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Commuting integral and differential operators connect the topics of Signal Processing, Random Matrix Theory, and Integrable

Systems. Previously, the construction of such pairs was based on direct calculation and concerned concrete special cases, leaving

behind important families such as the operators associated to the rational solutions of the KdV equation. We prove a general theorem

that the integral operator associated to every wave function in the infinite dimensional Adelic Grassmannian Grad of Wilson always

reflects a differential operator (in the sense of Definition 1 below). This intrinsic property is shown to follow from the symmetries

of Grassmannians of KP wave functions, where the direct commutativity property holds for operators associated to wave functions

fixed by Wilson’s sign involution but is violated in general.

Based on this result, we prove a second main theorem that the integral operators in the computation of the singular values of the

truncated generalized Laplace transforms associated to all bispectral wave functions of rank 1 reflect a differential operator. A 90◦

rotation argument is used to prove a third main theorem that the integral operators in the computation of the singular values of

the truncated generalized Fourier transforms associated to all such KP wave functions commute with a differential operator. These

methods produce vast collections of integral operators with prolate-spheroidal properties, including as special cases the integral

operators associated to all rational solutions of the KdV and KP hierarchies considered by Airault-McKean-Moser and Krichever,

respectively, in the late 70’s. Many novel examples are presented.

1 Background

1.1 Commuting integral and differential opera-
tors

In a pair of ground-breaking works from the late 1940’s Claude
Shannon laid down the mathematical foundations of commu-
nication theory [24, 25]. One of the key problems which he
raised was: What is the best information that one can infer for
a signal f(t) which is time limited to the interval [−τ, τ ] from
knowing its frequencies in the interval [−κ, κ]? This double
concentration problem leads to the study of the singular values
of an operator given by a finite Fourier transform

(Ef)(z) =

∫ τ

−τ
eizxf(x)dx, z ∈ [−κ, κ].

The central issue is the effective computation of the eigenfunc-
tions of the integral operator

(EE∗f)(z) = 2

∫ κ

−κ

sin τ(z − w)

z − w
f(w)dw, z ∈ [−κ, κ]. (1)

This problem was beautifully solved by Landau, Pollak and
Slepian [29, 19] in the early 1960’s by showing that the inte-

gral operator in (1) commutes with the differential operator

R(z, ∂z) = ∂z(κ
2 − z2)∂z − τ2,

from which they described the common eigenfunctions via the
differential operator. Note that R(z, ∂z) is the “radial part”
of the Laplacian in prolate-spheroidal coordinates, motivating
our title. The commuting property was used by Fuchs [8] and
Slepian [28] to carry out a detailed analysis of the asymptotics
of the eigenvalues of EE∗, while Jimbo et al. [15] showed that
its Fredholm determinant is a τ -function of Painlevé V.

Remarkably, this commuting property appeared as early as
1907 in the work of Bateman [3, Eqn. 38-41 accompanied by
some differentiation] and later in the classical text by Ince [14].
Mehta [21] independently discovered and used it to analyze the
Fredholm determinant of the integral operator (1), which he
then applied to asymptotic problems in random matrices. For
recent numerical work on prolate spheroidal operators see [23];
for applications to geophysics see [26, 8, 28, 15].

Slepian [27] found an extension of the time-band limiting
analysis to n-dimensions. His method was based on passing to
polar coordinates and then relying on a different commutativity
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result. He proved that for integer N the integral operator

(Ef)(z) =

∫ 1

0

JN (czw)
√
czwf(w)dw

acting on a subspace of L2(0, 1; dw) with appropriate boundary
conditions admits the commuting differential operator

∂z(1− z2)∂z − c2z2 +
1
4 −N

2

z2
,

where JN (x) denote the Bessel functions of the first kind.
In the early 1990’s Tracy and Widom [30, 31] discovered

one more remarkable commuting pair of integral and differen-
tial operators associated to the Airy kernel. They effectively
used this pair and a modification of the one for the Bessel kernel
in their study of the asymptotics of the level spacing distribu-
tion functions of the edge scaling limits of the Gaussian Unitary
Ensemble and the Laguerre and Jacobi Ensembles. More pre-
cisely, Tracy and Widom proved that the integral operator with
the Airy kernel

