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Introduction by the Organisers

The workshop “Topology of arrangements and representation stability” brought
together over 50 mathematicians from Austria, Australia, Canada, Denmark,
France, Germany, Italy, Japan, Mexico, Sweden, Switzerland, the UK, and the
USA. The participants were from all career stages, ranging from graduate students
to senior faculty. The aim of the workshop was to bring together two directions
of current research: the topology and geometry of hyperplane, toric and elliptic
arrangements, and the homological and representation stability of configuration
spaces and related families of spaces and discrete groups.
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Since the participants came from more than one mathematical community, the
speakers on the first day each gave one hour talks which were mandated to be par-
tially expository and to summarize some aspect of the current state of research.
Nathalie Wahl gave an introductory talk on homological stability, Toshitake Kohno
presented some deep connections between three approaches to study linear rep-
resentations of braid groups, Jennifer Wilson gave an overview on representation
stability and FI-modules, while Mike Falk presented an expository talk on the
theory of arrangements and Artin groups. Later in the week, Andrew Snowden
gave an overview of some of his work with Steven Sam on twisted commutative
algebras, which provides methods to establish finite generation of families of group
representations.

The rest of the presentations were 40-minute talks on recent advances on some
important topics related to the main themes of the workshop:

• Polynomial functors and the way they relate to representation and homo-
logical stability (Djament, Soulié, Vespa).
• Cohomology of braid groups with local coefficients, Artin groups, and con-
figurations spaces (Callegaro, Liu, Knudsen, J. Miller, Ramos, Wiltshire-
Gordon)
• The Milnor fiber of reflection arrangements (Dimca), and the Milnor fiber
complex associated to a finite Coxeter or Shepard group (A. R. Miller).
• Semimatroids as a tool for understanding the combinatorics of abelian
arrangements (Delucchi), as well as Kazdhan–Lusztig polynomials for ma-
troids (Wakefield).
• Logarithmic derivations and free (multi)arrangements (Abe, Röhrle).
• Johnson homomorphisms of automorphism groups of free groups (Satoh).
• Topology of enumerative problems on cubic curves (Chen), resolvent de-
gree problems connected with Hilbert’s 13th problem, as well as Hilbert’s
Sextic and Octic conjectures (Wolfson).

In addition to the regular talks, there were also two problem sessions. Both
sessions were very well-attended and led to some animated discussions. The prob-
lems proposed have been included at the end of this report, since we think that
some of them will be of interest to a wider audience.

Several participants commented favorably on the overview of current develop-
ments that was presented at the start of the meeting, bridging some of the gaps
between experts on the various different aspects of the subject. The schedule
allowed for time for informal discussions among the participants. As a result, sev-
eral collaborations started or grew at the meeting, involving various groups and
projects at various stages of development.

We wish to thank the Oberwolfach Mathematics Institute and its staff for cre-
ating a stimulating atmosphere and making the workshop possible.
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Polynomial functors and homological stability . . . . . . . . . . . . . . . . . . . . . . . 62

Filippo Callegaro (joint with Mario Salvetti)
Homology of braid group with coefficients in symplectic representations . 65

Ben Knudsen (joint with Byung Hee An and Gabriel C. Drummond-Cole)
Homology of surface and graph braid groups . . . . . . . . . . . . . . . . . . . . . . . . 67

Weiyan Chen
Topology of Enumerative Problems: Inflection Points on Cubic Curves . 69

Alexandru Dimca (joint with Gabriel Sticlaru)
Milnor monodromy of plane curves, space surfaces and hyperplane
arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Arthur Soulié
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Abstracts

Introduction to homological stability

Nathalie Wahl

A sequence of spacesX1 → X2 → · · · or groupsG1 → G2 → · · · satisfies homologi-
cal stability ifHi(Xn)→ Hi(Xn+1) (resp.Hi(Gn)→ Hi(Gn+1)) is an isomorphism
whenever n is large enough (larger than a function of i). Replacing Gn by its clas-
sifying space Xn = BGn, we see that groups are a special case of spaces. We note
also that homological stability for a sequence X1 → X2 → · · · is equivalent to the
statement that Hi(Xn) ∼= Hi(X∞) when n is large enough, where X∞ =

⋃
iXi is

the colimit of the sequence. The homology H∗(X∞) is called the stable homology,
and is thus what the homology of the spaces Xn stabilizes to.

Examples of sequences of spaces that stabilize are the unordered configuration
spaces Xn = Conf(n,Rk) whenever k ≥ 2, or configuration spaces in more general
manifolds, the moduli space Xg = Mg,k of Riemann surfaces of genus g with
k ≥ 1 boundary components, or moduli spaces of higher dimensional manifolds,
see eg. [17, 8, 7]. For groups, examples include the symmetric groups, braid groups,
the mapping class groups Gn = π0 Diff(M#nN) of connected sums of 3-manifolds,
the automorphisms of free groups Gn = Aut(Fn), the general linear groups Gn =
GLn(R) for R a ring satisfying a mild condition, or Gr = Vn,r the Higman–
Thompson groups, see eg. [15, 1, 10, 9, 21, 20].

Empirical observation 1. The stable part of the homology is often easier to com-
pute. This is how homological stability many times has turned out to be a powerful
tool for computations. Examples of such computations are

Hi(Conf(n,R
k)) ∼= Hi(Ω

k
0S

k) whenever n ≥ 2i+ 1

Hi(Mg,k) ∼= Hi(Ω
∞
0 CP∞

−1) whenever g ≥ 3i+ 2

2
Hi(Vn,r) ∼= Hi(Ω

∞
0 M(Z/(n− 1))) all r,

where the last computation in particular shows that Thompson’s group V is
acyclic, a fact that is so far only known using stability methods. (See [2, 12, 20].)

Empirical observation 2. When homological stability holds with constant coeffi-
cients, it usually also holds more generally with certain types of twisted coefficients.
There are though fewer computations of stable homology with twisted coefficients
(and most of the authors of such computations were present at the workshop,
see eg. [3, 4, 6]). Another observation is that stability with twisted coefficients is
related to representation stability (as in Jenny Wilson’s talk at the present work-
shop), but this relationship is not yet fully understood. See for instance [16] for
work in this direction.
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1. E2-algebras and stability

Roughly speaking, a space X is called an E2-algebra if it possesses a multiplication
X×X → X which is unital, associative and commutative up to homotopy; an Ek-
algebra, for k > 2, is “more commutative” and an E∞-algebra is commutative up
to all higher homotopies. For example, X =

∐
n≥0 Conf(n,R

k) is an Ek-algebra.

(See eg. [13] for the definition of Ek-algebra in terms of the little cube operads.)
If X is an Ek-algebra, we can construct from X a sequence of spaces as above

by picking an element x ∈ X and multiplying with it:

X1
+x−→ X2

+x−→ X3
+x−→ · · ·

where we define X1 to be the component of x, X2 that of x + x, and so on. In
the case X =

∐
n≥0Xn with k ≥ 2, the classical recognition principle and group

completion theorem [5, 13, 14] assemble to show that

H∗(Z×X∞) ∼= H∗(Ω
kY ),

for some explicitly constructed space Y , whereX∞ is the colimit of the sequence as
above. So the fact that the sequence X1 → X2 → · · · comes from an Ek-structure
(for k ≥ 2), implies that the stable homology, if stability happens, will be that of
a k-fold loop space.

It has recently been understood that Ek-structures for k ≥ 2 also play a role
in the question of whether a sequence stabilizes or not. To make this precise, we
first recall Quillen’s recipe for proving homological stability in the case of groups:
To prove homological stability for a sequence of groups G1 → G2 → · · · , one
can look for a collection of Gn-simplicial objects Wn (simplicial or semi-simplicial
sets, or simplicial complexes), one for each n, such that the action of Gn on Wn

is as transitive as possible and the stabilizer of a p-simplex is the group Gn−p−1.
Using the action of Gn on Wn and the skeletal filtration of Wn, one can construct
a spectral sequence which, if the Wn’s are highly connected, proves homological
stability for the groups Gn, see eg. [10, Sec 5]. The following result says that such
spacesWn can be canonically constructed from an E2-structure on X =

∐
nBGn.

Theorem 1 ([18] for groups and [11] for general E2-algebras). If X =
∐

n≥0Xn

is an E2-algebra as above, then there is a canonical sequence of semi-simplicial

spaces Wn such that the vanishing H̃i(Wn) = 0 for i ≤ n−2
m , for some m ≥ 2,

implies that

Hi(Xn)
∼=−→ Hi(Xn+1) for i ≤ n− 1

m
.

Moreover,

Hi(Xn,Mn)
∼=−→ Hi(Xn+1,Mn+1) for n≫ i

for {Mn}n≥0 any polynomial or abelian coefficient sequence; see [18, 11] for the
definition of such coefficient systems and the precise stability range in this case .

In each of the stability examples mentioned above, there is an underlying Ek-
algebra which makes it fit into the above theorem (or a slight generalization of
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it, using a module structure over an E2-algebra, see [11]). In particular, stabil-
ity is known to hold with polynomial and twisted coefficients in all these cases.
Typically, an E1-algebra which is not E2 (so that no homotopy commutativity for
the multiplication is assumed) will not yield a homologically stable sequence when
multiplying with a fixed element x as above. Although we know that not every
sequence obtained this way from an E2-algebra is homologically stable, we observe
that stability most often happens when the algebra is at least E2.
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Configuration spaces, KZ connections and conformal blocks

Toshitake Kohno

The purpose of this report is to clarify a relation among the following three ap-
proaches for linear representations of braid groups.

(1) Homological representations (Burau and Lawrence–Krammer–Bigelow
(LKB) representations).

(2) Monodromy representations of Kniznhnik–Zamolodchikov (KZ) connec-
tions.

(3) Generalized Jones representations arising from R matrices in the theory
of quantum groups.

We first recall basic notions concerning hyperplane arrangements. Let A =
{H1, . . . , Hℓ} be an arrangement of affine hyperplanes in the complex vector space
Cn. We consider the complementM(A) = Cn\⋃H∈AH. Let L be a complex rank
one local system over M(A) associated with a representation of the fundamental
group r : π1(M(A), x0) −→ C∗. We denote by fj be a linear form defining the
hyperplane Hj , 1 ≤ j ≤ ℓ. We associate a complex number aj = a(Hj) called an
exponent to each hyperplane and consider a multivalued function Φ = fa1

1 · · · faℓ

ℓ .
The associated local system is denoted by LΦ. We choose a smooth compactifica-
tion i : M(A) −→ X. We shall say that the local system L is generic if and only
if there is an isomorphism i∗L ∼= i!L where i∗ is the direct image and i! is the
extension by 0. If the local system L is generic in the above sense, then there is an

isomorphism H∗(M(A),L) ∼= H lf
∗ (M(A),L) and we have Hk(M(A),L) = 0 for

any k 6= n. Here H lf
∗ stands for the homology with locally finite chains.

Let Dn be a disk with n-punctured points and consider the configuration space
of unordered distinct m points in Dn, which is denoted by Conf(m,Dn). We have
H1(Conf(m,Dn);Z) ∼= Z⊕n ⊕ Z. Consider the homomorphism

α : H1(Conf(m,Dn);Z) −→ Z⊕ Z

defined by α(x1, . . . , xn, y) = (x1+ · · ·+xn, y). Composing with the abelianization
map, we obtain the homomorphism β : π1(Conf(m,Dn), x0) −→ Z⊕Z.We denote

by C̃n,m the abelian covering of Conf(m,Dn) corresponding to Kerβ. The homol-

ogy group H∗(C̃n,m;Z) is considered to be a Z[Z⊕Z]-module by deck transforma-
tions. We express Z[Z⊕Z] as the ring of Laurent polynomials R = Z[q±1, t±1]. We

put Hn,m = Hm(C̃n,m;Z), which is a free R-module. There is a homomorphism

ρ : Bn −→ AutRHn,m

called the homological (LKB) representation of the braid group. The case m = 1
corresponds to the Burau representation.

Let g be a complex semi-simple Lie algebra and {Iµ} be an orthonormal basis
of g with respect to the Cartan–Killing form. Let ri : g→ End(Vi), 1 ≤ i ≤ n, be
representations of g. We consider the Casimir element Ω =

∑
µ Iµ⊗Iµ and denote
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by Ωij the action of Ω on the i-th and j-th components of V1 ⊗ · · · ⊗ Vn. We set

ω =
1

κ

∑

i,j

Ωijd log(zi − zj), κ ∈ C \ {0}.

The 1-form ω defines a flat connection for a trivial vector bundle over Xn, the
configuration space of ordered distinct n points in C with fiber V1 ⊗ · · · ⊗ Vn. As
the holonomy we have representations of pure braid groups

θκ : Pn −→ Aut(V1 ⊗ · · · ⊗ Vn),
which are called the monodromy representations of KZ connections.

In the following, we consider the case g = sl2(C) with the standard basis
H,E, F . For a complex number λ we denote by Mλ the Verma module of g

with highest weight vector v such that Hv = λv and Ev = 0. For an n-tuple
Λ = (λ1, · · · , λn) ∈ Cn we set |Λ| = λ1+ · · ·+λn. We consider the tensor product
Mλ1 ⊗ · · · ⊗Mλn

. For a non-negative integer m we set

W [|Λ| − 2m] = {x ∈Mλ1 ⊗ · · · ⊗Mλn
; Hx = (|Λ| − 2m)x}

and define the space of null vectors by

N [|Λ| − 2m] = {x ∈ W [|Λ| − 2m] ; Ex = 0}.
The KZ connection ω commutes with the diagonal action of g on Mλ1 ⊗· · ·⊗Mλn

and acts on the space of null vectors N [|Λ| − 2m]. For parameters κ and λ we
consider the multi-valued function

Φn,m =
∏

1≤i<j≤n

(zi − zj)
λiλj
2κ

∏

1≤i≤m,1≤ℓ≤n

(ti − zℓ)−
λℓ
κ

∏

1≤i<j≤m

(ti − tj)
2
κ

defined over Xn+m. Let L be the local system over Xn+m associated to the multi-
valued function Φn,m. We denote by π : Xm+n → Xn the projection defined by
π(x1, · · · , xn, t1, · · · , tm) = (x1, · · · , xn). Let Xn,m denote a fiber of π and put
Yn,m = Xn,m/Sm, where Sm acts as the permutation of coordinates. Let us

notice that Yn,m is homotopy equivalent to Conf(m,Dn). We denote by L the
induced local system on Yn,m. The symbol L∗ stands for the dual local system of
L.

We have the monodromy of the KZ connection

θκ,λ : Pn → AutN [|Λ| − 2m].

On the other hand, we have a homological representation

ρn,m : Pn → AutHm(Yn,m,L∗).
By using a construction of horizontal sections of KZ connections by hypergeometric
integrals using Φn,m due to Schechtman and Varchenko [6], we can construct a
period map

φ : Hm(Yn,m,L∗) −→ N [|Λ| − 2m]∗.

It turns out that φ is an isomorphism for generic parameters λ, κ and is equivariant
with respect to the action of the pure braid group Pn. We fix a complex number
λ and consider the case λ1 = · · · = λn = λ. Then the above representation is the
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specialization of the LKB representation with q = e−2π
√−1λ/κ, t = e2π

√−1/κ

(see [4]). A relation between the monodromy representations of KZ connections
and R matrices in the theory of quantum groups Uh(g) was originally found in [2]
and [1]. By defining the action of Uh(g) on chains with local system coefficients
and identifying the action of E ∈ Uh(g) with the twisted boundary operator, we
can recover the quantum group symmetry in homological representations.

Finally, we briefly discuss a relation to conformal field theory (see [3]). We
consider the affine Lie algebra ĝ = g⊗C((ξ))⊕Cc with the commutation relation

[X ⊗ f, Y ⊗ g] = [X,Y ]⊗ fg +Resξ=0 df g 〈X,Y 〉c.
We fix a positive integer K called a level. For an integer λ with 0 ≤ λ ≤ K we can
associate the integrable highest weight moduleMλ, which is an irreducible ĝ mod-
ule containing Vλ and c acts as K · id. We call such λ a level K highest weight. We
consider the Riemann sphereCP 1 with n+1 marked points p1, · · · , pn, pn+1, where
pn+1 =∞. We assign levelK highest weights λ1, · · · , λn, λn+1 to p1, · · · , pn, pn+1.
We denote byMp the set of meromorphic functions on CP 1 with poles at most at
p1, · · · , pn+1. The space of conformal blocks is defined as the space of coinvariants

HΣ(p, λ) = Hλ1 ⊗ · · · ⊗ Hλn+1/(g⊗Mp)

where g⊗Mp acts diagonally via Laurent expansions at p1, . . . , pn+1. The space
of conformal blocks forms a vector bundle over Xn with the KZ connection such
that κ = K + 2. By means of horizontal sections of the KZ connection using
hypergeometric integrals we can construct a period map

φ : Hm(Yn,m,L
∗
)→ H(p, λ)∗.

with m = 1
2 (λ1 + · · ·+ λn − λn+1) . This might not be a generic case and the

period map is not an isomorphism in general. There is a subtle point concerning
fusion rules and resonance at infinity. We refer the reader to [5] for recent progress
on this aspect.
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A brief introduction to representation stability

Jenny Wilson

This was an expository talk in two parts. The first part gave a brief history of the
field of representation stability from the perspective developed in work of Church,
Ellenberg, Farb, and Napgal [14, 12, 13]. The second part was an illustration
of a proof technique—adapting Quillen’s methods in homological stability—for
proving representation stability in certain applications. The full text of the talk
is available on the author’s webpage under “Notes”.

Over the past five years, the field of representation stability has taken several
directions. One objective has been to exhibit representation stability phenomena in
particular families of groups or spaces. Applications include congruence subgroups
of linear groups [72, 13, 10, 73, 38, 62, 15, 64], complements of arrangements
[14, 12, 98, 99, 2, 4, 29, 82], configuration spaces [9, 12, 13, 53, 25, 45, 76, 95, 63,
78, 61, 15, 1], mapping class groups and moduli space [50, 48, 49, 96], Torelli groups
[3, 18, 69, 16, 62], variations on the pure braid groups and related automorphisms
groups, objects in graph theory, etc [97, 54, 83, 77, 81].

