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Abstract. Recent decades have witnessed a shift in interest from isolated
objects to families of objects and their limit behavior, both in algebraic ge-
ometry and in commutative algebra. A series of various invariants have been
introduced in order to measure and capture asymptotic properties of various
algebraic objects motivated by geometrical ideas. The major goals of this
workshop were to refine these asymptotic ideas, to articulate unifying themes,
and to identify the most promising new directions for study in the near fu-
ture. We expect the ideas discussed and originated during this workshop to
be poised to have a broad impact beyond the areas of algebraic geometry and
commutative algebra.
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Introduction by the Organisers

The miniworkshop Asymptotic invariants of homogeneous ideals, organised by
Thomas Bauer (Marburg), Susan Cooper (Manitoba), Brian Harbourne (Lincoln)
and Justyna Szpond (Kraków) was attended by 17 participants from Europe and
North America. There was a diversity in experience level ranging from early post-
docs to established, internationally recognized professors. Thanks to this diversity
we were able to achieve considerable progress on topics highlighted at the work-
shop and to provide excellent training for early career participants. It is also
worthwhile highlighting the fact that the majority of workshop participants were
female researchers. Workshop activities were divided between 14 half hour talks
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and group research collaborations which took place mostly in the afternoons. Ac-
tivities commenced on the first day with an in-depth discussion of problems to be
studied. There were also two formal progress report sessions, apart from informal
discussions held throughout the workshop.

The research groups focused their efforts on three main problems, labeled A–C
and described below.

A. Ideals with extremal behavior with respect to the Containment Prob-

lem. Ein–Lazarsfeld–Smith [4] and Hochster–Huneke [7] proved that the contain-
ment

(1) I(m) ⊂ Ir

holds for an arbitrary nontrivial homogeneous ideal I ⊂ K[x0, . . . , xn] and all
m ≥ rn. The proof by Ein, Lazarsfeld, and Smith was inspired by work of Swanson
on ideal topologies and uses mainly the techniques of asymptotic multiplier ideals
in characteristic zero. The work of Hochster and Huneke uses mainly a tight
closure approach in finite characteristics. It is natural to wonder to what extent
the bound m ≥ rn is optimal. This question, known as the Containment Problem,
has recently attracted a lot of attention, see [1] and [9] for detailed surveys of
results and open problems considered in the last decade.

In the simplest situation of ideals I describing points in P2, the containment
I(4) ⊂ I2 is guaranteed by (1), but it is not completely understood when the con-
tainment I(3) ⊂ I2 fails. In fact this containment was proved in many cases and
it came as a surprise when the first non-containment example was discovered in
2013. The ideals for which the containment I(3) ⊂ I2 fails seems to be rare. This
working group focused on constructions of such ideals related to the group law on
a nodal cubic. Surprisingly, it was discovered that this construction provides an
alternative and more uniform approach to a series of examples studied in combi-
natorics by Böröczky.

B. Symbolic defect of some classes of geometrically motivated ideals.
Studying the Containment Problem is one way of comparing regular and symbolic
powers of ideals. The difference between the regular power Im and the symbolic
power I(m) can be measured in an alternative way introduced recently in [5].
The m-th symbolic defect of an ideal I is the minimal number of generators of the
module I(m)/Im. The properties of this invariant are to a large extent unexplored.
The main result of [5] is the classification of sets of general points in the projective
plane with vanishing second symbolic defect.

This working group focused on Fermat point configurations in the plane. These
are defined by almost complete intersection ideals In of the form

〈x(yn − zn), y(zn − xn), z(xn − yn)〉,
with n ≥ 3. The interest in these ideals is motivated by their extremal behavior
from the point of view of the Containment Problem (see, for example, [3] and [8]).
A sample result obtained in this direction is the computation of the n-th symbolic
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defect of In and a conjectural formula for the kn-th symbolic defects. These results
are the first instance where an asymptotic version of the symbolic defect appears.

C. Seshadri constants on blow-ups of projective spaces. Seshadri constants
have turned out to be a fundamental tool in the study of positivity questions in
algebraic geometry. A lot of research is currently focused on problems related to
Seshadri constants. One such open problem is whether Seshadri constants can
be irrational. Even in the case of algebraic surfaces the exact values of Seshadri
constants are very hard to compute. Recent results in [2] and [6] show, some-
what surprisingly, that the existence of irrational one point Seshadri constants
on blow-ups of the projective plane follows from the Segre-Harbourne-Gimigliano-
Hirschowitz (SHGH) Conjecture. There are also many different approaches to
studying Seshadri constants. For this working group the focus was on the largest
and the smallest values of the Seshadri constants ε(X ;L, x) of a fixed ample line
bundle L as a single point x varies over a fixed surface X . These values behave very
differently. The largest value ε(X ;L, 1) is achieved for x very general. The small-
est value ε(X ;L) is usually attained at special points. We show, again assuming
the SHGH Conjecture, that there exist line bundles on a blow-up of the projective
plane with irrational Seshadri constant ε(X ;L). This suggests a negative answer
to a conjecture raised around 2000 by Szemberg.

Acknowledgement: The MFO and the workshop organizers would like to thank
the National Science Foundation for supporting the participation of a junior re-
searcher Elóısa Grifo in the workshop by the grant DMS-1049268, “US Junior
Oberwolfach Fellows”. Moreover, the MFO and the workshop organizers would
like to thank the Simons Foundation for supporting Krishna Hanumanthu in the
“Simons Visiting Professors” program at the MFO.
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We present the abstracts in the order in which the talks were given.

Abstracts

Negative curves on symmetric blowups of P2 and resurgence

Jack Huizenga

(joint work with Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Alexandra
Seceleanu, and Thomas Szemberg)

The Klein and Wiman configurations are highly symmetric configurations of lines
in the projective plane arising from complex reflection groups. One noteworthy
property of these configurations is that all the singularities of the configuration
have multiplicity at least three. In this talk we study the surface X obtained by
blowing up P2 in the singular points of one of these line configurations. We study
invariant curves on X in detail, with a particular emphasis on curves of negative
self-intersection. We use the representation theory of the stabilizers of the singular
points to discover several invariant curves of negative self-intersection on X , and
use these curves to study Nagata-type questions for linear series on X .

