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Abstract. This mini-workshop was motivated by the emerging field of net-
worked control, which combines concepts from the disciplines of control the-
ory, information theory and dynamical systems. Many current approaches to
networked control simplify one or more of these three aspects, for instance by
assuming no dynamical disturbances, or noiseless communication channels,
or linear dynamics. The aim of this meeting was to approach a common
understanding of the relevant results and techniques from each discipline in
order to study the major, multi-disciplinary problems in networked control.
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Introduction by the Organisers

Sixteen researchers from Europe, North and South America and the Asia-Pacific
area participated in this mini-workshop, including the organisers Fritz Colonius,
Tomasz Downarowicz, Christoph Kawan, and Girish Nair. In total, twenty-two
talks were featured over 5 days. Due to the varying backgrounds of the partici-
pants, these included several tutorial-style and overview talks on relevant mate-
rial from control theory (Colonius), dynamical systems entropy (Downarowicz),
information theory (Sahai), dimension and entropy (Gelfert), data rate theorems
(Franceschetti), invariance entropy (Kawan) and nonstochastic information (Nair).
These talks provided important background to the presentations of new and recent
research results, and exposed participants from each discipline to the main tech-
niques and terminology of the others. In addition, there was an evening “Open
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Problems” session, a closing discussion, and an impromptu joint session with the
mini-workshop on “Deep Learning and Inverse Problems”.

In broad terms, the research presentations and Open Problems followed two
themes. The first theme focused on entropy-related concepts for controlled or
uncontrolled dynamical systems without channel or system noise. Liberzon dis-
cussed the notion of estimation entropy for such uncontrolled systems, and showed
that it characterises the minimum bit rate needed to be able to estimate the sys-
tem states with a specified exponential speed. In a similar setting, Pogromsky
proposed the concept of restoration entropy, and proved that this characterised
the minimum errorless bit rates needed to estimate system states in regular and
fine senses. Gelfert discussed the box dimension of skew-product systems with
partially hyperbolic and hyperbolic structure, and showed that it can be deter-
mined in terms of pressure, a notion closely related to entropy and inspired by
thermodynamics. Santana proposed extensions of the pressure concept to con-
trol systems, via the notions of invariance pressure and outer invariance pressure.
Serafin discussed a notion of universal topological systems, and showed that the
class of dynamical systems with measure-theoretic entropies lying in any given
nonnegative interval always admits a universal topological system. Downarow-
icz described the notion of symbolic extension entropy, which characterises the
minimum bit rate needed to estimate the initial state of a topological dynamical
system with error approaching zero with time, and showed how it is related to
the entropy structure of the topological system. Colonius proposed an extension
of invariance entropy to measure-theoretic systems governed by quasi-stationary
measures, and showed that this measure-theoretic invariance entropy is invariant
under measurable transformations and determined by the control sets of the sys-
tem. The question of whether there is a variational principle linking this new
concept to invariance entropy remains open.

The second theme focused on the information-theoretic aspects of systems with
noise or uncertainty. Yüksel spoke about the control of nonlinear stochastic sys-
tems via noisy channels, under stability notions such as asymptotic mean station-
arity, ergodicity and Harris recurrence, and gave characterizations of the largest
class of channels for which there exist coding and control policies so that the
closed-loop system can be made stochastically stable. In a similar setting, Kawan
discussed the relationship between the channel capacity needed to achieve a given
objective, and a measure-theoretic entropy-like quantity defined by representing
the control loop as a random dynamical system. Franceschetti considered the
problem of asymptotically stabilizing a linear system via an errorless channel with
independent random delays. He showed that it is necessary for the entropy of the
linear system to be no greater than the ordinary Shannon capacity of the delay
viewed as a timing channel, a condition which is also sufficient when the delays are
exponentially distributed. A related problem was discussed by Linsenmayer, who
considered the containability of linear systems controlled via a digital channel with
uncertain delay, and derived sufficient conditions in terms of the delay bound, the
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number of bits per packet, and the system dynamical parameters. Ranade consid-
ered the stabilization in probability of linear systems with multiplicative random
noise, and showed that the stabilizability condition could be viewed in terms of a
new concept called control capacity. She also discussed the open problem of de-
termining tight conditions for the stabilizability and optimal nonlinear control of
scalar linear plants with multiplicative measurement noise. Kostina spoke about
the control of noisy linear systems via noisy channels and presented fundamental
trade-offs between the Marko-Massey’s directed information, equivalent to the ex-
pected bit-rate, sent across a noisy channel, and control performance as measured
by the mean square state. Ishii considered a similar class of systems and showed
that if the additional requirement of asymptotic second-order (i.e. wide-sense)
stationarity was also imposed, then fundamental trade-offs between directed in-
formation and the disturbance rejection performance could be derived in frequency
domain in terms of generalised Bode integrals. Sahai described the classical prob-
lem of the optimal decentralized control of Gaussian linear systems under a qua-
dratic performance cost, and discussed connections to rate-distortion theory, dirty
paper coding and sphere-packing bounds in information theory.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of a junior researcher
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

On Stationary and Ergodic Properties of Stochastic Non-Linear

Systems Controlled over Communication Channels

Serdar Yüksel

Consider a controlled non-linear system described by

xt+1 = f(xt, ut, wt),(1)

where xt is the R
N -valued state, ut is the control action variable, and {wt} an

i.i.d. noise process. This system is controlled over a noisy channel as shown
in Figure 1. A coding policy Π is a sequence of functions {γe

t , t ∈ Z+} such
that γe

t (x[0,t], q
′
[0,t−1]) = qt ∈ M , where M is the finite channel input alphabet.

The channel maps qt ∈ M to q′t ∈ M ′ in a stochastic fashion so that P (q′t ∈
·|qt, q[0,t−1], q

′
[0,t−1]) is a conditional probability measure for t ∈ Z+. A controller

policy γ is a sequence of functions {γt, t ∈ Z+} such that ut = γt(q
′
[0,t]).