Authors have constructed categories for actions by families of groups other than
the symmetric group, or for sequences of symmetric group representations with
additional structure [98, 99, 86, 71, 40, 41, 73, 28, 74], and studied their algebraic
structure [14, 12, 13, 32, 100, 33, 34, 35, 55, 75, 31, 36, 101, 57, 89, 10, 58, 37, 39,
56, 59, 60, 79, 80, 68, 70, 15, 64]. These results are closely related to the theory
of polynomial functors [22, 19, 23, 17, 24, 44, 21, 20, 94] and the theory of twisted
commutative algebras [85, 84, 88, 90, 91, 67, 66].

Other goals have been to explore connections between representation stability
results and objects in number theory [11, 26, 7, 46, 47, 8, 51, 27, 52, 5, 30, 6] or
algebraic combinatorics, or the modular representation theory of the symmetric
groups [42, 65, 87, 43, 92].
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Arrangements and Artin groups

Michael J. Falk

We give an introduction to the general theory of complex hyperplane arrangements
and its origins in the study of finite reflection groups and their discriminants.
We state some solved and still open problems, in particular involving the Milnor
fibration. We present recent constructions of the author with E. Delucchi [4],
and from work in progress with D. Ernst and S. Riedel, of finite combinatorial
models for the complements of general complexified real arrangements, and of
complements of discriminants of finite real reflection groups, respectively. Natural
generalizations to Artin groups and pure Artin groups on one hand, and to finite
complex reflection groups and complex braid groups on the other, should be of
interest in the study of representation and homological stability.

Complex hyperplane arrangements. A complex hyperplane arrangement is a
finite set A of linear hyperplanes in V = Cℓ. For H ∈ A choose αH : V → C,
a nonzero linear form satisfying H = ker(αH). The product Q :=

∏
H∈A αH is

called the defining polynomial of A. The union of A, D := {Q = 0} = ⋃
H∈AH

is an affine algebraic variety with a (homogeneous) singularity at 0 for ℓ ≥ 2,
isolated only if ℓ = 2. The complement M := V \ D of A is a non-compact
2ℓ-manifold, connected but not simply-connected. In case all αH can be chosen
to have real coefficients, we say A is a complexified real arrangement. Then one
has real hyperplanes HR = H ∩ Rℓ for H ∈ A comprising the associated real
arrangement AR in Rℓ.

As an example, consider the arrangement A in V = C3 with defining poly-
nomial Q = (x − y)(x − z)(y − z). The complement of A consists of ordered
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triples of distinct points in the plane; that is, M is the ordered configuration space
Conf(R2, 3). All three hyperplanes contain the line L given by x = y = z, so A
determines an arrangement of hyperplanes in the quotient vector space V/L. This
is a complexified real arrangement, whose real part is pictured in Figure 1.

C

0

Figure 1. The Coxeter arrangement of type A2.

A quick sketch of the general theory. Since the αH are homogeneous, they
define hyperplanes H in complex projective space Pℓ−1, comprising the associ-
ated projective arrangement A, with complement M . The projectivization map
M → M is a trivial C×-bundle, and M is diffeomorphic to the complement of
an arrangement of |A| − 1 affine hyperplanes in Cℓ−1. This “deconing” process is
useful for induction arguments [2].

One motivation for research in the field is the theorem of Orlik and Solomon
[5]: the cohomology ring H∗(M,C) has a presentation that depends only on the
combinatorics of A. Here the “combinatorics of A” means the function dA given
by dA(S) = dimC(

⋂
H∈S H), for S ⊆ A. There are arrangements with different

combinatorics but isomorphic cohomology rings; a complete classification of these
rings has not yet been accomplished.

There are known presentations for the arrangement group π1(M), all depending
on a choice of coordinates. Rybnikov [6] showed that π1(M) is not determined by
dA; the counterexample is a pair of thirteen-line (projective) arrangements with
no real form. For complexified real arrangements one has, for instance, the Salvetti
complex S of A, a finite regular cell complex of dimension ℓ with the homotopy
type of M , determined by the stratification of Rℓ coming from AR. S is the nerve
of a partially-ordered set on the set of pairs (C,F ), where C is a chamber ofAR and
F is a face of C. The boundary of a typical top-dimensional cell, corresponding
to the pair (C, 0), is illustrated in Figure 1. Recently a pair of complexified real
arrangements with the same combinatorics but different arrangement groups has
been found [1], resolving a long-standing open problem. These arrangements also
have 13 lines.

Milnor fibers. The restriction Q : M → C× of the defining polynomial Q is a
locally trivial fibration, known as the Milnor fibration; the fiber F = {Q = 1}
is the Milnor fiber of A. It is an open question whether the betti numbers bi(F )
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are determined by dA, although the author has a conjectural solution for the case
i = 1. Since C× is aspherical, F has the homotopy type of the Z-cover of M
classified by Q∗ : π1(M) → π1(C

×) = Z. The cyclic group of order n acts freely
on F , by scalar multiplication, with orbit space M . It is also an open problem
whether the monodromy homomorphism H1(F )→ H1(F ) is determined by dA.

Coxeter arrangements and discriminants. Suppose A is a complexified real
arrangement. For H ∈ A, let sH : Rℓ → Rℓ denote the orthogonal reflection
across the hyperplane HR. If sH(KR) ∈ AR for every H,K ∈ A, A is a Coxeter
arrangement. This is the case for the example in Figure 1. The finite real reflection
group W generated by {sH | H ∈ A} is a Coxeter group. It acts on V and the
space of orbits is isomorphic to Cℓ; coordinates on the orbit space are given by
a set of homogeneous invariant polynomials for W . The image ∆W of D under
the orbit map Cℓ → Cℓ is the discriminant associated with W . The fundamental
group of Cℓ \∆W is the Artin group associated with the Coxeter presentation of
W—see [2]. These spaces are aspherical [3]. In the example, W is the symmetric
group S3 and the associated Artin group is the full braid group on three strands.
The Salvetti complex S can be constructed equivariantly, so as to yield a finite
cell complex with the homotopy type of Cℓ \∆W , and hence a finite model for the
associated Artin group of finite type.

Some new models. In [4] we defined a variation on the Salvetti complex for
complexified real arrangements. One defines a partial ordering on the set Q of
ordered pairs of chambers of AR: (R,S) ≤ (U, V ) if there is a minimal gallery
from R to S that can be extended to a minimal gallery from U to V . The nerve of
this poset is homotopy equivalent to M . If A is a Coxeter arrangement, the poset
Q carries an action of W , and yields a model for the complement Cℓ \∆W of the
discriminant, and hence for the associated finite-type Artin group. This model
is the nerve of the acyclic category with set of objects W and morphisms u → v
labelled by pairs (x, y) of group elements giving a reduced factorization v = xuy
relative to the Coxeter generators. The composite of morphisms (x, y) : u→ v and
(s, t) : w → u is (xs, ty) : w → y. In Figure 2 we illustrate the category for W of
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Figure 2. A model for the braid group on three strands.
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type A2, the example in Figure 1. Only non-identity indecomposable morphisms
are pictured; the morphism (x, y) is labeled x or is unlabelled if x = e.
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Polynomial functors and homological stability

Christine Vespa

(joint work with Aurélien Djament)

The definition of polynomial functors on a category of modules over a ring R has
been introduced by Eilenberg and Mac Lane [5] using the notion of cross-effects.
A typical example of a polynomial functor of degree n is the n-th tensor power
T n : R-Mod→ R-Mod defined by T n(V ) = V ⊗n. The definition of Eilenberg and
Mac Lane can easily be extended to functors on a monoidal category whose unit
is a null object. Several natural functors having polynomial properties are defined
only on monoidal categories (M,⊕, 0) whose unit 0 is an initial object but is not
a terminal object. Examples of such categories are

• the category (FI,∐, ∅) of finite sets and injections;
• the category (S(Z),⊕, 0) having as objects the finitely generated free
abelian groups and as morphisms

S(Z)(Z⊕n,Z⊕m) =
{
(u, v) ∈ Ab(Z⊕n,Z⊕m)×Ab(Z⊕m,Z⊕n)/v ◦ u = Id

}

where Ab is the category of abelian groups,
• the homogeneous category associated to braid groups (Uβ,∐, ∅). (See [7]
for the definition of homogeneous category. For examples of polynomial
functors on this category see [9] or the extended abstract of Soulié in this
report).

In [4] we introduce two notions of polynomial functors on a symmetric monoidal
category whose unit is an initial object, extending the original definition of Eilen-
berg and Mac Lane: the strong polynomial and the weak polynomial functors.
This talk is an overview of [4].
The strong polynomial functors are related to representation stability by the fol-
lowing proposition.
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Proposition 1. [4] Let F be a functor from FI to Ab. The functor F is strong
polynomial with finitely generated values iff it is finitely generated.

To describe stable phenomena the weak polynomial degree is more suitable than
the strong polynomial degree. For example, the functor T n

≥i : FI → Ab defined by

T n
≥i(k) = T n(Zk) for k ≥ i and 0 otherwise, is strong polynomial of degree n+ i

and weak polynomial of degree n. Stably this functor behaves as T n.
Let (M,⊕, 0) be a small symmetric monoidal category where 0 is an initial

object and generated by an object x (i.e. for each object m ∈ M there exists
k ∈ N such that m ≃ x⊕k). For example FI is generated by 1 the set having one
element.

1. Strong polynomial functors

1.1. Definition. Let Func(M, Ab) be the category of functors from M to Ab.
The shift functor τx : Func(M, Ab) → Func(M, Ab) is defined by τx(F ) =
F (x ⊕ −). Since 0 is initial, there is a unique map 0 → x inducing a natural
transformation ix : Id→ τx. The cokernel of this transformation is the difference
functor denoted by δx and the kernel is the evanescence functor denoted by κx.

Definition 2. A functor F : M → Ab is strong polynomial of degree ≤ d if
δd+1
x F = 0.

If the unit 0 is also terminal, ix splits so κx = 0. We recover the definition of
usual polynomial functors using the difference functor (see for example [6]). This
definition is equivalent to the original definition of Eilenberg and Mac Lane.

1.2. Examples.

• The constant functor Z : FI → Ab defined by Z(k) = Z ∀k ∈ N is strong
polynomial of degree 0.
• The atomic functor Zi : FI → Ab defined by Zi(k) = Z for k = i and 0
otherwise, is strong polynomial of degree i.
• The functor Z≥i : FI → Ab defined by Z≥i(k) = Z for k ≥ i and 0
otherwise, is strong polynomial of degree i.

Since Z≥i(k) is a subfunctor of Z we deduce that the category of strong polynomial
functors of degree ≤ d is not closed under subobjects.
By Proposition 1, the examples of finitely generated FI-modules given in [1] are
examples of strong polynomial functors.

2. Weak polynomial functors

Stably the functors Z and Z≥i are equal. We will introduce a quotient of the
category Func(M, Ab), named the stable category, in which these two functors
are equal and we will define polynomial functors in this quotient category.
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2.1. The stable category St(M, Ab). A functor F :M → Ab is stably zero if
colim
n∈N

F (x⊕n) = 0. For example, Zi is stably zero. We denote by SN (M, Ab) the

full subcategory of Func(M, Ab) of stably zero functors. The category SN (M, Ab)
is a thick subcategory of Func(M, Ab) so we can give the following definition.

Definition 3. The stable category St(M, Ab) is the quotient category

Func(M, Ab)/SN (M, Ab).

We denote by πM the functor Func(M, Ab) → Func(M, Ab)/SN (M, Ab).
The functor κx takes its values in SN (M, Ab).

Definition 4. (1) A functor F ∈ St(M, Ab) is polynomial of degree ≤ d if
δd+1
x F = 0.

(2) A functor F ∈ Func(M, Ab) is weak polynomial of degree ≤ d if πM(F )
is polynomial of degree ≤ d.

A strong polynomial functor of degree d is weak polynomial of degree ≤ d. For
example, the functor Z≥i is strong polynomial of degree i and weak polynomial
of degree 0. The converse of the previous statement is not true. For example, the
functor

⊕
i∈N

Z≥i is weak polynomial of degree 0 but is not strong polynomial.

If the unit 0 is also terminal St(M, Ab) = Func(M, Ab). In this case the
notions of strong polynomiality, weak polynomiality, polynomiality in St(M, Ab)
and polynomiality in the sense of Eilenberg and Mac Lane are equivalent.

The category of polynomial functors of degree ≤ d in St(M, Ab) (denoted by
Pold(M, Ab)) is thick. In [4] we study the quotient categories

Pold(M, Ab)/Pold−1(M, Ab).

Note that in [2] the authors call “stable degree” the weak polynomial degree.

2.2. Examples.

(1) In [3] (see also the extended abstract of Djament in this report) Djament
computes the weak polynomial degree of the homology of congruence sub-
groups.

(2) Let φ : Aut(Fn)→ GLn(Z) be the map induced by the abelianisation and
IAn = ker(φ), Djament gives the following conjecture.

Conjecture 5. The functor Hk(IA•) : S(Z) → Ab is weak polynomial of
degree 3k.

(3) Let γk+1 be the lower central series, ψ : Aut(Fn) → Aut(Fn/γk+1(Fn))
and Ak(Fn) = ker(ψ). We have a functor Ak/Ak+1 : S(Z)→ Ab.

Proposition 6. [4, Proposition 6.3] The functor Ak/Ak+1 : S(Z) → Ab
is weak polynomial of degree k + 2.

The keystone of the proof of this proposition is the description of the
cokernel of the Johnson homomorphism for Aut(Fn) given by Satoh in [8].
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Homology of braid group with coefficients in symplectic
representations

Filippo Callegaro

(joint work with Mario Salvetti)

We consider the family of hyperelliptic curves

Ed
n := {(P, z, y) ∈ Cn×D× C|yd = (z − x1) · · · (z − xn)}.

where D is the unit open disk in C, Cn is the configuration space of n distinct
unordered points in D and P = {x1, . . . , xn} ∈ Cn . For each configuration P ∈ Cn

the equation
yd = (z − x1) · · · (z − xn)

defines a curve that we call Σd
n. Each curve Σd

n in the family is a d-fold covering
of the disk D ramified along the set P and there is a fibration π : Ed

n → Cn which
takes Σd

n onto its set of ramification points.
The bundle π : Ed

n → Cn has a global section, so H∗(Ed
n) splits as a direct

sum H∗(Cn) ⊕ H∗(Ed
n,Cn) and by the Serre spectral sequence H∗(Ed

n,Cn) =
H∗−1(Brn;H1(Σ

d
n)), where Brn is the classical Artin braid group on n strands.

The surface Σd
n has Euler characteristic χ = d − n(d − 1) and the number of

connected component of the boundary is gcd(n, d). In particular when d = 2 the
surface Σd

n has genus n−1
2 if n is odd and n−2

2 if n is even. The representation of

the group Brn on the fundamental group of the surface Σ2
n is described in [5] (see

also [4]).
Following some ideas in [1] we can project the space Ed

n to the product Cn×D,
that decomposes as a union of two open sets: the first one is homotopy equivalent
to the configuration space C1,n of n distinct marked points and one additional
distinguished point in D, the second one is homotopy equivalent to the configu-
ration space C1,n-1 and their intersection is homotopy equivalent to the product
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C1,n-1×S1. This induces a decomposition of Ed
n. The associated Mayer-Vietoris

long exact sequence can be used to compute the homology of Ed
n.

The rational homology of the space Ed
n has been computed in [3].

Our main results give a complete description of the homology of E2
n for n odd:

Theorem 1. For odd n :

(1) the integral homology Hi(Brn;H1(Σ
2
n;Z)) has only 2-torsion.

(2) the rank of Hi(Brn;H1(Σ
2
n;Z)) as a Z2-module is the coefficient of qitn in

the series

P̃2(q, t) =
qt3

(1− t2q2)
∏

i≥0

1

1− q2i−1t2i
.

In particular the series P̃2(q, t) is the Poincaré series of the homology
group ⊕

nodd

H∗(Brn;H1(Σ
2
n;Z))

as a Z2-module.

The homology group H1(Σ
d
n) can be seen as a polynomial coefficient system for

Brn (see [6] for a definition of polynomial coefficient system). Hence the homology
computed in the previous theorem stabilizes. For d = 2 the stable homology is
described in the following result.

Theorem 2. Let us consider homology with integer coefficients.

(1) The homomorphism

Hi(Brn;H1(Σ
2
n))→ Hi(Brn+1;H1(Σ

2
n+1))

is an epimorphism for i ≤ n
2 − 1 and an isomorphism for i < n

2 − 1.

(2) For n even Hi(Brn;H1(Σ
2
n)) has no p torsion (for p > 2) when pi

p−1+3 ≤ n
and no free part for i+ 3 ≤ n. In particular for n even, when 3i

2 + 3 ≤ n

the group Hi(Brn;H1(Σ
2
n)) has only 2-torsion.

(3) The Poincaré polynomial of the stable homology Hi(Brn;H1(Σ
2
n;Z)) as a

Z2-module is the following:

P2(Br;H1(Σ
2))(q) =

q

1− q2
∏

j≥1

1

1− q2j−1
.

When d is greater than 2 the same argument gives a partial description of the
homology of Ed

n and of its stabilization.
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Homology of surface and graph braid groups

Ben Knudsen

(joint work with Byung Hee An and Gabriel C. Drummond-Cole)

For a topological space X , we consider the unordered configuration space of k
points in X , which is the quotient

Bk(X) =
{
(x1, . . . , xk) ∈ Xk : xi 6= xj if i 6= j

}
/Σk

.

It is convenient to consider the graded space B(X) =
∐

k≥0 Bk(X).

Example. If X is an aspherical surface or a graph, then Bk(X) is a classifying space
for its fundamental group, the kth surface or graph braid group, respectively.

When the background space X is a manifold, we have the following calculation
[7], which unifies and extends partial results of [3, 6].