The homogeneous ideal I of the collection of points in the configuration is an
example of an ideal where the symbolic cube of the ideal is not contained in the
square of the ideal; ideals with this property are seemingly quite rare. The resur-
gence and asymptotic resurgence are invariants which were introduced to measure
such failures of containment. We use our knowledge of negative curves on X to
compute the resurgence of I exactly. We also compute the asymptotic resurgence
and Waldschmidt constant exactly in the case of the Wiman configuration of lines,
and provide estimates on both for the Klein configuration.

Let us discuss the case of the Klein configuration in more detail. The automor-
phism group PGL3(C) of P2 has a subgroup G isomorphic to PSL(2, 7), the finite
simple group of order 168. This group contains 21 involutions, and each of them
fix a line in P2. These lines intersect precisely in 28 triple points and 21 quadruple
points; let K be these 49 points, and let IK be their homogeneous ideal. Then we

show that I
(3)
K 6⊂ I2K; more specifically, the product of the lines is an element of

I
(3)
K which is not contained in I2K. The key is to show that I2K does not contain

any G-invariant forms of degree 21.
The concepts of resurgence and asymptotic resurgence are closely related to

Waldschmidt constants, which are limits

α̂(I) = lim
n→∞

α(I(n))

n
,

where α(J) is the initial degree of J . Upper bounds on the Waldschmidt constant

α̂(IK) can be obtained by exhibiting forms (ideally of low degree) in I
(n)
K . This is

not hard to do: we can use the (highly singular) line configuration to get highly
singular curves of low degree, and then add on an additional curve which balances
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the multiplicities. In this way, we can construct for any k ≥ 1 an element of I
(14k)
K

of degree 91k + 2, and in the limit we find α̂(IK) ≤ 6.5.
Lower bounds on Waldschmidt constants are more interesting. If the Wald-

schmidt constant were too small, it would give a curve C on the blowup XK =
BlKP2 that is very singular for its degree. If we have a nef divisor N on XK,
then C · N ≥ 0. Since singularities of C will typically make C · N smaller, if C
is too singular then C · N will become negative. Thus, constructing interesting
nef divisors produces interesting lower bounds on α̂(IK). By using representation
theory we construct negative curves on XK and use these to construct nef divisors
on XK. These divisors establish the next result.

Theorem 1 ([1]). The Waldschmidt constants for the Klein and Wiman configu-
rations of points satisfy

6.44 ≤ α̂(IK) ≤ 6.5 α̂(IW ) = 13.5.

The resurgence ρ(I) and asymptotic resurgence ρ̂(I) are defined by

ρ(I) = sup
{m
n

: I(m) 6⊂ In
}

ρ̂(I) = sup
{m
n

: I(tm) 6⊂ Itn for all t ≫ 0
}
.

Corollary 2. We have ρ(IK) = ρ(IW) = 3/2. The asymptotic resurgence satisfies

16

13
≤ ρ̂(IK) ≤ 1.234 ρ̂(IW ) =

32

27
.

References
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Waldschmidt constants of points in PN

Justyna Szpond

(joint work with Grzegorz Malara and Tomasz Szemberg)

In the 70’s, motivated by problems in complex analysis and diophantine approxi-
mation, the following invariant was first defined.

Definition 1 (Waldschmidt constant). Let Z ⊂ CN be a finite set of points. The
Waldschmidt constant of Z is the real number

α̂(Z) = lim
m→∞

α(mZ)

m
.

The existence of the limit has been showed by Chudnovsky [1, Lemma 1]. It is

well known that α̂(Z) = infm≥1
α(mZ)

m
. Chudnovsky established also the following

fundamental fact, see [1, Theorem 1].
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Theorem 2. Let Z ⊂ CN be a finite set of points. Then

(1) α̂(Z) ≥ α(Z)

N
.

The bound in (1) can now be easily derived from the seminal results of Ein,
Lazarsfeld and Smith [4]. Chudnovsky expected that the bound in (1) is not
optimal and raised the following Conjecture, see [1, Problem 1].

Conjecture 3 (Chudnovsky). Let Z ⊂ CN be a finite set of points. Then

α̂(Z) ≥ α(Z) + N − 1

N
.

This has been subsequently generalized by Demailly, see [2, p. 101].

Conjecture 4 (Demailly). Let Z ⊂ CN be a finite set of points. Then for all
m ≥ 1

α̂(Z) ≥ α(mZ) + N − 1

m + N − 1
.

Of course, for m = 1 Demailly’s Conjecture reduces to that of Chudnovsky.
The main result presented in the talk is the following.

Theorem 5. Demailly’s Conjecture holds for s ≥ (m + 1)N very general points
in PN .

In particular, for m = 1 we recover the a result from [3] to the effect that the
Chudnovsky Conjecture holds for s ≥ 2N very general points in PN .
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The containment problem and Harbourne’s conjecture for very

general points in PN

C

Yu Xie

Let R = C[x0, x1, . . . , xN ] be a polynomial ring over C. Let I = ∩s
i=1I(pi) be

the ideal of s points in PN
C

. Recall the m-th symbolic power of I is I(m) =

∩s
i=1I(pi)

m. It is clear that Im ⊆ I(m), but I(m) is not contained in Im in
general. The containment problem consists of determining all the values of a
and b for which I(a) ⊆ Ib holds. The resurgence ρ(I) is then defined to be
sup{a

b
| I(a) is not contained in Ib}. A fundamental result of Ein-Lazarsfeld-Smith

[5] and Hochster-Huneke [6] proved that I(Nm) ⊆ Im for m ≥ 1. Harbourne con-
jectured whether the containment can be improved to I(Nm−N+1) ⊆ Im for m ≥ 1
[1]. Harbourne’s conjecture was proved for ideals of finite sets of general points
when N = 2, 3 (See [2] and [3]). The first counterexample to this conjecture was
found by Dumnicki, Szemberg, and Tutaj-Gasińska [4] who proved that the ideal
of a certain configuration of twelve points in P2

C
fails to have I(3) ⊆ I2.