A(z)A′(w)−A′(z)A(w)

z − w

acting on L2(τ,+∞; dw) admits the commuting differential
operator

∂z(τ − z)∂z − z(τ − z),

where A(z) denotes the Airy function.
All of the above developments fit into one general scheme:

commuting differential operators were constructed for an inte-
gral kernel of the form

Kψ(z, w) :=

∫
Γ2

ψ(x, z)ψ∗(x,w)dx (2)

acting on L2(Γ1; dw), where Γ1 and Γ2 are contours in C,
ψ(x, z) is a wave function for the KP hierarchy, ψ∗(x, z) is
its adjoint wave function. Note in Slepian’s Bessel-type exam-
ple above, we get this kernel form for the square of his integral
operator. Many other instances of such commuting pairs were
later discovered [11, 9, 10, 6], to name a few, and generalized
to discrete and matrix-valued settings [12, 13].

1.2 The KP and KdV hierarchies

The Korteweg–de Vries (KdV) equation

∂tu+ u∂xu+ ∂3
xu = 0

was introduced more than a century ago to model waves on
shallow water surfaces. Its complete integrablity was estab-
lished by Miura–Gardner–Kruskal [22] and Lax [20]. A wave
function for a solution u(x, t) is a function ψ(x, z; t) satisfying

(∂2
x − u(x, t))ψ(x, z; t) = z2ψ(x, z; t).

The KdV equation fits into an infinite system of completely
integrable nonlinear partial differential equations in variables
x, t0, t1, t2, . . . known as the KP hierarchy. Alternatively the
KdV equation fits into the KdV hierarchy describing KP solu-
tions independent of even times.

The KP hierarchy is an infinite dimensional integrable sys-
tem whose wave functions ψ(x, z) are eigenfunctions of differ-
ential operators L(x, ∂x) of higher order, and more generally
of formal pseudo-differential operators. We refer the reader to
van Moerbeke’s exposition of the subject [32] from the point
of view of evolution on the (infinite-dimensional) Sato’s Grass-
mannian GrSato and its applications to quantum gravity and in-
tersection theory on moduli spaces of curves via the Kontse-
vich theorem [17]. The latter concerns precisely the solution
of the KP hierarchy corresponding to the Airy wave function
ψAi(x, z) = A(x+ z).

In the late 1970’s Airault, McKean and Moser [1] found
a remarkable connection between the (infinite dimensional)
KdV equation and finite dimensional integrable systems. They
proved that any rational solution of the KdV equation that van-
ishes at infinity has the form

u(x, t) =
1

2

n∑
i=1

1

(x− xi(t))2

and that the KP flow for t = t1 corresponds to the motion of
the poles (x1(t), . . . , xn(t)) according to the Calogero–Moser
system with Hamiltonian H =

∑
i p

2
i /2 −

∑
i<j(xi − xj)−2.

Krichever [18] proved that this is true for every rational solu-
tion of KP vanishing at infinity and that all solutions of the
Calogero–Moser system arise in this way.

1.3 Bispectrality and the Adelic Grassmannian

The bispectral problem, posed by Duistermaat and the second
named author in [7], asks for a classification of all functions
ψ(x, z) on a subdomain Ω1 × Ω2 ⊆ C2 for which there exist
two differential operators L(x, ∂x) and Λ(z, ∂z) on Ω1 and Ω2
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and two functions θ : Ω1 → C, f : Ω2 → C, such that

L(x, ∂x)ψ(x, z) = f(z)ψ(x, z),

Λ(z, ∂z)ψ(x, z) = θ(x)ψ(x, z).