Theorem (K). Let M be an n-manifold. There is an isomorphism of bigraded
Abelian groups

H∗(B(M);Q) ∼= HL(gM ),

where gM is the graded Lie algebra defined by

gM =

{
H−∗

c (M ;Qw)⊗ v n odd

H−∗
c (M ;Qw)⊗ v ⊕H−∗

c (M ;Q)⊗ [v, v] n even.

Here,

• HL denotes Lie algebra homology,
• Hc denotes compactly supported cohomology,
• Qw denotes the orientation sheaf of M , and
• v and [v, v] are formal parameters in bigrading (n− 1, 1) and (2n− 2, 2),

respectively.

The Lie algebra homology in question may be computed by means of the classi-
cal Chevalley–Eilenberg complex. This complex is very amenable to computation;
for example, we are able to determine explicit formulas for dimHi(Bk(Σ);Q) for
every i, k ≥ 0 and surface Σ [5].

Remark. The dual of the Chevalley–Eilenberg complex for gM coincides with the
direct sum over k of the Σk-invariant part of the E2 page of the spectral sequence
considered in [11]. Thus, our result may be interpreted as asserting the vanishing
of all higher differentials in these spectral sequences of Σk-invariants. In contrast,
the full spectral sequence is known not to collapse in general.
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The Lie algebra homology of any Lie algebra is naturally a cocommutative coal-
gebra. Consideration of this structure leads to an alternate proof of homological
stability for configuration spaces [4].

Corollary. Suppose that M is connected and n > 1. The cap product with 1 ∈
H0(M ;Q) ⊆ H∗(B(M);Q)∨ induces an isomorphism

Hi(Bk+1(M);Q)
≃−→ Hi(Bk(M);Q)

for i ≤ k and a surjection in the next degree.

The proof is based on elementary combinatorial facts about the Chevalley–
Eilenberg complex. IfM is not an orientable surface, a slightly better stable range
obtains.

We turn now to the case of a graph Γ with set of vertices V , set of edges E,
and set of half-edges H . For v ∈ V , we write

S(v) = Z〈∅, v, h ∈ H(v)〉,
where H(v) denotes the set of half-edges incident on v. The Swiatkowski complex
of Γ is the Abelian group

S(Γ) = Z[E]⊗
⊗

v∈V

S(v),

endowed with the differential determined by the equation ∂(h) = e(v)− v(h) and
the bigrading determined by declaring that |∅| = (0, 0), |v| = |e| = (0, 1), and
|h| = (1, 1). We prove the following [1].

Theorem (A–D-C–K). There is a natural isomorphism of bigraded Z[E]-modules

H∗(B(Γ);Z) ∼= H∗(S(Γ)).

The complex S(Γ) is a functorial and algebraic enhancement of the cellular
chains on the cubical model considered in [10] (see also [8]). The Z[E]-action
arises geometrically from the process of edge stabilization, which replaces a sub-
configuration on the edge e with the collection of pairwise averages of the points
in this subconfiguration and the endpoints (a similar stabilization mechanism for
trees is considered in [9]).

This structure provides a natural setting in which to study analogues of classical
homological stability phenomena.

Corollary. The bigraded Z[E]-module H∗(B(Γ);Z) is finitely presented.

This algebraic structure is usually rather complicated; indeed, S(Γ) is formal
as a Z[E]-module if and only if each component of Γ is homeomorphic to a graph
in which each vertex has at most two edges [2].
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Topology of Enumerative Problems: Inflection Points on Cubic Curves

Weiyan Chen

A plane cubic curve is given by the vanishing locus of a complex homogeneous
polynomial F (x, y, z) of degree 3. It is a classical result that every smooth cubic
plane curve has exactly 9 inflection points (also called “flexes”), i.e. points where
the Hessian vanishes. In other words, every smooth cubic plane curve naturally
comes with 9 marked points. Motivated by this classical result, Benson Farb asked
the following question:

Question 1 (Farb). What are all the possible ways to continuously choose n
distinct unlabeled points on any smooth cubic plane curve, as the curve varies in
family?

To make this question precise, we define the following space parameterizing
smooth cubic curves:

X := {F (x, y, z) : F is a homogeneous polynomial of degree 3 and is smooth}/ ∼

where F ∼ cF for any c ∈ C×. Each F ∈ X gives a well-defined smooth cubic
curve CF in CP2. This construction gives the following fiber bundle over X :

CF E

X

ξ

where the total space E :=
{
(F, p) ∈ X × CP2 : p ∈ CF

}
can be viewed as the

universal cubic curve. Each fiber CF is a Riemann surface of genus 1.
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Definition 1. A multisection for ξ of degree n is a triple (X̃ , p, i) where p : X̃ → X
is a cover of degree n, and i : X̃ → E is a continuous injection such that p = ξ ◦ i,
making the following diagram commute:

(1)

{n points} X̃ X

CF E X

p

i =

ξ

Thus, a multisection is a continuous choice of n distinct points on the cubic curve

CF as F varies in the family X . Sometimes we will just call X̃ a multisection when
p and i are clear from the context.

Example 1 (Inflection points). Define X̃ flex to be

X̃ flex := {(F, q) ∈ X × CP2 : q is an inflection point on CF }.

Let pflex : X̃ flex → X be the projection onto the first factor. Then X̃ flex defines a
multisection for ξ of degree 9.

Question 1 asks for a classification of multisections of ξ. To aim for a partial
answer, Farb made the following conjecture:

Conjecture 1 (Farb). There is no multisection for ξ of degree n < 9.

It turns out that ξ does admit multisections of degree n > 9:

Example 2 (A multisection of degree 36). Define X̃ 36 to be

X̃ 36 :=
{
(F, q) ∈ X × CP2 :

q is a point on CF whose tangent line passes through a flex
}

Let p : X̃ 36 → X be the projection onto the first factor. Then X̃ 36 defines a
multisection for ξ of degree 36.

Let us make the following two observations from Example 2. First, X̃ 36 has

an intermediate cover which is exactly X̃ flex. Thus, the multisection X̃ 36 “factors
through” the multisection of 9 flexes. Second, if we choose a flex p on CF to be

the identity for the elliptic curve, then the multisection X̃ flex picks the 3-torsions

of (CF , p), while X̃ 36 picks the 6-torsions of (CF , p). Thus, X̃ 36 comes from an
algebraic construction.

Therefore, what is behind Conjecture 1 is the following metaconjecture:

Metaconjecture 2 (Farb). There is no multisection for ξ unless there is an
algebraic reason for it to exist.



Topology of Arrangements and Representation Stability 71

To state the main theorem, we need to first introduce a cover X̃ ncf of X :

X̃ ncf :=

{(
F, {p, q, r}

)
∈ X × Sym3(CP2) : {p, q, r} is a triple of

three non-collinear infection points on CF

}
.

X̃ ncf/X is a cover of degree 72, since there are
(
9
3

)
= 84 unordered triples of flexes,

12 of which are collinear.
We will say a cover X̃1/X factors through another cover X̃2/X if the later is an

intermediate cover of the former.

Theorem 1. If X̃/X gives a multisection of ξ, then each connected component of

X̃ must factor through either X̃ flex/X or X̃ ncf/X .

We already knew that X̃ flex is a multisection of degree 9 (Example 1). However,

currently it is not known whether X̃ ncf can be made into a multisection or not.
What is missing is the injection i in the commutative diagram (1).

Question 2. Does there exist a continuous injective map i : X̃ ncf → E making
the diagram (1) commute? Equivalently, is it possible to associate 72 distinct
points x{p,q,r} to the 72 triples {p, q, r} such that the choice varies continuously

with (F, {p, q, r}) ∈ X̃ ncf?

Either a positive or a negative answer to Question 2 will be very interesting
because:

• If X̃ ncf/X is not a multisection, then Theorem 1 implies that every mul-

tisection must factor through X̃ flex, and therefore X̃ flex is the universal
multisection.
• If X̃ ncf/X is a multisection given by certain algebraic construction, then
every smooth cubic curve naturally has 72 special points on it. These 72
special points are perhaps as interesting as the 9 flexes.

• If X̃ ncf/X is a multisection that is continuous but is not from any algebraic
construction, then it is a counter-example to Farb’s Metaconjecture 2.

Theorem 1 implies that Farb’s Conjecture 1 is true. In fact, it implies the
following corollary which is stronger than Conjecture 1:

Corollary 2. The bundle ξ admits no multisection of degree n if n is not a multiple
of 9.

Proof. The degree of a cover is multiplicative when two covers are composed.

Either X̃ flex/X or X̃ ncf/X is of degree a multiple of 9. Thus, Theorem 1 implies

that degree of any multisection X̃ /X must be a multiple of 9. �

Every smooth cubic plane curve is a Riemann surface of genus 1, and thus is
an elliptic curve. However, Corollary 2 implies that the bundle ξ does not admit
a multisection of degree 1, or equivalently, that it is not possible to continuously
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choose one point on every smooth cubic curve to serve as the identity. Therefore,
we conclude:

Corollary 3. It is not possible to continuously choose an elliptic curve structure
for all smooth cubic plane curves.
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Milnor monodromy of plane curves, space surfaces and hyperplane
arrangements

Alexandru Dimca

(joint work with Gabriel Sticlaru)

Let C : f(x, y, z) = 0 be a reduced plane curve in the complex projective plane
P2, defined by a degree d homogeneous polynomial f in the graded polynomial
ring S = C[x, y, z]. The smooth affine surface F : f(x, y, z) = 1 in C3 is called
the Milnor fiber of f . The mapping h : F → F given by (x, y, z) 7→ (θx, θy, θz)
for θ = exp(2πi/d) is called the monodromy of f . There are induced monodromy
operators hj : Hj(F,C) → Hj(F,C), hj(ω) = (h−1)∗(ω), for j = 0, 1, 2, and we
can look at the corresponding characteristic polynomials

∆j
C(t) = det(t · Id− hj|Hj(F,C)).

Given the degree d reduced plane curve C : f = 0 and a d-th root of unity
λ 6= 1, how to determine the multiplicity m(λ) of λ as a root of the Alexander
polynomial ∆1

C(t)? This question, or higher dimensional versions of it, has a very
long tradition, see for instance [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 16]. A general
answer is given by the following result, see [5, 6, 8, 10, 15]. Let K∗

f = (Ω∗, df∧)
be the Koszul complex of the partial derivatives fx, fy, fz of f in S.

Theorem 1. For any integer k with 1 ≤ k ≤ d, there is an E1- spectral sequence
E∗(f)k such that

Es,t
1 (f)k = Hs+t+1(K∗

f )td+k

and converging to
Es,t

∞ (f)k = GrsPH
s+t(F,C)λ,

where P ∗ is a decreasing filtration on the Milnor fiber cohomology, called the pole
order filtration. Moreover, E2(f)k = E∞(f)k if and only if C has only weighted
homogeneous singularities.

In fact this result is valid for projective hypersurfaces of any dimension. In the
case of plane curves this gives the following, see [8, 10]. This results says that for
a plane curve the computations of a limited number of the terms in the second
page of the spectral sequence is enough to determine all the Alexander polynomials
∆j

C(t).
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Theorem 2. Let C : f = 0 be a reduced degree d curve , and let λ = exp(−2πik/d),
with k ∈ (0, d) an integer. Then λ is a root of the Alexander polynomial ∆1

C(t) of
multiplicity m(λ) given by

m(λ) = dimE1,0
2 (f)k + dimE1,0

2 (f)k′ .

In the case of hyperplane arrangements in Pn, one has the following Conjec-
ture. For any hyperplane arrangement V : f = 0 in Pn and any integer k with
1 ≤ k ≤ d, d being the number of hyperplanes in V , the E1- spectral sequence
E∗(f)k degenerates at the second page, i.e.

E2(f)k = E∞(f)k.

Moreover, one has Es,t
2 (f)k = 0 for t > 1, see [10].

A lot of examples suggest that this conjecture holds, and this is very impor-
tant for doing computations in terms of computing time. The corresponding SIN-
GULAR codes are available at http://math1.unice.fr/~dimca/singular.html.
These codes are very effective for plane curves, especially for the free and nearly
free curves, as explained in [8, 10]. Indeed, for plane curves, the graded cohomology
group H2(K∗

f ) is determine by the graded S-module of Jacobian syzygies

AR(f) = {(a, b, c) ∈ S3 | afx + fy + cfz = 0},
which is free for a free curve, and has a very precise resolution in the case of a
nearly free curve, see [9].

There are many interesting relations of the above results with the roots of the
Bernstein–Sato polynomials for projective hypersurfaces, which can be found in
[10, 15].
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Long-Moody constructions and generalizations

Arthur Soulié

In [4], Long and Moody gave a construction on representations of braid groups
which associates a representation of Bn with a representation of Bn+1. This con-
struction complexifies in a sense the initial representation: for instance, starting
from a dimension one representation, one obtains the unreduced Burau represen-
tation. This construction inspires endofunctors, called Long–Moody functors, on
a suitable category of functors (see [7]). This construction also generalizes to
other families of groups such as automorphism groups of free groups, mapping
class groups of orientable and non-orientable surfaces or mapping class groups of
3-manifolds (see [8]). Moreover adapting notions of strong polynomial functors in
this context, the Long–Moody functors increase by one the degree of polynomiality
(see [7, 8]).

1. Case of braid groups

1.1. Categories. The braid groupoid β has the natural numbers n ∈ N as objects
and the braid groups Bn as automorphisms. A monoidal product ♮ : β × β → β

is defined assigning the usual addition for the objects and connecting two braids
side by side for the morphisms (see [5]). The object 0 is the unit of this monoidal
product. The strict monoidal groupoid (β, ♮, 0) is braided, its braiding is denoted
by b−,−.

Remark that a family of representations of braid groups is this way equivalent
to define a functor β → K-Mod where K-Mod is the category of K-modules for
K a commutative ring. Note that all the classical representations of braid groups,
such as Burau representations (see [2]), Tong–Yang–Ma representations (see [9]) or
Lawrence–Krammer representations (see [3]) satisfy compatibility relations when
one passes from Bn to Bn+1. This motivates the use of Quillen’s bracket con-
struction over β.

Definition 1.1. [6] The category Uβ is defined by:

• Obj (Uβ) = Obj (β) = N;
• HomUβ (n, n′) = colim

β
[Homβ (−♮n, n′)] .
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Proposition 1.2. [6] The category Uβ satisfies the following properties.

• The unit 0 is initial object. We denote by ιn : 0→ n the unique morphism
from 0 to N .

• ♮ extends to give a monoidal structure (Uβ, ♮, 0). This category is not
braided but pre-braided (see [6]).

In [6, 7], it is proven that the families of Burau, Tong-Yang-Ma and Lawrence-
Krammer representations define functors over the category Uβ.

1.2. Definition. Consider an : Bn → Aut (Fn) a Wada representation (see [10]),
where Fn is the free group on n generators. Let ςn : Fn → Fn ⋊

an

Bn → Bn+1 be a

group morphism. Denote by IK[Fn] the augmentation ideal of the free group Fn.
Long–Moody functors are defined by:

Theorem 1.3. [4, 7] Let G ∈ Obj (Fct (Uβ,K-Mod)). Assign:

• ∀n ∈ N, LM (G) (n) = IK[Fn] ⊗
K[Fn]

G (n+ 1).

• For [n′ − n, σ] ∈ HomUβ (n, n′):

LM (G) ([n′ − n, σ]) = an′ (σ) ⊗
K[Fn′ ]

G (id1♮ [n
′ − n, σ]) .

Then we define this way an object of Fct (Uβ,K-Mod) and this naturally extends
to give an exact functor: LM : Fct (Uβ,K-Mod)→ Fct (Uβ,K-Mod) .

Using the Artin representation as an, the induced Long–Moody functor recov-
ers the unreduced Burau functor, and its iteration allows to obtain Lawrence–
Krammer as subfunctor. Another choice of an defines a Long–Moody functor
which recovers the Tong–Yang–Ma functor.

2. Generalizations

We can generalize the principle of Long–Moody functors to other families of groups.
Consider (G, ♮, 0) a braided monoidal groupoid, such that Obj (G) = N. We denote
the automorphism groups of G by Gn. Quillen’s construction U applies in the
same way as before and defines a pre-braided homogenous category (UG, ♮, 0). Let
{Hm}m∈N be a family of free groups with injections Hm →֒ Hm+1. Let us make
the following analogy:

• Bn ←→ Gn

• Fn ←→ Hn

• (Bn → Aut (Fn))←→ (Gn → Aut (Hn))
• (Fn → Fn⋊Bn → Bn+1)←→ (Gn → Hn⋊Gn → Hn+1)

Theorem 2.1. [8] Repeating mutatis mutandis the assignments of Theorem 1.3,
we define an exact functor:

LM : Fct (UG,K-Mod)→ Fct (UG,K-Mod) .

Applications 2.2. [8] The following families of groups fit into this framework.
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• The automorphism groups of free groups Aut (Fn). We can obtain the
abelianization functor thanks to a Long–Moody functor.

• The mapping class groups of compact orientable connected surfaces with
genus g and one boundary component {Γg,1}g∈N

. For example, a Long–

Moody functor recovers the family of symplectic representations.
• The mapping class groups of compact, connected, oriented 3-manifold with

boundary. This includes handlebody mapping class groups Hn,1 or sym-
metric automorphisms of free groups ΣAut (Fn).

3. Polynomial behaviour

3.1. Polynomial functors. The notions of strong and weak polynomial functors
for symmetric monoidal categories are introduced by Djament and Vespa in [1].
This is extended to the case of a pre-braided monoidal category in [7]. We take
up the framework, definitions and terminology of the extended abstract of Vespa
in this report. Recall that F ∈ Obj (Fct (UG,K-Mod)), the shift, difference and
evanescence functors define a short exact sequence:

0→ κ1F → F → τ1F → δ1F → 0.

Definition 3.1. F is very strong polynomial of degree 0 if it is constant. For
d ≥ 1, F is very strong polynomial of degree ≤ d if it is strong polynomial of
degree ≤ d, κ1F = 0 and δ1F is very strong polynomial of degree ≤ d− 1.