We prove that Harbourne’s conjecture holds for I(t) whenever t ≥ 2, and any
finite set of very general points in PN

C
.

Theorem 1. Let I = ∩s
i=1I(pi) be the ideal of s points in PN

C
. Then

(1)
(
I(t)
)(Nm−N+1) ⊆

(
I(t)
)m

for t ≥ 2 and m ≥ 1.

(2) ρ
(
I(m)

)
≤ m+N−1

m
for m ≥ 1.

(3) limm→∞ρ
(
I(m)

)
= 1.

Theorem 2. Let I = ∩s
i=1I(pi) be the ideal of s very general points in PN

C
. Then

I(Nm−N+1) ⊆ Im for m ≥ 1.
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Local positivity on projective spaces

Tomasz Szemberg

(joint work with Marcin Dumnicki, Justyna Szpond)

Waldschmidt constants appeared in the 70’s in the realms of complex analysis in
works of Chudnovsky, Moreau, Skoda and Waldschmidt. They have been intro-
duced to commutative algebra only recently by Dumnicki and Harbourne.

Definition 1. Let I ⊂ K[x0, . . . , xN ] be a homogeneous ideal. The initial de-
gree α(I) is the least integer t such that the graded part (I)t is non-zero. The
Waldschmidt constant α̂(I) is defined asymptotically as

α̂(I) = lim
m→∞

α(I(m))

m
= inf

m≥1

{
α(I(m))

m

}
,

where J (k) is the kth symbolic power of J .

These invariants are very hard to compute in general. If I is a radical ideal of
a finite set of s points in the projective space PN , then there is always

α̂(I) ≤ N
√
s,

and it expected that the equality holds for sufficiently many points s in general
position. This expectation, in the complex projective plane, is equivalent to the
celebrated Nagata Conjecture, and hence seems out of reach at the moment. How-
ever there is an intriguing question raised by Demailly relating the Waldschmidt
constant of an ideal of arbitrary points I to the initial degree of symbolic powers
of I.

Conjecture 2 (Demailly). Let I be a saturated ideal of a finite set of points in
PN . Then

(1) α̂(I) ≥ α(I(m)) + N − 1

m + N − 1

holds for all m ≥ 1.

This conjecture reappears as a question in the recent work by Harbourne and
Huneke [2, Question 4.2.1].

In my talk, based on a joint work with Dumnicki and Szpond [1], I presented a
new approach to bounding Waldschmidt constants from below.

Theorem 3. Let H1, . . . , Hs be s ≥ 2 mutually distinct hyperplanes in PN . Let
a1, . . . , as ≥ 1 be real numbers such that

1 −
s−1∑

j=1

1

aj
> 0 and 1 −

s∑

j=1

1

aj
≤ 0.
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Let Zi = {Pi,1, . . . , Pi,ri} ∈ Hi \
⋃

j 6=i Hj be the set of ri points such that

α̂(Hi;Zi) ≥ ai and let Z =
⋃s

i=1 Zi. Then

α̂(PN ;Z) ≥


1 −

s−1∑

j=1

1

aj


 · as + s− 1.

This result, accompanied by a symbolic algebra script, allows a recursive com-
putation of very efficient lower bounds on sets of points in projective spaces. In
particular, we obtain the following improvement of [1, Main Theorem].

Corollary 4. The inequality in (1) holds for s ≥ mN general points in PN .
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Configurations with triple points by a rational cubic

Halszka Tutaj-Gasińska

(joint work with Thomas Bauer,  Lucja Farnik, Brian Harbourne)

The talk presents a work in progress. It concerns a way to construct some con-
figurations of lines with many triple points by means of a singular cubic. The
interest in such configurations come from the containment problem: determine all
m, r such that I(m) ⊂ Ir. By the results of [2] and [4], we know that for a ho-
mogeneous radical I the containment I(nr) ⊂ Ir holds for r ≥ 0. Thus, in P2, we
know that I(4) ⊂ I2 and it is easy to give an example of an ideal where I(2) 6⊂ I2.
Thus, the question (stated eg in [3]) was: for I, a homogeneous radical ideal of
points in the projective plane, is there I(3) ⊂ I2?

The first example of the ideal which does not satisfy this containment appeared
in [1]. The ideal for which the containment fails is there the ideal of triple points in
dual Hesse configurations, so the dual to the configuration of twelve lines passing
through triples of 3-torsion points of a smooth cubic.

In this talk we present a way to construct configurations with many triple
points, and such, that the ideal of the triple points of these configurations does
not satisfy the containment I(3) ⊂ I2. More precisely, assume we have a nodal
cubic with s-torsion points. If s is not divisible by 3 we construct a set of s

lines with s − 1 double and s2−3s+2
6 triple points, and if s is divisible by 3, then

the configuration has s− 3 double and s2−3s+6
6 triple points. By computer-aided

computations we checked, that ideals of triple points of these configurations give
an example of noncontainment in I(3) ⊂ I2, for 12 ≤ s ≤ 22, and that for s ≤ 11
the containment holds.
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Containment Problem and Combinatorics

 Lucja Farnik

(joint work with Jakub Kabat, Magdalena Lampa-Baczyńska,
Halszka Tutaj-Gasińska)

The Containment Problem asks for which values of m and r there is the contain-
ment of the m-th symbolic power of a homogeneous ideal I in C[PN ] in its r-th
ordinary power. General results in [3] and [5] show that m ≥ Nr implies I(m) ⊂ Ir.
Thus in C[P2], it is always I(4) ⊂ I2 and it is natural to wonder if I(3) ⊂ I2 holds.
The first counterexample was given in [2]. Such non-containments are rare and
therefore it is tempting to understand their nature.

I will consider the ideals of nineteen triple points of three special arrangements
of twelve lines, namely the Böröczky configuration of 12 lines and two configura-
tions described in [1], i.e., the configuration C2 and the configuration C7.