Many important relations of bispectrality to representation
theory, algebraic and noncommutative geometry were subse-
quently found. Early on it was realized that it is advantageous
to think of its solutions as wave functions of the KP hierarchy.
In this setting [7] provided a classification of the second order
bispectral operators L(x, ∂x). Half of these come from ratio-
nal solutions of the KdV equation. The other half is comprised
of the Airy wave function ψAi(x, z) = A(x + z), the Bessel
wave functions ψBe(ν)(x, z) =

√
xyJν(

√
xy) for ν ∈ C\Z,

and wave functions obtained from them by “master symme-
tries” of the KdV hierarchy [36].

Wilson made a deep insight to the bispectral problem
[34], providing the concept of classifying bispectral functions
ψ(x, z) according to their rank, defined as the greatest common
divisor of the orders of all differential operators L(x, ∂x) hav-
ing ψ(x, z) as an eigenfunction. For example, in the order 2
classification of [7], the wave functions of the rational solutions
of KdV are of rank 1, while the remaining families are of rank
2.

In [34] Wilson classified all bispectral functions ψ(x, z) of
rank 1 in terms of an infinite dimensional sub-Grassmannian
Grad of Sato’s Grassamannian GrSato, called the Adelic Grass-
mannian. Grad consists of those planes W ∈ GrSato obtained
from the base planeW0 = C[z] by imposing “adelic-type” con-
ditions at finitely many points. It was shown in [2] that these
are precisely the KP wave functions ψ(x, z) such that

ψ(x, z) =
1

p(x)q(z)
P (x, ∂x) · e−xz

and
e−xz =

1

p̃(x)q̃(y)
P̃ (x, ∂x) · ψ(x, z)

for some differential operators P (x, ∂x) and P̃ (x, ∂x) with
polynomial coefficients and polynomials p(x), p̃(x), q(z), q̃(y).
The orders of the differential operators P and P̃ will be called
degree and codegree of ψ(x, z), respectively.

Wilson [35] completed the circle back to Airault-McKean-
Moser [1] and Krichever [18] by showing that the Adelic Grass-
mannian is the disjoint union of the Calogero-Moser spaces
CMn ⊂ GrSato which are compactifications of the phase
spaces of the Calogero-Moser integrable systems on the rational

solutions of the KP hierarchy of [1, 18]

Grad =
⊔
n≥1

CMn. (3)

2 Integral operators and points of Grad

2.1 Reflectivity

The unifying feature of the diverse lines of research described
above is a collection of hand-made examples of integral oper-
ators with kernels of the form in (2) commuting with differ-
ential operators, obtained from certain specific wave functions
ψ(x, z) in Grad.

For a long time, the examples provided above were the only
known examples, and for this reason it was tempting to believe
that it was a complete collection of examples. However, this is
not true at all! In this paper we give a general solution of the
problem that is applicable to the integral operators associated
to the wave functions of all points of the Adelic Grassmannian.
It is based on a conceptual way of constructing the commuting
differential operators from bispectral algebras. Our key idea is
that the intrinsic property of all of these integral operators is a
more general one than a naive commutativity:

Definition 1. An integral operator T , acting on L2(Γ) for

a contour Γ ⊂ C, is said to reflect a differential operator

R(z, ∂z) if

T ◦R(−z,−∂z) = R(z, ∂z) ◦ T

on a dense subspace of L2(Γ).

In the special case that a wave function ψ(x, z) ∈ GrSato

satisfies the symmetry condition ψ(x, z) = ψ(−x,−z), this
property for the kernel in (2) reduces to classical commutativ-
ity. This happens, for example, in the case of master symmetries
[10]. However, we will show that even more generally, imagi-
nary rotation arguments transform reflecting pairs to classically
commuting ones.

