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Introduction by the Organisers

The MFO mini-workshop “Spaces and Moduli Spaces of Riemannian Metrics”,
organised by Tom Farrell (Beijing) and Wilderich Tuschmann (Karlsruhe), was
held January 8-14, 2017. The meeting was attended by 16 participants, ranging
from first year graduate students to senior researchers. The purpose of the meeting
was to relate and study new developments concerning spaces and moduli spaces
of Riemannian metrics with lower or upper curvature bounds on open and closed
manifolds and, moreover, related themes from Anosov geometry.

The meeting was organised around nine one-hour and two 30 minute talks which
were accompanied by problem and discussion sections, thus leaving also plenty of
time between and after these for further informal exchange.

After a brief introduction by the organisers, the workshop started off with a talk
by David Wraith who presented his recent work about spaces and moduli spaces of
positive and non-negative scalar curvature metrics. The afternoon session began
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with a talk by Mark Walsh on his work with Boris Botvinnik and David Wraith
on the observer moduli space of positive Ricci curvature metrics.

On Tuesday, Andrey Gogolev introduced the audience to the moduli problem for
smooth conjugacy of Anosov diffeomorphisms and flows and the moduli problem
for isometries of negatively curved metrics. In the afternoon, Mauricio Bustamante
explained his work on nonconnectedness of the space of Anosov metrics on a high
dimensional manifold.

On Wednesday, Anand Dessai discussed in his talk different approaches of how
to detect components of the space or moduli space of metrics with lower curvature
bounds. Igor Belegradek described joint work with Jing Hu and Taras Banakh on
spaces of nonnegatively curved surfaces, in which he also addressed fundamental
desirable properties of topologies on (moduli) spaces of metrics in general.

On Thursday, Igor Belegradek explained his joint work with Tom Farrell and
Vitali Kapovitch on higher homotopy groups of spaces of nonnegatively curved
metrics, paving thus also the ground for a related talk by Jiang Yi. Then Boris
Botvinnik gave a talk about his work with David Wraith on the topology of the
space of Ricci-positive metrics. In the afternoon, Jiang Yi presented and explained
her joint work with Mauricio Bustamante and Tom Farrell on involutions on pseu-
doisotopy spaces and spaces of metrics.

On Friday, Su Yang described joint work with Matthias Kreck about the clas-
sification of closed seven-manifolds with infinite cyclic fundamental group and its
possible relations to the existence of metrics with positive or non-negative curva-
ture. Then Thomas Schick gave a concluding talk about the topology of positive
scalar curvature metrics. Besides describing the use and limitations of index meth-
ods, which he illustrated by his joint work with Diarmuid Crowley and Wolfgang
Steimle, he also raised several questions concerning higher secondary index theory
of the Dirac operator whose solutions would yield many interesting new results in
the field.

We wish to thank all of the participants for their strong commitment and ded-
ication which made every single discussion and problem session lively, intense and
inspiring. In fact, from them we received ourselves many positive reactions to
structuring the workshop in a way that gave enough time to explore each indi-
vidual talk in great detail. Particular thanks go in addition to Andrey Gogolev
for collecting a list of open problems and questions which arose from all our joint
discussions, and to the meeting’s reporter Jan-Bernhard Kordaß, who also assisted
in many further ways, for his prudent and professional work.

Last but not least it is our pleasure to thank the Institute for the invitation to
organise this event, and all the staff for their excellent hospitality.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Non-negative versus positive scalar curvature

David J. Wraith

Our motivating question is as follows: from the point-of-view of (moduli) spaces
of metrics, what is the difference between positive and non-negative scalar (or
Ricci) curvature? Our main result below (Theorem A) describes a situation when
a non-negative scalar curvature metric on a closed spin manifold has no harmonic
spinors. This has implications for the index theory of Dirac operators, and in
turn leads to topological consequences for (moduli) spaces of non-negative scalar
curvature metrics. Some of these applications appear below as Theorems C, D
and E. An in depth treatment of this material can be found in [14].

Our set-up is as follows. We suppose that (X4k, g) is Riemannian spin manifold
with non-empty boundary (Y 4k−1, g′), and assume that g takes the form dt2 + g′

in a neighbourhood of Y . We consider the Atiyah-Singer (half) Dirac operator
D+(X, g) acting on the space of positive spinors over X , and the induced Dirac
operator D(Y, g′) on Y . We restrict the domain of D+(X, g) to the subspace of
positive spinors for which the restriction to the boundary belongs to the span of
the negative eigenspaces of D(Y, g′). The index of D+(X, g) is then defined to be

indD+(X, g) := dimkerD+(X, g)− dim cokerD+(X, g).

Recall that a harmonic spinor on (Y, g′) is a section belonging to kerD(Y, g′), and
(Y, g′) is said to have no harmonic spinors if this kernel is trivial.

Much of our understanding about the structure of spaces of metrics with various
(positive) curvature restrictions arises from the index theory of Dirac operators.
The following result follows by examining the classical Atiyah-Patodi-Singer index
formula for manifolds with boundary ([2] Theorem 4.2), and is foundational among
index-theoretic results about spaces of metrics:

Theorem. For a smooth path of metrics gt on X (products near the boundary),
indD+(X, gt) is constant provided the induced metrics on Y have no harmonic
spinors.

One way to guarantee that no harmonic spinors are encountered along such a
path is if each gt has positive scalar curvature. This follows from the classical
Schrödinger-Lichnerowicz theorem (see for example [12] page 160):

Theorem. (Schrödinger-Lichnerowicz) If (M, g) is a closed Riemannian spin
manifold with either positive scalar curvature or non-negative scalar curvature
which is positive at some point, then M admits no harmonic spinors.

Corollary. (Of above two theorems.) If (Y, g′) has positive scalar curvature,
then indD+(X, g) depends only on the path-component of the space of positive
scalar curvature metrics containing g′. (So different indices mean different path-
components.)
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We now turn our attention to paths of non-negative scalar curvature metrics
on closed spin manifolds. Our first main result is

Theorem A. If (M, g) is a closed Riemannian spin manifold with positive scalar
curvature and ḡ is any metric with non-negative scalar curvature in the same path-
component of non-negative scalar curvature metrics as g, then (M, ḡ) admits no
harmonic spinors.

Theorem A suggests that from the point-of-view of index theory, there might
be little difference between working with metrics of positive scalar curvature and
metrics of non-negative scalar curvature, provided the relevant path-component of
non-negative scalar curvature metrics contains a positive scalar curvature metric.

It follows from the Scrödinger-Lichnerowicz theorem that in order to prove
Theorem A, the situation we really need to understand is the scalar flat case. Two
key results here are:

Theorem. ([12] II.8.10) On a closed spin manifold with identically vanishing
scalar curvature, every harmonic spinor is globally parallel.

Theorem. ([8] Proposition 3.2) The existence of a non-trivial parallel spinor
forces the metric to be Ricci flat.

Theorem A now follows easily from

Theorem B. Let M be a closed spin manifold and suppose gt, t ∈ [0, T ], is
a smooth path of non-negative scalar curvature metrics. If g0 admits a parallel
spinor (and so is Ricci-flat), then gt is Ricci-flat for all t ∈ [0, T ]. If furthermore
π1(M) = 0, then gt also admits a parallel spinor for all t ∈ [0, T ].

We remark that the proof of Theorem B is straightforward except in the case
where M has infinite fundamental group. The proof relies on results of Dai, Wang
and Wei [7], (specifically Theorems 3.4 and 4.2), and recent results of Ammann,
Kröncke, Weiss and Witt ([1]) concerning holonomy and parallel spinors.

Turning our attention now to the implications of Theorem A for (moduli) spaces
of metrics, we recall that for a closed Riemannian spin manifold (M4k−1, g) with
k ≥ 2, positive scalar curvature and vanishing real Pontrjagin classes, Kreck
and Stolz [11] define an invariant s(M, g) ∈ Q which is an invariant of the
path-component of positive scalar curvature metrics containing g. If in addition
H1(M ;Z2) = 0, |s| is an invariant of the path-component containing [g] in the
moduli space of positive scalar curvature metrics. The s-invariant has been a key
tool in proving many disconnectedness results for moduli spaces, see for example
[11], [13], [6]. It follows using Theorem A that if two path-components in the
moduli space of positive scalar curvature metrics are distinguished by s, then the
corresponding sets of non-negative scalar curvature metrics are also disjoint. This
observation then allows us to generalize a positive scalar curvature moduli space
result of Kreck-Stolz (see [11] Corollary 2.15):

Theorem C. Given any M with H1(M ;Z2) = 0 for which s(M, g) is defined, the
moduli space of non-negative scalar curvature metrics on M has infinitely many
path-components.
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We can also obtain results about spaces of non-negative Ricci curvature metrics:

Theorem D. If K4 denotes a K3 surface and Σ4n−1, is any homotopy (4n− 1)-
sphere (n ≥ 2) which bounds a parallelisable manifold, then Σ×K4 has infinitely
many path-components of non-negative Ricci curvature metrics.

