally covariant quantum field theories (LCQFTs) [3], I
review recent results on modular ℓp-conditions for such theories [2].

1. Modular Operators

A general quantum system consists of a C∗-algebra A with unit 1 and a selec-
tion of suitable algebraic states ω : A → C. Each state gives rise to a GNS-
representation πω : A → B(Hω), with Ωω ∈ Hω implementing ω. To define
modular operators in this general case, we compress the representation to a sub-
space in a canonical way [2]. Let Qω ∈ πω(A)′′ be the orthogonal projection onto

H′
ω := πω(A)′Ωω. In H′

ω , Ωω is cyclic and separating for the compressed von
Neumann-algebra Qωπω(A)′′Qω. The modular operator ∆ω ≥ 0 is now defined as
the self-adjoint operator with kernel (H′

ω)
⊥, with form core πω(A)Ωω , and with

‖∆
1
2
ωaΩω‖ = ‖Qωa∗Ωω‖, a ∈ πω(A).

We conclude that modular operators are always available. When ω is pure,
Qω projects onto the span of Ωω and ∆ω = Qω is rather trivial, but for typical
quantum states we expect Qω = 1 (e.g. due to the Reeh-Schlieder property).

2. ℓp-Operators

ℓp-operators are bounded operators between Banach spaces, which can be approx-
imated very well by operators of finite rank. This makes the ℓp-property very
nice, and closely related to a nuclearity condition [2]. To define such operators, we
consider a bounded linear map between Banach spaces, Ξ : B1 → B2. For n ∈ N
we introduce the non-increasing sequence of approximation numbers

αn(Ξ) := inf
Ξn of rank ≤n

‖Ξ− Ξn‖.

For any p > 0, Ξ is an ℓp-operator iff the αn decrease fast enough to have

‖Ξ‖p :=
( ∞∑

n=0

αn(Ξ)
p

) 1
p

<∞.

ℓp-operators form a linear space and ‖.‖p is a quasi-norm:

‖Ξ1 + Ξ2‖p ≤ max{2, 2 2
p−1} (‖Ξ1‖p + ‖Ξ2‖p) .

Furthermore, ℓp-operators are ℓq for q ≥ p, ℓ∞ are all compact operators, and
there are nice estimates like ‖ΞB‖p ≤ ‖Ξ‖p · ‖B‖ for bounded operators B.
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3. An application to entanglement entropy

Let A1,A2 ⊂ A be commuting subalgebras and ω : A → C a state. We want
to quantify the entanglement of ω between the Ai, i = 1, 2. First let Hi be the
GNS-representation space for ωi := ω|Ai and consider the von Neumann algebra

M := πω1(A1)
′′ ⊗ πω2(A2)

′′

acting on H1 ⊗H2. A state ω′ on M is called separable iff

ω′ =
∑

j

φj ⊗ ψj ,

where φj , ψj are normal positive functionals and the sum converges in norm.
Araki defined the relative entropy between ω and ω′ is defined in terms of a rel-

ative modular operator (extending known formulae in terms of density matrices):

H(ω, ω′) =

{
〈Ωω , log(∆ω,ω′)Ωω〉 ω normal on M
∞ else.

The entanglement entropy of ω between A1 and A2 is then defined as

Eω(A1,A2) := inf
ω′ separable

H(ω, ω′).

We now want to apply modular operators and ℓp-properties to the task of esti-
mating the entanglement entropy. For this we introduce the state ω̃ := 〈Ωω, .Ωω〉
on πω(A2)

′ ⊃ πω(A1) and the operator

Ξ : A1 → Hω̃ : a 7→ ∆
1
4

ω̃πω̃(a)Ωω̃.

When ‖Ξ‖1 <∞, the nuclear index ν1(Ξ) ≤ 25‖Ξ‖1 is also finite [2] and [1] shows:

Eω(A1,A2) ≤ log(2ν1(Ξ)) ≤ log(26‖Ξ‖1).

4. Spacetime

A physical theory is a class of systems PHYS = {A1, . . .} together with subsystem
relations A1 → A2, which make PHYS a category. As in algebraic QFT, the physics
is in the morphisms of PHYS. There are many ways to divide degrees of freedom
into subsystems, e.g. by organising them by particle, by field type or by frequency
range. A particularly effective tool is to organise them by localisation region.

LOC is a category of globally hyperbolic Lorentzian manifolds with suitable
isometric embeddings. A theory PHYS is a locally covariant QFT (LCQFT) when
there exists a functor

A : LOC → PHYS

satisfying suitable axioms. Note that manifolds essentially only enter to deter-
mine the structure of the category LOC, which encodes locality and general covari-
ance. Taking seriously the idea that spacetime is an organisation principle, which
imposes structure on the theory PHYS, we conclude that spacetime is a functor
A : LOC → . . . (satisfying suitable axioms) [3]. (This argument is even stronger
in classical GR, using manifolds with a metric, whose points have no physical
significance.)
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5. A locally covariant modular ℓp-condition

Given a LCQFT A : LOC → PHYS and an object M in LOC, [2] defines the following
condition:

A state ω on A := A(M) satisfies the modular ℓp-condition iff for all α ∈ (0, 12 ),

p > 0 and all compact inclusions Õ → O →M in LOC, the following map is ℓp:

Ξ : πω|O(A(Õ))′′ → Hω|O : a 7→ ∆α
ω|OaΩω|O .