The Böröczky

configuration of 12 lines
The configuration C2 The configuration C7

Every configuration above has the same arrangemental combinatorial features,
which means that in all three arrangements of lines there are nine of twelve lines
having five triple points and one double point, and three lines having four triple
points and three double points.

If I denotes the ideal of triple points of a configuration then, surprisingly, for
one of the configurations, the containment I(3) ⊂ I2 holds, while for the others it
does not. Hence, I will conclude that for ideals of points defined by arrangements
of lines the (non)containment of the third symbolic power in the second ordinary
power is not determined alone by arrangemental combinatorial features (see [4] for
details).
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A stable version of Harbourne’s Conjecture

Elóısa Grifo

Given a radical ideal I in a regular ring R, the n-th symbolic power of I is given
by

I(n) =
⋂

P∈Min(I)

InRP ∩R.

While symbolic powers have good geometric properties, they can be very difficult
to compute; on the other hand, ordinary powers are easily computable, but do
not enjoy good geometric properties. In general, In 6= I(n). The Containment
Problem tries to compare In and I(n) by asking when I(a) ⊆ Ib.

Theorem 1 ([3, 8, 9]). Let R be a regular ring and I be a radical ideal of big
height h. For all n > 1, I(hn) ⊆ In.

In characteristic p, this can be improved; one has I(hq−h+1) ⊆ Iq for all q = pe.

Conjecture 2 (Harbourne, 2008). Let R be a regular ring and I be a radical ideal
of big height h. Then for all n > 1, I(hn−h+1) ⊆ In.

Conjecture 2 holds for nice classes such as ideals defining general points in P2 [6]
and P3 [1] or ideals defining F-pure rings [5]. Despite the existence of counterex-
amples to Harbourne’s Conjecture [2, 7], the following remains open:

Conjecture 3. Under the conditions above, I(hn−h+1) ⊆ In for all n ≫ 0.

In [4], this and other related questions are discussed, including some partial results
that serve as evidence towards Conjecture 3.

Theorem 4 ([4]). Let R be a regular ring containing a field and I be a radical
ideal of big height h. If I(hk−h) ⊆ Ik for some k, then for all n ≫ 0 we have

I(hn−h) ⊆ In.

Does I(hk−C) ⊆ Ik for some k imply I(hn−C) ⊆ In for all n ≫ 0? A sufficient
condition [4] is that I(n+h) ⊆ II(n) for all n > 1. While not all ideals verify
this condition even asymptotically, as an Example by Seceleanu [4, Example 2.12]
shows, there are indeed classes of ideals verifying this condition:
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Theorem 5 ([4]). Let R be a regular ring of characteristic p and let I be a radical
ideal of big height h. If R/I is F-pure, then for all n > 1

I(n+h) ⊆ II(n).

In particular I(hn−C) ⊆ In for all n ≫ 0 as long as I(hk−C) ⊆ Ik for some k.
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Noncontainments between symbolic and ordinary powers in reflection

arrangements

Alexandra Seceleanu

(joint work with Benjamin Drabkin)

Symbolic and ordinary powers of ideals define cofinal topologies. Because of this,
it is natural to compare the two topologies by means of containments of symbolic
powers in ordinary powers and vice-versa. The containment of the m-th ordinary
power of an ideal in the m-th symbolic power Im ⊆ I(m) is immediate from the
definition I(m) =

⋂
P∈Ass(I)

ImRP ∩ R. The containment of symbolic powers in

ordinary powers is the subject of the following important theorem:

Theorem 1 (Ein-Lazarsfeld-Smith [4], Hochster-Huneke[6], Ma-Schwede[8]). For
any ideal I in a regular ring R (which is additionally required to be excellent if R
has unequal characteristic) the following containment holds

I(m) ⊆ Ir, ∀r ≥ 1 and m ≥ bigheight(I) · r,
where bigheight(I) = max{ht(P) | P ∈ Ass(I)}.
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In the early 2000s Craig Huneke asked whether the containment above could be
improved uniformly in that case when bigheight(I) = 2. In the remainder of this
note the ideals considered in relation to this question are radical and equidimen-
sional. In this context, Huneke’s question could be stated equivalently as asking
for examples of codimension two ideals where I(3) 6⊆ I2. Several examples satisfy-
ing this property have arisen [3, 5, 1, 8]. These examples are obtained according
to the following recipe:

• pick a highly symmetric hyperplane arrangement A = V (
∏n

i=1 ℓi)
• let X to be the set of points lying on at least 3 of the hyperplanes in A
• let I = IX and show that I

(3)
X 6⊆ I2X by proving

∏n

i=1 ℓi ∈ I(3) \ I2.

In this note we address the question

Question 2. Which hyperplane arrangements lead to noncontainments I
(3)
X 6⊆ I2X

following the process above?

We restrict our question to reflection arrangements in light of the fact that the
examples of [3, 5, 1, 8] arise from reflection groups, as explained below. A reflec-
tion is a linear transformation of finite order which fixes a hyperplane pointwise. A
reflection group is a finite subgroup of GLn(k) generated by reflections over hyper-
planes in kn. The hyperplane arrangement A(G) determined by a reflection group
G is the set of reflecting hyperplanes for the elements of G which are reflections.

An important piece of information in the case k = C is given by the following

Theorem 3 (Shephard-Todd). The irreducible complex reflection groups belong
to 3 infinite families: the symmetric groups, the cyclic groups, and the monomial
groups G(m, r, n), and 34 sporadic groups numbered G4 through G37.

In light of this, we restrict our question to irreducible reflection arrangements.

Question 4. For which irreducible complex reflection groups do the reflection

arrangements lead to noncontainments I
(3)
X 6⊆ I2X?