To the best of the author’s knowledge, Theorem D is the first result about the
topology of spaces of non-negative Ricci metrics.

Following on from Theorem D we can obtain non-compact examples (as pointed
out to the author by W. Tuschmann):

Theorem E. With the notation of Theorem D, Σ ×K4 × R has infinitely many
path-components of complete Ricci non-negative metrics.

(Note that by the Cheeger-Gromoll splitting theorem [3], the examples in Theorem
E do not admit any complete metrics of positive Ricci curvature.)

There are many other results in the literature about (moduli) spaces of positive
scalar curvature metrics which rely on the invertibility of Dirac operators, and
which could be generalized to non-negative scalar curvature using the above ideas.
In this regard we mention work of Hitchin ([9] Theorem 4.7), Crowley and Schick
([4]), Crowley, Schick and Steimle ([5]), and Hanke, Schick and Steimle ([10]).

An open question (raised by Thomas Schick) is to what extent results presented
above extend to the more general case of Dirac operators twisted by flat bundles?
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The Observer Moduli Space of Positive Ricci Curvature Metrics

Mark Walsh

(joint work with Boris Botvinnik, David J. Wraith)

In recent years, there have been great efforts made to better understand the topol-
ogy of moduli spaces of Riemannian metrics of positive scalar curvature on a
smooth compact (usually spin) manifold; see [3, 2, 1, 7]. Apart from results of
Kreck and Stolz in [8] and Wraith in [12] concerning path-connectivity, we know
very little about the corresponding moduli spaces of positive Ricci curvature met-
rics. Whether or not there is any non-triviality in the higher homotopy groups
of such spaces is still an open question. Our contribution here is to consider this
question for a related space: the observer moduli space of positive Ricci metrics, on
the sphere. Roughly, we show that the higher homotopy groups of this space have
lots of non-trivial elements. The proof is based on that of an analogous theorem
by Botvinnik, Hanke, Schick and Walsh for the observer moduli space of posi-
tive scalar curvature metrics; see [1]. Both proofs rely heavily on work of Farrell,
Hsiang, Hatcher and Götte; see [4] and [6]. Techniques for constructing families of
metrics are also required. In the scalar curvature case, this means a family version
of the Gromov-Lawson surgery technique from [5], described in [11], a technique
which permits the detection of non-triviality for manifolds besides the sphere. Un-
surprisingly, the Ricci curvature case requires a more delicate construction, based
on a gluing theorem of Perelman.

Letting M denote a smooth, connected, closed manifold of dimension n, we
denote by R(M), the space of all Riemannian metrics on M with its usual C∞

topology. Contained inside are the subspaces Rs>0(M) and RRic>0(M) of positive
scalar and positive Ricci curvature metrics on M . We fix an arbitrary base point
x0 ∈ M and let Diffx0

(M) denote the subgroup of Diff(M) consisting of diffeo-
morphisms which fix x0 and for which the derivative map dφx0

: Tx0
M → Tx0

M
is the identity map. It is easy to observe that since M is connected, Diffx0

(M)
acts freely on R(M) by pull-back. We then define the observer moduli space of
Riemannian metrics on M as the quotient space

Mx0
(M) := R(M)/Diffx0

(M).

By restricting the action of Diffx0
(M) to the subspaces Rs>0(M) and RRic>0(M)

in R(M), we obtain the observer moduli spaces of positive scalar and positive Ricci
curvature metrics. Respectively, these are denoted Ms>0

x0
(M) and MRic>0

x0
(M).

Our main result deals with the case when M is the sphere Sn. Denoting by g0,
the standard round metric on Sn, the main result can be stated as follows.

Main Theorem. For any k ∈ N, there is an integer N(k) such that for all odd
n > N(k), the group πi(MRic>0

x0
(Sn), [g0]) is non-trivial when i ≤ 4k and i ≡ 0

mod 4.

The observer moduli space is obtained as the quotient of a free action. As
R(M) is contractible, it follows that Mx0

(M) is a classifying space for Diffx0
(M)

and we write BDiffx0
(M) = Mx0

(M). Recall that isomorphism classes of principal
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Diffx0
(M)-bundles over a spaceX are in one to one correspondence with homotopy

classes of maps X → BDiffx0
(M). This correspondence is achieved by using such

maps to pull back the universal bundle R(M) → Mx0
(M). Associated to this

bundle is the universal M -bundle with total space R(M)×Diffx0
M defined as the

quotient of R(M) × M by the action φ.(h, x) = ((φ−1)
∗
h, φ(x)). Thus, given a

space X and a map f : X → Mx0
(M), we obtain a commutative diagram:

Ef
//

��

R(M)×Diffx0
(M) M

��

X
f

// Mx0
(M)

where the bundle Ef → M is the pull-back bundle arising from the map f . This
is a bundle with fibre M and it is of course isomorphic to any bundle obtained by
a map which is homotopy equivalent to f . There is however, a more refined struc-
ture which we can associate to such a bundle. The total space R(M)×Diffx0

(M)M

admits a “universal fibre metric.” To each point [h, x] ∈ R(M)×Diffx0
(M)M , there

is a well-defined inner product associated with the tangent space to the fibre at
that point; see page 61 of [10]. This fibre inner product varies smoothly over
R(M) ×Diffx0

(M) M and pulls back to a continuous fibrewise family of Riemann-
ian metrics on Ef . More precisely, each fibre of the bundle Ef → X , already
diffeomorphic to M , is equipped with a Riemannian metric. Moreover, varying
the map f by a homotopy changes the fibrewise metric structure of the bundle.
With a little work we can establish a one to one correspondence between maps
X → Mx0

(M) and families of metrics on M which are parameterised by X .
Supposing X is the sphere Si, we consider the homomorphism of homotopy

groups

πi(M
Ric>0
x0

(M), [g0]) −→ πi(Mx0
(M), [g0]),

induced by the inclusion MRic>0
x0

(M) ⊂ Mx0
(M). Let f : Si → Mx0

(M) repre-
sent a non-trivial element of πi(Mx0

(M), [g0]). This element determines (and is
determined by) a fibrewise family of metrics on Ef . Thus, it is possible to lift this
element of πi(Mx0

(M), [g0]) to an element of πi(MRic>0
x0

(M), [g0]), provided we
can construct a fibrewise family of positive Ricci curvature metrics on the corre-
sponding sphere-bundle, Ef → Si. It is now that we recall the work of Farrell and
Hsiang. In [4], they show that when k,N(k), n and i are as in the hypotheses of
the Main Theorem above,

πi(BDiffx0
(Sn))⊗Q =

{
Q if i ≡ 0 mod 4,

0 otherwise.

As BDiffx0
(Sn) = Mx0

(Sn), this means that for appropriate i, we now have lots
of non-trivial elements in the groups πi(Mx0

(Sn), [g0]) to work with. This also
explains the hypotheses of the main theorem.

Our next task is to realise the associated Sn bundles in such a way that we
can equip these bundles with fibrewise families of positive Ricci curvature metrics.
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Following work of Hatcher, we know that every element of πi(Mx0
(Sn), [g0])⊗Q

determines a specific Sn bundle over Si which can be built in the following way.
These “Hatcher bundles” are described by Götte in [6]. Roughly, we start with
a trivial bundle E = Sn × Si → Si, and consider each fibre sphere, Sn, as a
pair of hemispherical disks Dn

− ∪ Dn
+. Thus E decomposes into a pair of spaces

E− and E+, by restricting fibres to the hemispheres Dn
− and Dn

+. Working for
now on the space E−, we decompose each fibre disk, Dn

−, as Dn
− = Dp+1 × Dq

and in turn as Dn
− = (Sp × [r0, 1]) × Dq ∪ Dp+1(r0) × Dq, where p + q + 1 = n,

r0 ∈ (0, 1) and Dp+1(r0)×Dq is a smaller version of the original disk (with radius
r0) surrounded by an annular region (Sp × [r0, 1]) ×Dq. These two pieces share
a common piece of boundary, Sp × {r0} ×Dq. For sufficiently large p and q (and
hence n), representatives of certain non-trivial elements λ ∈ πi(O(p+1)) (those in
the kernel of the J-homomorphism) can be adjusted and extended to give rise to
a family of smooth embeddings Λt : S

p×Dq → Sp×Dq, parameterised by t ∈ Si.
For each t, the corresponding fibre disk, Dn

−, may be reassembled using the map Λt

to glue along the inner boundary piece. This reassembly goes through continuously
for all t ∈ Si and we denote this new bundle E−(λ) → Si. Moreover, the maps Λt

are constructed so that the hemispheres Dn
+ can be reattached, via the identity

map in each case, to obtain an Sn bundle over Si, namely E(λ) = E−(λ) ∪ E+.
Interestingly, this bundle is homeomorphic to but not diffeomorphic to, the trivial
Sn bundle over Si; see [6].

