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GLOBAL SOLUTIONS TO STOCHASTIC WAVE EQUATIONS WITH

SUPERLINEAR COEFFICIENTS

ANNIE MILLET AND MARTA SANZ-SOLÉ

Abstract. We prove existence and uniqueness of a random field solution (u(t, x); (t, x) ∈
[0, T ]×Rd) to a stochastic wave equation in dimensions d = 1, 2, 3 with diffusion and drift
coefficients of the form |x|

(
ln+(|x|)

)a
for some a > 0. The proof relies on a sharp analysis

of moment estimates of time and space increments of the corresponding stochastic wave
equation with globally Lipschitz coefficients. We give examples of spatially correlated
Gaussian driving noises where the results apply.

1. Introduction

In this paper, we study the stochastic wave equation in spatial dimension d ∈ {1, 2, 3},
with a multiplicative noise W ,

∂2

∂t2
u(t, x)−∆xu(t, x) = b(u(t, x)) + σ(u(t, x))Ẇ (t, x), t ∈ (0, T ],

u(0, x) = u0(x),
∂

∂t
u(0, x) = v0(x), (1.1)

x ∈ Rd.
The choice of Ẇ depends on the dimension d. First, we consider the case d = 1 with

space-time white noise. Then, we consider simultaneously the dimensions d = 2, 3 with a
noise white in time and coloured in space, that is, with a non trivial spatial covariance.
The initial conditions u0 and v0 are real-valued functions. The coefficients b, σ : R → R
are locally Lipschitz functions such that, for |x| → ∞,

|b(x)| ≤ θ1 + θ2|x| (ln |x|)δ , |σ(x)| ≤ σ1 + σ2|x| (ln |x|)a , (1.2)

where θi, σi ∈ R+, i = 1, 2, θ2, σ2 > 0, δ, a > 0.
We are interested in proving global existence of a random field solution to (1.1), which

means the existence of a stochastic process
(
u(t, x), (t, x) ∈ [0, T ]× Rd

)
satisfying

u(t, x) = [G(t) ∗ v0](x) +
∂

∂t

[
G(t) ∗ u0

]
(x) +

∫ t

0
ds [G(s) ∗ b(u(t− s, ·))](x)

+

∫ t

0

∫
Rd
G(t− s, x− y)σ(u(s, y))W (ds, dy), (1.3)

for all (t, x) ∈ [0, T ]×Rd a.s. Here, G(t), t > 0, is the fundamental solution to the partial

differential operator ∂2

∂t2
−∆x, the notation “∗” denotes the convolution with respect to the

space variable, and the last integral on the right-hand side is the stochastic convolution
(or infinite dimensional stochastic integral) defined for example in [6].

2010 Mathematics Subject Classification. Primary: 60H15, 60G60 Secondary: 35R60, 60G17 .
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2 A. MILLET AND M. SANZ-SOLÉ

When σ and b are globally Lipschitz functions, therefore having linear growth, results on
global existence of random field solutions to (1.1) have been established for different type
of noises (see e.g. [29], [6]). However, for superlinear coefficients blow-up may occur. This
is a well-known and extensively studied phenomenon in PDEs (see for instance the survey
paper [13] for parabolic equations, and [3], [15], [24][Section X.13, p. 293] for hyperbolic
equations).

Our research is motivated by [11]. This paper studies the parabolic SPDE

∂

∂t
u(t, x)− ∂2

∂x2u(t, x) = b(u(t, x)) + σ(u(t, x))Ẇ (t, x), t ∈ (0, T ], x ∈ (0, 1),

u(0, x) = u0(x), x ∈ [0, 1], (1.4)

with Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0, and locally Lipschitz coefficients
such that, as |x| → ∞,

|b(x)| = O(|x|(ln |x|)), |σ(x)| = o
(
|x|(ln |x|)1/4

)
. (1.5)

Assuming that the initial value u0 is Hölder continuous, one of the main results in [11]
is the existence of a unique global random field solution to (1.4) on C(R+ × [0, 1]). This
solution satisfies

sup
(t,x)∈[0,T ]×[0,1]

|u(t, x)| <∞, a.s., for any T > 0.

If in equation (1.4), σ is constant and |b(x)| ≥ |x|(ln |x|)1+ε when |x| → ∞, with ε
arbitrarily close to zero, Bonder and Groisman ([2]) prove that blow-up occurs in finite
time t > 0. From [11], one concludes that this condition on b is sharp. Notice that
the assumption on b is related to the classical Osgood’s condition in ordinary differential
equations.