Channel

Plant

Coder Controller

Figure 1. Control over a noisy channel with feedback.

This talk is concerned with the following: Given such a nonlinear system con-
trolled over a channel, what is the largest class of channels for which there exist
coding and control policies so that the closed-loop system can be made stochas-
tically stable? Stability notions considered are asymptotic mean stationarity, er-
godicity, and positive Harris recurrence. We do not restrict the state space to
be compact, for example, systems considered can be driven by unbounded noise.
Necessary and sufficient conditions are obtained for a large class of systems and
channels. It is shown that the conditions obtained are tight for the case of linear
systems driven by unbounded noise, and for such systems the stability criteria can
be strengthened to positive Harris recurrence for noiseless and erasure channels
[2, Chp. 6-8]. Connections with the metric entropy and Lyapunov exponents for
random dynamical systems, prior work on deterministic nonlinear systems, and
the state estimation problem will be presented, and some open problems involving
the interaction of dynamical systems, information theory and networked control
will be discussed. Some results related to this talk are given in [1].
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Stabilizing a linear system with phone calls

Massimo Franceschetti

(joint work with Mohammad Khostajesh, Gireeja Ranade)

A first-order abstraction of a cyber-physical system is that of a networked control
system where the feedback loop is closed over a communication channel [1][2]. To
quantify the effect of the communication channel on the ability to stabilize the
system, several data-rate theorems have emerged in the literature, see [3, 4] for a
survey. Roughly speaking, they state that to achieve stabilization the communica-
tion rate available in the feedback loop should be at least as large as the intrinsic

entropy rate of the system, given by the sum of its unstable modes. Within this
framework, a portion of the literature studied stabilization over “bit pipe chan-
nels,” where a rate-limited, possibly time-varying, noiseless communication chan-
nel is present in the feedback loop. In the case of noisy channels, Tatikonda and
Mitter [5] showed that for almost sure (a.s.) stabilization of undisturbed linear
plants the Shannon capacity of the channel should be larger than the entropy rate
of the plant. Matveev and Savkin [6] showed that this condition is also sufficient
for discrete memoryless channels, but a stronger condition is required in the pres-
ence of disturbances, namely the zero-error capacity should be larger than the
entropy rate of the plant [7]. Sahai and Mitter [8] considered the less stringent
requirement of moment-stabilization over noisy channels and in the presence of
system disturbances, and provided a data-rate theorem in terms of the anytime
capacity of the channel. For a comprehensive treatment of data-rate theorems one
can refer to the books [9, 10] and to the surveys [3, 4].

Another important aspect of CPS is event-triggering control.In this case, com-
munication occurs in an opportunistic manner and the primary focus is on mini-
mizing the number of transmissions while simultaneously ensuring the control or
objective. Since the timing of the state-dependent triggering events carries in-
formation that can be used for stabilization. The amount of timing information,
however, is sensitive to the delay in the communication channel. While for small
delay stabilization can be achieved with data-rate arbitrarily close to zero, for
large values of the delay this is not the case [11, 12].

In this work, we point out that state-dependent triggering is only one possible
strategy to encode information in time. In order to characterize the fundamental
limitations of using timing information for stabilization, we consider a timing
channel where information is encoded by adjusting the transmission time of a
single symbol [13]. We show that in order to drive the state to zero, the timing
capacity of this channel should be at least as large as the entropy rate of the system.
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In addition, in the case transmission is subject to exponentially distributed delay,
we provide a tight sufficient condition. Finally, we point out that while in our
analysis we restrict to transmitting a symbol from a unitary alphabet, it would be
of practical interest to develop “mixed” strategies, using both timing information
and physical data transmitted over a larger alphabet, and this is left for future
work.
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Entropy and minimal bit rates for state estimation and model

detection

Daniel Liberzon

(joint work with Sayan Mitra)

We discuss the notion of estimation entropy, formulated in terms of the number of
system trajectories that approximate all other trajectories up to an exponentially
decaying error. We also consider an alternative definition of entropy which uses
approximating functions that are not necessarily trajectories of the system. We
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show that the two entropy notions turn out to be equivalent. We proceed to
establish an upper bound of (M + α)n/ ln 2 for the estimation entropy of an n-
dimensional nonlinear dynamical system whose Jacobian matrix fx has matrix
measure bounded by M , when the desired exponential convergence rate of the
estimate is α . We also develop a lower bound of (inf trfx + αn)/ ln 2 on the
estimation entropy, where the infimum is taken over the reachable states of the
system. For linear systems, the upper and lower bounds can be refined so that
they coincide and give an exact expression for the estimation entropy in terms of
the eigenvalues of the system matrix.

Next, we propose an iterative procedure that uses quantized and sampled state
measurements to generate state estimates that converge to the true state at the
desired exponential rate. The main idea in the algorithm is to exponentially in-
crease the resolution of the quantizer while keeping the number of bits sent in
each round constant. This is achieved by using the quantized state measurement
at each round to compute a bounding box for the state of the system for the next
round. Then, at the beginning of the next round, this bounding box is partitioned
to make a new and more precise quantized measurement of the state. We show
that the bounding box is exponentially shrinking in time at a rate α when the av-
erage bit rate utilized by this procedure matches the upper bound (M + α)n/ln 2
on the estimation entropy. We also show that no other algorithm of this type can
perform the same estimation task with bit rates lower than the estimation entropy.
In other words, the “efficiency gap” of our estimation procedure is at most as large
as the gap between the estimation entropy of the dynamical system and the above
upper bound on it.

Moreover, we present an application of the estimation procedure in solving a
model detection problem. Suppose we are given two competing candidate models
of a dynamical system, and from the quantized and sampled state measurements
we would like to determine which one is the true model. For example, the different
models may arise from different parameter values or they could model “nominal”
and “failure” operating modes of the system. We demonstrate that under a mild
assumption of exponential separation of the candidate models’ trajectories, a mod-
ified version of our estimation procedure can always definitively detect the true
model in finite time.