The arrangements which are currently known to behave in this way are

Name of the ideal Complex reflection group
Fermat [3, 5, 8] G(m,m, n)

Klein [1] G24

Wiman [1] G27

new example [2] G29

new example [2] G33

new example [2] G34

The new examples listed in the table are consequences of the following result

Theorem 5 (Drabkin [2]). If G is a reflection group with reflection arrangement
A(G), X is a subvariety of the triple locus of A and H a reflection subgroup of
G that fixes X pointwise, setting I to be the ideal defining the points of A(G)
which are contained in at least three hyperplanes and J to be the ideal defining the
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points of A(H) which are contained in at least three hyperplanes, if J (3) 6⊆ J2 then
I(3) 6⊆ I2.

As a corollary of this theorem, the noncontainment I(3) 6⊆ I2 is verified in
the case of codimension two flats in monomial arrangements by induction on the
embedding dimension since G(m,m, n) ≤ G(m,m, n + 1), recovering the result
of [8], and also in the case of the new examples listed above by means of using
G(4, 4, 3) ≤ G29 and G(3, 3, 4) ≤ G33 ≤ G34.
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Asymptotic syzygies of Stanley-Reisner rings of iterated subdivisions

Martina Juhnke-Kubitzke

(joint work with Aldo Conca, Volkmar Welker)

In a series of articles, Ein, Lazarsfeld and Erman [3, 4, 5] and Zhou [6] study
the asymptotic behavior of syzygies of algebraic varieties under high Veronese
embeddings. In particular, for the syzygies of rth Veronese embeddings vr(Pn) of
projective space Pn, they prove that for large r the syzygies of vr(Pn) are non-
zero for most of the homological positions and internal degrees that are allowed
by the restrictions imposed by the projective dimension and by the Castelnuovo-
Mumford regularity. Similar results, but with less precise bounds, are obtained
for arithmetically Cohen-Macaulay varieties and are conjectured in general. The
obtained bounds are used to show that if A =

⊕
i≥0 Ai is an arbitrary Cohen-

Macaulay algebra, then for every 1 ≤ j ≤ dimA− 1 one has:

(1) lim
r→∞

#{i : βi,i+j(A
〈r〉) 6= 0}

pdim(A〈r〉)
= 1.

Here and in the following, we let A〈r〉 =
⊕

i≥0 Air denote the rth Veronese algebra
of A. For j = dimA, one notes that the previous limit is 0 since the number of
non-zero syzygies in that strand is bounded independently of d, see [4, Cor. 5.2].
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Inspired by those results, we investigate the asymptotic behavior of graded Betti
numbers of Stanley-Reisner rings of iterated barycentric subdivisions and edgewise
subdivisions of a simplicial complex. Given a simplicial complex ∆ we denote with
K[∆] its Stanley-Reisner ring over a field K. It was shown by Brun and Römer [1]
that the Stanley-Reisner ring of the rth edgewise subdivision ∆〈r〉 of ∆ is a Gröbner
deformation of K[∆]〈r〉. In particular, we have βi,i+j(K[∆〈r〉]) ≥ βi,i+j(K[∆]〈r〉)
and the results above apply if ∆ is a Cohen-Macaulay complex.

Our main results, that appear in [2], can be summarized as follows

Theorem 1. Let ∆ be a simplicial complex of dimension d− 1 > 0. Let ∆(r) be
either the rth iterated barycentric subdivision or the rth edgewise subdivision of ∆.
Then for large r the Castelnuovo-Mumford regularity of K[∆(r)] is given by:

reg(K[∆(r)]) =

{
d− 1, if H̃d−1(∆;K) = 0

d, if H̃d−1(∆;K) 6= 0.

Furthermore:

(1) For every 1 ≤ j ≤ d − 1 one has that #{i : βi,i+j(K[∆(r)]) = 0} is
bounded above in terms of d, j (and independently of r). In particular:

lim
r→∞

#{i : βi,i+j(K[∆(r)]) 6= 0}
pdim(K[∆(r)])

= 1.

(2) If H̃d−1(∆;K) 6= 0, then

lim
r→∞

#{i : βi,i+d(K[∆(r)]) 6= 0}
pdim(K[∆(r)])

is a rational number in the interval [0, 1) that can be described in terms of
the minimal (d− 1)-cycles of ∆.

We remark that the limit in (2) does not depend on whether one takes iterated
barycentric subdivision or edgewise subdivision. We provide an example for part
(2) of the previous theorem.

Example 2. Let ∆1 be a triangulation of a (d−1)-sphere with p facets and let ∆2

be a union of q isolated (d − 1)-simplices. Then ∆1 is the minimal (d − 1)-cycle
of the union ∆ = ∆1 ∪ ∆2 and the limit in (2) equals

1 − p

p + q
=

q

p + q
.

The previous example can be used to show that for any d any rational number
in the interval [0, 1) can apper as the limit in (2).
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Star Configurations and Symbolic Powers

Ştefan O. Tohǎneanu

Let H := {H1, . . . , Hs} be a hyperplane arrangement in Pn, with s ≥ n + 1. Let
Hi = V (ℓi), i = 1, . . . , s, where ℓ1, . . . , ℓs are linear forms in R := K[x0, . . . , xn]; K
is any field of characteristic 0.

Suppose H is generic, meaning that any n+1 of the ℓi’s are linearly independent.
Let 1 ≤ c ≤ n be an integer. The codimension c star configuration with skeleton

H is

Vc(H) :=
⋃

1≤i1<···<ic≤s

Hi1 ∩ · · · ∩Hic .

The defining ideal of Vc(H) is

IVc(H) :=
⋂

1≤i1<···<ic≤s

〈ℓi1 , . . . , ℓic〉,

and for k ≥ 1, the k-th symbolic power of IVc(H) becomes

I
(k)
Vc(H) =

⋂

1≤i1<···<ic≤s

〈ℓi1 , . . . , ℓic〉k.

In [5, Conjecture 4.1], the following is conjectured about the k-th ordinary
power of IVc(H):

Conjecture 1. For any k ≥ 1,

IkVc(H) = I
(k)
Vc(H) ∩ I

(2k)
Vc+1(H) ∩ · · · ∩ I

((n−c+1)k)
Vn(H) ∩m

(s−c+1)k,

where m := 〈x0, . . . , xn〉.
The conjecture is known for

• k = 1; see [5, Remark 4.2].
• c = 1; immediate since IV1(H) = 〈ℓ1ℓ2 · · · ℓs〉, a principal ideal.
• c = n; see [2, Lemmas 2.3.3(c) and 2.4.2].
• s = n + 1 (i.e., H is the Boolean arrangement); see [5, Theorem 4.8].