The concept of very strong polynomial functor corresponds to the one of coef-
ficient system of finite degree at 0 in the terminology of [6].

3.2. Effect of Long–Moody functors.

Theorem 3.2. [8] Let LM be any generalized Long–Moody functor. It induces a
functor:

LM : Polstrongd (UG)→ Polstrongd+1 (UG) .
If F ∈ Obj (Fct (UG,K-Mod)) is very strong (resp. weak) polynomial of degree
≤ d, then LM (F ) is very strong (resp. weak) polynomial of degree ≤ d+ 1.

Thus, the Long–Moody constructions will provide new examples of twisted
coefficients fitting into the framework developed by Randal-Williams and Wahl in
[6] where prove homological stability for different families of groups, in particular
for braid groups, mapping class groups of surfaces and 3-manifolds.
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Introduction to twisted commutative algebras

Andrew Snowden

1. Overview

In representation stability, one often has a sequence of representations connected
by some kind of transition maps. Such a structure can often be conveniently en-
coded as a representation of a category. Recall that a representation of a category
C is a functor from C to the category of vector spaces. Here are some examples of
the kinds of categories that come up, and some sample applications of them.

Name Definition Application

FI finite sets / injections Cohomology of configuration spaces [1]

FId finite sets / injections with
a d-coloring on the com-
plement of the image

Configuration spaces of graphs [6]
Syzygies of Segre embeddings [10]

FIM finite sets / injections with
a perfect matching on the
complement of the image

Secondary stability [4]
Representations of O∞ [7]

OI finite totally ordered sets /
order preserving injections

Homology of unipotent groups [5]

FSop finite sets / surjections
(opposite category)

Homology ofMg,n [11]

VA(F) finite dimensional vector
spaces over F / linear
maps

Steenrod algebra [3]

Representations of the first three categories are equivalent to modules over three
specific twisted commutative algebras (tca’s). The second three categories are not
directly related to tca’s. We hope this gives the reader some insight into the place
that tca’s occupy within representation stability.
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2. Twisted commutative algebras: three definitions

We now give three equivalent ways to define tca’s. Fix a commutative ring k.

Definition 1. A twisted commutative algebra is a graded associative unital k-
algebra A =

⊕∞
n=0An equipped with an action of the symmetric group Sn on An

such that the following two conditions hold:

(1) The multiplication map An×Am → An+m is Sn×Sm ⊂ Sn+m equivariant.
(2) (Twisted commutativity.) Given x ∈ An and y ∈ Am, we have yx = τ(xy)

where τ ∈ Sn+m is the element given by τ(i) = i +m for 1 ≤ i ≤ n and
τ(i) = i− n for n+ 1 ≤ i ≤ n+m.

Definition 2. Let FB be the groupoid of finite sets and bijections. A tca is then
a lax symmetric monoidal functor A : FB→ Modk, where the monoidal structure
on the source is disjoint union and on the target is tensor product. Precisely, this
means A is a functor assigning to every finite set S a k-module AS together with
maps AS ⊗AT → AS∐T (this is the “lax monoidal” part) such that the diagram

AS ⊗AT
//

��

AS∐T

��
AT ⊗AS

// AT∐S

commutes, where the vertical maps are the given isomorphisms (this is the “sym-
metric” part). The commutativity of this diagram corresponds to the twisted
commutativity axiom in Definition 1.

Definition 3. A representation of S∗ is a sequence M = (Mn)n≥0 where Mn

is a representation of Sn over k. If M and N are two representations of S∗, we
define their tensor product to be the representation of S∗ given by

(M ⊗N)n =
⊕

i+j=n

IndSn

Si×Sj
(Mi ⊗k Nj).

There is a natural isomorphism M ⊗N → N ⊗M ; this makes use of the element
τ in Definition 1. In this way, the category Repk(S∗) of representations of S∗
has a symmetric monoidal structure. A tca is just a commutative algebra object
in this tensor category; that is, it is an object A of Repk(S∗) equipped with a
multiplication map A ⊗ A → A and a unit map k → A satisfying the usual
axioms.

We note that there is a notion of module over a tca. From the perspective of
Definition 3, a module is just a module object in the general sense of tensor
categories.

Examples. We now give some examples of the definitions:

(1) Let A be the graded k-algebra k[t], where t has degree 1. We regard this
as a tca by letting Sn act trivially on each graded piece. An A-module is a
representation M of S∗ equipped with maps Mn →Mn+1 (multiplication
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by t). This looks a lot like what one gets from an FI-module, and, in fact,
one can show that the category of A-modules is equivalent to the category
of FI-modules.

(2) Let V be a k-module and let A be the tensor algebra on V , equipped with
its usual grading. We let Sn act on An = V ⊗n by permuting tensor factors.
Then A is a tca. If we regard V as a representation of S∗ concentrated
in degree 1 then A is in fact the symmetric algebra on V (in the tensor
category Repk(S∗)). If V is a free module of rank d then A-modules are
equivalent to FId-modules.

(3) Taking the perspective of Definition 2, let AS be the free k-module on the
set of matchings on S. (A matching is an undirected graph in which each
vertex belongs to precisely one edge.) The multiplication map AS⊗AT →
AS∐T is induced by taking the disjonit union of matchings. This is a tca.
In fact, it is the symmetric algebra on the trivial representation of S2,
regarded as an object of Repk(S∗) concentrated in degree 2. Modules for
this tca are equivalent to FIM-modules.

3. Structure theory

One of the main problems in the subject of tca’s is to understand the structure of
module categories. Some examples of the kinds of problems and results that have
been studied:

(1) One of the main problems is noetherianity: if A is a finitely generated tca
over a noetherian coefficient ring, is the module category ModA locally
noetherian? This is known for the three examples given above (although
only in characteristic 0 for the third example), and this nearly exhausts
the list of known results. Draisma [2] has proven a topological version
of noetherianity in general, which strongly suggests that ModA is locally
noetherian in general.

(2) If M is a module over a tca (and k is a field), its Hilbert series is defined

to be HM (t) =
∑

n≥0 dim(Mn)
tn

n! . One would like to know the form of
this series. Much is known for modules over the three example tca’s: for
example, for Example 2 the Hilbert series is a polynomial in t and et. For
more general tca’s, not much is yet known.

(3) There are a whole manner of finer structural results for modules over the
three example tca’s, many of which are analogous to classical results in
commutative algebra. For example, there is a theory of local cohomology
and depth. See [8, 9].
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Configuration space in a product

John D. Wiltshire-Gordon

This talk explains how to compute the homotopy type of Conf(n,X × Y ) using
the homotopy types of certain configuration spaces in X and Y separately.

First, note that the homotopy types of Conf(n,X) and Conf(n, Y ) alone will
not be enough to recover the homotopy type of Conf(n,X × Y ). For example,
when X = {0, 1} and Y = R, the inclusion X ⊂ Y induces an equivalence

Conf(2, {0, 1}) ≃ Conf(2,R)

but Conf(2,R × R) 6≃ Conf(2, {0, 1} × {0, 1}). To avoid this pitfall, our theorem
relies on a richer kind of configuration space.

If X is a space and Γ is a graph, define the graphical configuration space

Conf(Γ, X) = {f : V (Γ)→ X so that a ∼Γ b =⇒ f(a) 6= f(b) }.
Writing GI for the category of finite graphs with injections, we have a functor

Conf(−, X) : GIop → Top

given by relabeling vertices and forgetting both vertices and edges. The restriction
of this functor along the complete graph functor K : FI → GI recovers the usual
FIop-structure on configuration space.

We introduce a new category called GI2 to help with configuration space in a
product. It is defined as the full subcategory of GI×GI spanned by pairs of graphs
(Γ′,Γ′′) for which V (Γ′) = V (Γ′′). In other words, an object of GI2 is a pair of
graph structures on the same underlying set of nodes. The union functor

U : GI2 → GI
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sends a pair (Γ′,Γ′′) to the graph on the same vertex set as Γ′ and Γ′′ that includes
every edge that appears in either graph.

Theorem 1. The natural map from the homotopy left Kan extension along Uop

L(Uop)!
[
Conf(−, X)× Conf(−, Y )

]
→ Conf(−, X × Y )

to the configuration space in the product is a pointwise weak equivalence.

Since the left hand side of the map in Theorem 1 only depends on homotopy-
theoretic information, we have found the desired description of Conf(n,X × Y ),
and could even iterate to find Conf(n,X × Y × Z) for example.

The rest of the talk switches to the following reformulation of Theorem 1.

Theorem 2. If P(Γ) is the poset of pairs of subgraphs Γ′,Γ′′ ⊆ Γ so that Γ =
U(Γ′,Γ′′), then the natural map

hocolim
(Γ′,Γ′′)∈P(Γ)op

[
Conf(Γ′, X)× Conf(Γ′′, Y )

]
→ Conf(Γ, X × Y )

is a weak equivalence.

Braid matroid Kazhdan–Lusztig polynomials

Max Wakefield

Kazhdan–Lusztig polynomials for matroids mimic the classical Kazhdan–Lusztig
polynomials (originally defined in [4]) in many ways. Both these polynomials
fit into the wider combinatorial theory of Kazhdan-Lusztig-Stanley polynomials
defined in [7] and refined in [1]. In the case of matroids there is a significant amount
of combinatorial machinery one can use to interpret these polynomials. From many
perspectives braid matroids are the most important family of matroids. It is an
open problem to find a simple closed formula for the braid matroid Kazhdan–
Lusztig polynomials. In this note we will briefly survey matroid Kazhdan–Lusztig
polynomials and discuss some recent results on computing them for braid matroids.
We will focus on the combinatorial perspective, however a rich algebraic view
was recently taken by Proudfoot and Young in [6] which yielded some crucial
information about the generating functions of the coefficients for braid matroid
Kazhdan–Lusztig polynomials.

Let A = {H1, . . . , Hn} be an arrangement of hyperplanes in Cℓ with linear
forms ker(αi) = Hi. The complex complement UA = Cℓ \⋃Hi is an important
manifold. In the case where A is the braid arrangement (i.e. all the hyperplanes
of the form {xi − xj = 0}) the manifold UA is the configuration space of ℓ-points
in C. The Zariski closure in Cn of the compositions of the maps f : UA → (C∗)n

and g : (C∗)n → (C∗)n defined by f(~x) = (αi(~x)) and g(xi) = (x−1
i ) respectively

is called the reciprocal plane which we denote by XA = g ◦ f(UA). The coordinate
ring of XA is the Orlik-Terao algebra OT (A) = C[α−1

1 , . . . , α−1
n ]. Let

P (XA, t) =
∑

dim(IH2i(XA))t
i
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where IH(XA) is the topological intersection cohomology over C. This Poincaré
polynomial was the motivation for the study matroid Kazhdan–Lusztig polynomi-
als.

Let M be a matroid with lattice of flats L(M). If M is realizable with arrange-
ment A then we write M(A) for the matroid and L(A) for its lattice of flats. For
F ∈ L(M) we call L(M)F = {X ∈ L(M)|X ≤ F} the localization of L(M) at F
and L(M)F = {X ∈ L(M)|X ≥ F} the restriction of L(M) at F . Then we will
denote MF and MF the matroids associated to the lattices L(M)F and L(M)F

respectively. Now we can define the matroid Kazhdan–Lusztig polynomials.

Definition 1 (Theorem 2.2 in [2]). There is a unique way to assign to each matroid
M a polynomial P (M, t) ∈ Z[t] such that the following conditions are satisfied:

(1) If rkM = 0, then P (M, t) = 1.
(2) If rkM > 0, then degP (M, t) < 1

2 rkM .

(3) For every M , trkMP (M, t−1) =
∑

F

χ(MF , t)P (M
F , t).

In this definition χ(M, t) is the characteristic polynomial of the matroid. This
combinatorial definition turns out to give the Poincaré polynomial of the intersec-
tion cohomology.

Theorem 1 (Theorem 3.10 in [2]). P (XA, t) = P (M(A), t)
Theorem 1 gives a few nice corollaries. First it shows that the Betti numbers

of the intersection cohomology are combinatorial. Second it shows that for repre-
sentable matroids the polynomials P (M, t) have non-negative coefficients. So, one
can naturally conjecture that these polynomials have non-negative coefficients for
all matroids.

A question remains: does this combinatorial definition help us compute these
polynomials for infinite families of matroids? The most important family of ma-
troids is the so called braid matroids, denoted here as Bn, associated to the con-
figuration spaces, type A Coxeter groups, and complete graphs. Conveniently, the
lattice of flats of the braid matroid is the set partition lattice. Unfortunately, there
are no known closed formulas for any coefficients for these polynomials and we do
not even have a conjectural formula except for the top coefficient. Fortunately,
using Stirling numbers we can obtain a few different formulas for the braid matroid
Kazhdan–Lusztig polynomials.

Definition 2. Suppose rk(L(M)) = N and I = (i1, i2, . . . , ir) has 0 ≤ i1 ≤ i2 ≤
· · · ≤ ir ≤ N . The set of partial flags of L(M) associated to I is

L(M)I = {(X1, X2, . . . , Xr) ∈ L(M)r | rk(Xj) = ij , and X1 ≤ X2 ≤ · · · ≤ Xr}.
The partial flag (also called multi-indexed) Whitney numbers of the second kind
are WI = |L(M)I |.

Using these partial flag Whitney numbers once can define an index set Si and
two functions si : Si → Z and t : Si → 2Z[N ] constructed in [8].
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Theorem 2 (Theorem 11 in [8]). For any finite, ranked lattice P such that rk(P ) =
N , the degree i coefficient of the Kazhdan–Lusztig polynomial of P with 1 ≤ i <
N/2 is

∑

I∈Si

(−1)si(I)(Wt(I)(P )−WI(P )).

A very similar result was given in [5].

Theorem 3 (Theorem 3.3 in [5]). For all i > 0, the degree i coefficient of the
matroid Kazhdan–Lusztig Polynomial, Ci for a matroid of rank N is

i∑

r=1

∑

D⊂[r]

(−1)|D|
∑

(am)

W(N−(atr(S)+ar+1),...,N−(at1(S)+a0))

where W is the multi-indexed Whitney number of the sequence of integers (am)
such that a0 = 0, ar = i, ar+1 = rk(M)− i, a0 < a1 < · · · < ar < ar+1, and

tj(S) = min{k | k ≥ j and k 6∈ S} ∈ [r + 1].

Now both of these theorems use flag Whitney numbers of the second kind. For
braid matroids these flag Whitney numbers are products of Stirling numbers of
the second kind S(n, k) = the number of set partitions of a set with size n with k
blocks. For I = (i1, i2, . . . , ik),

WI(Bn) =

k−1∏

j=0

S(n− ij , n− ij+1).

Since both Theorem 2 and Theorem 3 use Stirling numbers of the second kind
for braid matroids wouldn’t it be nice to have a Stirling number of the first kind
formula. This was the subject of recent work by Trevor Karn and the author in
[3]. To state the theorem, we need a little notation.

Definition 3 (Theorem 3.3 in [3]). Let n ≥ 2 and i < n−1
2 . Define Kn,i to be the

set of all triples (Λ, A,Ξ) where Λ = [λ1, . . . , λq] is a sequence of number partitions,
and A = [α1, . . . , αq] and Ξ = [ξ1, . . . , ξq] are sequences of integers which satisfy:

(1) λ1 ⊢ n
(2) λj ⊢ ℓ(λj−1) for all 1 < j ≤ q
(3) α1 + ξ1 = n− 1− i
(4) αj + ξj = ℓ(λj−1)− 1− ξj−1 for j > 1
(5) 0 ≤ αj ≤ |λj | − ℓ(λj) for all j
(6) ξj = 0 when ℓ(λj) = 1

(7) 0 ≤ ξj < ℓ(λj)−1
2 when ℓ(λj) ≥ 2

(8) ξj = 0 if and only if q = j.

Using Kn,i as an index set, we can state a Stirling number of the first kind
formula for the braid matroid Kazhdan–Lusztig polynomials.
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Theorem 4. For n ≥ 2 and i < n−1
2 ,

P (Bn, t)i =
∑

(Λ,A,Ξ)




q∏

j=1

m(λj)
∑

(dj

k
)

ℓ(λj)∏

k=1

s(bjk, d
j
k)


 ,

where (Λ, A,Ξ) = ([λ1, . . . , λq], [α1, . . . , αq], [ξ1, . . . , ξq]) ∈ Kn,i, b
j
k is the kth block

of λj, and the last sum is over all sequences (djk) = (dj1, . . . , d
j
ℓ(λj)

) satisfying
∑ℓ(λj)

k=1 djk = αj + ℓ(λj) and 1 ≤ djk ≤ b
j
k.

Many questions remain open for braid matroid Kazhdan–Lusztig polynomials.
(1) Do Theorems 2, 3, and 4 imply anything about the complexity of these coef-
ficients? (2) Could Theorems 2, 3, and 4 help in computing the top coefficient of
P (Bn, t), conjectured in [2]?
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Resolvent Degree, Hilbert’s 13th Problem and Geometry

Jesse Wolfson

(joint work with Benson Farb)

We start with a problem central to classical (and modern) mathematics.

Problem 1. Find and understand formulas for the roots of a polynomial

P (z) = zn + a1z
n−1 + · · ·+ an

in terms of the coefficients a1, . . . , an.

It is well known that if n ≥ 5 then no formula exists using only radicals and
arithmetic operations in the coefficients ai.

1 Less known is Bring’s 1786 theorem
[Bri] that any quintic can be reduced via radicals to a quintic of the form Q(z) =
z5+ az+1 (see [CHM] for a contemporary translation). In 1836, Hamilton [Ham]

1This was claimed by Ruffini in 1799; a complete proof was given by Abel in 1824.
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extended Bring’s results to higher degrees, showing, for example, that any sextic
can be reduced via radicals toQ(z) = z6+az2+bz+1, that any degree 7 polynomial
can be reduced via radicals to one of the form

(1) Q(z) = z7 + az3 + bz2 + cz + 1.

and that any degree 8 polynomial can be reduced via radicals to one of the form
Q(z) = z8 + az4 + bz3 + cz2 + d + 1. Hilbert conjectured explicitly that one
cannot do better: solving a sextic (resp. septic, resp. octic) is fundamentally a
2-parameter (resp. 3-parameter, resp. 4-parameter) problem. More precisely, we
have the following invariant, first introduced by Brauer [Bra].