Entropy for switched and hybrid systems and its role in state estimation and
model detection as well as control of such systems is a subject of ongoing work.
At the end of the talk, we discuss some preliminary results on computing entropy
of switched linear systems with diagonal and triangular structure.

The talk is largely based on the work reported in [1]. The results on entropy
for switched systems will appear in [2].
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State estimation of deterministic systems via information channels

with finite capacity

Alexander Pogromsky

(joint work with A.S. Matveev)

The multidisciplinary area of networked control systems lies at the crossroad of
control, communication, and computer sciences and integrates their classical topics
into a whole, while responding to new special challenges born out of their union.
One of them is caused by bottlenecks in the process of information transmission
among the network nodes that may be due to constraints on the data transmission
bit-rate allocated to every particular transmitter/receiver pair within a shared
fieldbus device.

It is this observability problem that is addressed in the talk: What is the
minimal bit-rate of data transfer that is needed to build a reliable and efficient
state estimate in the remote location. To be more precise, we consider a nonlinear
time-invariant plant

(1) ẋ = f(x), x ∈ R
n, t ∈ [0,∞), x0 ∈ K,

where x is the state, the map f : R
n → R

n is C1-smooth, and K 6= ∅ is a
positively invariant compact set of the feasible initial states. As time t runs from
0, a valid estimate x̂(t, x̂0) of the solution x(t, x0) of (1) should be continuously
generated in real time t at a certain faraway site, Sest, where direct observation
of x is impossible. Meanwhile, x(t, x0) is fully accessible at time t in another
location Ssen 6= Sest (typically that of the plant) on the basis of sensor data. The
problem to be treated stems from the bottleneck caused by a finite bit-rate of data
communication from Ssen to Sest.

Similarly to our previous results on discrete-time observation problem, [1], the
communication channel is characterized by its bit-rate capacity c. The lower
thresholds on this bit-rate which guarantee solvability of the regular and fine obser-
vation problem (denoted by Rro and Rfo respectively) coincide due to the positive
invariance of the set K [1].

The restoration entropy Hres(f,K) of the system around the set K is defined
as follows. Let Bδ

a be the ball of radius δ centered at the point a. Let p(T, a, δ)
be the minimal number of δ-balls required to cover the image x(T, (Bδ

a ∩K)). We
define

(2) Hres(f,K) := lim
T→∞

1

T
lim
δ→0

sup
a∈K

log2 p(T, a, δ).

The outer limit exists due to positive invariance of K. The relations between
the observability bit-rate thresholde and the restoration entropy are established
in a form of the Data Rate Theorem [2]: Rro = Rfo = Hres(f,K). The main
results of the talk are focused on a constructive way to estimate the restoration
entropy (lower and upper bounds). While the lower estimate is given in the spirit
of the first Lyapunov method, the upper estimate goes along the lines of second
Lyapunov method [2].
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Dimensions and critical regularity of hyperbolic graphs

Katrin Gelfert

(joint work with Lorenzo J. Dı́az, Maik Gröger, Tobias Jäger)

The investigation of fractal attractors, repellers, horseshoes, and other types of
hyperbolic sets has been a major driving force for many important developments in
ergodic theory and its interfaces with mathematical physics and fractal geometry.
The situation is fairly well understood essentially in a conformal setting, only
(see [3, 4]), comparable to the study of conformal repellers. Extending the theory
to higher-dimensional and genuinely nonconformal situations is well known to be
difficult, and there exist only few and specific results in this direction (see, for
example, [2]). Different phenomena here complicate matters:

• The possible loss of equality between Hausdorff and box dimensions,
• both dimensions may not vary continuously with the dynamics.

We proceed by studying the graphs in three-dimensional skew product systems

T : Ξ× R → Ξ× R, T (ξ, x) = (τ(ξ), Tξ(x)),

with simultaneously a partially-hyperbolic and a hyperbolic structure. Here τ : Ξ→
Ξ are hyperbolic surface diffeomorphisms, or their restrictions to basic pieces. Di-
mension is intimately related to thermodynamic quantities such as entropy and
Lyapunov exponents, where pressure often encodes such relations. Building on
[2, 1], we show that, except in a nongeneric case when the graph is Lipschitz, its
box dimension is given by ds + d, where ds is the dimension of stable slices of Ξ
and where d is determined as the unique solution of the pressure equation

Pτ |Ξ(ϕ
cu + (d− 1)ϕu) = 0.

Here ϕcu, ϕu are geometric potentials taking into account the expansion rates in
the fiber center unstable and the strong unstable directions, respectively.

A key ingredient to establish a lower bound for the dimension are ideas from
multifractal analysis. Here we study the entropy of sets of points which simul-
taneously have given prescribed Birkhoff averages for the potentials ϕcu and ϕu,
respectively. These entropies govern the exponential growth of the number of
Markov rectangles with an approximate prescribed size and enable an effective
estimate for dimension. The presence of a so-called blender-like horseshoe will be
essential in the case when the basic set in the base is a Cantor set.
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Universal Systems, Constructions and Obstacles

Jacek Serafin

(joint work with Tomasz Downarowicz)

The main part of the talk is based on [1]. We call a topological system (Z, F )
universal for a class H of ergodic measure-theoretic systems if its simplex of in-
variant measures contains, up to an isomorphism, all elements of the class H and
no elements from outside this class (to this end, Z is a compact metric space and
F is a homeomorphism of Z).