It remains to construct a fibrewise family of positive Ricci curvature metrics.
This is possible due to a powerful gluing theorem of Perelman, stated in [9], which
states that two positive Ricci curvature manifolds with isometric boundaries may
be glued together along the boundary to obtain a smooth positive Ricci metric,
provided each of the normal curvatures (with outward normal) at one boundary
is greater than the negative of the corresponding normal curvature at the other
boundary. Importantly, the construction in this theorem can be shown to work
continuously for compact families of metrics. Thus, we equip the total spaces
E−(λ) and E+ with fibrewise families of positive Ricci curvature metrics which
are individually (though not canonically) isometric to a standard product of hemi-
sphere metrics on Dp+1 × Dq. We then perform a delicate smoothing so as to
ensure that the hypotheses of Perelman’s Theorem are met on each fibre. As the
theorem goes through for compact families, we can then use it to glue, in a fibre-
wise sense, the metric families on E−(λ) and E+ to obtain a fibrewise family of
positive Ricci curvature metrics on any Hatcher bundle associated to an element
in πi(Mx0

(Sn)) ⊗ Q. In particular, we see that the homomorphism of rational
homotopy groups, induced by the inclusion MRic>0

x0
(M) ⊂ Mx0

(M), is actually a
surjection.
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Moduli of smooth conjugacy for Anosov dynamical systems

Andrey Gogolev

Recall that given a compact smooth Riemannian manifoldM an Anosov diffeomor-
phism f is a diffeomorphism that preserves a continuous splitting TN = Es ⊕Eu,
uniformly contracts the stable subbundle Es and uniformly expands the unstable
subbundle Eu.

An Anosov diffeomorphism is called conformal if the stable quasi-conformal
distortion

Ks(x, n) =
max{‖Dfn(v)‖ : v ∈ Es, ‖v‖ = 1}

min{‖Dfn(v)‖ : v ∈ Es, ‖v‖ = 1}

and analogously defined unstable distortion Ku(x, n) are uniformly bounded in
x ∈ M and n ∈ Z.

In this talk we exhibited two moduli problems: the moduli problem for smooth
conjugacy of Anosov diffeomorphisms and flows and the moduli problem for isome-
tries of negatively curved metrics.

1. Moduli

If two Anosov diffeomorphisms are smoothly (or just C1) conjugate then the Jor-
dan normal forms of the differentials at corresponding periodic points must coin-
cide. Hence the Jordan normal form provide a countable set of moduli. This set of
moduli is called periodic data. When the dimension of N is 2, de la Llave-Marco-
Moriyón proved that periodic data is a complete invariant of smooth conjugacy.
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Despite many partial results in higher dimension it is still an open question whether
periodic data moduli is a complete invariant in higher dimensions.

Analogously, given a negatively curved Riemannian metric on a manifold M ,
each free homotopy class of closed curves contains a unique minimizing geodesic
whose length is an isometry invariant. The collection of lengths of closed geodesic
in all free homotopy classes is called marked length spectra. When the dimension
of M is 2, Otal and Croke (independently) proved that marked length spectrum is
a complete invariant of isometry. Despite many partial results in higher dimension
it is still an open question whether marked length spectrum is a complete invariant
in higher dimensions.

In the talk we have explained how a major step in the Otal-Croke theorem can
be deduced from the de la Llave-Marco-Mariyón technique by relating the marked
length spectrum to periodic eigenvalue data of the geodesic flow.

2. The Dictionary

Further we discussed the following vague dictionary.

Geometry Dynamics
Hyperbolic metric on M Conformal Anosov diffeomorphism of

N
Negatively curved metric g on M Anosov diffeomorphism f of N

The space MET sec<0(M) The space Xf of Anosov diffeomor-
phism homotopic to f

Pullback of a negatively curved metric
g by a diffeomorphism h : M → M

Conjugation of Anosov diffeomor-
phism f by a diffeomorphism h : N →
N

The similarity is confirmed by various results and conjectures. For example,
the analogue of Mostow rigidity is the following result of Kalinin and Sadovskaya,
which is based on work of Benoist and Labourie.

Theorem (Kalinin-Sadovskaya). Let f be a transitive Anosov diffeomorphism of
a compact manifold N which is conformal on the stable and unstable distributions.
Suppose that both distributions have dimension at least three. Then f is smoothly
conjugate to an affine Anosov automorphism of a flat Riemannian manifold.
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Nonconnectedness of the space of Anosov metrics on a high

dimensional manifold

Mauricio Bustamante

A Riemannian metric g on a smooth n-dimensional manifold M is said to be an
Anosov metric if its geodesic flow ϕt : SM → SM on the unit tangent bundle SM
of M is of Anosov type. This means that there is a ϕt-invariant splitting of TSM
into three subbundles

TSM = Es ⊕ Eu ⊕X

such that vectors in the stable (unstable) subbundle Es (Eu) are exponentially
contracted (expanded) in positive time; and X corresponds to the line bundle
generated by the flow lines.

Assume thatM is a closed smooth manifold and let MET<0(M) and META(M)
denote the space (with the smooth topology) of all Riemannian metrics on M with
negative sectional curvature and with geodesic flow of Anosov type, respectively.

Anosov [1] showed that every Riemannian metric of negative sectional curvature
is an Anosov metric, in other words there is an inclusion

MET<0(M) ⊂ META(M).

However, R. Gulliver [3] has proved that there exist Anosov metrics that have some
positive sectional curvature. This motivates the following question: from the point
of view of (moduli) spaces of Riemannian metrics, how different are MET<0(M)

and META(M)? Are they homotopy equivalent?
When MET<0(M) 6= ∅, Farrell and Ontaneda [2] have constructed a self-

diffeomorphism ϕ : M → M of M which is supported on a tubular neighborhood
of a closed geodesic ofM , and has the property that g and ϕ∗g cannot be joined by
a path of negatively curved metrics. To obtain such “exotic” objects, they make
use of deep work of Waldhausen, Igusa and Hatcher relating stable pseudoisotopy
theory to algebraic K-theory.

We show that Farrell and Ontaneda’s method can be generalized to prove the
following theorem.

Theorem 1. Let (Mn, g) be a closed negatively curved manifold. Then there exists
a diffeomorphism ϕ ∈ Diff(M) such that ϕ∗g and g can’t be joined by a path in

META(M), provided dimM > 9.

Questions and open problems:

(1) Let M be a closed surface of genus ≥ 2. Ricci flow techniques can be
used to show that MET<0(M) deformation retracts onto the space of

hyperbolic metrics on M , which is known to be contractible. Is META(M)
a contractible space?

(2) Is the inclusion MET<0(M) ⊂ META(M) a (weak) homotopy equiva-
lence?
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Disconnected moduli spaces for lower curvature bounds

Anand Dessai

Let M be a closed smooth connected manifold, Rscal>0(M) the space of metrics of
positive scalar curvature (psc), Mscal>0(M) its moduli space and use correspond-
ing notations for other curvature conditions like Ric > 0, sec > 0, sec ≥ 0 etc. In
this talk we focus on the following

Basic Question: How can one detect components of the space of metrics / moduli
space?

We describe three approaches and some applications. The first approach goes
back to work of Gromov and Lawson. LetM be a spin manifold of dimension 4n−1
which is the boundary of two Riemannian spin manifolds (Wi, gWi

), i = 0, 1, for
which the metrics are of product form near the boundary and induce metrics gi on
M . Then one can glue the bordisms together to obtain a closed 4n-dimensional
spin manifold X for which the index of the Dirac operator Â(X) vanishes if the
metrics g0 and g1 belong to the same component of Rscal>0(M).