Definition 2 (Resolvent degree). Fix a field k. Let X̃ → X be a generically

finite dominant map of k-varieties. The resolvent degree RD(X̃ → X) is the
smallest d ≥ 0 with the following property: there is a chain of generically finite
dominant maps

Xr → Xr−1 → · · · → X0 = X

such that Xr → X factors through a dominant map to X̃ and such that for each
i there is a variety Y with dim(Y ) ≤ d so that Xi+1 → Xi is a pullback

X̃i+1 → Ỹy y
Xi → Y

Example 3. Let Pn denote the space of monic degree n polynomials (i.e. An
k/Sn),

let P̃n denote the space of monic degree n polynomials with a choice of root (i.e.

An
k/Sn−1), and let P̃n → Pn be the finite map obtained by forgetting a root.

In this language, the classical results on reduction of parameters can be restated
succinctly as:

RD(P̃n → Pn) = 1 ∀n ≤ 5, and RD(P̃n → Pn) ≤ n− 4 ∀n > 5.

Buhler-Reichstein, Merkujev and others have developed a beautiful and widely

applicable theory of essential dimension ed(X̃ → X), where one forces r = 1 in
Definition 2; see Reichstein’s 2010 ICM paper [Re] for a survey. This disallowing of
so-called “accessory irrationalities” captures more of the arithmetic of the ground
field k(X), whereas RD captures more of the intrinsic complexity of the branched
cover.

Hilbert’s problems. As already noted by Brauer [Bra], Hilbert’s conjecture
(explicitly asked by Hilbert in [Hi1, p.424] and [Hi2, p.247]) that Hamilton’s re-
duction of parameters for the general polynomial of degree 6, 7, or 8 is optimal,
can now be stated precisely, as can the problem for all degrees. Both Klein and
Hilbert worked on this general problem for decades (see [Kl1, Hi1, Hi2]).

Problem 4 (Klein, Hilbert, Brauer). Compute RD(P̃n → Pn). In particular:

Hilbert’s Sextic Conjecture ([Hi2], p.247): RD(P̃6 → P6) = 2.

Hilbert’s 13th Problem ([Hi1],p.424): RD(P̃7 → P7) = 3.
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Hilbert’s Octic Conjecture ([Hi2], p.247): RD(P̃8 → P8) = 4.

Beyond these, we have the following, which are implicitly due to Hilbert, and
probably Brauer.

Conjecture 5. There exists an example with RD(X̃ → X) > 1.

Conjecture 6. RD(P̃n → Pn)→∞ as n→∞.

Along with the Hilbert Sextic Conjecture and Hilbert 13, these are clearly
among the most important conjectures in this area. Amazingly, no progress has
been made on these conjectures or on either of the three special cases above since
Hilbert stated them. In 1957, Arnol’d and Kolmogorov proved (see [Ar]) that there
is no local topological obstruction to reducing the number of variables; however,
as Arnol’d and many others have noted, the global problem remains open. While
these conjectures provide the primary challenges for the field, the explicit study
of resolvent degree is already yielding improvements on old theorems, and striking
relationships between seemingly different problems. Two sample theorems provide
an indication of what to expect.

First, we expect rapid improvement should be possible on existing upper bounds

on resolvent degree. Brauer in 1975 proved that for n ≥ 4, RD(P̃n → Pn) ≤ n− r
once n > B(r) := (r − 1)!. In [FW2], we prove the following. Let RD(r,N)
denote the resolvent degree of finding an r-dimensional linear subspace on a cubic
hypersurface in PN . A dimension count shows that the function RD(r,N) grows
at most polynomially in r and N .

Theorem 7 (Farb-W). There exist a pair of polynomial functions f, g : N×N→
N such that, for n ≥ (d+k)!

d! ,

RD(P̃n → Pn) ≤ max{n− (d+ k + 1),RD(f(d, k), g(d, k))}.
Corollary 8. There exist monotone increasing functions FW,ϕ : N→ N s.t.

- For n > FW (r), RD(P̃n → Pn) ≤ n− r,
- For all d ≥ 0, r ≥ ϕ(d), then B(r)/FW (r) ≥ d!.

This improvement over Brauer uses ideas of Hilbert [Hi2], who used lines on
cubic surfaces to simplify the degree 9 polynomial. We are confident that fur-
ther improvements will follow from incorporating ideas of Hamilton and Sylvester.
While such theorems do not address the fundamental questions of lower bounds
above, they provide a testing ground for new methods and give us evidence as to

the eventual shape of the function RD(P̃n → Pn).
For a second example of the type of theorems we expect to follow from renewed

interest in resolvent degree, we prove the following in [FW1].

Theorem 9 (Farb-W.). The following statements are equivalent:

(1) Hilbert’s Sextic Conjecture is true: RD(P̃6 → P6) = 2.
(2) RD = 2 for the problem of finding the 27 lines on a cubic, given a “double

six” set of lines.
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(3) RD = 2 for the problem of finding a fixed point for the hyperelliptic invo-
lution on a genus 2 curve.

In fact, the resolvent degrees of all of the above problems coincide.

We also prove similar reformulations for Hilbert’s 13th Problem and Hilbert’s
Octic Conjecture. While we make no definite progress toward proving nontrivial
lower bounds for RD, we hope that with renewed attention to Hilbert’s conjectures
and to resolvent degree, future progress may be more forthcoming.
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On the Johnson homomorphisms of the automorphism groups of free
groups

Takao Satoh

In the 1980s, Dennis Johnson established a remarkable method to investigate the
group structure of the mapping class groups of surfaces in a series of his works. In
particular, he constructed a certain homomorphism τ to determine the abelianiza-
tion of the Torelli group. Today, his homomorphism τ is called the first Johnson
homomorphism. Over the last three decades, good progress was made in the study
of the Johnson homomorphisms of mapping class groups through the works of a
large number of authors, including Morita [13], Hain [9], Cohen-Pakianathan [3, 4]
and Farb [8] as pioneer works. In addition to this, we have a lot of interesting and
remarkable works given by participants of this workshop, including Brendle [2],
Papadima–Suciu [15], Patzt [16], Djament–Vespa [7].
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The definition of the Johnson homomorphisms can be naturally generalized to
the automorphism groups of free groups. Let Fn be a free group of rank n, H
the abelianization of Fn, and AutFn the automorphism group of Fn. The kernel
of the homomorphism AutFn → GL(n,Z) induced from the action of AutFn on
H , is called the IA-automorphism group of Fn, and is denoted by IAn. In 1965,
Andreadakis [1] introduced a descending central filtration

IAn = An(1) ⊃ An(2) ⊃ · · ·
of IAn, and showed that each graded quotient grk(An) := An(k)/An(k+1) is a free
abelian group of finite rank. We call the above filtration the Andreadakis–Johnson
filtration of AutFn. Johnson studied this kind of filtration for the mapping class
groups in the 1980s. In order to investigate the structure of grk(An), we consider
the k-th Johnson homomorphism

τk : grk(An)→ H∗ ⊗Z Ln(k + 1).

Each of τk is GL(n,Z)-equivariant and injective. Based on our previous work and a
recent remarkable work by Darné [5], the stable cokernel of τk has been determined
as

Coker(τk) ∼= H⊗k/(Cyclic Permutation) (n ≥ k + 2).

On the other hand, the mapping class group case is much more difficult and
mysterious, and the image of the Johnson homomorphisms are not determined
yet.

One of the motivations to study of the Johnson homomorphisms is to consider
applications to twisted cohomology groups. Kawazumi [12] extended the first
Johnson homomorphism to AutFn as a crossed homomorphism. We [19] computed
H1(AutFn, (H

∗⊗Λ2H)Z⊗Q) = Q⊗2, and described generators with the extension
of τ1. So far, there are only a few computations of stable twisted cohomology
groups, including those by Hatcher–Wahl [10], Djament–Vespa [6] and Randal-
Williams–Wahl [18]. Pettet [17] determined the GL(n,Q)-decomposition of the
image of the cup product ∪ : Λ2H1(IAn,Q)→ H2(IAn,Q). Based on her results,
recently we showed that H2(AutFn, (Im(∪))∗) ⊃ Q⊕dn where dn is the number of
the irreducible components of Im(∪).

Recently, we discovered that the framework of the theory of the Johnson homo-
morphisms can be applied to the ring of complex functions on SL(2,C)-representa-
tions of Fn. Let R(Fn) be the set of all SL(2,C)-representations of Fn, and F(Fn)
the set of all complex-valued functions on R(Fn). Then F(Fn) naturally has the
C-algebra structure by the pointwise sum and product. Furthermore, AutFn nat-
urally acts on F(Fn) from the right. For any x ∈ Fn and any 1 ≤ i, j ≤ 2, define
aij(x) of F(Fn) to be

(aij(x))(ρ) := (i, j)-component of ρ(x)

for any ρ ∈ R(Fn). Let RQ(Fn) be the Q-subalgebra of F(Fn) generated by all
aij(x) for x ∈ Fn and 1 ≤ i, j ≤ 2. Let J be the ideal of RQ(Fn) defined by

J := (aij(x) − δij |x ∈ Fn, 1 ≤ i, j ≤ 2) ⊂ RQ(Fn)
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where δij is Kronecker’s delta. Then, we have the descending filtration J ⊃ J2 ⊃
J3 ⊃ · · · , and each graded quotient grk(J) := Jk/Jk+1 is an AutFn-invariant
finite dimensional Q-vector space. Set HQ := H⊗ZQ. For n ≥ 3, we [20] obtained
the following.

(1)
⋂

k≥1 J
k = {0}.

(2) For any k ≥ 1, grk(J) ∼=
⊕

e11+e12+e21=k

Se11HQ ⊗Q S
e12HQ ⊗Q S

e21HQ.

(3) RQ(Fn) is an integral domain, and is isomorphic to the universal SL2-
representation ring of Fn.

Now, for any k ≥ 1, let Dn(k) be the kernel of the homomorphism AutFn →
Aut(J/Jk+1) induced from the action of AutFn on J/Jk+1. Then the groups
Dn(k) define a descending filtration Dn(1) ⊃ Dn(2) ⊃ · · · of AutFn. This is
an SL(2,C)-representation analogue of the Andreadakis-Johnson filtration. For
n ≥ 3, we [20] showed

(1) [Dn(k),Dn(l)] ⊂ Dn(k + l) for any k, l ≥ 1.
(2) An(k) ⊂ Dn(k) for any k ≥ 1. Furthermore, this is equal for 1 ≤ k ≤ 4.

From Part (1), we see that the graded quotients grk(Dn) := Dn(k)/Dn(k + 1) are
abelian groups for any k ≥ 1. In order to study the structure of grk(Dn), we have
introduced the homomorphisms ηk : grk(Dn) → HomQ(gr

1(J), grk+1(J)) defined
by

σ (mod Dn(k + 1)) 7→
(
f (mod J2) 7→ fσ − f (mod Jk+1)

)
.

The homomorphisms ηk is SL(2,C)-representation analogues of the Johnson ho-
momorphisms. In [20], we showed that each ηk is AutFn/Dn(1)-equivariant injec-
tive homomorphism. This implies that each of grk(Dn) is torsion-free, and that
dimQ(gr

k(Dn)⊗ZQ) <∞. Now, we conjecture that An(k) = Dn(k) for any k ≥ 1.

Finally we remark that in [21], we consider the above framework for SL(m,C)-
representations of Fn for any m ≥ 2, and obtained similar results as a part of the
above.
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Polynomial behaviour for stable homology of congruence groups

Aurélien Djament

An ideal in a (unital) ring is the same as a ring without unit: such a (non-unital)
ring I can be seen as the two-sided ideal given by the kernel of the augmentation
Z⋉ I ։ Z, where Z⋉ I is the unital ring obtained by formally adding a unit to I.
The framework in the preprint [6], on which this talk is reporting, is more general,
but most of the ideas and applications are already in this classical setting.

The congruence groups associated to I are defined by

Γn(I) := Ker (GLn(Z ⋉ I) ։ GLn(Z)).

We look for qualitative properties of the homology of these groups. As in the
case of usual linear groups, we have obvious stabilisation maps H∗(Γn(I);Z) →
H∗(Γn+1(I);Z): we will deal only with stable properties (as in algebraicK-theory),
that is, properties of the colimit of this sequence of graded abelian groups. But
we have also a richer structure: H∗(Γn(I);Z) in endowed with a natural action of
GLn(Z) (induced by the conjugation action) which is generally not trivial (even
stably). We will later express these structures (and their compatibility properties)
in a functorial setting.
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Earlier known results

Suslin [12] proved the following striking Theorem (which improves the rational
result that he got with Wodzicki in [13], with a different method).

Theorem 1 (Suslin 1995). Let d > 0 be an integer.

(1) The following statements are equivalent.
(a) Stably in n, the action of GLn(Z) on Hi(Γn(I);Z) is trivial for i < d;
(b) I is excisive for algebraic K-theory in homological degree < d;

(c) TorZ⋉I
i (Z,Z) = 0 for 0 < i < d.

(2) There is a natural map Hd(Γn(I);Z)→ gln
(
TorZ⋉I

d (Z,Z)
)
(where gln(M)

denotes the n×n matrices with entries inM) which is GLn(Z)-equivariant,
compatible with stabilisation in n, and whose kernel and cokernel bear a
trivial GLn(Z)-action stably in n if the previous conditions are fulfilled.

(Note that TorZ⋉I
1 (Z,Z) ≃ I/I2, so the conditions are only seldom fulfiled for

d > 1; for d = 1, the last statement is classical and not hard.)

Other known results give informations on H∗(Γn(I)) for each homological de-
gree, but only for particular non-unital rings I.

In [1], Calegari proved the following asymptotic polynomial behaviour for ho-
mology of classical congruence groups.

Theorem 2 (Calegari 2015). Let p be a prime number and k, i be non-negative
integers. Then

dimHk(Γn(p
iZ);Fp) =

n2k

k!
+O(n2k−2).

Another important recent result (whose methods are completely independent
from the ones used to prove both previous Theorems) is due to Putman [9], with
an input given by an older work by Charney [4]. This result was quickly improved
by the systematic use of functorial methods that we will remind now.

Statements in terms of polynomial functors

Let (C,+, 0) be a small symmetric monoidal category whose unit 0 is an initial
object. For convenience we will assume that the objects of C are the natural in-
tegers and that + is the usual sum on objects. The precomposition by − + 1 is
an exact endofunctor, denoted by τ , of the category C-Mod of functors from C to
abelian groups; with Vespa we studied in [7] the quotient category St(C-Mod) of
C-Mod obtained by killing the functors which are stably zero, that is, by quoti-
enting out the localising subcategory of C-Mod generated by functors F such that
the canonical map F → τ(F ) is zero (equivalently, a functor F is stably zero if
and only if colim

n∈N
F (n) = 0).

We introduced two notions of polynomial functor of degree d: a strong one,
which captures also unstable phenomena, and a weak one, which depends only
of the isomorphism class of the functor in St(C-Mod). For example, a functor
in C-Mod is weakly polynomial of degree ≤ 0 if and only if it is isomorphic
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in St(C-Mod) to a constant functor. For the definition of strongly and weakly
polynomial functors and properties, we refer to [7] or to the talk by Vespa in this
meeting. Weakly polynomial functors of (weak) degree ≤ d (or more precisely,
their images in St(C-Mod)) form a localising subcategory of St(C-Mod) denoted
by Pold(C-Mod). For example, gl•(M) is a strongly polynomial functor of degree
2 in S(Z)-Mod (where S(Z) is defined just below), for any abelian group M .

We are interested here in the following monoidal categories C with the previous
properties: the category FI for which FI(n,m) is the set of injections from n :=
{1, . . . , n} to m (the monoidal structure being given by disjoint union) and the
category S(R), where R is a unital ring, for which

S(R)(n,m) := {(f, g) ∈ HomR(R
n, Rm)×HomR(R

m, Rn) | g ◦ f = Id}
(the monoidal structure being given by direct sum). These categories are also
homogeneous categories in the sense of Randal-Williams and Wahl [10] (a very
general framework which is related to the one used at the beginning of [8]).

For any unital ring R, n 7→ GLn(R) defines a functor GL•(R) from S(R) to the
category of groups. If I is a non-unital ring, n 7→ Γn(I) is a subfunctor of GL•(Z⋉

I). By taking the homology, we get a functor Hd(Γ•(I)) in St(S(Z ⋉ I)-Mod)
for each d, which lives indeed in S(Z)-Mod (because inner automorphisms act
trivially in homology). By restricting it along the canonical monoidal functor FI→
S(Z), several authors, improving Putman [9], showed that Hd(Γ•(I)) is strongly
polynomial for each d if the ring I is nice enough—see Church–Ellenberg–Farb–
Nagpal [3] of Church–Ellenberg [2]. Recently, Church–Miller–Nagpal–Reinhold [5]
obtained the following result, always by using FI-modules.

Theorem 3 (Church–Miller–Nagpal–Reinhold, preprint 2017). If I is an ideal
in a unital ring R satisfying Bass condition (SRr+2), then for each non-negative
integer d, Hd(Γ•(I);Z) is a weakly polynomial functor of (weak) degree ≤ 2d+ r.

In [6], the following stronger result is proven.

Theorem 4. Let I be a ring without unit and e > 0 an integer such that
TorZ⋉I

i (Z,Z) = 0 for 0 < i < e (for example, e = 1).

(1) For each integers r, d ≥ 0 and each object F in Polr(S(Z ⋉ I)-Mod), the
functor Hd(Γ•(I);F ) belongs to Pol2[d/e]+r(S(Z)-Mod) (where the brack-
ets denote the floor function).