Note that this differs from a classical notion of universality which has been stud-
ied in various contexts, in particular for toral automorphisms or systems with spec-
ification. So, classically, (Z, F ) is universal if for every ergodic system (X ,F , µ, T ),
where T : X → X is an automorphism of a standard nonatomic probability space
(X ,F , µ) whose Kolmogorov–Sinai entropy hµ(T ) is strictly smaller than the topo-
logical entropy htop(Z, F ), there exists an F -invariant measure ν on Z such that the
systems (X ,F , µ, T ) and (Z,Bν , ν, F ), with Bν denoting the Borel sigma-algebra
in Z completed with respect to ν, are measure-theoretically isomorphic. Note that
the Krieger Finite Generator Theorem is equivalent to saying that the full shift
on n symbols is universal in the class of systems with entropy smaller than logn.

We make the definition of universality for a class H more precise and subtle by
adding the requirement that for every ergodic F -invariant probability measure ν on
Z, the system (Z,Bν , ν, F ) belongs to H. Note now that the above mentioned full
shift is no longer universal in the class H = {h < logn} as the uniform Bernoulli
measure has entropy equal logn; on the other hand the class H = {h ≤ logn}
contains products of uniform Bernoulli measure with zero-entropy systems, such
products are not supported by the simplex of the full n-shift.

Our main result states that if I = [c, C], with 0 ≤ c < C ≤ ∞, then there exists
a universal system for the class HI of systems with measure-theoretic entropies
belonging to I. We construct the universal system in the form of an inverse limit of
subshifts (we do not know whether the universality can be achieved in the form of
a subshift); the construction depends on a delicate argument that all systems with
entropies in I have a Jewett-Krieger representation as a limit of strictly ergodic
subshifts projecting on the fixed strictly ergodic model for the Bernoulli shift with
entropy equal c.
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On the other, we recall the result in [2], which treats the case c = C = 0. It turns
out that there does not exist a universal model for the class of zero-entropy sys-
tems. Here is the outline of the argument: any topological system of zero entropy is
a topological factor of a zero-entropy subshift. This subshift has its symbolic com-
plexity (U(n)) (the sequence of the number of blocks of increasing lengths, occur-
ring in the system); if the subshift supports an invariant measure and we partition
the space into finitely many elements, then the measure-theoretic complexity (as
defined by Ferenczi) with respect to that partition must is always bounded above
by the symbolic complexity. Finally we show that there is no universal bound
on the measure-theoretic complexity among the zero-entropy systems: given a
sequence (U(n)) such that 1

n
log(U(n)) → 0 we construct a measure-theoretic

zero-entropy system and a partition such that the measure-theoretic complexity is
not bounded above by the sequence (U(n)).

In the final part (based on [3]) of the talk we recall an elementary construction
of a finite generating partition for an ergodic finite-entropy automorphism of a
probability space (one could call it a weak form of the Krieger Generator Theorem,
as we do not produce a generator with the minimal possible number of elements).
We are able to reduce the cardinality of the generator from countable to finite
by applying the Kraft inequality (a well-known tool in information theory) and
producing a prefix-free set of codewords, with the length function satisfying the
requirements needed to run the coding procedure. All necessary calculations rely
on a simple application of the ergodic theorem, and on the Kac recurrence lemma.
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A general connection between channel capacity and dynamical entropy

Christoph Kawan

We derive a very general lower bound on the smallest channel capacity of a noise-
free channel above which an unspecified control objective can be achieved via a
periodic coding scheme. This lower bound establishes a general connection be-
tween some type of dynamical entropy of the closed-loop system and the capacity
of the channel. The system considered here is of the general form

xt+1 = f(xt, ut, wt),

where xt ∈ X , ut ∈ U and wt ∈ W , X and U being measurable spaces and W
a probability space with probability measure ν. We assume that (wt)t∈Z+

is an
i.i.d. sequence of random variables with wt ∼ ν and that the initial state x0 is
a random variable with distribution x0 ∼ π0, independent of (wt). The coder is
assumed to encode the state in a periodic fashion, applying a fixed quantizer at
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every time instant kτ , k ∈ Z+, where τ is the sampling period. The encoded state
is then sent through the channel during the forthcoming time interval of length τ ,
and we write qt ∈ M (the coding alphabet) for the signal sent at time t. Assuming
that an unspecified control objective is achieved under these hypotheses, a lower
bound on the channel capacity C = log2 |M| is obtained. Looking at the discrete
random variable q[0,kτ−1] = (q0, q1, . . . , qkτ−1) ∈ Mkτ , we find that

C ≥ lim sup
k→∞

1

kτ
H(q[0,kτ−1]).

Conditioning on the noise (wt), this leads to

C ≥ lim sup
k→∞

1

kτ
H(q[0,kτ−1]|(wt)t∈Z+

) + lim inf
k→∞

1

kτ
I
[
q[0,kτ−1]; (wt)t∈Z+

]
.

Writing W = W Z+ and µ := νZ+ , the first term on the right-hand side can be
transformed into

(1) lim sup
k→∞

1

kτ

∫

W

Hπ0
(Ck(w̄))dµ(w̄),

where we integrate over the Shannon entropy of the dynamical partition Ck(w̄)
obtained as the common refinement of the pullbacks of the coding partition under
the closed-loop dynamics. The argument w̄ indicates the noise realization. The
key point of this derivation is that the expression (1) resembles very closely the
measure-theoretic entropy of a random dynamical system (with respect to a parti-
tion). To be more precise, this random dynamical system is defined by equipping
W with the standard left shift operator θ and regarding the closed-loop dynamics
as a cocycle over the ergodic base (W , µ, θ).

The only, but crucial difference to the entropy of a random dynamical system
consists in the fact that π0 is usually not a stationary measure for the state process.
In fact, even when f is assumed to be continuous and X to be compact, the
existence of a stationary measure is not guaranteed, since the closed-loop dynamics
is discontinuous.