As an application consider a homotopy sphere Σ of dimension 4n−1 ≥ 7 which is
the boundary of a parallelizable manifold. Then there are constants c, c̃ ∈ Z, c 6= 0,
such that for any l ∈ Z there exists a spin manifold Wl, defined via plumbing, of
signature l ·c+ c̃ and with boundary Σ. Carr constructed psc-metrics on Wl which
are products near the boundary. It follows from Novikov’s additivity property of
the signature and the construction of the Wl that the gluing construction above
for different l yields manifolds X with non-vanishing Â-genus. Hence, the induced
metrics gl on Σ belong to different components of Rscal>0(Σ). Moreover, since
the signature is not sensitive to a change of gluing via an orientation preserving
diffeomorphism of M the components remain different after passing to the moduli
space Mscal>0(Σ) (for details see [4, 6, 10], cf. [7] for related important work).

This result has been extended into two directions. On the one hand Wraith [11]
constructed metrics of positive Ricci curvature on the boundary Σ which extend
to psc-metrics on Wl being a product near the boundary and concluded that
the moduli space of metrics of positive Ricci curvature MRic>0(Σ) has infinitely
many components. On the other hand, as pointed out in Lawson-Michelson [10, p.
329], the psc-argument extends almost immediately via a boundary connected sum
construction to show that for any closed spin psc-manifoldM of dimension 4n−1 ≥
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7 the space of psc-metrics on M has infinitely many components. Moreover, this
remains true after passing to its moduli space Mscal>0(M).

In view of these results one may ask

Question 1: Does MRic>0(M) have infinitely many components for a closed spin
manifold M of dimension 4n− 1 ≥ 7 and of positive Ricci curvature?

Question 2: Does the moduli space of metrics of nonnegative sectional curvature
Msec≥0(Σ) have infinitely many components for a nonnegatively curved homotopy
sphere Σ of dimension 4n− 1 ≥ 7?

The second approach goes back to work of Kreck and Stolz [9] and utilizes the
Atiyah-Patodi-Singer (APS) index theorem [1, 2]. Let (W, gW ) be a 4n-dimensional
Riemannian spin manifold with boundary M = ∂W for which gW is a product
near the boundary and let gM be the induced metric on M . Kreck and Stolz
used an Eells-Kuiper-type combination of the APS-formulas for the signature and
Dirac operator to derive a rationally valued invariant s(M, gM ) of the Riemannian
boundary. For this approach to work it is necessary to impose certain conditions on
the topology of M which are for example satisfied if the rational total Pontrjagin
class of M is trivial. In this situation s(M, gM ) is a locally constant function on
Rscal>0(M). Moreover, if M admits an infinite family of psc-metrics with pairwise
different s-invariants then Mscal>0(M) has infinitely many components.

Kreck and Stolz [9] used their invariant to exhibit a seven-dimensional Aloff-
Wallach space M with disconnected moduli space Msec>0(M) and 7-dimensional
Witten manifolds N for which the moduli space MRic>0(N) has infinitely many
components. As observed in [8] N also carries infinitely many submersion metrics
which in addition belong to different components of the moduli space of metrics
of nonnegative sectional curvature. More recently, it was shown in joint work with
Klaus and Tuschmann [5] that in each dimension 4k − 1 ≥ 7 there are infinitely
many generalized Witten manifolds N , pairwise non-homotopic, for which the
moduli spacesMsec≥0(N) andMRic>0(N) both have infinitely many components.

We like to remark that the Gromov-Lawson and Kreck-Stolz invariants in com-
bination with work of Grove and Ziller on cohomogeneity one manifolds can be
used to exhibit many other interesting families of manifolds for which the moduli
spaces Msec≥0 and MRic>0 both have infinitely many components, including the
7-dimensional homotopy spheres constructed by Milnor in the 1950s.

The two approaches above are confined to dimension 4k−1. The third approach
addresses this issue. It is based on reduced eta-invariants and the APS-index
theorem for Dirac operators twisted with flat bundles. As before let (W, gW ) be
a Riemannian spin manifold with boundary M = ∂W for which gW is a product
near the boundary and let gM be the induced metric on M . Suppose dimM ≥ 5,
π1(M) 6= 0 and E → M is a flat bundle which extends over W . Suppose gM
has psc. As pointed out in [2] the index of the Dirac operator of W twisted

with the reduced bundle Ẽ, which essentially equals the reduced eta invariant,
depends only on the component of gM in Rscal>0(M). This approach was first
used by Botvinnik and Gilkey [3] in combination with bordism arguments to prove
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that in any dimension n ≥ 5 there are manifolds M for which the moduli space
Mscal>0(M) has infinitely many components.

It would be interesting to see whether reduced eta invariants can be used to
exhibit non-simply connected manifolds in dimension 6= 4n − 1 for which the
moduli space of metrics of nonnegative sectional curvature has infinitely many
components.
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Spaces of nonnegatively curved surfaces

Igor Belegradek

(joint work with Jing Hu, Taras Banakh)

Let V be a connected smooth manifold and let R≥0(V ) be the set of complete C∞

Riemannian metrics on V of nonnegative sectional curvature, which we abbreviate
to K ≥ 0. The present work is motivated by the following questions:

• What is the “right” topology on R≥0(V )?
• What is the “right” notion of the corresponding moduli space?

Tentatively, we could think of the moduli space M≥0(V ) as the quotient space
of R≥0(V ) by the standard pushforward action of D(V ), a “large” subgroup of
Diff V . To explain what “right” could mean here is a “wish list” of properties we
might want:

• R≥0(V ) is metrizable and M≥0(V ) is locally metrizable at “most” points.
• Paths in M≥0(V ) can be lifted to paths in R≥0(V ). This is true by Ebin’s
slice theorem if V is compact and R≥0(V ) is given the C∞ topology.
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• The quotient map R≥0(V ) → M≥0(V ) is a fiber bundle. This holds when
V is compact and D(V ) is the group of diffeomorphisms that fixes one
tangent space.

• “Obviously continuous” families inR≥0(V ) are continuous; e.g., the family
of surfaces of revolution z = t(x2 + y2), where t ∈ [0, 1], is continuous in
the compact-open topology but is not continuous in the uniform topology.

• The convergence in M≥0(V ) mimics the non-collapsing pointed Gromov-
Hausdorff convergence, perhaps with some extra regularity, such as Cr,α,
so that various precompactness results apply.

In the present work we study the case when V is a simply-connected surface, i.e.
S2 or C. While such V can be treated with purely 2-dimensional techniques, the
answers and challenges provide an idea of what might occur for a general V .

To discuss the surfaces simultaneously we set M0 = C and M1 = S2 and fix a
complete metric gκ of constant curvature κ ∈ {0, 1} on Mκ. Let D(Mκ) be the
group of orientation-preserving diffeomorphisms of Mκ that fix the points 0, 1 ∈ C

if κ = 0 and 0, 1,∞ if κ = 1.
By the uniformization theorem combined with a classical result of Blanc-Fiala

for the case κ = 0 any metric g ∈ R≥0(Mκ) can be written uniquely as g =
φ∗e

−2ugκ where φ ∈ D(Mκ) and u ∈ C∞(Mκ). Thus the map (u, φ) → φ∗e
−2ugκ

is a bijection. Is it a homeomorphism? To make sense of the question one has
to specify the topology on the domain and the codomain. Results of Earle and
Schatz on smooth dependence of solutions of Beltrami equation on the dilatation
show that the map is indeed a homeomorphism if we vary g, u and φ∗ in the Cr,α

topology, where α ∈ (0, 1) and k is any nonnegative integer or ∞, see [1, 2]; we
expect this to fail when α = 0.

Let Oκ be the subset of C∞(Mκ) consisting of functions u such that e−2ugκ
is in R≥0(Mκ). Nonnegativity of the curvature is equivalent to the inequality
∆gκu ≥ −κ where ∆gκ is the gκ-Laplacian. If κ = 1, the inequality gives a
complete description ofO1, but the case κ = 0 is more subtle because completeness
of e−2ug

0
imposes further restrictions on u. The main result of [1] characterizes

such u as a subharmonic function on C satisfying a certain growth condition. This
allows one to show that Oκ is a closed convex subset of C∞(Mκ).

In [3] we combine various 2-dimensional results with techniques of infinite di-
mensional topology to determine the homeomorphism types of Oκ and D(Mκ) and
in particular prove the following.

Theorem 1. R≥0(Mκ) equipped with the Cr,α topology is homeomorphic to

(1) ℓ2 if r = ∞,

(2) Σω if r is finite.

Here ℓ2 is the separable Hilbert space, Σ is the linear span of the standard
Hilbert cube in ℓ2, and Σω is the product of countably many copies of Σ. Since
the space Σω may be unfamiliar to the reader, let us mention that it is a locally
convex linear space which is a countable union of nowhere dense sets, so Σω is not
completely metrizable. If Ω is either ℓ2 or Σω, then it has the following properties:
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(a) Ω is not σ-compact, and in particular, not locally compact.
(b) Any two open homotopy equivalent subsets of Ω are homeomorphic.
(c) The complement to any compact subset of Ω is contractible.
(d) Any homeomorphism of two compact subsets of Ω extends to a homeo-

morphism of Ω.