(2) If e is odd (respectively even), then for each integer n ≥ 0, Hne(Γ•(I);F ) is
isomorphic in the quotient category
Pol2n(S(Z)-Mod)/Pol2n−2(S(Z)-Mod) to Λn(gl•(Tor

Z⋉I
e (Z,Z))) (resp.

Sn(gl•(Tor
Z⋉I
e (Z,Z)))), where Λn (resp. Sn) denotes the n-th exterior

(resp. symmetric) power (over the integers).

For n = 1, the second part of this theorem is equivalent to Suslin’s Theorem 1.

Ingredients of the proof

The input of the proof of Theorem 4 is a version in degree 0 with twisted coef-
ficients: one has an (easy) stable natural isomorphism H0(Γ•(I);F ) ≃ Φ∗(F ) in
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St(S(Z)-Mod) for any functor F in S(Z ⋉ I)-Mod, where Φ : S(Z ⋉ I) → S(Z)
denotes the reduction modulo the ideal I and Φ∗ the left Kan extension along Φ.

One can then derive this isomorphism (even in a quite more general framework)
to get a stable spectral sequence

E2
i,j = Li

(
(−⊗

⊕
Hj(Γ•(I);Z)) ◦ Φ∗

)
(F )⇒ Hi+j(Γ•(I);F )

where ⊗
⊕

: (S(Z)-Mod) × (S(Z)-Mod) → S(Z)-Mod is the composition of the

external tensor product with the left Kan extension along the direct sum functor
S(Z)× S(Z)→ S(Z).

When F factorises through Φ : S(Z⋉ I)→ S(Z), the abutment H∗(Γ•(I);F ) of
the spectral sequence can be expressed simply from F and H∗(Γ•(I);Z), thanks
to the universal coefficients exact sequence for group homology. So the spectral
sequence gives informations on H∗(Γ•(I);Z). One needs several steps to show the
wished result with this program, especially:

• a comparison theorem of stable (in the sense of categories St introduced
above!) derived categories of S(Z)-Mod and F(Z)-Mod, where F(Z)
denotes Quillen’s category of factorizations of free abelian groups of finite
rank, on (weakly) polynomial functors. This is inspired by Scorichenko’s
thesis [11];
• A study of the left derived functors of Φ∗ on polynomial functors (using
the first step);
• a study of the tensor product ⊗

⊕
and its left derivatives on polynomial

functors (also using the first step);
• a concrete argument of triangular groups inspired by Suslin–Wodzicki [13];
• some functorialities of the above spectral sequence.
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Secondary representation stability for configuration spaces

Jeremy Miller

(joint work with Jennifer Wilson)

1. Indecomposables of an FI-module

Throughout, we work over a commutative unital base ring R. All homology groups
will be understood to have coefficients in R, all tensor products will be over R,
and the term FI-module will mean a functor from the category of finite sets and
injections to the category of R-modules.

One of the most popular notions of representation stability is the notion of
finite generation. The following is a measure of the generators of an FI-module.
Following the notation of [2], we make the following definition.

Definition 1.1. Let V be an FI-module and S be a set. Let

HFI
0 (V )S = coker


 ⊕

T⊂S,T 6=S

VT → VS


 .

We say that V has generation degree ≤ d if VS = 0 for all sets S of cardinality
strictly larger than d.

Note that if the modules VS are finitely generated R-modules for all S, then
an FI-module is finitely generated as an FI-module if and only if it has finite
generation degree.

In general, the groups HFI
0 (V ) should not be thought of as the generators of

V as an FI-module but only a measure of how large a minimal generating set
must be. Generators are naturally subobjects while the groups HFI

0 (V ) are a
quotient. Although not standard terminology, it would be reasonable to call the
groups HFI

0 (V ) indecomposables as they are analogous to the indecomposables of
a graded algebra.

The subscript 0 inHFI
0 (V ) is used because often one considers higher left derived

functors of HFI
0 which are denoted by HFI

i . Note that if V is an FI ♯-module in
the sense of [3], then

HFI
i (V ) ∼= 0

for all i > 0. Moreover, we can recover V from HFI
0 (V ) by an explicit formula

given in [3]. For this and other reasons, FI ♯-modules are often called induced or
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free. In this case, HFI
0 (V )S naturally sit as a submodule of VS and can be more

reasonably thought of as generators.

2. Configuration spaces

Definition 2.1. For S a set and M a space, let ConfS(M) denote the space of
injections of the set S into the space M . Topologize ConfS(M) with the subspace
topology inside the space of all maps from S toM equipped with the compact open
topology and with S equipped with the discrete topology. Let [k] = {1, . . . , k} and
denote Conf [k](M) by Confk(M).

We call Confk(M) the configuration space of k ordered points in M . One of
the most intensely studied families of FI-modules are the cohomology of ordered
configuration spaces of points in a manifold. See [1] [3], [4], [5]. Here, we will
instead study the homology of configuration spaces. For this to make sense, we
must restrict to a certain class of manifolds.

We will assume that M is a connected, non-compact n-dimensional manifold
with n > 1. In this case, there exists an embedding

e : Rn ⊔M →֒M

which we will fix once and for all. If M has multiple ends, then the isotopy class
of e will not be unique. This embedding induces a map

ConfS(R
n)× ConfT (M)→ ConfS⊔T (M)

which in turn induces a map on homology

Hi(ConfS(R
n))⊗Hj(ConfT (M))→ Hi+j(ConfS⊔T (M)).

For fixed α ∈ Hi(ConfS(R
n)), we denote the induced map by

tα : Hj(ConfT (M))→ Hi+j(ConfS⊔T (M))

and call it the stabilization map associated to the homology class α.
Let p denote the class of a point in H0(Conf1(R

n)). Implicit in [3] is the fact
that the maps

tp : Hi(Confk(M))→ Hi(Confk+1(M))

induce an FI-module structure on the functor

S 7→ Hi(ConfS(M)).

We denote this FI-module byHi(Conf(M)). In [3], Church–Ellenberg–Farb proved
the following (also see [8]).

Theorem 2.2 (Church–Ellenberg–Farb). The FI-modules Hi(Conf(M)) have a
natural FI ♯-module structure and have generation degree ≤ 2i.



96 Oberwolfach Report 2/2018

3. Secondary stability

From now on, we assume M is a surface. Let l denote a generator of
H1(Conf2(R

2)) ∼= R. This class induces a map

tl : Hi(Confk(M))→ Hi+1(Confk+2(M)).

One can check that this induces a map on indecomposables

tl : H
FI
0 (Hi(Confk(M)))→ HFI

0 (Hi+1(Confk+2(M))).

Use the convention that fractional dimensional homology groups are zero and
define

W (M, i)k = HFI
0 (Hi+k/2(Confk(M))).

We get a sequence of symmetric group representations and equivariant maps

W (M, i)0
tl−→W (M, i)2

tl−→W (M, i)4
tl−→W (M, i)6

tl−→ . . .

and

W (M, i)1
tl−→W (M, i)3

tl−→W (M, i)5
tl−→W (M, i)7

tl−→ . . .

Note that one of these sequences will be zero depending on the parity of i. Denote
the other sequence by W (M, i).

The sequence W (M, i) consists of the indecomposables of the FI-module

H∗(Conf(M))

which lie a distance i above the stable range. There does not seem to be an
interesting FI-module structure on W (M, i). However, the maps tl do give the
sequencesW (M, i) the structure of a

∧
Sym2R-module. Here

∧
Sym2R is the free

twisted skew commutative algebra on the trivial one dimensional representation
in degree two. See [9] for a definition of

∧
Sym2R. The main theorem of [8] is the

following.

Theorem 3.1 (M.–Wilson). If R has characteristic zero andM is finite type, then
the sequences W (M, i) are finitely generated for all i as modules over

∧
Sym2 R.

We call this phenomenon secondary representation stability as it involves a
stability pattern outside the classical stable range which only manifests itself after
one appropriately accounts for the primary stability pattern. This was inspired by
secondary homological stability which is a similar pattern discovered by Galatius–
Kupers–Randal-Williams [6] and is also present in the work of Hepworth [7]. The
need to work in characteristic zero stems from the fact that currently, the category
of

∧
Sym2R is only known to be locally Noetherian if R is a ring of characteristic

zero, a result of Nagpal–Sam–Snowden [9].
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Combinatorics of Abelian arrangements

Emanuele Delucchi

1. Abelian arrangements

Let G be one of the groups C, C∗ or E (an elliptic curve), and let Λ be a free
abelian group of rank rank d. Any choice of elements α1, . . . , αn ∈ Λ determines a
family of homomorphisms αi : Hom(Λ,G)→ G and thus an abelian arrangement
in Gd ≃ Hom(Λ,G):

A = {H1, . . . , Hn}, where Hi := kerαi.

From a topological point of view, the object of interest is the complement

M(A ) := Gd \⋃A .

As the combinatorial data associated to an abelian arrangement we consider

– the dimension function δA : 2[n] → N, I 7→ dim(∩i∈IHi) = corank〈αi : i ∈ I〉;
– the multiplicity function mA : 2[n] → N, I 7→ β0(∩i∈IHi);

– the poset of layers C(A ), the set of all connected components of intersections
of the Hi, partially ordered by reverse inclusion.

Algebraic models for the cohomology of M(A ) have been given by Bibby [3]
and by Dupont [16], who also addressed formality questions [17]. Local systems
cohomology has been studied by Levin and Varchenko [18] and Denham, Suciu
and Yuzvinsky [15]. We aim at a structural understanding of the combinatorial
structures, and motivate our approach with a review of some special cases.

1.1. Weyl arrangements. Let Φl be a rank l root system of type ABCD. Taking
{αi} := Φl as a subset of the associated coroot lattics Λ := 〈Φ∨

l 〉, we obtain the
Weyl arrangements AΦl

. Bibby [3] proved representation stability for the action
of the Weyl groupsW (Φl) onM(AΦl

) by way of explicit descriptions of the posets
of layers. Using this we can prove that all posets C(AΦl

) are EL-shellable [12].
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1.2. Linear arrangements: G = C. We refer to the contribution of Michael Falk
in this volume for a detailed overview of the theory in this case. Here we stress that,
from a combinatorial point of view, the function δA and the poset C(A ) encode
equivalent combinatorial data: by knowing one of them it is possible to reconstruct
the other. (Notice that, in this case, mA is constant equal to 1, hence it does not
add any information.) As an abstract poset, C(A ) has the structure of a geometric
lattice. The class of geometric lattices is larger than that of intersection posets of
arrangements, but still corresponds to a class of functions defined by some of the
combinatorial properties of δA . Every such abstract function – respectively, every
geometric lattice – defines a matroid [20].

1.3. Toric arrangements: G = C∗. As an update to the overview given in [7,
Introduction] we mention the study of the ringH∗(M(A ),Z) in [6] and [21] and De
Concini and Gaiffi’s work constructing projective wonderful models forM(A ) and
computing their cohomology [10, 11]. Combinatorial aspects of toric arrangements
appeared in many contexts - see the introduction to [13]. In particular, d’Adderio
and Moci [9] and Brändén and Moci [5], devised a theory of arithmetic matroids
designed to underpin some properties of Moci’s arithmetic Tutte polynomial [19]

(1) TA (x, y) :=
∑

S⊆A

mA (S)(x − 1)δ(S)(y − 1)|S|+δ(S)−δ(S).

2. Group actions on semimatroids

We propose a combinatorial theory based on the observation that abelian arrange-
ments are quotients of periodic arrangements of affine hyperplanes. In fact, to any

locally finite1 set of affine hyperplanes Ã in a vectorspace we can associate the
poset L of all intersection subspaces ordered by reverse inclusion and a function
δ : 2A → Z, δ(X) := dim(∩X), where we set dim(∅) := −1. Posets of the form
L are geometric semilattices, and the function δ satisfies the axioms for a semi-

matroid with Ã as its ground set. Semimatroids and geometric semilattices are
abstractly equivalent in the sense explained in §1.2, see [1, 13].

Definition 1. Let G be a group. A G-semimatroid S is given by a δ-preserving
action of G on the ground set E of a semimatroid or, equivalently, an action of G
by poset automorphisms on the associated geometric semilattice L. We can define

– the poset PS := L/G of orbits;

– a function δS : 2E/G → Z induced by δ (see [13, Definition 3.2]);

– an “orbit-counting” function mS : 2E/G → N,

mS(X) = |{p ∈ PS | p is a supremum of X} /G|
– a polynomial TS(x, y) defined from δS and mS as in Equation (1).

Definition 2. Call the G-semimatroid S

1I.e., every point of the space has a neighbourhood that meets only finitely many hyperplanes.
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– translative if L/G is a finite poset and, for all x ∈ L and every g ∈ G, the
existence of any y ∈ L with y ≥ x and y ≥ gx implies x = gx.

– refined if it is translative, the group G is finitely generated free abelian and, for
all x ∈ L, stab(x) is a free direct summand of G of rank δ(x).

Every abelian arrangement A gives rise to a (refined) G-semimatroid S, with
PS ≃ C(A ), mA = mS, TA (x, y) = TS(x, y). Many well-known properties of
matroids can be generalized, as the following sample of [8, 13] shows.

Theorem 1. If S is translative, then TS(x, y) satisfies deletion-contraction and

χPS
(t) = (−1)δ(∅)TS(1 − t, 0).

Moreover, if S is refined, then H̃i(∆̂(PS),Z) = 0 for i < dim(∆̂(PS)).

Notice that there are translative, nonrefined, representable actions for which
the topological claim of the theorem fails.

See [13] for a discussion of representability and of conditions under which mS

satisfies the axioms of arithmetic matroids. However, we do not know whether
every arithmetic matroid arises from a G-semimatroid.
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Solomon-Terao algebra of hyperplane arrangements

Takuro Abe

(joint work with Toshiaki Maeno, Satoshi Murai and Yasuhide Numata)

This is a short report on the forthcoming paper [2]. Let V = Cℓ andA a hyperplane
arrangement in V , i.e., a finite set of linear hyperplanes in V . For each H ∈ A
fix a linear form αH ∈ V ∗ such that ker(αH) = H . Let S = C[x1, . . . , xℓ] the

coordinate ring of V and DerS :=
⊕ℓ

i=1 S∂xi
the free S-module of S-derivations.

The most important algebra of the hyperplane arrangement is the logarithmic
derivation module defined as follows:

D(A) := {θ ∈ DerS | θ(αH) ∈ SαH (∀H ∈ A)}.
A is free with exponents exp(A) = (d1, . . . , dℓ) if D(A) is a free S-module with
homogeneous basis θ1, . . . , θℓ ∈ D(A) with deg(θi) = di (i = 1, . . . , ℓ). The most
important consequence of the freeness is the following factorization theorem due
to Terao in [5]:

π(A; t) := Poin(Cℓ \
⋃

H∈A
H ; t) =

ℓ∏

i=1

(1 + dit).

Based on logarithmic derivation modules, Solomon and Terao introduced a poly-
nomial Ψ(A;x, t) ∈ Q[x, t] and proved that Ψ(A; 1, t) = π(A; t). For details, see
[4] and [2]. Our purpose is to consider the other specialization Ψ(A;x, 1). First
let us define the new algebra ST (A, η) of A and a homogeneous polynomial η of
degree d > 0 as follows:

ST (A, η) := S/a(A, η),
here a(A, η) := {θ(η) | θ ∈ D(A)} is the Solomon-Terao ideal, and ST (A, η) the
Solomon-Terao algebra with respect to A and η. Let us introduce an example
on the above objects.

Let A be the arrangement defined by x1x2(x
2
1 − x21) = 0 in C2. Then we can

compute
D(A) = 〈x1∂x1 + x2∂x2 , x

3
1∂x1 + x32∂x2〉S ,

thus A is free with exponents (1, 3). When η = x21+x
2
2, the Solomon-Terao algebra

is a(A, η) = (x21+x
2
2, x

4
1+x

4
2). Thus ST (A, η) coincides with the coinvariant algebra
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of the type B2. This observation is true for all the other Weyl arrangements, which
justifies our definition.

To justify this definition more, let us recall two results. The first one is by
Solomon and Terao in [4], asserting that for each d > 0, there exists a non-empty
Zariski open set Ud(A) of the homogeneous polynomial of degree d such that
dimCST (A, η) <∞ for all η ∈ Ud(A). Hence for a generic η, ST (A, η) is Artinian.
Second one is due to the first author, Horiguchi, Masuda, the third author and
Sato in [1]. To state it, let us introduce a notation. Let W be the Weyl group
acting on V , Φ the corresponding root system and Φ+ a fixed positive system. Let
α1, . . . , αℓ be the simple system. A subset I ⊂ Φ+ is a lower ideal if α ∈ I, β ∈ Φ+

satisfy α−β ∈∑ℓ
i=1 Z≥0αi, then β ∈ I. For a lower ideal I, we can defie the ideal

arrangement AI as the set of all reflecting hyperplanes corresponding to the roots
in I. Also, for I, we can define the regular nilpotent Hessenberg varierty X(I),
see [1] for details. Then

ST (AI , P1) ≃ H∗(X(I),C),

where P1 is the lowest degree W -invariant polynomial. Hence the Solomon–Terao
algebra could be a cohomology ring of certain algebraic varieties.

Also, when A satisfies a generic condition called the tameness, it is essentially
shown in [4] (see also [2]) that

Hilb(ST (A, η);x) = Ψ(A;x, 1)

for η ∈ U2(A). Thus for an ideal arrangement AI , it holds that

Ψ(A;x, 1) = Hilb(ST (A, P1);x) = Poin(X ;
√
x).

Thus the Solomon–Terao algebra gives an algebraic counter part of Ψ(A;x, 1) with
possible nice geometric interpretations. Moreover, as an algebra itself, we can show
the following main result about the Solomon–Terao algebra in [2].

Theorem ([3], [2]). ST (A, η) is a complete intersection ring if and only if A is
free for all d > 0 and all η ∈ Ud(A).

Note that the above theorem is shown by Epure and Schulze independently in
[3] when d = 2 with more general setup, i.e., for hypersurface singularities. Hence
we can give another characterization of the freeness in terms of the complete
intersections of the Solomon–Terao algebra.