Remark 1. The reflection identity of Definition 1 is sensitive

to the extension of the differential operator R(z, ∂z) to L2(Γ),

which is not unique, and may hold for a unique choice of this

extension. This is a technical point that is often omitted in the

classical prolate-spheroidal picture [16].
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2.2 First general theorem – reflection vs commu-
tation

Our first theorem associates to any wave function ψ(x, z) ∈
Grad an integral operator T which reflects a differential oper-
ator. The reflected differential operator R(z, ∂z) resides in a
natural algebra of differential operators associated to ψ(x, z),
called the (right) generalized Fourier algebra, defined in [6]
by

Fz(ψ) := {R : ∃ L with L(x, ∂x)ψ(x, z) = R(z, ∂z)ψ(x, z)}.

The differential operators L(x, ∂x) that appear in the left hand
side also form an algebra, called the (left) generalized Fourier
algebra and denoted by Fx(ψ). The map L(x, ∂x) 7→ R(z, ∂z)

defines an algebra antiisomorphism

bψ : Fx(ψ)→ Fz(ψ).

The algebrasFx(exp(−xz)) andFz(exp(−xz)) are both equal
to the first Weyl algebra and the corresponding map b is closely
related to the Fourier transform.

Theorem 1. For every wave function ψ(x, z) ∈ Grad, the inte-

gral operator Tψ on L2[t,∞) with kernel

Kψ(z, w) :=

∫ ∞
s

ψ(y, z)ψ∗(y, w)dy (4)

reflects a (non-constant) differential operator R(z, ∂z) ∈
Fz(ψ) of order at most 2 min(d1, d2) where d1 and d2 are the

degree and codegree of ψ(x, z).

A key feature of the proof of the theorem, sketched below,
explicitly reduces the problem of finding the operator R(z, ∂z)

to a finite-dimensional linear algebra problem. This in turn pro-
vides an effective algorithm for computing the reflected differ-
ential operator for all ψ(x, z) ∈ Grad. In particular, we obtain
examples of integral operators commuting with differential op-
erators of orders much higher than can be reasonably found by
hand, as shown in Examples 2 and 5 below.

2.3 Wilson’s three involutions

In general the operator T defined by Theorem 1 is not self-
adjoint (even formally). In this way we may gain additional
insight into the spectra of non-self adjoint integral operators. In
connection to Shannon’s original questions, we have to be able
to detect which operators in Theorem 1 are of the formEE∗ and
in particular are self-adjoint. For this we consider the three nat-
ural involutions of the Adelic Grassmannian Grad introduced

by Wilson in [34], along with a fourth involution not previously
featured in this context corresponding to Schwartz reflection.

Name Involution

Adjoint a(ψ)(x, z) = ψ∗(x, z) = P̃∗(x,∂x)·e−xz
p(x)p̃(x)

Bispectral b(ψ)(x, z) = ψ(z, x)

Sign s(ψ)(x, z) = ψ(−x,−z)
Schwartz c(ψ)(x, z) = ψ(x, z)

Note that the adjoint involution was used implicitly in (2). Wil-
son observed that the involutions a, b and s have the remarkable
property that ab is not an involution, but rather

(ab)2 = s. (5)

2.4 Sketch of the proof of Theorem 1

Step 1. Another way to phrase Wilson’s property in (5) is that

baψ(b−1
ψ (R)∗)∗(z, ∂z) = R(−z,−∂z), ∀R ∈ Fz(ψ). (6)

Consider a differential operator Rs,t(z, ∂z) ∈ Fz(ψ) such that
both bilinear concomitants

Cb−1
ψ Rs,t

(f, g; s) and CRs,t(f, g;−t)

are identically zero. We refer the reader to [33] for the defini-
tion and properties of bilinear concomitants of differential oper-
ators. Applying the identity in (6) together with integration by
parts and the maps b−1

ψ and baψ , we obtain that such an operator
Rs,t(z, ∂z) satisfies

Rs,t(z, ∂z) ·Kψ(z, w) =

=

∫ ∞
s

(
Rs,t(z, ∂z) · ψ(x, z)

)
ψ(x,w)∗dx

=

∫ ∞
s

(
b−1
ψ (Rs,t)(x, ∂x) · ψ(x, z)

)
ψ(x,w)∗dx

=

∫ ∞
s

ψ(x, z)
(
b−1
ψ (Rs,t)

∗(x, ∂x) · ψ(x,w)∗
)
dx

=

∫ ∞
s

ψ(x, z)
(
baψ(b−1

ψ (Rs,t))
∗(w, ∂w) · ψ(x,w)∗

)
dx

= R∗s,t(−w,−∂w) ·Kψ(z, w).