The conclusion of Theorem 1 also holds for R>0(Mκ), the subspace of R≥0(Mκ)
consisting of positively curved metrics.

We noted in [1] that the quotient space R≥0(C)/Diff C is not Hausdorff at the
point g0 in the Cr,α topology. By contrast, the quotient space R≥0(Mκ)/D(Mκ)
is Hausdorff, and also contractible via the deformation e−2tugκ, t ∈ [0, 1].

The above methods deliver optimal results when M≥0(Mκ) is given the Cr,α

topology, but it is perhaps more natural to equip the space with the Gromov-
Hausdorff topology. This requires a different set of tools which work best when
Mκ = S2.

Let us think of a metric g ∈ R≥0(S
2) via the Alexandrov realization theorem,

which says that g is isometric to the boundary of a convex body Cg in R3. Unique-
ness of Cg up to a rigid motion is due to Cohn-Vossen (and for less regular metrics
to Pogorelov). Regularity of ∂Cg was understood by Pogorelov and Nirenberg,
who showed ∂Cg is C∞ near the points of K > 0. Under the assumption K ≥ 0
there are examples where ∂Cg is not even C3. The stability theorem of Volkov
shows that if two metrics g, h ∈ M≥0(S

2) are Gromov-Hausdorff close, then Cg,
Ch can be made Hausdorff close after a rigid motion.

Let cb be the set of convex bodies in R3 that have center of mass at the origin
and C∞ boundary of K > 0. We equip cb with the Hausdorff metric. The above
considerations easily imply that

Proposition 2. M>0(S
2) equipped with the Gromov-Hausdorff topology is the

quotient space of cb by the standard O(3)-action.

If B is the unit ball in R3, then the convex combination tB + (1 − t)C, where
t ∈ [0, 1] and C ∈ cb in an O(3)-equivariant deformation of cb to the point, and
we conclude

Theorem 3. M>0(S
2) is contractible in the Gromov-Hausdorff topology.

The fact that cb is closed under the convex combination with the unit ball is
known, see [4] and references therein.

The author believes that the methods of [3] permit to find the homeomorphism
type of cb, which then (via the slice theorem) would lead to understanding of the
local structure of M>0(S

2) with the Gromov-Hausdorff topology.
To some extent the same strategy works for g ∈ M≥0(S

2). Here one encounters
the difficulty that ∂Cg need not be C∞, but one could use Schneider’s regulariza-
tion in order to instantly and O(3)-equivariantly push the space of 3-dimensional
convex bodies into the subspace of C∞ bodies, and then apply the convex com-
bination as above to show that M≥0(S

2) is contractible in the Gromov-Hausdorff
topology.
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The Alexandrov realization theorem also holds for metrics in M≥0(R
2), and so

do the regularity results, but the uniqueness is true only after fixing the tangent
cone, and the Volkov stability theorem does not seem be in the literature. We
hope to address these issues in future work.

The reader may be wondering why we never attempted to use geometric flows
to understand the homotopy type of M≥0(Mκ). While this might be eventually
doable, a basic difficulty is to prove the continuous dependence on the initial data
in the weak topology (e.g. Gromov-Hausdorff or Cα) which we believe is still an
open problem.
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Higher homotopy groups of spaces of nonnegatively curved metrics

Igor Belegradek

(joint work with F. Thomas Farrell, Vitali Kapovitch)

Henceforth “smooth” means C∞, all manifolds are smooth, and any set of smooth
maps, such as diffeomorphisms, embeddings, pseudoisotopies, or Riemannian met-
rics, is equipped with the smooth compact-open topology. The phrase “nonnega-
tive sectional curvature” is abbreviated to K ≥ 0.

Let R≥0(V ) be the space of complete smooth Riemannian metrics of K ≥ 0
on a connected manifold V . The group Diff V acts on R≥0(V ) by pushforward.
Let M≥0(V ) be the associated moduli space, the quotient space of R≥0(V ) by the
above Diff V -action.

Open complete manifolds of K ≥ 0 enjoy a rich structure theory, e.g., the soul
construction of Cheeger and Gromoll takes as the input a basepoint of a complete
manifold V of K ≥ 0 and outputs a compact totally convex submanifold without
boundary, called a soul , such that V is diffeomorphic to the interior of a tubular
neighborhood of the soul.

We call a connected open manifold indecomposable if it admits a complete
metric of K ≥ 0 such that the normal sphere bundle to a soul has no section.
A result of Yim implies that if V is indecomposable, then the soul of any metric
in R≥0(V ) in unique, i.e., independent of a basepoint, and moreover, it is shown
in [1, 2] that the souls of metrics in any path-connected subset of R≥0(V ) are
ambiently isotopic. This was used to find many open manifolds V for which
M≥0(V ) is not path-connected, or even has infinitely many path-components,
see [1, 2, 3, 4]. Here is a new geometric ingredient for the present work:
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Theorem 1. If V is indecomposable, then any continuous change in g ∈ R≥0(V )
results in a smooth change of the soul of g.

This is not obvious because the soul construction involves asymptotic geometry
which is not preserved when the metric is varied in the smooth compact-open
topology. To see how this result gives rise to a new topological invariant of metrics
g we fix an arbitrary metric h ∈ R≥0(V ) with soul Sh of normal injectivity radius
ih. Set ρ(s) =

s
s+1 and let Nh be the ρ(ih)-neighborhood of Sh. Let θh be the orbit

map of a metric h ∈ R≥0(V ) under the pushforward action of Diff V . Consider
the following commutative diagram.

∗ ≃ Diff(V, relNh) // Diff V

��

θh // R≥0(V )

δ

��

ΩX (Nh, V )
Ωf

// Diff Nh
// Emb(Nh, V )

q
// X (Nh, V )

f
// BDiffNh

The map q taking an embedding to its image is a principal bundle, and f denotes its
classifying map. The bottom row is the corresponding fiber sequence. The leftmost
vertical arrow is given by restricting to Nh, which is a fiber bundle due to the
parametrized isotopy extension theorem. Its fiber over the inclusion Diff(V, relNh)
is contractible by the Alexander trick towards infinity. Theorem 1 implies that the
map δ taking g to the closed ρ(ig)-neighborhood of Sg is continuous.

Let πk(θh) be the homomorphism induced by θh on the kth homotopy groups
based at the identity map of V , and similarly, let πk(q), πk(f), πk(Ωf) be the
induced maps of homotopy groups based at inclusions. With these notations the
commutativity of the diagram implies that Imπk(q) is a quotient of a subgroup of
Imπk(θh).

Since the bottom row of the diagram is a fiber sequence we get isomorphisms
Imπk(q) ∼= kerπk(f) ∼= kerπk−1(Ωf) for each k ≥ 1. Fix a collar neighborhood of
∂N , and consider the inclusion ιN : P (∂N) → Diff N that extends a pseudoisotopy
on the collar neighborhood of ∂N in N by the identity outside the neighborhood.
One can identify the homomorphisms πk−1(Ωf) and πk−1(ιN ) for each k ≥ 2,
where πk−1(ιN ) is the map induced by ιN on the (k − 1)th homotopy group with
identity maps as the basepoints. In summary, we get

Theorem 2. Let N be a compact manifold with indecomposable interior. Then
for every h ∈ R≥0(IntN) and each k ≥ 2, the group kerπk−1(ιN ) is a quotient of
a subgroup of πk(R≥0(IntN), h).

Prior to this result there has been no tool to detect nontrivial higher homotopy
groups of R≥0(V ).

We make a systematic study of kerπ∗(ιN ) and find a number of manifolds for
which kerπ∗(ιN ) is infinite and IntN admits a complete metric of K ≥ 0. Here is
a sample of what we can do:

Theorem 3. Let U be the total space of one of the following vector bundles:

(1) the tangent bundle to S2d, CP d, HP d, d ≥ 2, and the Cayley plane,
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(2) the Hopf R4 or R3 bundle over HP d, d ≥ 1,

(3) any linear R4 bundle over S4 with nonzero Euler class,

(4) any nontrivial R3 bundle over S4,

(5) the product of any bundle in (1), (2), (3), (4) and any closed manifold of
K ≥ 0 and nonzero Euler characteristic.

Then there exists m such that every path-component of R≥0(U × Sm) has some
nonzero rational homotopy group.