However, in the situation when there is no control, i.e., f(x, u, w) = g(x,w),
and the control task reduces to a computational task (estimation, for instance),
this problem does not appear and we may assume that the initial distribution π0

is a stationary measure of the state process (or something slightly weaker). In this
case, the lim sup in (1) is a limit and the expression equals the measure-theoretic
entropy with respect to the coding partition (modulo the factor τ). In this case,
results obtained previously for state estimation objectives can be recovered as
special cases of our estimate, see [1, 2, 3].
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An informational perspective on uncertainty in control

Gireeja Ranade

(joint work with Jian Ding, Victoria Kostina, Yuval Peres, Govind Ramnarayan,
Anant Sahai, Mark Sellke, and Alex Zhai.)

High-performance cyber-physical systems rely on many sensors, actuators and
hardware components for successful operation. Control strategies for these de-
vices require an understanding of how unpredictability in these components might
impair performance. Our aim is to quantify the informational bottlenecks im-
posed by unpredictable system models in a manner that is compatible with stan-
dard information-theoretic tools for understanding communication and uncertainty
limits in systems.

We will see examples of systems where it is useful to consider the weaker notion
of “stability-in-probability,” since the standard second-moment notion of stability
can be too conservative. This motivates a notion of “control capacity,” as provides
a fundamental limit on a controller’s ability to stabilize a system with random time-
varying parameters (modeled as multiplicative noise). We can use this to quantify
the value of side-information regarding the uncertainty in the system (in bits), in
order to answer questions such as: “what is the value of adding an extra sensor to
the system?” We will show in a simple case of vector control with dropped packets,
non-causal information about uncertainty in the control channel can improve the
performance of the controller.

I will also contrast systems with noisy actuation (e.g., when motors on a drone
cannot precisely execute control actions) to noisy sensing (e.g., miscalibrated cam-
eras). We use techniques from information-theory and probability-theory to show
that these systems exhibit surprisingly different behavior — a fact that the linear
control perspective does not reveal. If time permits, I will also consider the case
where the system gain itself is unpredictable.

Open Problem

The curious difference between the optimality of linear strategies for multiplicative
actuation noise and their suboptimality in the case of multiplicative observation
noise is only partially understood. Consider the second-moment stability of the
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scalar system:

Xt+1 = aXn + Un

Yn = CnXn.

Here let the variables Cn be drawn i.i.d. from some continuous distribution, such
asN (1, 1) or Unif [1, 2]. Un can be any causal function of the observation Y0 · · ·Yn.
In this case, we do not know the optimal control strategy for the system, nor do we
know that maximum system gain a is, such that the system can be stabilized. We
know from [3] that non-linear strategies can outperform linear strategies. How-
ever, there is a large gap between the achievable strategy and the converse bound
provided in [3]. We also know that among linear strategies, memoryless ones are
optimal, but that non-linear strategies with memory can outperform these. The
open question remains: what is the optimal control strategy for the system? Can
we provide a tight impossibility bound?
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Coding near Shannon-theoretic limits in control

Victoria Kostina

(joint work with B. Hassibi, A. Khina, A. Khisti, E. R. G̊arding, G. M.
Pettersson, Y. Nakahira, F. Xiao, J. C. Doyle)

In remote control of stochastic processes, the observer encodes its observations of
a stochastic process under a rate constraint and a stringent delay constraint. The
controller aims to bring the process to the target while only having access to these
encoded observations.

A simple model of dynamical systems is that of a linear stochastic system, that
evolves according to

(1) Xt+1 = aXt + Ut + Vt,

where Xt is the system state, Ut is the control signal, chosen based on the entire
history of the data received by the controller, Vt is the system noise, which we
assume to be independent and identically distributed; a > 1 is a constant known
as the system gain. The goal is to minimize, under communication rate constraints,
the average mean-square deviation of system state from the target state, 0.

We adopt a Shannon-theoretic view of remote stochastic linear control. We
introduce an information-theoretic measure for this scenario, a certain rate-cost
function, R(b), which is equal to the minimum communication rate (directed in-
formation rate through the feedback loop of the dynamical system) required to
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attain mean-square cost b. For example, for the system in (1) we prove that R(b)
is bounded as [1]:

(2) R(b) ≥ log a+
1

2
log

(
1 +

N(V )

b −Var[V ]

)
,

where N(V ) and Var[V ] is the entropy power and the variance of the common
distribution of V1, V2, . . ., respectively.

We show impossibility (converse) theorems linking this informational quantity
to operational meaning (that is, the number of bits sent) over both noiseless and
noisy rate-limited channels.

For control over several channels of interest, namely, variable-length rate-limited
noiseless channels [1], Gaussian channels [2], rate-limited packet drop channels [3],
and biomolecular channels [4], we propose coding strategies that can approach the
bound in (2) from above.

While our techniques generalize to vector linear systems with general quadratic
cost, many open questions remain. These include practical coding schemes for
control over general noisy channels, rate-limited control of nonlinear systems, and
joint optimal sampling / coding / control strategies.
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Tradeoffs in Networked Control Systems: An Information Theoretic

Approach

Hideaki Ishii

(joint work with Song Fang and Jie Chen)

Today, for remotely controlling physical systems in real time, communication net-
works play an indispensable role to connect numerous sensors and actuators with
controllers. In such networked control systems, the quality in communication can
have significant impacts on the achievable control performances. The analysis of
such limitations and tradeoffs arising in networked control lies at the intersection
of both control theory and information theory.

In this talk, we focus on the so-called Bode integral through an information
theoretic approach. Bode integral is a classical result, representing one of the
most fundamental limitations in feedback control systems [1, 8]. It shows that
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performance in terms of disturbance attenuation cannot be improved over all fre-
quency ranges by any stabilizing controllers. We present our recent works on novel
Bode-type integral inequalities, developed for networked control systems [3, 4, 5].