Remark 2. By localization, [5, Corollary 4.9] shows that the saturation of IkVc(H)

is

(IkVc(H))
sat = I

(k)
Vc(H) ∩ I

(2k)
Vc+1(H) ∩ · · · ∩ I

((n−c+1)k)
Vn(H) .
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So, by [4], coupled with [3, Corollaries 4.5 and 4.4], Conjecture 1 is equivalent to
showing that Ik

Vc(H) has linear graded free resolution.

Let Σ := (ℓ1, . . . , ℓm) be a collection of m linear forms in R, some possibly
proportional. Let 1 ≤ a ≤ m be an integer, and consider the ideal

Ia(Σ) := 〈{ℓi1 · · · ℓia |1 ≤ i1 < · · · < ia ≤ m}〉.
In [1, Conjecture 1] it is conjectured the following:

Conjecture 3. For any Σ and any a, the ideal Ia(Σ) has linear graded free reso-
lution.

Remark 4. For any collection Σ = (ℓ1, . . . , ℓm), and for any k ≥ 1, the k-
fattening of Σ is Σ(k) := (ℓ1, . . . , ℓ1︸ ︷︷ ︸

k

, . . . , ℓm, . . . , ℓm︸ ︷︷ ︸
k

). It is not difficult to see that

Ia(Σ)k = Ika(Σ(k)).
Also, by modifying just a bit the proof of [5, Proposition 2.9(4)], one has

IVc(H) = Is−c+1(H).

Put together, Remarks 2 and 4 give that Conjecture 1 is a particular case of
Conjecture 3.

Just recently (in an updated version of [6]), Conjecture 3 is proven for any Σ,
and a = m− 2. Then, with Σ = H(2), and m = 2s, we have:

Corollary 5. Conjecture 1 is true when c = k = 2.
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[1] B. Anzis, M. Garrousian, Ş. Tohǎneanu, Generalized star configurations and the Tutte poly-
nomial, J. Algebraic Combin. 46 (2017), 165–187.

[2] C. Bocci, B. Harbourne, Comparing powers and sympolic powers of ideals, J. Algebraic
Geometry 19 (2010), 399–417.

[3] D. Eisenbud, The Geometry of Syzygies, Springer, New York 2005.
[4] D. Eisenbud, S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984),

89–133.
[5] A.V. Geramita, B. Harbourne, J. Migliore, Star configurations in Pn, J. Algebra 376 (2013),

279–299.
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On the integrality of Seshadri constants of abelian surfaces

Thomas Bauer

(joint work with Felix Fritz Grimm, Maximilian Schmidt)

For an ample line bundle L on a smooth projective variety X , the Seshadri constant
of L at a point x ∈ X is by definition the real number

ε(L, x) = inf

{
L · C

multx(C)
C irreducible curve through x

}
.
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On abelian varieties, thanks to homogeneity, these invariants are independent of
the chosen point x. The real numbers ε(L) attached in this way to polarized abelian
varieties (X,L) have been the focus of a great deal of attention (see [6, 4, 5, 1]).

The motivation for the research reported here comes from work by Schulz and
the first author [2], where Seshadri constants on self-products E × E of elliptic
curves were studied. If E does not have complex multiplication, then these results
imply in particular that the Seshadri constants ε(L) of all ample line bundles L
on E×E are integers. The same holds when E admits an automorphism different
from ±1. Geometrically, this behavior is explained by the fact that all Seshadri
constants in these situations are computed by elliptic curves. Our expectation at
that point was that integrality of Seshadri constants should hold for all surfaces
E×E, where E is any elliptic curve. Rather surprisingly, we found that quite the
opposite is true: Fractional Seshadri constants do occur on all self-products E×E
except for the ones considered so far. Our result provides the complete picture:

Theorem 1. Let E be an elliptic curve with complex multiplication. Then the
Seshadri constants ε(L) of all ample line bundles L on E ×E are integers, if and
only if E admits an automorphism different from ±1.

The theorem raises a more general question: How is integrality of Seshadri
constants (on abelian surfaces in general) related to elliptic curves? Clearly, if
on a given abelian surface all Seshadri constants are computed by elliptic curves,
then certainly these numbers are integers. The question is whether the converse
implication holds true as well. We found that this is almost the case, but not
quite:

Theorem 2. Let X be an abelian surface. The following conditions are equivalent:

(i) For every ample line bundle L on X, the Seshadri constant ε(L) is an
integer.

(ii) For every ample line bundle L on X, one has ε(L) =
√
L2 and

√
L2 is

an integer, or ε(L) is computed by an elliptic curve, i.e., there exists an
elliptic curve E ⊂ X such that ε(L) = L ·E.

As an application of our methods, we are able to extend a result by Hayashida
and Nishi [3]. They studied the problem of determining under which conditions
a product E × E of elliptic curves is a Jacobian. Equivalently, the question is:
On which of these surfaces do smooth curves of genus 2 exist? They show: Let
E be an elliptic curve such that End(E) is isomorphic to the maximal order of
Q(

√−m), where m > 0 is a squarefree integer. Then there exist smooth curves of
genus 2 on E × E if and only if m /∈ {1, 3, 7, 15}. We extend their result in the
following way:

Proposition 3. Suppose E is an elliptic curve with End(E) = Z[
√−e] for some

integer e > 0 satisfying e ≡ 2, 3 (mod 4). Then there exist smooth curves of genus
2 on E × E.