The fact that each U in Theorem 3 admits a complete metric of K ≥ 0 is well-
known. Other computations are surely possible. In fact we are yet to find N with
indecomposable interior and such that ιN is injective on all homotopy groups; the
latter does happen when N is the n-disk.

In the present work we are unable to compute m in Theorem 3 (this deficiency
has apparently been fixed, see Jiang Yi’s talk in this volume). The smallest k ≥ 1
for which we know that R≥0(U × Sm) is nonzero is k = 7, which occurs when U
is the total space of a nontrivial R3 bundle over S4.

We do not yet know how to detect nontriviality of πk M≥0(V ), k ≥ 1. The
nonzero elements in πk R≥0(U × Sm) given by Theorem 3 lie in the kernel of the
πk-homomorphism induced by the quotient map onto the moduli space.
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On the topology of the space of Ricci-positive metrics

Boris Botvinnik

(joint work with David J. Wraith)

Index-difference map. Let M be a closed compact spin manifold, and R(M) be
the space of Riemannian metrics on M equipped with C∞-topology. We denote
by Rs>0(M) and RRic>0(M) the subspaces of metrics with positive scalar and
with positive Ricci curvature respectively.

Recall Hitchin’s construction of the index difference map. Ignoring some tech-
nical details, the definition is as follows. Fix a basepoint g0 ∈ Rs>0(M), where
dimM = d, so that for any other psc-metric g there is the path of metrics
gt = (1− t) · g0 + t · g for t ∈ [0, 1]. Then there is an associated path of Dirac op-

erators in the space Fredd of Cliffordd-linear self-adjoint odd Fredholm operators
on a Hilbert space, and it starts and ends in the subspace of invertible operators,
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which is contractible. Since the space Fred
d represents the real K-theory functor

KO−d(−), we obtain an element

inddiffg0(g) ∈ KO−d([0, 1], {0, 1}) = KO−d−1 = KOd+1.

This construction generalizes to families, and gives a well-defined homotopy class
of maps

(1) inddiffg0 : Rs>0(M) −→ Ω∞+d+1KO

to the infinite loop space which represents real K-theory. In particular, there is
an isomorphism πqΩ

∞+d+1KO ∼= KOd+1+q.

Theorem 1. (Botvinnik, Ebert, Randal-Williams [1]) Let M be a spin manifold
with dimM ≥ 6. Assume M admits a psc-metric, and g0 ∈ R+(M) is a base point.
Then the homomorphism (inddiffg0)∗ : πqRs>0(M) −→ KOd+1+q induced by the
map inddiffg0 is non-trivial provided the target group KOd+1+q is non-trivial.

Main result. It is known that the spaceRRic>0(M) of metrics with positive Ricci
curvature has non-trivial topology, [3]. In particular, the space RRic>0(M) has
many path-components for some particular manifolds M .

Assume a manifold M admits a metric with positive Ricci curvature and con-
sider a natural inclusion map ι : RRic>0(M) → Rs>0(M). We denote by inddiffg0

the composition

inddiffg0 : RRic>0(M)
ι
−→ Rs>0(M)

inddiffg0−−−−−→ Ωn+1KO.

Here is our main result:

Theorem A. For given ℓ ≥ 1 and even integer d ≥ 6, there exists a spin man-
ifold W , dimW = d, together with a metric g0 ∈ RRic>0(W ), such that the map
inddiffg0 : RRic>0(W ) → Ω∞+d+1KO induces a non-trivial homomorphism be-
tween the homotopy groups (inddiffg0)∗ : πqRRic>0(W ) → πq+d+1KO provided the
group πq+d+1KO is non-trivial and q ≤ ℓ.

We next introduce some notations. Let h0 denote the round metric of radius 1.
For a smooth manifold Xd with boundary Sd−1, we define R(X)h0

to be the space
of all Riemannian metrics onX which are a product dt2+h0 near the boundary and
restrict to the metric h0 on ∂X . Then we define Rs>0(X)h0

= R(X)h0
∩Rs>0(X).

Now we define a subspace of Riemannian metrics R(X)∗h0
with spherical bound-

ary condition which is relevant only for manifolds with spherical boundary. Namely,
we require that a metric g ∈ R(X)∗h0

restricts to h0 at the boundary, and that
there is a collar neighbourhood of the boundary in which g takes the form

dr2 + R2 sin2(r/R)ds2d−1

for r ≥ r0 := R sin−1(1/R), with R ∈ [1,∞). Then the metric in this collar
neighbourhood is round with constant sectional curvature 1/R2, r is the (inward)
normal parameter to the boundary, and the boundary itself corresponds to r = r0.
We then define the following subspaces of metrics:

Rs>0(X)∗h0
= R(X)∗h0

∩Rs>0(X), RRic>0(X)∗h0
= R(X)∗h0

∩RRic>0(X).
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Let (W, g0) be a manifold as in Theorem A. We assume further that the metric g0
is such that there exists a base point x0 ∈ W together with an open geodesic disk
Dǫ(x0) such that the manifold W̄ := W \Dǫ(x0) has a boundary ∂W̄ = Sd−1 with
the standard round metric h0. We can always arrange for this to be the case.

We need a sequence of particular manifolds each equipped with a Ricci-positive
metric. Let

W 2n
k := (Sn × Sn)♯k,

where x0 ∈ W 2n
k , and W̄ 2n

k := W 2n
k \Dǫ(x0) with ∂W̄ 2n

k = S2n−1, k = 1, 2, . . .. We
also let W̄0 = D2n. The manifolds W 2n

k are the ones we need to prove Theorem
A. The following geometrical fact plays a crucial role to prove Theorem A.

Theorem B. For each k = 1, 2, . . ., there exists a metric gk ∈ RRic>0(W̄ 2n
k )∗h0

.

The proof of Theorem B builds on results of Sha and Yang, [2].
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Involution on pseudoisotopy spaces and the space of nonnegatively

curved metrics

Yi Jiang

(joint work with Mauricio Bustamante, F. Thomas Farrell)

In this talk, we present a continuation of the work [1] of Belegradek, Farrell and
Kapovitch. Let RK≥0(V ) denote the space of complete Riemannian metrics of
nonnegative sectional curvature on a connected manifold V , equipped with the
smooth compact-open topology. It is shown in [1] that for many open manifolds V
the space RK≥0(V ) has nontrivial rational higher homotopy groups. For example,
when U is the total space of the tangent bundle to the 2d dimensional sphere S2d

for d ≥ 2, they find explicit integers i ≥ 2 such that there are sufficiently large
integers m for which

πiRK≥0(U × Sm)⊗Q 6= 0.

A left question is to specify these m for given integers i.
By [1, Lemmas 5.2 and 9.4], to answer this question, reduces to studying the

canonical involution on pseudoisotopy spaces P (M) when M is the total space of
the sphere bundle associated to U . (For instance, when U is the total space of
the tangent bundle to S2d, the manifold M is the total space of the unit tangent
bundle to S2d.) In recent joint work with Bustamante and Farrell [5], we obtain
some answer for the question in the cases when U are the total spaces of the
tangent bundles to S2d and CP 2 because we are able to compute the positive and
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negative eigenvector spaces of the involution on the rational homotopy groups of
the corresponding pseudoisotopy spaces P (M).

A pseudoisotopy space of a closed smooth manifold M is defined to be the group
of self-diffeomorphisms of M× [0, 1] which are the identity on M×0 equipped with
the smooth compact-open topology and the canonical involution τ : P (M) −→
P (M) is given by

τ(f) = (idM × r) ◦ f ◦ (idM × r) ◦ ((f |M×1)
−1 × id[0,1]),

where r : [0, 1] −→ [0, 1] is defined as r(t) = 1 − t. In order to figure out the
involution τ on the rational homotopy groups of the pseudoisotopy space P (M),
an expected strategy is to relate it to the calculation of the canonical geometric

involution on the rational S1-equivariant homology HS1

∗ (LM ;Q) of the free loop
space LM of M as the calculation of the latter involution is tractable by the work
[10] and [7].