This identity combined with one more integration by parts
proves that

Rs,t(z, ∂z) ◦ Tψ = Tψ ◦Rs,t(−z,−∂z).

for the integral operator Tψ with kernel as in (4).
The remainder of the proof of Theorem 1 revolves
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around demonstrating the existence of a differential operator
Rs,t(z, ∂z) ∈ Fz(ψ) satisfying the conditions of Step 1. Its
existence, along with a sharp upper bound on its order, are ob-
tained by algebro-geometric arguments.

Step 2. The operators in the Fourier algebra Fx(ψ) naturally
have a co-order coordR(z, ∂z) := ord(b−1

ψ R)(x, ∂x). For a
pair of nonnegative integers `,m, set

F`,mz (ψ) := {R ∈ Fz(ψ) : ordR ≤ `, coordR ≤ m}.

Recall the decomposition in (3); let ψ(x, z) ∈ CMn ⊂ Grad.
One shows that Fz(ψ) is isomorphic to the algebra of differen-
tial operators on a rank 1, torsion free sheaf over the spectral
curve of the solution of KP with wave function ψ(x, z). In-
terpreting n as the differential genus of the sheaf of the curve
in the sense of Berest-Wilson [4] and then converting it to the
Letzter-Markar-Limanov invariant of the sheaf shows that

dimF`,mz (ψ) = (`+ 1)(m+ 1)− n

≥ (`+ 1)(m+ 1)− 2 min(d1, d2)2

for `,m ≥ 2 min(d1, d2)− 1.
Step 3. For a differential operator R(z, ∂z) of order ≤ `, the

identical vanishing of the concomitantCR(f, g;−t) is shown to
lead to at most d`/2e.d(`+ 1)/2e linearly independent (linear)
conditions on the coefficients of R and their derivatives.

This estimate, combined with that in Step 2, proves the exis-
tence of a a differential operatorRs,t(z, ∂z) ∈ Fz(ψ) satisfying
the conditions of Step 1 of order at most 2 min(d1, d2).

Remark 2. (i) Wilson’s identity on involutions in the Adelic

Grassmannian in (5) and its use in Step 1 are the intrinsic rea-

sons for the appearance of reflectivity in Theorem 1 rather than

classical commutativity.

(ii) All previous approaches for constructing commuting

pairs of integral and differential operators, like those in [29, 19,

27, 30, 31], relied on a by-hand construction of a commuting

differential operator. Step 1 of the proof is where bispectral-

ity plays a deep role and the operator is constructed from the

generalized Fourier algebra Fz(ψ).

3 The Laplace vs Fourier pictures

3.1 Second general theorem – the Laplace pic-
ture

Consider a wave function ψ ∈ Grad. We draw a parallel be-
tween the integral operators from Theorem 1 and those of the

form EE∗ by considering the following analogs of the Laplace
transform and its adjoint:

Lψ : f(x) 7→
∫ ∞

0

ψ(y, z)f(y)dy,

L∗ψ : f(z) 7→
∫ ∞

0

ψ(x,w)f(w)dw.

In the special case that ψ(x, z) = exp(−xz), the operator Lψ
is precisely the Laplace transform. The time and band-limited
versions of these are (for z ≥ t)

(Eψf)(z) = (χ[t,∞)Lψχ[s,∞)f)(z) =

∫ ∞
s

ψ(y, z)f(y)dy,

and (for x ≥ s)

(E∗ψf)(x) = (χ[s,∞)L
∗
ψχ[t,∞)f)(x) =

∫ ∞
t

ψ(x,w)f(w)dw.