By way of example, consider an elliptic curve E with End(E) = Z[f
√
−2] for

some f ∈ N. If f = 1, then End(E) is the maximal order in Q(
√
−2). So the
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result of Hayashida and Nishi applies and shows that there is a smooth curve of
genus 2 on E × E. On the other hand, if f > 1, then End(E) is a non-maximal
order in Q(

√
−2). In that case Proposition 3 applies when f is odd and shows the

existence of the desired curve.
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Seshadri constants on rational surfaces

Krishna Hanumanthu

(joint work with Brian Harbourne)

Let X be a complex projective variety and let L be an ample line bundle on X .
The Seshadri constant of L at a point x ∈ X is defined as

ε(X,L, x) := inf
x∈C

L · C
multxC

,

where the infimum is taken over all irreducible and reduced curves passing through
x. If the dimension of X is n, we always have 0 < ε(X,L, x) ≤ n

√
Ln.

A longstanding open question asks if Seshadri constants can be irrational. In
this talk we discuss a recent joint work [2] with Brian Harbourne in which we
exhibit irrational Seshadri constants on blow ups of P2 assuming the following
conjecture is true.

(−1)-curves Conjecture: Let Xr be a blow up of P2 at r ≥ 0 general points. If
C is an irreducible and reduced curve on Xr such that C2 < 0, then C is a (-1)-
curve, i.e., C2 = −1 and C is a smooth rational curve.

Our main result is the following.

Theorem 1. Let r ≥ 9. If the (-1)-curves conjecture is true for Xr+1 then there
exists an ample line bundle L on Xr such that ε(Xr, L, x) /∈ Q for a very general
point x ∈ Xr.
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The motivation for this result came from [1] where the authors exhibit ample
line bundles on Xr with very general irrational Seshadri constants assuming that
the SHGH Conjecture is true for Xr+1. The SHGH Conjecture is known to imply
the (-1)-curves Conjecture.

Let Xr be a blow up of P2 at r ≥ 0 general points. Let H denote the pull-back
of OP1(1) and let Ei denote the exceptional divisors. A line bundle L = dH −
m1E1 − . . .−mrEr is said to be in standard form if d ≥ m1 ≥ m2 ≥ . . . ≥ mr ≥ 0
and d ≥ m1 + m2 + m3.

The SHGH Conjecture is the following statement.

SHGH Conjecture: Let Xr be a blow up of P2 at r ≥ 0 general points. If L
is a line bundle on Xr in standard form, then L is non-special, which means that

h0(L) = max{0,
L2−KXr

·L
2 + 1}.

The basic idea in proving Theorem 1 is the following observation which is easy
to prove: if a line bundle L on Xr+1 is in standard form then L · C ≥ 0 for every
(-1)-curve C on Xr+1.

Now let L be an ample line bundle on Xr such that L2 is not a perfect square.
If ε(L, x) ∈ Q, then there exists a curve C on Xr which computes the Seshadri
constant ε(L, x). If π : Xr+1 → Xr denotes the blow up of Xr at x, then the

strict transform C̃ of C has negative self-intersection and π⋆(L) · C̃ < 0. If the

(-1)-curves Conjecture is true for Xr+1 then C̃ is a (-1)-curve and we will obtain
a contradiction if we choose L carefully to ensure that π⋆(L) is in standard form.
We show that this is possible to do for every r ≥ 9. In fact, we show that for a
suitable positive integer d (depending on r), the line bundle L = dH−E1−. . .−Er

does the job.
It is well-known that SHGH and (-1)-curves conjectures both imply the famous

Nagata Conjecture.

Nagata Conjecture: Let Xr be a blow up of P2 at r ≥ 9 general points. Let
C = dH −m1E1 − . . .−mrEr be the class of an irreducible and reduced curve on
X with d > 0. Then d ≥ m1+...+mr√

r
.

Finally we ask if the conclusion of our theorem holds only assuming that the
Nagata Conjecture is true for Xr.
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A primer on unexpected varieties in projective space

Brian Harbourne

(joint work with Juan Migliore, Uwe Nagel, Zach Teitler)

1. Introduction

Let R = C[Pn] be the homogeneous coordinate ring of Pn over the field C of
complex numbers, so R = C[x0, . . . , xn]. Denote by Rd the C-vector space of all
forms of degree d on Pn. There is no point p ∈ Pn such that all F ∈ Rd vanish at p.
The subset of forms in Rd vanishing at p is a vector subspace of Rd of codimension
1; i.e., vanishing at p imposes 1 condition on forms in Rd. More generally, vanishing
to order m at p (i.e., vanishing on mp) imposes max(Rd,

(
m+n−1

n

)
) conditions.

Suppose we replace p by a linear space L. In order that two such spaces can
be disjoint, we will specify that δ = dimL < n

2 . Then vanishing on mL imposes
some conditions on Rd; we will denote the number of conditions by c(m, d, n, δ).

Let X = m1L1 + · · · + mrLr, where L1, . . . , Lr are general linear subspaces of
dimension δ < n

2 . Let Z be a fixed variety in Pn. Then vanishing on X (i.e.,
vanishing on each Li to order mi) would naively impose max(Rd,

∑
i c(mi, d, n, δ))

conditions on Rd, and it would naively impose max(Rd,
∑

i c(mi, d, n, δ)) condi-
tions on the dth homogeneous component I(Z)d of the ideal of Z

2. Unexpectedness

The following definition comes from [2].
Definition: We say (d,X,Z, n) is unexpected if

dim(I(X) ∩ I(Z))d > max

(
0, dim I(Z)d −

∑

i

c(mi, d, n, δ)

)
.

Example 1. The well known SHGH Conjecture classifies all unexpected
(d,X,Z, n) for n = 2 and δ = 0 with Z = ∅.

Example 2. Let n = 3, d = 12, δ = 1, X = 4L1+3L2+ · · ·+3L6 with Z = ∅; then
c(m, d, n, δ) = (1/6)(m+1)m(3d+5−2m) (see [5]) and (d,X,Z, n) is unexpected.
Numerically one expects there is no dodectic vanishing on X , but in fact there is
one (which one can show by applying results of [8]).