Our approach explicitly takes account of the noises introduced at communica-
tion channels by employing tools such as entropy rates [2] of signals [9, 7, 6]. This
enables us to derive general results for a broad class of systems consisting of linear
time-invariant plants and causal, possibly nonlinear and time-varying controllers
communicating over general noisy channels through encoders and decoders. We
introduce novel measures for the quality of communication such as blurredness
and negentropy rates and characterize their effects on Bode-type integrals. We
further discuss performance bounds for general networked systems in control as
well as estimation problems.
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Implicit Communication in Decentralized Control

Anant Sahai

(joint work with Pulkit Grover, Se Yong Park)

The real-world problem of decentralized control involves a group of agents trying
to make a physical system behave in a desired manner by working together. The
main contrast with centralized control is that each agent must act on the basis
of only the local information available to it. The following discrete-time example
illustrates the issues here:

Let X(t) be the scalar state at time t, where t ranges over the natural numbers.
The evolution of the state is given by:

X(t+ 1) = λX(t) + Ua(t) + Ub(t) +W (t)(1)
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where the W (t) are independent and identically distributed Gaussian random vari-
ables with zero mean and unit variance. The initial condition X(0) can be taken
to be a random Gaussian random variable (independent of the W (t) random vari-
ables) with zero mean and variance σ2

0 . The constant λ represents the open-loop
system gain. The Ua(t) and Ub(t) are the control inputs applied by controllers a
and b respectively at time t, where each of these are allowed to depend only on the
sequence of past and present observations Ya(0, 1, . . . , t) for Ua(t) and similarly
Ya(0, 1, . . . , t) for Ub(t). These observations are noisy versions of the state:

Ya(t) = X(t) + Va(t)(2)

Yb(t) = X(t) + Vb(t)(3)

where the Va(t) are also independent and identically distributed Gaussian random
variables with zero mean and variance σ2

a; and the Vb(t) are independent and
identically distributed Gaussian random variables with zero mean and variance
σ2
b . The {Va(t)} and {Vb(t)} are independent of each other as well as the {W (t)}

and initial condition X(0).
The goal is to minimize the long-term average expected cost

lim sup
T→∞

1

T

T∑

t=0

E[X2(t)] +QaE[U2
a (t)] +QbE[U2

b (t)](4)

by suitably choosing the control functions that give rise to the Ua and Ub sequences
from observations.

Although this problem is still very much open, it is possible to give nonlinear
control strategies that depend on the system gain λ, observation noise variances
σ2
a, σ

2
b and the control costs Qa, Qb, that achieve performance no more than a

constant factor worse than the optimal cost no matter what values these problem
parameters take.

It turns out that the conceptual heart of the problem comes from cases where
Qa is high (it is painful for the first controller to act) but σ2

a is small (the first
controller can see what the state is quite accurately; while the situation is reversed
for the second controller. In these cases, intuitively, the first controller would like
to somehow count on the second controller to do the work of reducing the state
while using its own limited control actions to somehow implicitly communicate its
better quality observation to the second controller. This is precisely the context
that is distilled into the famous Witsenhausen counterexample in a minimalist
form.

Consider only three time steps: 0, 1, 2. After X(0) is realized, only the first
controller gets to act. For simplicity, there is no observation noise for this controller
and so Ya(0) = X(0). The state evolves to X(1) = X(0) +Ua(X(0)). At the next
time step, only the second controller gets to act, based on observation noise with
variance σ2

b . The state evolves to X(2) = X(1) + Ub(Yb) = X(0) + Ua + Ub. The
goal is to minimize E[X2(2)] +QaE[U2

a (X(0))]. There is no penalty on either the
state X(1) or the control Ub.
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It turns out that this problem can be reinterpreted as a problem of “assisted in-
terference suppression” in communication with the first controller playing the role
of an encoder and the second controller playing the role of a decoder. Information-
theoretic bounds can be derived leveraging rate-distortion theory (also called
ǫ−entropy by Kolmogorov). Furthermore, by looking at the infinite-dimensional
limit of the problem (i.e. replacing all scalar random variables with high-dimen-
sional vectors with i.i.d. distributions across the different dimensions), nonlinear
control strategies can be found based on the idea of dirty-paper-coding (also called
the Gaussian Gelfand-Pinsker channel) in communication. The basic information-
theoretic bounds can then be tightened in the case of the scalar problem (and
finite-dimensions more generally) by exploiting the ideas behind sphere-packing
bounds derived through change-of-measure arguments. These can be used to es-
tablish constant-factor optimality for the Witsenhausen counterexample.

All of these results were developed with inspiration provided by simple bubble-
diagrams that attempt to distill the informational interaction betwen real-valued
random variables by viewing them as idealized bit strings written out in binary
notation.
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Invariance pressure

Alexandre J. Santana

(joint work with Fritz Colonius, Joao A.N. Cossich)

In this work we present the concepts of invariance pressure and outer invariance
pressure for continuous time control systems based on weights for the control val-
ues. These concepts are an extension of the notion of invariance entropy (see e.g.
[1] and [2]) and are inspired by the classical concept of topological pressure in
the theory of dynamical systems (see [3] and [4]). The considered control systems
are given by ordinary differential equations on a smooth manifold M . For a com-
pact subset K of a set Q ⊂ M and τ ∈ N a set S of control functions is called
(τ,K,Q)-spanning, if for each initial x ∈ K there is a control ω in S such that the
corresponding trajectory remains in Q up to time τ . Then, for a continuous real
valued function f on the control range U and (Sτf) (ω) =

1
τ

∫ τ

0
f(ω(t))dt let

aτ (f,K,Q) = inf

{
∑

ω∈S

e(Sτf)(ω) | S is (τ,K,Q)-spanning

}
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and define the invariance pressure of f as

Pinv(f,K,Q) = lim sup
τ→∞

1

τ
log aτ (f,K,Q).

The outer invariance pressure Pout(f,K,Q) is obtained by replacing Q by an ε-
neighborhood of Q and taking the limit for ε → 0. It can be shown that many
properties of topological pressure of dynamical systems have analogues for invari-
ance pressure. Our main result characterizes the outer invariance pressure for
linear control systems with compact control range U . Given a continuous function
f : U → R that achieves its minimal value in an equilibrium which can be reached
from every point of Q one finds for the outer invariance pressure

Pout(f,Q,Q) = min
u∈U

f(u) + hinv,out(Q).