They give rise to the self-adjoint operator analogous to the one
considered by Landau, Pollak, and Slepian

(EψE∗ψf)(z) =

∫ ∞
t

Kψ(z, w)f(w)dw, where

Kψ(z, w) =

∫ ∞
s

ψ(y, z)ψ(y, w)dy,

viewed as an operator on L2(t,∞). Under natural mild con-
ditions on ψ(x, z), Theorem 1 determines the existence of dif-
ferential operators reflected by EψE∗ψ . For a different situation
involving the Laplace transform, see [5].

Theorem 2. For every wave function ψ(x, z) in Wilson’s adelic

Grassmannian, fixed under the involution ac of Grad (de-

fined by the table of involutions above), the integral operator

EψE∗ψ reflects a (non-constant) differential operator R(z, ∂z) ∈
Fz(ψ) of order at most 2 min(d1, d2) where d1 and d2 are the

degree and codegree of ψ(x, z).

Sketch of Proof. From the assumption that ψ(x, z) is fixed un-
der the involution ac, one deduces that ψ∗(x, z) = ψ(x, z) for
x, z ∈ R. From this one shows that EψE∗ψ equals the integral
operator with kernel Kψ from Theorem 1.

Remark 3. Under the assumption that ψ(x, z) is fixed by

ac, the reflected operator Rs,t(z, ∂z) satisfies the identity

R∗s,t(z, ∂z) = Rs,t(−z,−∂z). In this case, the reflection prop-

erty may be restated in the form

EψE∗ψ ◦R∗s,t(z, ∂z) = Rs,t(z, ∂z) ◦ EψE∗ψ.

5



Example 1. Consider the simplest case ψ(x, z) = exp(−xz).

The integral operator

(EψE∗ψf)(z) =

∫ ∞
t

sinh(s(z + w))

z + w
f(w)dw

acting on L2(t,∞) reflects the first order differential operator

Rs,t(z, ∂z) = (z + t)∂z + sz.

All previous works on this kernel deal with a commuting second

order differential operator.

The wave functions associated to rational solutions [1] of
KdV are automatically fixed by the involution a. Addition-
ally, those with real coefficients are fixed by c and thus sat-
isfy the assumptions of Theorem 2. These are precisely the
bispectral functions in the KdV family in [7] with real coeffi-
cients (associated to second order differential operators of rank
1). There has been a substantial effort since 1986 to find com-
muting differential operators for the corresponding integral op-
erators, but absolutely no examples have been found beyond the
case ψ(x, z) = exp(−xz) or [10]. The next example demon-
strates how Theorem 2 resolves this problem.

Example 2. Let r ∈ R∗. Consider the function

ψ(x, z) =
(x+ z−1)3 − z3 + r

x3 + r
e−xz,

which up to a change of variables is precisely the first nontrivial

bispectral function in [7] given on Eq. (1.39). The integral

operator EψE∗ψ has kernel

Kψ(z, w) =
ψ(s, z)ψx(s, w)− ψx(s, z)ψ(s, w)

z2 − w2
.

By Theorem 2 it reflects a differential operator in Fz(ψ). Our

algorithm produces an operator of order 3, given by

Rs,t(z, ∂z) = −(z + t)2z∂3
z +

(
st3 − 3stz2 − 2sz3 − t3rz2

− t2rz3 − 3

2
t2 − 6tz − 9

2
z2
)
∂2
z +

(
s2t2z − s2z3

− 2st3rz2 − 2st2rz3 − 6stz − 6sz2 − 2t3rz

− 3t2rz2 + 6t2z−1 + 6t− z
)
∂z − 6st3z−2 − 3t2z−2

+ s3tz2 − s2t3rz2 − s2t2rz3 − 3

2
s2z2 − 2st3rz

− 3st2rz2 − t2rz + 3.