Example 3. The first case with Z 6= ∅ comes from [4]. In this case (d = 4, X =
3p, Z, n = 2) is unexpected when Z consists of a certain set of 9 points in P2 which
(using results of [3]) impose independent conditions on forms of degree 4. Thus
we expect there not to be quartic curve containing Z with a general triple point
X = 3p but in fact there is one, and moreover Z is the unique point set (over C)
having an unexpected curve of degree d ≤ 4 with a general triple point [6].

It is an open problem to understand where such examples come from. For
point sets Z in the plane, there seems to be an intimate but not well understood
connection between line arrangements and unexpected (d,X = (d− 1)p, Z, n = 2).
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Recent work [7] suggests that the example from [4] mentioned above is one of an
infinite family. The 9 points in that example are the projectivizations of the 18
roots of the B3 roots system. More generally, consider the 2(n + 1)2 roots of the
Bn+1 root system. These are the 2(n + 1)2 vectors (a1, . . . , an+1) ∈ Rn+1 of the
form 1 ≤ a21 + · · ·+ a2n+1 ≤ 2 where each ai is an integer. In Pn

R
these vectors give

(n + 1)2 points. Taking these points for Z, computer calculations suggest that
(X = 4p, Z, d = 4, n ≥ 4) is unexpected.

The example from [4] also displays an interesting duality, first noticed by [1] and
defined and extended by [7]. Above it was mentioned that there is a connection
between unexpected (d,X = (d − 1)p, Z, n = 2) and line arrangements. The new
duality raises the question of the extent to which freeness of the line arrangements
leading to unexpected (d,X = (d − 1)p, Z, n = 2) matters. See [7] for discussion
and more results.
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On exterior powers of the tangent bundle on smooth toric varieties

David Schmitz

The study of consequences of the positivity of the tangent bundle TX of a projective
manifold X and of related bundles has been long and fruitful. The most famous
instance is Mori’s result ([5, Theorem 8]) stating that ampleness of TX forces
an n-dimensional projective manifold X to be isomorphic to Pn. Campana and
Peternell in [1] weakened the assumption of ampleness to nefness of TX , meaning
that the tautological line bundle OP(TX)(1) is nef on P(TX). They classified the
3-folds with this property and formulated their well-known conjecture predicting
that any Fano manifold with nef tangent bundle should be rational homogeneous.

Instead of the tangent bundle itself, it is natural to study its exterior powers.
The leading example being ΛnTX = −KX , whose nefness forces the Kodaira di-
mension of X to be at most 0 but yields very little in terms of classification. On
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the other hand, projective 3-folds with Λ2TX nef have been classified by Campana
and Peternell in [2].

In this talk, we investigate positivity of arbitrary exterior powers of the tangent
sheaf in the case of toric varieties. On the one hand, the focus on toric varieties is
a substantial restriction of the subject matter. For example, in the above theorem,
none of the 3-folds of case b) are toric. On the other hand, the theory of toric
varieties provides us with sufficient machinery to handle arbitrary dimensions.

A particularly pleasant feature of (complete) toric varieties for our investigation
is the fact that nefness and ampleness of an equivariant vector bundle F test on
torus-invariant curves as has been shown in [4]. As such a curve is isomorphic to
P1, the restriction of F decomposes as a sum of line bundles, and the positivity of
F is determined by the splitting types

F|C ∼= OP1(a1) ⊕OP1(a2) ⊕ · · · ⊕ OP1(ar)

for invariant curves C. By utilising the Klyachko filtration of F , these splitting
types can in principal be determined. The splitting type of TX restricted to an
invariant curve C turns out to be given by the coefficients of the extremal relation
b1v1 + · · ·+ bn−1vn−1 +vn +vn+1 = 0 corresponding to C. Here v1, . . . ,vn−1 are
the primitive generators of the rays spanning the wall τ ∈ Σ(n− 1) corresponding
to C and v1 and v2 are the primitive generators of those rays which together with
τ respectively span those two maximal cones σ, σ′ ∈ Σ(n), which intersect in τ .
My first main result is the following criterion for positivity.

Theorem 1. Let XΣ be a smooth toric variety of dimension n. Then for 1 ≤ m ≤
n− 1 the exterior power ΛmTX is ample (nef) if and only if for any τ ∈ Σ(n− 1)
with extremal relation b1v1 + · · · + bn−1vn−1 + vn + vn+1 = 0 the inequalities

bi1 + bi2 + · · · + bim (
≥

)
0

2 + bj1 + bj2 + · · · + bjm−1 (
≥

)
0

hold for each 1 ≤ i1 < · · · < im ≤ n and 1 ≤ j1 < · · · < im−1 ≤ n.
Similarly, ΛnTX = −KX is ample (nef) if and only if for any τ ∈ Σ(n − 1) the
coefficients in the corresponding extremal relation satisfy

2 + b1 + b2 + · · · + bn−1 (
≥

)
0.

Corollary 2. Let X be a smooth toric variety of dimension n. If ΛmTX is nef
for some 1 ≤ m < n, then X is Fano.

Remembering that the signs of the bi in an extremal relation corresponding to
an invariant curve C determine the type of contraction given by the extremal ray
containing the class C, the inequalities in the above theorem restrict the possible
types of contractions, thus enabling us to use an inductive approach, at least in the
case of small numbers m. For example, we readily see that the tangent bundle TX
itself is nef if and only if all bi in the relations corresponding to any invariant curve
are positive, which means that all contractions of X are of fibre type. Similarly, the
nefness of Λ2TX excludes flipping contractions as well as divisorial contractions for
which the image of the exceptional divisor is positive dimensional. In fact, by using
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upper bounds on the intersections −KX ·C for extremal invariant curves C recently
established by Fujino and Sato ([3]), we can also exclude divisorial contractions
with singular image. Similar arguments work for the case when Λ3TX is ample. By
the above analysis of possible contractions, we are enabled to inductively proving
the following classification results.

Theorem 3. Let X be a smooth toric variety of dimension n ≥ 3 with Λ2TX nef.
Then either TX is nef, or X is the blowup of Pn in a point.

Theorem 4. Let X be a smooth toric variety of dimension n ≥ 4 with Λ3TX
ample. Then either TX is nef, or X is the blowup of Pn in a point.
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