Here, ω|O is an abbreviation for the restriction ω|A(O). The modular ℓp-condition
condition is a generally covariant version of a modular nuclearity condition of
Buchholz, d’Antoni and Longo, and it has some nice properties [2]: it is stable
under taking pull-backs of states and taking mixtures of states, and when the
LCQFT has the time-slice property, it also satisfies a stability property under
spacetime deformations.

In addition to these general properties, the condition has been verified for an
interesting class of states [2]:

Every quasi-free Hadamard state on the Weyl algebra of a real free scalar quan-
tum field on a globally hyperbolic Lorentzian manifold satisfies the modular ℓp-
condition.

As a consequence of this result one may show that the entanglement entropy
of these states between suitable space-like separated regions of spacetime is finite
(as long as the regions do not touch and one of them is bounded).
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Cosmological perturbation theory and perturbative quantum gravity

Thomas-Paul Hack

(joint work with Romeo Brunetti, Klaus Fredenhagen, Nicola Pinamonti,
Katarzyna Rejzner)

The quest for a satisfactory and complete theory of quantum gravity is complicated
by conceptual and technical obstacles. A more conservative approach to a quantum
theory of gravity is perturbative quantum gravity. This approach is expected to
be only applicable in a regime where quantum gravitational effects are relatively
small. In addition, this approach had been facing its own conceptual problems, an
area of research in which considerable progress has been made in the last years:
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(1) Initially, perturbative quantum gravity had only been formulated on the
most trivial background, Minkowski spacetime. However, a generally co-
variant formulation on general backgrounds has been developed in [2].

(2) It is well-known that local and diffeomorphism-invariant observables, the
building blocks of any quantum field theory, do not even exist in classical
general relativity. A concept which comes rather close to local observables
are the partial or relational observables well-known from classical general
relativity and already implemented in the non-perturbative framework of
loop quantum gravity [3, 9, 10]. It has been argued in [2, 6] that these
observables can also be used as building blocks in perturbative quantum
gravity.

(3) Finally, perturbative quantum gravity is a non-renormalisable quantum
field theory, i.e. ever new coupling constants appear upon going to higher
and higher orders in perturbation theory. In this respect indications of
asymptotic safety found in [7, 8] and subsequent works are encouraging:
at the so-called UV fixed point of the renormalisation group flow only a
finite number of the infinitely many coupling constants are relevant.

A non-trivial application of perturbative quantum gravity is cosmological per-
turbation theory: a popular model of the early universe is inflation, wherein one
assumes that a classical scalar field coupled to the classical gravitational field has
triggered an exponential expansion of the universe, after which the universe was
essentially void of any structures. The quantum fluctuations of both the scalar
field and the gravitational field are thought to be the seeds of the structures we
observe in the universe today; this is the topic of cosmological perturbation theory.
The first snapshot of these structures, dated approximately 400000 years after the
big bang, is the cosmic microwave background radiation. This is well-modelled by
linearised perturbative quantum gravity and can thus be considered as the major
observational signature of quantum gravitational effects. However, a full under-
standing of the cosmic microwave background radiation requires the consideration
of higher orders in perturbative quantum gravity and so far only rather ad-hoc or
conceptually unsatisfactory analyses of this issue seemed to have been discussed
in the literature.

In this talk I will describe how perturbative quantum gravity leads to a con-
sistent all-order description of quantized fluctuations around a cosmological back-
ground. A central obstacle to overcome is the apparent lack of sufficiently many
relational/partial observables: such observables may be equivalently understood as
using coordinates which are diffeomorphism-equivariant functionals of the dynam-
ical fields of the model, the scalar field and the gravitation field. In perturbative
quantum gravity, these coordinates have to be well-defined and non-degenerate on
the background of the theory. However, as cosmological backgrounds have a high
degree of symmetry, all local functionals of the background fields have linearly
dependent gradients. As I will discuss in detail, this problem can be overcome by
constructing suitable non-local and non-degenerate functionals of the background
fields. I will discuss the properties of these functionals and I will argue that their
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non-locality is not problematic for a consistent perturbative quantization. Ex-
amples of higher-order gauge-invariant quantities constructed by means of these
equivariant coordinates will be presented as well. Finally, I will argue that a
consequent all-order implementation of the idea to quantize perturbative gravity
directly in terms of diffeomorphism-invariant fundamental fields, rather then in
terms of diffeomorphism-equivariant fields and auxiliary fields like in the so-called
BV-BRST framework [4, 5], appears to be possible. The talk is largely based on
results reported in [1].
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Università degli Studi di Roma I
”La Sapienza”
Nuovo edificio E. Fermi
Stanza 117
00185 Roma
ITALY

Prof. Dr. Yasuyuki Kawahigashi

Department of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914
JAPAN

Prof. Dr. Horst Knörrer

Departement Mathematik
ETH-Zentrum
Rämistrasse 101
8092 Zürich
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Université Paris XI
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