3.2 Third general theorem – the Fourier picture

By performing a 90 degree rotation in the complex variable
z, we move from the Laplace transform picture to the Fourier
transform picture. We prove that in this way one can convert the

reflected differential operators in Laplace picture to commuting

differential operators in the Fourier picture. Specifically, we
replace the operators Lψ and L∗ψ with their Fourier counterparts

Fψ : f(x) 7→
∫ ∞
−∞

ψ(y,−iz)f(y)dy,

F ∗ψ : f(z) 7→
∫ ∞
−∞

ψ(x,−iw)f(w)dw.

In the special case ψ(y, z) = exp(−yz), the operator Fψ is the
Fourier transform. We define the time and band-limited opera-
tors Eψ and E∗ψ similarly to Eψ and E∗ψ:

(Eψf)(z) = (χ[t,∞)Fψχ[s,∞)f)(z) =

∫ ∞
s

ψ(y,−iz)f(y)dy,

(E∗ψf)(x) = (χ[s,∞)F
∗
ψχ[t,∞)f)(x) =

∫ ∞
t

ψ(x,−iw)f(w)dw.

The self-adjoint operator

(EψE
∗
ψf)(z) =

∫ ∞
s

∫ ∞
t

ψ(y,−iz)ψ(y,−iw)f(w)dwdy

acting on L2(t,∞) no longer has a simple kernel expression
as above since the relevant integral does not converge outright,
but can be given sense as a distribution. Even so, the method
of proof of Theorem 1 applies, giving us a certain relationship
between an integral and differential operators. Serendipitously,
due to the change in sign with complex conjugation, in this case
we obtain a strict commutativity relation.

Theorem 3. For every wave function ψ(x, z) in Wilson’s adelic

Grassmannian, fixed under the involution ac of Grad, the inte-

gral operator EψE∗ψ commutes with the differential operator

Rs,it(−iz, i∂z) where Rs,t(z, ∂z) is the corresponding differ-

ential operator in Theorem 2 (its coefficients are rational func-

tions in z, s, t).

In particular, we obtain that EψE∗ψ commutes with the self-
adjoint operator Rs,it(−iz, i∂z)R∗s,it(−iz, i∂z).

Sketch of Proof. One repeats Step 1 of the proof of Theorem 1
to show that Rs,it(−iz, i∂z) commutes with EψE∗ψ for every
differential operator R(z, ∂z) ∈ Fz(ψ) for which both bilinear
concomitants

Cb−1
ψ Rs,it(−iz,i∂z)(f, g; s) and CRs,it(−iz,i∂z)(f, g; it)
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are identically zero. The operator Rs,t(z, ∂z) from Theorem 2
has these properties because its coefficients are rational func-
tions in z, s, t. This is proved by an analysis of the structure of
the algebra Fz(ψ).

Note that for analytic reasons one cannot deduce Theorem 3
from Theorem 2 by an elementary change of variables.

Theorems 1–3 form the foundation for our forthcoming se-
ries of papers on the asymptotics of the eigenvalues of the in-
tegral operators associated to the wave functions of the ratio-
nal solutions of the KP equation and the numerical properties
of the associated eigenfunctions (which generalize the prolate
spheroidal wave functions).

Example 3. Consider the case ψ(x, z) = exp(−xz) as in Ex-

ample 1. The self-adjoint integral operator is given by

(EψE
∗
ψf)(z) =

∫ ∞
s

∫ ∞
t

eiy(z−w)f(w)dwdy.

The eigenvalues of this operator are precisely the singular val-
ues of the semi-infinite time-band limiting of the Fourier trans-
form. This integral operator commutes with the first order dif-

ferential operator

Rs,it(−iz, i∂z) = (z − t)∂z − isz

obtained from the differential operator in Example 1. As a con-

sequence we obtain that EψE∗ψ commutes with the self-adjoint

second order differential operator

−Rs,it(−iz, i∂z)R∗s,it(−iz, i∂z) = ∂z(z−t)2∂z−is{z(z−t), ∂z},

where here {·, ·} denotes the anti-commutator bracket.