The outer invariance entropy hinv,out(Q) in this linear case is given by the unstable
determinant (cf. [2]). Open questions in this area include upper and lower bounds
for the invariance pressure analogous to known bounds for invariance entropy.
Furthermore, the assumptions on the function f in the result presented above
should be weakened.
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Bit rate bounds for containability of scalar systems with event-based

sampling

Steffen Linsenmayer

(joint work with Rainer Blind, Hideaki Ishii, Frank Allgöwer)

When studying stabilization problems for continuous-time control system, the
state is usually sampled periodically before being coded and sent over a channel.
In such a scenario, fundamental bounds on the necessary bit rate for stabilization
are known. The study by Kofman and Braslavsky in [1] on the other hand, showed
that using a sampling mechanism that employs state information, the necessary
bit rate for stabilizing an unstable SISO control system can be made arbitrarily
small. Recently, this initiated research on the influence of such state-dependent,
often referred to as event-based, sampling strategies on the necessary bit rates for
given control tasks.

Here we consider a setup, where the controller is assumed to be static and the
coder and decoder are assumed to be memoryless. Such a setup is studied using
a conventional sampling scheme in [2]. Therein the notion of containability is
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defined. According to that definition, a finite communication control system on
R

n is containable if for any sphere N centered at the origin there exists an open
neighborhood of the origin M and coding and feedback control laws such that any
trajectory started in M remains in N for all time.

We discuss the influence of event-based sampling on bit rate bounds for contain-
ability of scalar, unstable, linear control systems. A first investigation confirms
the findings of Kofman and Braslavsky for this scenario in the sense that, if no
transmission delay is being present, the asymptotic average bit rate for contain-
ability can be made arbitrarily small. If delays are present, and one assumes that
the only knowledge about the delays is a uniform lower and upper bound, this is
not possible anymore. The required bit rate for this case can be quantified as a
function of the delay bound [3].

After noticing that uncertainty in time affects the bit rate bound, a further
study is conducted that analyzes the effect of uncertain system parameters. In this
scenario, an interesting finding is given by the fact that if no delays are present
it is again possible to make the necessary bit rate arbitrarily small, but only if
one uses an alphabet which contains at least three symbols, while an alphabet
consisting of two symbols was sufficient without uncertainty. We characterize the
bit rate bounds with those two alphabets and draw conclusions regarding the
optimal choice.

An issue that is discussed is the extension to higher order systems. It is possible
to derive a procedure that preserves the general possibilities for a system with two
unstable eigenvalues, but a generalization towards higher dimensions in the given
setup remains an open problem.
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Entropy structure

Tomasz Downarowicz

Suppose we observe a discrete time topological dynamical system (a homeomor-
phism T acting on a compact metric space X) and we need to send through a
digital channel enough information, so that the receiver can identify the initial
state within some ǫ-ball, where ǫ tends to zero with time. Such an encoding could
be called a lossless digitalization of our system. How much capacity must the
channel have (or what bitrate of the signal must be applied) to achieve this goal?
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The answer to this very natural question relies on the theory of symbolic exten-

sions and entropy structure developed in [2] and [3] and summarized in [4]. In
the measure-theoretic setup, the famous Krieger Generator Theorem settles the
question: an ergodic automorphism T with finite Kolmogorov–Sinai entropy hµ(T )

can be digitalized using |Λ| = ⌊ehµ(T )⌋ + 1 symbols and the minimal capacity of
the channel in question is precisely the Kolmogorov–Sinai entropy. By analogy,
one might hope that in the topological setup the topological entropy htop(T ) of
the dynamical system (X,T ) plays a similar role. However, an obstacle occurs:
there is no hope to find (in general) a subshift which is topologically conjugate to
(X,T ). But one may still find a symbolic extension of (X,T ), i.e., a subshift (Y, S)
and a (surjective) topological factor map π : (Y, S) → (X,T ). Such an extension
could play the role of a lossless digitalization of (X,T ). Then the minimal capacity
of a channel capable of sending the digital signal encoded in Y would be equal
to the topological entropy htop(S) of (Y, S) and the number of symbols needed

would be ⌊ehtop(S)⌋ + 1. So the key question becomes this: what is the infimum
of the topological entropies of symbolic extensions of (X,T )? Let us denote this
infimum by hsex(T ) and call it the symbolic extension entropy of (X,T ). The most
pending questions are: is hsex(X,T ) always equal to htop(T ) (or can it be larger)?
Is it at least always finite when htop(T ) is? (Infinite hsex(X,T ) is equivalent to
nonexistence of symbolic extensions.)

It turns out that the answers to both questions are negative. The first example of a
systems with hsex > htop is due to Mike Boyle [1], and can be described as follows:
Let X be the set of 0-1 arrays x = [xk,n]k∈N,n∈Z satisfying the following rules: the
first row (corresponding to k = 1) is an arbitrary 0-1 (bi-infinite) sequence. All
other rows are filled with zeros, except when the first row is periodic with minimal
period p. Then, in row number 1+p all 0-1 sequences are allowed. It is elementary
to check that this set of arrays is closed and invariant under the horizontal shift
σ([xk,n]) = [xk,n+1]. It is also easy to see, using the variational principle, that
htop(X,T ) = log 2. It takes a bit more effort to verify that any symbolic extension
of this system must have entropy at least log 4. A slightly modified version of this
example produces a system with finite topological entropy and infinite symbolic
extension entropy.