Since Solomon–Terao algebras provide a way to construct Artinian algebras
from hyperplane arrangements, we can consider several problems related to Ar-
tinian rings. For example, the following questions are important.

Problem ([2]). Let η ∈ S2. Then when is ST (A, η) Gorenstein?

If we want ST (A, η) to be a cohomology ring of some varieties, then it is nec-
essary for ST (A.η) to be Gorenstein. However, we have no example of a non-free
arrangement A such that ST (A, η) is Gorenstein.
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Configuration spaces of graphs

Eric Ramos

Definition 1. A graph is a connected and compact 1-dimensional CW complex.
We call the 0-cells of a graph G the vertices of G, while the 1-cells are referred
to as the edges of G. The number of edges adjacent to a vertex v will be called
the degree of v, and will be denoted µ(v).

Given a graph G, we write Confn(G) to denote the n-stranded configuration

space of G,
Confn(G) = {(x1, . . . , xn) ∈ Gn | xi 6= xj}.

We will write UConfn(G) to denote the unordered n-stranded configuration

space of G
UConfn(G) = Confn(G)/Sn

In the first part of this survey, we will briefly recount the main structural
theorems about the spaces Confn(G) and UConfn(G).

One of the primary techniques in the study of graph configuration spaces is the
use of certain cellular models for Confn(G) and UConfn(G). The first such model
was proposed by Abrams in [Ab]. Using this model, he proved the following.

Theorem 1 (Abrams [Ab], Theorem 3.10). Let G be a graph. Then Confn(G)
and UConfn(G) are aspherical.

Other cellular models have been constructed by Ghrist [Gh], Swiatkowski [Sw],
Farley and Sabalka [FS], and Lütgehetmann [Lu]. Each of these models has proven
to be useful in different circumstances. For instance, the models of Ghrist and
Swiatkowski each showed the following.

Theorem 2 (Ghrist [Gh], Theorem 3.3; Swiatkowski [Sw], Theorem 0.1). Let G
be a graph which is not homeomorphic to a circle. Then Confn(G) is homotopy
equivalent to a CW complex whose dimension is at most the number of vertices of
G of degree ≥ 3. The same statement is true for UConfn(G).

As a consequence of the above, we immediately obtain that the homological
dimensions of Confn(G) and UConfn(G) are bounded independently of n. This
behavior seems to be largely unique in the study of configuration spaces. We



Topology of Arrangements and Representation Stability 103

will also see that, in combination with the following theorem of Gal, it leads to
problems when trying to compute the relevant homology groups.

Theorem 3 (Gal [Ga], Theorem 2). Let G be a graph with e edges, and let e(t)
denote the power series

e(t) =
∑

n≥0

χ(Confn(G))
tn

n!
.

Then,

e(t) =
1

(1 − t)e
∏

(1 + (1− µ(v))t))

where the product is over the vertices of G.

The following theorem was proven using the Farley-Sabalka model for
UConfn(G).

Theorem 4 (Ko and Park [KP], Theorem 3.5). Let G be a graph. Then
H1(UConfn(G)) is torsion-free if and only if G is planar. If H1(UConfn(G))
has torsion, then it must be 2-torsion.

In contrast to the above, it is conjectured that Hi(Confn(G)) is always torsion-
free [CL]. In fact, this has been proven for trees.

Theorem 5 (Chettih and Lütgehetmann [CL], Theorem A). If G is a tree, then
Hq(Confn(G)) is torsion-free for all q ≥ 0.

To conclude, we outline the work that has been done towards applying tech-
niques from representation stability theory to understand the homology groups of
Confn(G) and UConfn(G). One should observe that Theorems 2 and 3 imply that
at least one of the homology groups Hq(Confn(G)) has Betti numbers which grow
at least factorially in n. While this would seem to preclude the usual FI-module
techniques, there are still some conclusions one can draw.

Theorem 6. Let G be a graph, and let SG denote the integral polynomial ring
whose variables are labeled by the edges of G. Then:

(1) [An, Drummond-Cole, Knudsen [ADK], Theorem 4.5] For all q ≥ 0, the
abelian group

⊕
nHq(UConfn(G)) can be equipped with an action of SG,

turning it into a finitely generated graded SG-module.
(2) [Ramos [Ra], Theorem D] If G is a tree, then the SG-module⊕

nHq(UConfn(G)) decomposes as a direct sum of graded twists of square-
free monomial ideals. Moreover, this decomposition only depends on q and
the degree sequence of G.

Note that Maciazek and Sawicki independently proved the statement about the
homology groups only depending on the degree sequence of the tree independently
of the author [MS, Theorem V.3].

Theorem 7 (Lütgehetmann [Lu2], Theorem I). Let G be a 3-connected graph with
at least 4 vertices of degree ≥ 3. Then the FI-module H1(Confn(G);Q) is finitely
generated.



104 Oberwolfach Report 2/2018

Fundamentally, one of the main difficulties with configuration spaces of graphs
is that it is difficult for points to move around one another. Therefore, allowing
the number of points being configured to grow leads to very unstable behaviors.
One way to combat this is to fix the number of points being configured and instead
allow the graph itself to vary. Let T denote the category of trees and injective
maps, and let G denote the category of graphs and injective maps. The following
theorem is to appear in future work.

Theorem 8 (Lütgehetmann and Ramos). For all k, q ≥ 0, The functor T 7→
Hq(Confk(T )) from T to the category of abelian groups is finitely generated. The
same is true of the functor G 7→ Hq(Confk(G)) from G to the category of abelian
groups, so long as q ≤ 1.

It is unknown whether the second half of the above theorem can be expanded
to include all q ≥ 0.

Another theorem in the same vein is the above is the following. Note that for
any injection of sets f : {1, . . . , n} →֒ {1, . . . ,m}, one obtains a map of graphs
Kn → Km between complete graphs. This induces an FI-module structure on the
homology groups Hq(Confk(Kn)) and Hq(UConfk(Kn)), for each fixed k, q ≥ 0,
where we allow n to vary.

Theorem 9 (Ramos and White [RW], Theorem G). The FI-modules
Hq(Confk(Kn)) and Hq(UConfk(Kn)) are finitely generated for all choices of q
and k.

In fact, the above theorem will hold whenever Kn is replaced by any vertex-
stable FI-graph (see [RW] for definitions).

Acknowledgements: The author was supported by NSF grants DMS-1704811
and DMS-1641185.
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Freeness of multi-reflection arrangements for complex reflection groups

Gerhard Röhrle

(joint work with Torsten Hoge, Toshiyuki Mano, Christian Stump)

In his seminal work [13], Ziegler introduced the concept of multi-arrangements gen-
eralizing the notion of hyperplane arrangements. In [10], Terao showed that every
reflection multi-arrangement of a real reflection group with a constant multiplicity
is free. The aim of the joint work [4], reported on in this talk, is to generalize this
result from real reflection groups to unitary reflection groups.

Before reporting on our generalizations of [10, Thm. 1.1] in [4], I want to briefly
recall the background and motivation for Terao’s work. In [2, Conj. 3.3], Edelman
and Reiner conjectured that the cones over the extended Shi arrangements and
the extended Catalan arrangements are free with prescribed exponents. Edelman
and Reiner were able to prove their conjecture in case of the extended Catalan
arrangement for the underlying root system of type A in loc. cit.

If the above conjecture is true, then Ziegler’s theorem [13, Thm. 11] implies
the freeness of the multi-arrangements of the underlying Weyl arrangements with
constant multiplicity at every hyperplane (with exponents derived from the conjec-
ture). Terao’s theorem [10, Thm. 1.1] confirms this consequence of the conjecture.
Ultimately, the conjecture of Edelman and Reiner was proved by Yoshinaga in [12]
by combining [10, Thm. 1.1] with a local criterion for freeness, [12, Thm. 2.5].

From now on suppose that W is an irreducible unitary reflection group with
reflection representation V ∼= Cℓ. Denote the set of reflections ofW byR = R(W ),
and the associated reflection arrangement in V by A = A (W ). Following [3], the
Coxeter number of W is given by

h :=
1

ℓ

∑

H∈A

eH =
1

ℓ

(
|R|+ |A |

)
,

generalizing the usual Coxeter number of a real reflection group to irreducible
unitary reflection groups.

Let Irr(W ) denote the irreducible complex representations of W up to isomor-
phism. For U in Irr(W ) of dimension d, denote by

expU (W ) :=
{
n1(U) ≤ . . . ≤ nd(U)

}
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the U -exponents of W given by the d homogeneous degrees in the coinvariant
algebra of W in which U appears. In particular, the exponents of W are

exp(W ) := expV (W ) =
{
n1(V ) ≤ . . . ≤ nℓ(V )

}

and the coexponents of W are

coexp(W ) := expV ∗(W ) =
{
n1(V

∗) ≤ . . . ≤ nℓ(V
∗)
}
.

The group W is well-generated if ni(V ) + nℓ+1−i(V
∗) = h, e.g., see [7, 6, 1].

For H ∈ A , let eH denote the order of the point-wise stabilizer of H in W .
Consider the order multiplicity function

ω : A → N, ω(H) = eH

for each hyperplaneH ∈ A . Form ∈ N letmω andmω+1 denote the multiplicities
defined by mω(H) = meH and mω(H) + 1 = meH + 1 for H ∈ A , respectively.

The following is [4, Thm. 1.1], generalizing [10, Thm. 1.1] to the case of well-
generated finite unitary reflection groups.

Theorem 1. Let W be an irreducible, well-generated unitary reflection group with
reflection arrangement A . Let ω : A → N given by ω(H) = eH , and let m ∈ N.
Then

(i) the reflection multi-arrangement (A ,mω) is free with exponents

exp(A ,mω) =
{
mh, . . . ,mh

}
,

(ii) the reflection multi-arrangement (A ,mω + 1) is free with exponents

exp(A ,mω + 1) =
{
mh+ n1(V

∗), . . . ,mh+ nℓ(V
∗)
}
.

Note from above that coexp(W ) = expV ∗(W ) =
{
n1(V

∗), . . . , nℓ(V
∗)
}
.

In the special case when W is a Coxeter group, Theorem 1 recovers
[10, Thm. 1.1], as then ω ≡ 2 and coexp(W ) = exp(W ).

In [4, Thm. 4.20], we prove a more general version of Theorem 1 based on a
generalization of Yoshinaga’s approach [11] to [10, Thm. 1.1]. More precisely, we
first extend Yoshinaga’s construction of a basis of the module of derivations and
of Saito’s Hodge filtration to well-generated unitary reflection groups by using
recent developments of flat systems of invariants in the context of isomonodromic
deformations and differential equations of Okubo type due to Kato, Mano and
Sekiguchi [5].

Our second main result [4, Thm. 1.2] extends Theorem 1 further to the infi-
nite three-parameter family W = G(r, p, ℓ) of imprimitive reflection groups. It
turns out that the corresponding multi-arrangements are also free. However, the
description of the exponents is considerably more involved and depends on the
representation theory of the Hecke algebra associated to the group W . To this
end, let Ψ denote the permutation on Irr(W ) introduced by Malle in [6, Sec. 6C],
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having the semi-palindromic property on the fake degrees ofW . This is, for any U
in Irr(W ) of dimension d, we have

ni(U) + nd+1−i(Ψ(U∗)) = hU ,

where hU = |A | − ∑
r∈R χ(r)/χ(1), where χ is the character of U . A direct

calculation shows that hV = h is the Coxeter number of W .

Theorem 2. Let W = G(r, p, ℓ) with reflection arrangement A . Let ω : A → N

given by ω(H) = eH , and let m ∈ N. Then

(i) the reflection multi-arrangement (A ,mω) is free with exponents

exp(A ,mω) =
{
mh, . . . ,mh

}
,

(ii) the reflection multi-arrangement (A ,mω + 1) is free with exponents

exp(A ,mω + 1) =
{
mh+ n1(Ψ

−m(V ∗)), . . . ,mh+ nℓ(Ψ
−m(V ∗))

}
.

Note this time that expΨ−m(V ∗)(W ) =
{
n1(Ψ

−m(V ∗)), . . . , nℓ(Ψ
−m(V ∗))

}
.

Remarks 3. (i). Observe that the group G(r, p, ℓ) is well-generated if and only if
p ∈ {1, r}. Moreover, Ψ(V ∗) = V ∗ if and only if W is well-generated [6, Cor. 4.9].
Thus, Theorem 2 extends Theorem 1 to the class of imprimitive reflection groups
that are not well-generated.

(ii). While the reflection arrangements of the reflection groups G(r, 1, ℓ) and
G(r, p, ℓ) for 1 < p < r coincide, the multi-arrangements in Theorem 2 depend on
the structure of the underlying group.

(iii). Computational evidence for small values for m suggest that Theorem 2
extends to the remaining eight irreducible complex reflection groups of exceptional
type that are not well-generated.
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Homology of Artin groups: A combinatorial group theoretic approach

Ye Liu

(joint work with Toshiyuki Akita)

Given an arbitrary Coxeter system (W,S), or equivalently a Coxeter graph Γ, the
Artin group A = A(Γ) associated to Γ is obtained from the standard Coxeter pre-
sentation ofW =W (Γ) by dropping the relations s2 = 1 for s ∈ S. The celebrated
K(π, 1) conjecture asserts that A admits a nice K(π, 1) space by realizing W as a
reflection group acting on a Tits cone [6]. Homology of Artin group A(Γ) can be
computed from the conjectural space if the K(π, 1) conjecture is proved.

However the K(π, 1) conjecture has only been proved for certain classes of
Artin groups (see [1] or [6]) and remained open in general. In this talk, we start a
combinatorial group theoretic approach to the computation of homology of Artin
groups, without assuming that the K(π, 1) conjecture holds.

The first step is the following easy observation.

Theorem 1. For an arbitrary Coxeter graph Γ, we have

H1(A(Γ);Z) ∼= Zc(Γ),

where c(Γ) is the number of connected components of Γodd, the induced subgraph
of Γ obtained by deleting edges with even number label and edges with ∞ label.

This result follows from the fact that H1(A;Z) is the abelianization of A, and
the latter is obtained by imposing commutating relations for each pair of standard
generators.

Our next result is less trivial. Let us define the following numbers associated
to a Coxeter graph Γ. Denote by P (Γ) the set of pairs of non-adjacent vertices
of Γ. We say that {s, t} ≡ {s, t′} in P (Γ) if t, t′ ∈ S are joined by an edge with
odd number label (i.e. m(t, t′) is odd). Let ∼ be the equivalence relation in
P (Γ) generated by ≡. Now define n1(Γ) = # (P (Γ)/ ∼), n2(Γ) = #{{s, t} ⊂ S |
m(s, t) ≥ 4,m(s, t) is even} and n3(Γ) = rank H1(Γodd;Z).

Theorem 2 ([1]). For an arbitrary Coxeter graph Γ, we have

H2(A(Γ);Z2) ∼= Z
n(Γ)
2 ,

where n(Γ) = n1(Γ) + n2(Γ) + n3(Γ).

The idea of proof is to use the Hopf’s formula.
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Theorem 3 (Hopf’s formula). If a group G has a presentation 〈S | R〉, then

H2(G;Z) ∼=
N ∩ [F, F ]

[F,N ]
,

where F = F (S) is the free group generated by S and N = N(R) is the normal
closure of R.

Applying Hopf’s formula to Coxeter groups and Artin groups with their stan-
dard presentations, we may construct explicitly second homology classes as cosets
x[F,N ] with x ∈ N ∩ [F, F ] as above. We manage to find a set Ω(W ) of generators
of H2(W ;Z) and a set Ω(A) of generators of H2(A;Z) such that the homomor-
phism p∗ : H2(A;Z) → H2(W ;Z) induced by the natural map p : A → W maps
Ω(A) onto Ω(W ). Moreover we have by construction #Ω(W ) = n(Γ). On the
other hand, Howlett proved the following.

Theorem 4 ([5]). For an arbitrary Coxeter graph Γ, we have

H2(W (Γ);Z) ∼= Z
n(Γ)
2 .

Hence we know that Ω(W ) is a basis of H2(W ;Z), and we have proved that p∗
is surjective. Theorem 2 follows without difficulties.

We expect that the above computation extends to higher homology of Artin
groups. In fact, we have the similar ingredients: H3(W ;Z) has been computed in
[4] and [2], the higher Hopf formulae have been studied in [3].
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Milnor fiber complexes and some representations

Alexander R. Miller

H. O. Foulkes discovered some amazing characters for the symmetric group Sn by
summing Specht modules of certain ribbon shapes according to height [7]. These
characters have some remarkable properties and have been the subject of many
investigations, most recently because of connections with adding random numbers,
shuffling cards, the Veronese embedding, and combinatorial Hopf algebras, see
[2, 5, 6, 9, 17]. We give a new approach to these characters which works for a wide
variety of reflection groups. The approach is geometric and based on an object
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called the Milnor fiber complex. It gives new results and it unifies, explains, and
extends previously known (type A) ones. This work appears in [12, 13, 14, 15].

Coxeter and Shephard groups. Let V be an ℓ-dimensional vector space overC, and
let G be a finite group with presentation

(1) 〈 r1, r2, . . . , rℓ | rpi

i = 1, rirjri . . .︸ ︷︷ ︸
mij terms

= rjrirj . . .︸ ︷︷ ︸
mji terms

i 6= j 〉

where pi ≥ 2,mij = mji ≥ 2, and pi = pj whenmij is odd. Write R = {r1, . . . , rℓ}.
Finite Coxeter groups are the ones where each pi is 2. In general G has a Coxeter-
like diagram Γ and a canonical faithful representation G ⊂ GL(V ) as a (complex)
reflection group in which the generators ri act on V as reflections in the sense
that they have finite order and the fixed spaces ker(1 − ri) are hyperplanes [10].
The group is identified with its canonical representation as a reflection group and
called irreducible if it acts irreducibly on V . Being irreducible is equivalent to the
diagram having exactly one connected component. Finite groups with presentation
(1) were classified in [10]. The irreducible ones are precisely the finite irreducible
Coxeter groups and the groups known as Shephard groups (symmetry groups of
objects called regular complex polytopes [3] studied by Shephard and Coxeter).