Example 4. Consider the wave function

ψ(x, z) =
(x+ z−1)3 − z3 + r

x3 + r
e−xz

from Example 2. The associated integral operator EψE
∗
ψ

commutes with the third order differential operator R :=

Rs,it(−iz, i∂z) where Rs,t(z, ∂z) is the differential operator in

Example 2. Its formal adjoint is R∗ = −R + s2t2 + 4, so that

EψE
∗
ψ commutes with the sixth order self-adjoint operator

−RR∗ = R2 − (s2t2 + 4)R.

4 Simultaneous reflectivity and commu-
tativity

The proof of Theorem 1 produces a large algebra of reflected
operators rather than a single one, because the argument can
be applied to the full Fourier algebra Fz(ψ) of ψ ∈ Grad.
This can be used to prove the existence of universal opera-
tors which are simultaneously reflected by (or commute with)
finite-dimensional collections of integral operators.

Theorem 4. (i) Consider any finite collection of wave functions

{ψk(x, z) : 1 ≤ k ≤ n} ∈ Grad and let Tk be the associ-

ated integral operators as in Theorem 1 for the same values

of s and t. There exists a non-constant differential operator

in
⋂
k Fz(ψk) simultaneously reflected by each of the integral

operators Tk for all k.

(ii) If, in addition, all wave functions ψk(x, z) are fixed un-

der the involution ac of Grad, then there exists a differen-

tial operator Runiv
s,t (z, ∂z) which is simultaneously reflected by

all integral operators spanned by EjE∗k for 1 ≤ j, k ≤ n.

This differential operator has rational coefficients in z, s, t and

R̃s,t(z, ∂z) := Runiv
s,it(−iz, i∂z) commutes with all integral op-

erators EjE∗k for 1 ≤ j, k ≤ n.

In the situation of part (ii) all integral operators EjE
∗
k ,

1 ≤ j, k ≤ n, commute with the self-adjoint operator
R̃s,t(z, ∂z)R̃

∗
s,t(z, ∂z). Furthermore, since the Fourier algebra

of exp(−xz) is just the algebra of differential operators with
polynomial coefficients, we can force all of the coefficients of
R̃s,t(z, ∂z) to be polynomials in z.

Example 5. Consider the pair of wave functions

{ψ1(x, z), ψ2(x, z)} with ψn(x, z) = Kn(xz)
√
xz for

Kn(z) the modified Bessel function of the second kind. Thus

by Theorem 4 there should exist a self-adjoint differential

operator R̃s,t(z, ∂z) in Fz(ψ1) ∩ Fz(ψ2) with polynomial

coefficients which commutes with the integral operators EkE∗j
defined by the wave functions ψk(x, z) for k = 1, 2. Note also

that R̃s,t(z, ∂z) will commute with the integral operator EE∗

associated with the wave function from Example 2 for any r,

since this operator will be a linear combination of the EkE∗j ’s.

Using our algorithm for Theorem 1, we obtain an operator of

order 6 of the form

R̃s,t(z, ∂z) =

3∑
m=0

∂mz fm(z)∂mz ,
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where

f0(z) =
z2(3s6t3 − 54s4t)

6
+ s6z5 − 3s6tz4

2
+ 12s4z3,

f1(z) = (z − t)
(
3s4z4 − 3s4tz3 + 12s2z2 + 9s2tz − 9s2t2

)
,

f2(z) = (z − t)2

(
3s2z3 − 3s2tz2

2
+ 12t

)
,

f3(z) = (z − t)3z2.

5 Concluding remarks

We have presented a unified general construction of commuting
pairs based on the intrinsic properties of symmetries of soliton
equations. It has not escaped our notice that the specific con-
nection we have described between commuting integral and dif-
ferential operators and solutions of the KdV equation, in partic-
ular the critical role of the reflecting property in these classical
problems, opens up avenues of broad new applications of inte-
grable systems to spectral analysis of integral operators, going
far beyond sinc, Bessel and Airy kernels. Additionally, the new
pairs of commuting integral and differential operators may have
a role to play in random matrix theory.
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