The main question in the theory of symbolic extensions is how to compute the value
of hsex(X,T ) in terms of internal properties of (X,T ) (i.e., without constructing
its symbolic extensions). The answer is surprisingly complicated and needs the
notion of an “entropy structure”, which we describe below. For simplicity, let us
assume that (X,T ) is zero-dimensional. Then it is an inverse limit of subshifts

over finite alphabets: (X,T ) =
←

limk(Xk, Tk). Each (Xk, Tk) is a subshift and a
topological factor of (Xk+1, Tk+1), as well as of (X,T ). Every invariant measure
µ on X (we will write µ ∈ MT (X)) projects to a shift invariant measure µk

on XT (i.e., µk ∈ MTk
(Xk)). On MT (X) we can thus define a sequence of

nonnegative entropy functions hk(µ) = hµk
(Tk). These functions are obviously

affine, upper semicontinuous (this a well-known property of subshifts) and converge
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nondecreasingly to the entropy function h(µ) = hµ(T ). By the entropy structure H
of (X,T ) we will mean the entire sequence of functions H = (hk)k≥1. A function
E on MT (X) is called a superenvelope of H if E ≥ h and E − hk is upper
semicontinuous for each k. It is not hard to see that the pointwise infimum of
all superenvelopes of H is again a superenvelope of H. We call it the minimal

superenvelope of H and denote by EH. We are in a position to formulate the main
theorem in the theory of symbolic extensions and entropy structure.

Symbolic Extension Entropy Theorem [2, 4]:

(1) If π : (Y, S) → (X,T ) is a symbolic extension of (X,T ), then the function
hπ(µ) = sup{hν(S) : π∗(ν) = µ} (where π∗ is the natural projection of
MS(Y ) onto MT (X) determined by the factor map π) is a superenvelope
of the entropy structure H on (X,T ). Note that this function is also affine.

(2) Conversely, any affine superenvelope the entropy structure H equals the
function hπ(µ) for some symbolic extension π : (Y, S) → (X,T ).

(3) hsex(X,T ) = sup{EH(µ) : µ ∈ MT (X)}.

We conclude with the remark that every nondecreasing sequence of affine upper
semicontinuous functions defined on any Choquet simplex represents an entropy
structure of some zero-dimensional dynamical system (X,T ) (see [5]). Thus in
order to give examples of phenomena associated with entropy structure and, in
particular, with the symbolic extension entropy, it suffices to build examples of
Choquet simplices and sequences of affine upper semicontinuous functions on them.
Most of the interesting phenomena can be observed already on simplices with
countably many extreme points, and this is done in the book [4].
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Metric invariance entropy, quasi-stationary measures and control sets

Fritz Colonius

The topological notion of invariance entropy has been studied since some time and
a number of results are available (cf. Kawan [6]). In particular, under hyperbol-
icity assumptions da Silva and Kawan [5] could show that the invariance entropy
of control sets is determined by the exponential growth rate of the unstable deter-
minant.

In view of the fruitful interplay between topological and measure theoretic
versions of entropy of dynamical systems it seems desirable to develop also a
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measure-theoretic version of invariance entropy. The research reported undertakes
some steps in that direction. Since here the behavior of trajectories within a non-
invariant subset of the state space is of interest, I use a generalization of invariant
measures given by quasi-stationary measures with respect to a given probability
measure on the control range. Quasi–stationary measures are frequently employed
in the theory of absorbed Markov processes, where they occur as Yaglom lim-
its and describe the behavior under the condition that the trajectory remains in
the considered subset. General references to quasi-stationary measures are the
monograph [2] and the survey [1].

Compared to entropy for dynamical systems, in the construction of invariance
entropy one replaces partitions and open covers by invariant partitions and invari-
ant open covers, respectively, which use feedbacks keeping the system in the given
subset of the state space up to a finite time. Due to quasi-stationarity, the rele-
vant probability measure for the associated Shannon-entropy has to be weighted
according to the considered time. Since the minimal required bit rate is of rele-
vance for control theoretic purposes, the infimum of the associated bit rates over
all invariant partitions is taken.

The main results show that this entropy, which is always bounded above by the
topological invariance entropy, is invariant under measurable transformations and
that it is already determined by control sets, which are certain subsets of the state
space which are characterized by controllability properties.

Open problems in this field include the question if measure theoretic invariance
entropy can be arbitrarily close to the topological version. Furthermore, there is
a lack of explicit examples where the measure theoretic invariance entropy can be
computed.
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Cidade Universitária - Ilha do Fundao
Caixa Postal 68530
Av. Athos da Silveira Ramos 149
21941-909 Rio de Janeiro, RJ
BRAZIL

Prof. Dr. Hideaki Ishii

Department of Computer Science
Tokyo Institute of Technology
226-8502 Yokohama
JAPAN

Dr. Christoph Kawan

Fakultät für Mathematik und Informatik
Universität Passau
94030 Passau
GERMANY

Prof. Dr. Victoria Kostina

Department of Mathematics
California Institute of Technology
Pasadena, CA 91125
UNITED STATES

Prof. Dr. Daniel M. Liberzon

Coordinated Science Laboratory
(MC-228)
University of Illinois at Urbana
Champaign
1308 W. Main Street
Urbana, IL 61801
UNITED STATES

Steffen Linsenmayer

Institut für Systemtheorie
und Regelungstechnik
Universität Stuttgart
Pfaffenwaldring 9
70550 Stuttgart
GERMANY

Prof. Dr. Girish Nair

Department of Electrical and
Electronic Engineering
University of Melbourne
Melbourne, VIC 3010
AUSTRALIA

Prof. Dr. Alexander Y. Pogromsky

Department of Mathematics
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven
NETHERLANDS

Dr. Gireeja Ranade

Microsoft Research AI
14820 NE 36th Street
Redmond, WA 98052-6399
UNITED STATES



558 Oberwolfach Report 10/2018

Prof. Dr. Anant Sahai

Department of Electrical Engineering
and Computer Sciences
University of California at Berkeley
267 Cory Hall
Berkeley, CA 94720
UNITED STATES

Prof. Dr. Alexandre J. Santana

Departemento de Matematica
Universidade Estadual de Maringá
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