The connection between these two involutions has been expected by some pre-
vious work, c.f. [3, Theorem 4.1]. A lot of work has been done on this connection,
but there are still some gaps. One crucial medium for this connection is Wald-
hausen’s K-theory A(M) of the manifold M which is a topological space whose
rational homotopy group π∗A(M)⊗Q can be equipped with two involutions: one
is defined by Vogell [11] and the other one is given by Burghelea and Fiedorowicz
[4]. On one hand, the involution τ on the pseudoisotopy space P (M) is related to
Vogell’s involution on π∗A(M)⊗Q by the work of Waldhausen and Vogell (c.f. [12]
and [11]). On the other hand, the connection between Burghelea-Fiedorowicz’s in-

volution on π∗A(M) ⊗ Q and the geometric involution on the HS1

∗ (LM ;Q) has
been given by the work [8] and [9]. (For the connection between π∗A(M) ⊗ Q

and HS1

∗ (LM ;Q) without involution, c.f. [2] and [6]). Our main result to fill in
the gap in this connection is to prove that Vogell’s and Burghelea-Fiedorowicz’s
involutions coincide, so this completes the connection between the involution τ on

π∗P (M)⊗Q and the canonical geometric involution on HS1

∗ (LM ;Q).
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Recognizing certain 7-manifolds with π1 = Z

Yang Su

There is a current research interest in recognizing manifolds in terms of their
algebraic-geometric properties. The celebrated Poincaré conjecture is the proto-
type of this kind of study. For the recent study of manifolds detected by their
algebraic-topological invariants see e. g. [1]. In this talk I will describe a project
joint with M. Kreck on detecting the 7-manifold S1×CP3, and the Dold manifold
S1 ×τ CP3, where τ : CP3 → CP3 denotes the complex conjugation.

The following theorem is a combination of the Browder-Levine’s fibration the-
orem [2] and computations with homological algebra.

Theorem 1. Let M7 be an orientable smooth closed 7-manifold with π1(M) ∼= Z,

π2(M) ∼= Z and H3(M̃) = 0. Then M is a smooth fiber bundle over S1 with fiber
a simply-connected 6-manifold N6 such that H2(N) ∼= Z and H3(N) = 0.

By the classification of simply-connected 6-manifolds [3], the fiber N here is
determined by H∗(N) and p1(N). Hence the diffeomorphism classification of M
is determined by H∗(M), p1(M) and the mapping class group of N .

The mapping class group of the relevant 6-manifolds is essentially determined
by [4]. In the case N = CP3 we have MCG+(CP3) = Z/4 and MCG(CP3) =
Z/4⋊ Z/2. Especially we have an enumeration of the 7-manifolds with the given
algebraic data.

Theorem 2. Let M be a smooth closed oriented spin 7-manifold M7 such that

π1(M) ∼= Z, π2(M) ∼= Z, H3(M̃) = 0. Then H∗(M) ∼= Z for ∗ = 0, 1, · · · , 7. Let
x ∈ H2(M) and y ∈ H4(M) be generators. If x2 = ±y and p1(M) = ±4y. Then
M is diffeomorphic to S1 ×CP3♯Σ7

i , where Σi ∈ Θ7
∼= Z/28 is a homotopy sphere

with i = 0, 1, 2, 3.

But we don’t know an invariant which can detect the connected sum factor of
exotic spheres. In [5] a generalized Eells-Kuiper invariant was defined for any spin
7-manifold. But when applied to these manifolds, the invariant is identically zero.
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So here we would like to ask if it is possible to characterize the standard S1×CP3

and S1 ×τ CP
3 with their metric properties.

Question 1. Let M be a smooth fiber bundle over S1 with fiber CP3. If M admits
a nonnegatively curved metric, then is M diffeomorphic to S1×CP3 or S1×τCP

3?

Question 2. Let M be a smooth fiber bundle over S1 with fiber CP3. If M admits
positively curved metrics on each fiber, varying smoothly, then is M diffeomorphic
to S1 × CP3 or S1 ×τ CP3?
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The topology of positive scalar curvature

Thomas Schick

In recent years we have learned a lot about the topology of spaces of metrics of
positive scalar curvature and of related spaces.

Among those is one consequence of recent joint work with Diarmuid Crowley
and Wolfgang Steimle [3]:

Theorem 1. Let M be a closed spin manifold of dimension m ≥ 6. Let R(M) be
any space of Riemanninan metrics, which is invariant under the pullback action
of the diffeomorphism group, and which embeds into Riem+(M), the space of
metrics of positive scalar curvature. Examples for R(M) could be the space of
metrics with positive Ricci curvature or with positive sectional curvature. Assume
that g0 ∈ R(M), i.e. R(M) is not empty.

Then, R(M) is topologically highly non-trivial. More precisely, whenever k ≥ 0
is such that k +m ≡ 0, 1 (mod 8), πk(R(M), g0) is non-trivial. More precisely, if
k ≥ 1 there is a split epimorphism of πk(R(M), g0) onto the two-element group.

Actually, the assumptions can be weakened slightly:

Theorem 2. In the previous theorem, the condition that R(M) embeds into
Riem+(M) can be weakened: it suffices that R(M) embeds into Rieminv(M), the
space of metrics on M such that the associated Dirac operator (using the spin
structure and the metric) is invertible, i.e. does not admit a harmonic spinor, with
the same consequences.
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This applies e.g. if R(M) is the space of metrics of non-negative sectional or
Ricci or even scalar curvature, provided M does not admit any Ricci flat metrics
(e.g. if M is a sphere).

Remark. David Wraith [6] has extended the methods to the space of metrics with
non-positive scalar curvature even on manifolds which do admit Ricci-flat metrics.
Based on a new holonomy result of Ammann, Kroencke, Weiss, and Witt [1], he
obtains the same result if g0 is not itself Ricci flat.

The method of proof for all results presented is the same: one constructs an ele-
ment in πk(Diff(Dm, ∂), id), the homotopy groups of the group of diffeomorphisms
of the disk which are the identity in a neighborhood of the boundary. One embeds
into the diffeomorphism group of M by embedding Dm into M and extending
the diffeomorphisms trivially. Finally, one obtains elements in πk(R(M), g0) by
pulling back g0 with the family of diffeomorphisms.

The non-triviality of the resulting homotopy class of metrics is checked by a
(topological) index calculation of the relative family index of the resulting family
of Dirac operators. In the case at hand, this index takes values in Z/2Z. If the
family could be contracted within the space Rieminv(M), then the Schrödinger-
Lichnerowicz formula [5] implies that this relative index is zero. But it is not!

Remark. The method just described, by its very nature, gives information about
the space R(M), but not about the moduli space R(M)/Diff(M).

Improvements of the methods could be based on higher secondary index theory
of the Dirac operator; the corresponding invariants take values in KO∗(C

∗π1M),
the real K-theory of the group C∗-algebra of the fundamental group. The above
Z/2Z indeed equals KO∗(R) for ∗ = 1, 2 (mod 8).

This leads to quite a number of deep questions:

(1) The method uses the Dirac operator and its index, which is only available for
spin manifolds (and with some tricks and restrictions sometimes if only the
universal covering of M is spin).

An almost completely unsolved question is: what can be said about the
spaces R(M), in particular the space Riem+(M), if M is a simply-connected
non-spin manifold, or more generally a manifold whose universal covering does
not admit a spin structure?

In very low dimensions, the minimal hypersurface method of Schoen and
Yau [4] is available. The general case seems to lack any idea for a promising
method.

(2) The constructions are local in nature (changes only within a small disk) but
have global consequences. Do these global effects persist if we pass to non-
compact M? Obviously, here one has to decide on the appropriate context
and has to make restrictions on the geometries to be considered.

In a different direction, are there additional global phenomena in the space
Riem+(M)? And how can they be distinguished from those coming from the
above construction? Perhaps with higher index theory?
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(3) Connected to the previous question is the question, how different the spaces
Riem+(M) and Rieminv(M) are. However, we know that higher index theory
gives additional information, so that the truely relevant space is Rieminv∞(M),
the space of metrics where the Dirac operator twisted with the Mishchenko
bundle (with fiber C∗π1M) is invertible. So, the question is whetherRiem+(M)
→ Rieminv∞(M) is a homotopy equivalence.

Note that the usual index techniques to understand such spaces do not seem
to be able to distinguish them. The only extra tool which seems available at
the moment again is the minimal hypersurface method.

(4) Higher index theory gives maps from πk(Riem+(M)) toKOk+m+1(C
∗π1(M)).

How much is this map a surjection? The main result of [3] implies that the
Z/2Z-summands coming from KO∗(R) are in the image. Fundamental work
of Botvinnik, Ebert, and Randal-Williams shows the same for all of KO∗(R);
but the general picture seems completely unclear.

Concerning question (3), we present an example of a 5-dimensional manifold
with two different components of Riem+(M) which cannot be distinguished using
Dirac operator methods and (this is work in progress with Zhizhang Xie) lie in the
same component of Rieminv∞(M). The same example shows that the map from
question 4 is not an isomorphism.
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Discussion session summary and open questions

The following is a brief summary of some of the questions, which arose during the
discussion sessions collected by Andrey Gogolev.