Milnor fiber complex. Associated to G is an abstract simplicial complex ∆ with
simplices (labeled by) cosets g〈I〉 of standard parabolic subgroups 〈I〉 (I ⊂ R) with
face relation “g〈I〉 is a face of h〈J〉” ⇔ g〈I〉 ⊃ h〈J〉, and with G acting by left
translation. If G is a Coxeter group, then this is the classical abstract description
of the Coxeter complex [26]. See [22, 19, 12, 15] for details, geometry, and history.

Foulkes characters. Each type-selected subcomplex ∆S (S ⊂ R) is a bouquet
of spheres, and we call the CG-module on the top reduced homology group
H|S|−1(∆S) a ribbon representation, see [12]. Its character ρS is an alternating
sum of characters induced by principal characters of parabolic subgroups [12].
The (generalized) Foulkes characters defined in [13] are

(2) φk =
∑

S⊂R
|S|=k

ρS (k = 0, 1, . . . , ℓ).

An immediate benefit of this approach is the following formula [13, Theorem 1]

(3) φk(g) =

ℓ∑

i=0

(−1)k−i

(
ℓ− i
k − i

)
fi−1(∆

g)

where ∆g = {σ ∈ ∆ : gσ = σ} and fk(Σ) is the number of k-simplices in Σ.
The face numbers fk(Σ) can be computed with a formula of Orlik and Solomon.
Assume G irreducible. Let L be the set of all intersections of reflecting hyperplanes
ordered by reverse inclusion, and let µ be the Möbius function. For X ∈ L define
BX(t) = (−1)dimX

∑
Y≥X µ(X,Y )(−t)dimY . Let d1 ≤ d2 ≤ . . . ≤ dℓ be the basic

degrees of G. Then Orlik [22] (after Orlik–Solomon in the Coxeter case) proved

(4) fi−1(∆
g) =

∑
Y
BY (d1 − 1)
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where the sum is over all i-dimensional subspaces Y above V g = ker(1− g) in L.

Elucidating and generalizing classical (type A) results. Our approach elucidates
and extends the type A theory (due to Foulkes, Kerber–Thürlings, Diaconis–
Fulman, and Isaacs), which previously rested on ad hoc proofs by induction.
See [13]. For example, if G is the wreath product Zr ≀ Sn (Zr cyclic of order r),
then L is a Dowling lattice and the restrictions LX depend only on the dimension
of X ∈ L, so that by (3) and (4) the φi’s depend only on fixed-space dimension in
the sense that φi(g) = φi(h) whenever dim V g = dimV h. The r = 1 case of this
is the classical fact that the Foulkes characters φi(g) of Sn depend only on the
number of cycles of g. The only previous proof of this for Sn is the original one
due to Foulkes [7] which uses the Murnaghan–Nakayama rule and induction.

Adding random numbers. Interestingly, these generalized Foulkes characters have
recently been connected to adding random numbers in other number systems.
Persi Diaconis and Jason Fulman [6] connected the hyperoctahedral ones (type B)
to adding random numbers in balanced ternary and other number systems that
minimize carries, and Nakano–Sadahiro [16] connected the Foulkes characters for
Zr ≀ Sn to a generalized carries process and riffle shuffles.

New phenomena. If G is the wreath product Zr ≀ Sn, then the Foulkes characters
form a basis for the space of class functions χ(g) of G that depend only on length
ℓ(g) = min{k : g = t1t2 . . . tk, ti a reflection}, see [13, 14]. Danny Goldstein,
Robert M. Guralnick, and Eric M. Rains together made the remarkable experi-
mental observation [18] that in fact the hyperoctahedral Foulkes characters play
the role of irreducibles among the hyperoctahedral characters that depend only
on length, in the sense that the characters of the hyperoctahedral group Bn that
depend only on length are precisely the N-linear combinations of the hyperocta-
hedral Foulkes characters. We prove this conjecture in [14]. In fact we prove that
the same is true for all wreath products Zr ≀ Sn with r > 1, not just r = 2.

It is an open problem to give a nice description of the characters χ(g) for Sn

(r = 1) that depend only on ℓ(g), or in other words, that depend only on the
number of cycles of g. Kerber [9, p. 306] noticed that already for S5 the N-linear
combinations of Foulkes character do not account for all the characters of S5 that
depend only on length. In [14] we prove that this is always the case for symmetric
groups Sn with n ≥ 3. Note: This line of investigation makes sense for any finite
group with given set of generators closed under conjugation.

Curious classification. In [13] we determined all the irreducible cases of G where
the φi’s depend only on fixed-space dimension. This led to a curious classification
with 11 equivalent conditions [13, Thm. 14]. For example, we find that the φi’s
depend only on fixed-space dimension if and only if the sequence of basic degrees
d1, d2, . . . , dℓ is arithmetic. Another equivalent condition is that the diagram of G
contains no subdiagram of type D4, F4, or H4. We recently found this condition
in [1] Abramenko’s answer to a geometric problem: In which Coxeter complexes ∆
are all walls ∆r (r a reflection) Coxeter complexes? In [15] we extend Abramenko’s
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result to Milnor fiber complexes in two ways and find another equivalent condition
for the Foulkes characters to depend only on fixed-space dimension. In the course
of that work we also discovered a beautiful enumerative condition [15, Thm. 11]:
if G is irreducible, then the diagram contains no subdiagram of type D4, F4, or H4

if and only if for each g ∈ G the number of top cells in ∆g is given by

(5) fp−1(∆
g) = d1d2 · · · dp, p = dimV g.

References

[1] P. Abramenko, Walls in Coxeter complexes, Geom. Dedicata 49 (1994), 71–84.
[2] F. Brenti, V. Welker, The Veronese construction for formal power series and graded alge-

bras, Adv. in Appl. Math. 42 (2009), 545–556.
[3] H. S. M. Coxeter, Regular Complex Polytopes, 2nd ed. Cambridge University Press, 1991.
[4] G. Denham, Eigenvectors for a random walk on a hyperplane arrangement, Adv. in

Appl. Math. 48 (2012), 312–324.
[5] P. Diaconis and J. Fulman, Foulkes characters, Eulerian idempotents, and an amazing

matrix, J. Algebraic Combin. 36 (2012), 425–440.
[6] P. Diaconis and J. Fulman, Combinatorics of balanced carries, Adv. in Appl. Math. 59

(2014), 8–25.
[7] H. O. Foulkes, Eulerian numbers, Newcomb’s problem and representations of symmetric

groups, Discrete Math. 30 (1980), 3–49.
[8] J. M. Holte, Carries, combinatorics, and an amazing matrix, Amer. Math. Monthly 104

(1997), 138–149.
[9] A. Kerber, Applied Finite Group Actions, 2nd ed. Springer-Verlag, 1999.

[10] D. W. Koster, Ph.D. Thesis. University of Wisconsin, Madison, 1975.
[11] J.-L. Loday, Opérations sur l’homologie cyclique des algèbres commutatives, Invent. Math.
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Problem Session

Nate Harman, Aurélien Djament, Roberto Pagaria, Jeremy Miller,

Weiyan Chen, Jesse Wolfson, Masahiko Yoshinaga, Alexander R.

Miller, Graham Denham, Dan Petersen, Michael Falk

We hosted two evening problem sessions during the workshop. Various participants
from very different backgrounds proposed open questions to the audience. The
sessions stimulated active discussions among the participants. The problems are
collected below in the order that they were proposed.

1. Nate Harman (University of Chicago). The following standard theorem
from representation theory of the symmetric groups roughly says that “FI-modules
see all representations of polynomial growth”:

Theorem 1. Suppose Vn is a sequence of irreducible representations of Sn. If
there exists a constant d such that dim Vn < nd for all n ≫ 0, then either Vn or
Vn ⊗ sign is a factor of an FI-module generated in degree at most d.

With the motivation to understand low dimensional representations of the braid
group, we ask the following question:

Question 1. Is there an analog if we replace Sn by the braid group Bn?

Conjecture 1. All representations of Bn with slow growth come from finitely
generated modules over certain category.

Ivan Marin remarked that the conjecture is known for linear growth, e.g., in
the case when the dimension is n− 1. (see [5])

2. Aurélien Djament (CNRS, Nantes). Let k be a maximal ordered field
(e.g., k = R). Let’s consider the following monomorphisms between orthogonal
groups, for all n and i:

On(k)×Oi(k) →֒ On,i(k).

Question 2. Does this map induces an isomorphism of Hd(−,Z) for n≫ d, i?

The homology here is understood as the group homology of discrete groups.
For i = 1, a theorem of Bökstedt, Brun, and Dupont [2] shows that the answer

is yes for d < n.



114 Oberwolfach Report 2/2018

3. Roberto Pagaria (SNS, Pisa). Let A be a central toric arrangement in
the torus T , let L be its poset of layers, and let M(A) be the complement in
T . Consider the cohomology algebra with rational coefficients H•(M(A)) and its
associated graded algebra with respect to the Leray filtration, grH•(M(A)).

Theorem 2 ([9, Theorem 4.6]). The poset of layers L determines the algebra
grH•(M(A)).

Moreover, a stronger statement holds: the poset L describes the cohomology
algebra H•(M(A)). We ask whether the converse holds:

Question 3. Does the cohomology algebra H•(M(A)) determine the poset of lay-
ers L?

The analogous statement in the setting of hyperplane arrangements has a neg-
ative answer (see [4] or [3]), but the combinatorics of toric arrangements is richer
than combinatorics of hyperplane arrangements. In order to solve this problem, a
deep study of characteristic varieties of toric arrangements could be useful.

4. Jeremy Miller (Purdue University). It was previously known that (by
Proposition A.1. of [10])

H2(Out(Fn),Z
n) = Z/(n− 1)Z for n ≥ 9.

Question 4. Is Hi(Out(Fn), (Z/pZ)
n) eventually periodic as n increases? If yes,

we ask the same question replacing the twisted coefficient (Z/p)n by a polynomial
functor, or a VIC-module.

Andrew Snowden remarked that this question is motivated by Rohit Nagpal’s
work (Theorem C of [8]), and the subsequent works by various authors.

5. Weiyan Chen (University of Minnesota, Twin Cities).

Definition 1. The Schwarz genus of a cover f : Y → X is the minimum number
k such that there exists a cover of X by connected open subsets U1, U2, ..., Uk where
the restriction of f to each open subset is trivial.

Alex Suciu remarked that Schwarz genus is a special case of a more general
concept called “sectional category” which can be defined for any fiberation.

Consider the following spaces.

X := {Smooth complex homogeneous polynomials F (x, y, z) of degree 3}/C×

Y := {(F, p) ∈ X × CP 2 : p is a flex on the smooth cubic curve F = 0}.

Then Y is a covering space of X of degree 9 (since there are 9 flexes on every
smooth cubic curve).

Question 5. What is the Schwarz genus of the flex cover Y → X as defined
above?
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Weiyan Chen remarked that he was able to bound the number to be no smaller
than 3 and no larger than 9. This question is motivated by the work of Smale
[12], who first interpreted the Schwarz genus as a lower bound for the topological
complexity of any algorithm solving certain problems. In a similar way, an answer
to the question above gives a lower bound for any algorithm that finds a flex for any
given smooth cubic curve. One can ask the similar question for many enumerate
problems.

6. Jesse Wolfson (University of California, Irvine).

Theorem 3 (Jacobi, 1850). Every smooth quartic plane curve has 28 bitangent
lines.

Let H4,2 denote the space of smooth quartic curves in CP 2. Precisely, let

H4,2 = (P (
4+2
2 ) \ Σ)/PGL3(C)

where Σ denote the discriminant locus containing singular homogeneous quartic
polynomials that give singular quartic curves. Let H4,2(1) denote the space of
smooth quartic curves equipped with a bitangent line. Jacobi’s theorem tells us
that H4,2(1) is a degree 28 cover of H4,2. Other classical covers of interest are
H4,2(S), H4,2(A), and H4,2(C), the moduli of quartics equipped with a Steiner
complex, Aronhold set, and Cayley octad respectively. These give degree 63, 288,
and 36 covers of H4,2.

Question 6. What is H∗(H4,2(1),Q)? Similarly, what is H∗(H4,2(X),Q) for
X = S,A or C?

Weiyan Chen commented that the computation of H∗(H4,2(1),Q) can be found
in a paper by Orsola Tommasi [13]. Dan Petersen commented that work of Olof
Bergvall [1] is also relevant.

7. Masahiko Yoshinaga (Hokkaido University).

Definition 2. f : Z → C is quasi-polynomial if there exists ρ > 0 and
g1(t), ..., gρ(t) ∈ C[t] such that

f(n) =





g1(n), if n = 1 mod ρ

g2(n), if n = 2 mod ρ

· · ·
gρ(n), if n = ρ mod ρ.

Furthermore, f has the GCD-property if

gi(t) = gj(t) if (i, ρ) = (j, ρ).

In other words, f has the GCD-property if the constituent depends only on the
GCD with the period ρ.

Question 7. Which rational polytope has Ehrhart quasi-polynomial with GCD-
property?
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Example 1. Let P1 = [0, 1/3].

LP1(n) =





n+3
3 , if n = 0 mod 3

n+2
3 , if n = 1 mod 3

n+1
3 , if n = 2 mod 3

Hence the Ehrhart quasi-polynomial of P1 does not have GCD-property.

Example 2. Let P2 = [1/3, 4/3].

LP2(n) =

{
n+ 1, if n = 0 mod 3

n, if n = 1, 2 mod 3

Hence the Ehrhart quasi-polynomial of P2 has GCD-property.

Example 3. The Ehrhart quasi-polynomial of the fundamental alcove of a root
system has GCD-property. [14]

Question 8. Let P be an integral zonotope in Zℓ. Let a ∈ Qℓ. Does the translated
zonotope P ′ = a+ P have the Ehrhart quasi-polynomial with GCD-property?

8. Alexander R. Miller (Universität Wien). For λ, µ partitions of n, let χλ

denote the character of the irreducible Sn-representation corresponding to λ. Here
is an observation: as n→∞,

(1) Prob(χλ(g) = 0 for λ ⊢ n and g ∈ Sn) −→ 1.

Conjecture 2. As n→∞,

(2) Prob(χλ(µ) = 0 mod 2 for λ, µ ⊢ n) −→ 1.

In other words, the conjecture says that an entry chosen uniformly at random from
the character table of Sn is even with probability → 1 as n→∞.

The probability measures in (1) and in (2) are different: the former is uniform
over elements in Sn, while the latter is uniform over conjugacy classes of Sn.

Alexander Miller remarked that he has done some computer experiments which
suggest that the probability in (2) converges to 1 following the graph of

2π−1 arctan(
√
n/2− 1).

It was also remarked that similar unexpected behavior occurs for other primes.

9. Graham Denham (University of Western Ontario). If we set

Q(x1, . . . , xn) :=
∏

1≤i<j≤n

(xi − xj),

then the ordered configuration space becomes

Conf(n,C) = {(x1, . . . , xn) : Q 6= 0}.
Consider the Milnor fiber

Fn := {(x1, . . . , xn) : Q2 = 1}.
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Fn carries commuting actions of two groups: an action of Sn by permuting the
coordinates, and an action of the group µn(n−1) of n(n − 1)-th roots of unity by
the diagonal multiplication.

Question 9. What is H∗(Fn,Q) as a (Sn × µn(n−1))-module?

A stability phenomenon was discovered by Simona Settepanella: the action of
µn(n−1) on H

i(Fn,Q) is trivial when n≫ i.

Question 10. Is there a category C similar to FI such that Hi(Fn,Q) becomes a
finitely generated C-module?

Notice that there is no obvious way to make Hi(Fn,Q) an FI-module, since
there is no natural map between Fn and Fn+1.

Kevin Casto remarked that it may be fruitful to study the cohomology of the
maximal abelian cover of Conf(n,C), which is also the classifying space of the
commutator subgroup of the pure braid group, and whose cohomology is naturally
an FI-module.

10. Dan Petersen (Stockholm University).

Theorem 4 (Randal-Williams–Wahl, [11]). If Vn is a sequence of polynomial
coefficient system for the braid group Bn, then H∗(Bn, Vn) stabilizes as n→∞.

Question 11. Let Pn be the pure braid groups. The collection H∗(Pn, Vn) is an
FI-module. Is it finitely generated?

Notice that the theorem of Randal-Williams–Wahl above implies that
H∗(Pn, Vn) satisfies multiplicity stability. One can also prove that the homology
grows polynomially in n.

Since the (co)homology of pure braid groups was the original motivating ex-
ample for the theory of representation stability, it is surprising that this is not
known.

11. Michael Falk (Northern Arizona University). LetMd,n denote the space
of unlabeled affine arrangements of n hyperplanes in general position in Cd.

Problem 1. Find a presentation for π1(Md,n) that specializes to Artin’s presen-
tation of the full braid group for d = 1.

There has been some work on the space of labeled affine arrangements in general
position [6, 7], but one would expect a nicer presentation for the unlabeled version,
since that is the case for d = 1: there are fewer generators and more symmetric
relations in Artin’s presentation of the full braid group, than in the standard
presentation of the pure braid group.

After a brief dicussion, Alex Suciu asked the following question:

Question 12. Does Md,n have a nice compactification?
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12. Dan Petersen (Stockholm University). Suppose E and V are finite di-
mensional vector spaces over C. Define a commutative algebra A := C⊕E where
elements in E multiply to 0 (a square zero extension). Let g := Lie(V ), a free Lie
algebra.

Question 13. What is the Lie algebra homology H∗(g⊗A)?
The answer should be expressed as a sum of polynomial functors in E and V .
When E is 1-dimensional, an answer can be calculated by hand (even this case

is not obvious). A complete answer to the question in its general form will help
us understand the cohomology of the “link” of the tropical moduli space of curves
M2,n.
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Département de Mathématiques
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Avancée
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