We utilize the following abbreviations of participant names: BB Boris Botvin-
nik, IB Igor Belegradek, MB Mauricio Bustamante, AD Anand Dessai, TF F.
Thomas Farrell, AG Andrej Gogolev, TS Thomas Schick, WT Wilderich Tusch-
mann, DW David Wraith, MW Mark Walsh, SY Su Yang.
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Day 1

TF: By work of Farrell-Hsiang π4k−1(Diff(Dn, ∂)) ⊗ Q ≃ Q (or Q2, depending
on parity of n) can be put into π4k−1(Diff(M)) in several ways (ball, solid
torus). Consider the long exact sequence in homotopy groups Diff0(M) →
Met<0 → T (M). Where does the above free part of homotopy of Diff(M)
live?

DW: Assume that (M, g) is closed and Ricci flat. Is it true that (M, g) admits a
globally parallel harmonic spinor?

TS,

BB:

Denote by R>0(M) ( R≥0(M)) the space of positive Ricci (non-negative

Ricci) curvature metrics on M . When is R>0(M) ⊂ R≥0(M) a (weak)
homotopy equivalence? Comments: If M does not admit Ricci flat metrics
then the answer is positive, R>0(M) = R≥0(M). Example: M = N#S3 ×
T d−3 where N admits a positive Ricci metric.
For Calabi-Yau manifolds there exist isolated (finite dimensional?) islands
of Ricci flat metrics and, hence, the answer is negative for such manifolds.

WT: Do Botvinnik-Gilkey results about about moduli spaces of positive scalar
curvature metrics with non-trivial fundamental group (using η-invariant
technique) generalize to the non-negative scalar curvature setting?

TF,

TS:

Recall that D = Diff0(M) acts freely on Met<0(M) which gives a princi-
pal locally trivial fiber bundle whose base is the Teichmuller/Moduli space
T (M) = Met<0(M)/D. Without the curvature restriction, D does not
act freely and non-trivial isotropy groups yield orbifold singularities in the
T (M). What can be done in this case?

• Life is hard. Analyze singularities.
• Replace with “observer space” Mx(M) = Met∗(M)/Dx, where Dx =
{ϕ ∈ D : ϕ(x) = x,Dϕx = Id}.

• Equip elements of Met∗(M) with orthonormal frames, then D-action
becomes free. Issue: frame bundles of non-diffeomorphic bundles can
become diffeomorphic?

• Study algebraic geometry. Use “stacky” quotient.
• Stabilize by multiplying by a flat torus or Bott manifold (or anything
Ricci positive?). The index theory will be the same.

TF: Can one replace diffeomorphisms by homeomorphisms and Riemannian met-
rics by singular metrics and discuss moduli spaces in such a setting?

MW: Can one extend the result on non-triviality of rational homotopy in the

stable range of the observer moduli space MRic>0
x (Sd) to other manifolds?

What can be said about higher homotopy of the usual moduli space
MRic>0(Sd). Comment: Probably extends to products of spheres and their
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connected sums, and also sphere bundles over bases with positive Ricci cur-
vature.

TS: Look at the long exact sequence in homotopy

πi+1(M
>0
x (M))⊗Q → πi(Dx(M))⊗Q → πi(R

>0(M))⊗Q

When M = Sd, Hsiang-Farrell stable rational homotopy lives in the moduli
space. Can some of it, for some M , live in the space of metrics of positive
Ricci curvature?

TF: Work of Farrell-Knopf-Ontaneda-Zhou implies that stable homotopy of

Diff(Sd) lives in the space of 1
4 -pinched metrics on Sd — Met(1/4,1)(Sd).

What can be said about the moduli space of positively curved metrics?

TF,

WT:

What can be said if one replaces Sd by a complex projective space?

Day 2

AG: (a well known open problem) Let (S, g) be a non-positively curved surface

of genus ≥ 2. Equip T 1S with the Liouville measure and let K ⊂ T 1S be
the closed set of rank 2 vector v; that, is the curvature along the geodesic
through v equals to 0. Prove that measure of K is zero. Is it true that K
consists of finitely many flat bands of closed geodesics? Positive solution to
this conjecture implies ergodicity of the geodesic flow by work of Pesin.

TF,

AG:

Assume that M and N are closed negatively curved manifolds with iso-
morphic fundamental groups. Is it true that their k-frame bundles are
isomorphic? (Yes, when k = 1, 2 by Cheeger-Gromov remarks.)

TF,

AG:

Is the space of smooth conjugacy classes of Anosov diffeomorphisms a Haus-
dorff space (dim > 2)? Can Ebin’s infinite dimensional analysis techniques
be adapted to the Anosov setting?

AG: (in the spirit of M. Herman) Find a closed manifoldM which does not admit
a metric of negative curvature, but which admits a metric whose geodesic
flow is partially hyperbolic? Of course, a difficult open problem is to decide
if there exist a closed manifold M which does not admit a metric of negative
curvature, but admits a metric whose geodesic flow is Anosov.

MB: Is Met<0(M) ⊂ MetAnosov(M) a homotopy equivalence?

MB,

WT:

Let M be genus ≥ 2 surface. Is MetAnosov(M) contractible? For example,
consider an Anosov metric g on a surface, is it true that the Ricci flow flows
g to negative curvature?
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Day 3

AD: When M is closed, spin of dimension 4k−1 ≥ 7 then (if not empty) the pos-

itive scalar curvature moduli space M>0(M) has infinitely many connected
components (Gromov-Lawson). Can the same be said about the moduli
space of positive Ricci curvature?

AD: Are there connected components of M>0(M) as above, which are different
from the ones obtained by Gromov-Lawson?

AD: Let Σ be a homotopy sphere. Is it true that the moduli space of metrics of

non-negative sectional curvature Msec≥0(Σ) has infinitely many connected
components? Comment: The answer is yes for 7-dimensional homotopy
spheres which are S3-bundles over S4 via the Kreck-Stolz invariant.

AD: What can be said about connected components of moduli spaces of posi-
tively curved metric in dimensions 6= 4n− 1?

IB: Let V be a non-compact manifold. Consider the space R≥0(V ) of C∞ met-
rics on V with non-negative sectional curvature and let
M≥0(V )/Diff. What is the right topology on R≥0(V ) and M≥0(V )? One
would like to have the following properties:

• R≥0(V ) is metrizable and M≥0(V ) is metrizable at most points,
• continuous paths in M≥0(V ) can be lifted to R≥0(V ),
• “obviously continuous” paths (e.g. the path from the flat plane to a
positively curved surface of revolution) are indeed continuous,

• convergence properties in M≥0(V ).

IB: As an application of work of Volkov one obtains an explicit description of

the moduli space M>0(S2) of R>0(S2) and it has the homotopy type of
a point. Can one determine homotopy types of M≥0(S2), M>0(R2) and
M≥0(R2)?
Comment: The explicit description ofM≥0(S2) as quotient of centered con-
vex bodies by O(3) still works, the issue is that the straight line homotopy
to the round metric may escape the space smooth metrics. This happens
because in non-negative curvature the boundary of convex body realizing a
smooth Riemannian metric can have non-smooth (just C1?) points. Con-
vex bodies realizing positively curved metrics on R2 are highly non-unique,
hence, M≥0(R2) doesn’t have an analogous description.

Day 5

SY: By work of Kreck and Su Yang S1×CP 3 is determined by algebraic topology
up to connected sum with certain exotic spheres (0,1,2,3 only). Can one
distinguish the S1×CP 3 by geometry? For example if M is homeomorphic
to S1 × CP 3 and it admits non-negative sectional curvature, then M is
diffeomorphic to S1 × CP 3? Or, assume that M viewed as the total space
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of the bundle CP 3 → M → S1 admits a fiberwise metric of positive sectional
curvature varying smoothly, then is M diffeomorphic to S1 × CP 3?

TF: Equip M above with a Riemannian metric and consider the harmonic map
to the circle. Can this map be a fibration in the exotic cases?

TS: Distinguish homotopy types of

R?(M) ⊂ Rscal>0(M) ⊂ Rinv(M),

where Rinv(M) are metrics whose Dirac operators are invertable; especially
in the case when M is simply connected. Note that the Dirac operator
methods do not seem to work. Also what about non-spin M?

TF: (work in progress) Is it possible to have the following composition rationally
non-trivial

πi Diff(Dn, ∂)⊗Q ≃ πi−1ΩDiff(Dn, ∂)⊗Q → πi−1 Diff(Dn+1, ∂)⊗Q

A positive answer implies πiT
<0(M)⊗Q 6= 0.

Reporter: Jan-Bernhard Kordaß
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