There are many papers devoted to the study of blow-up phenomena for parabolic
SPDEs. We refer the reader to references given in [11] for a representative sample. There
are however less results for stochastic wave equations. To the best of our knowledge, ex-
istence or absence of blow-up has been studied so far in the setting of functional-valued
solutions, rather than for random field solutions. Some important contributions to the
problem are given in [5] (see also other papers by P.-L. Chow) and [23]. These are for
wave equations whose coefficients have polynomial growth and for noises white in time
and with strong conditions on the space covariance. More general noises are considered
in [21], where a stochastic wave equation with d = 2 and b(x) = −|x|ρx, for some value of
ρ > 0, is shown to have a global weak functional-valued solution. Observe that the minus
sign in b has the effect of bringing the solution back to the origin, rather than pushing
it away to infinity, as may happen with positive nonlinearities. A quite general setting is
considered in [19], where, for a bounded spatial domain, the authors study a wave equation
with a maximal monotone graph b driven by a martingale noise, and existence (but not
uniqueness) of functional-valued global solution is proved.

The main results of this paper are Theorem 3.4 and Theorem 4.14, relative to the two
noise type scenarios considered in the paper. Briefly stated, we prove that, if the initial
conditions satisfy some Hölder properties, and the coefficients are such that a superlinear
growth as described in (1.2) holds (see condition (Cs) in Section 3), then, if b dominates
σ (see conditions (C1), (Cd) in Sections 3 and 4, respectively), then a global random
field solution to (1.3) exists.
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Our approach follows a L∞ method, as in [11], except that we do not use comparison
theorems, since they do not hold for the wave equation. The main work consists in

establishing qualitative sharp upper bounds on E
(

sup(t,x)∈K |u(t, x)|p
)

, for some p ≥ 1,

where (u(t, x))(t,x) is the random field solution to (1.3) with globally Lipschitz coefficients,

and K is a compact subset of R+ × Rd. Such upper bounds are expressed in terms
of the value at the origin and the Lipschitz constants of the coefficients b and σ (see
Propositions 3.3 and 4.13, and the notation (2.12) below). They are obtained from Lp

estimates of increments in time and in space of the process (u(t, x))(t,x) (see Propositions
3.2 and 4.12) via a version of Kolmogorov’s theorem ([10][Theorem A.3.1]). Why is this
important? Existence of solution to differential equations with locally Lipschitz coefficients
is often proved by transforming the coefficients into globally Lipschitz functions, by means
of truncation. With a classical sequential stopping argument, involving an increasing
sequence of stopping times (τN )N , if τN ↑ ∞ a.s., then existence of global solution follows.
In our case, a sufficient condition for τN ↑ ∞ to hold (a.s.) is

E
(

sup
(t,x)∈K

|uN (t, x)|p
)

= o(Np), (1.6)

where uN denotes the random field solution to (1.3) with the truncated (by N) coefficients
bN , σN (see (3.26)).

We prove (1.6) for equation (1.3) in two different situations, thereby deducing absence
of blow-up. This is done throughout the sections that we now describe. In Section 3, we
consider the case d = 1 and space-time white noise. The simple setting allows to better
highlight the details of the method. In Section 4, we consider equation (1.3) with d = 2, 3.
Since we are interested in random field solutions, in contrast with the case d = 1, we cannot
take a space-time white noise. Instead, we consider a class of Gaussian noises white in time
and with a spatial covariance measure absolutely continuous with respect to the Lebesgue
measure for which a well developed stochastic integral theory in any dimension d exists
(see e.g. [6], [10]). In comparison with Section 3, the arguments and computations are
more difficult; they are inspired by the approach to sample path regularity of the random
field solution of (1.3) for d = 3 given in [8] and [14]. The statements of Section 4 introduce
several conditions on the spatial covariance density. Section 5 is devoted to prove that
they are satisfied on several examples namely, the Bessel and Riesz kernels and densities
of fractional type.

We end this introduction with some remarks.
Consider the case where b and σ are globally Lipschitz functions. From the first state-

ment of Proposition 4.12 (see (4.78)), we deduce the existence of a version of the process
(u(t, x))(t,x) with locally Lipschitz continuous sample paths, jointly in (t, x), with expo-
nents ν1, ν2, respectively. Thus, for the class of spatial covariances considered in Section 4,
this provides a unified approach to sample path regularity of the stochastic wave equation
when d = 2, 3. Related results are in [20] for d = 2, and [8], [14] for d = 3.

Without much additional technical effort, the results of this paper can be extended
to the stochastic wave equation (1.3) with coefficients b and σ depending also on (t, x)
(with suitable assumptions), that is, replacing b(u(t, x)) and σ(u(t, x)) by b(t, x, u(t, x))
and σ(t, x, u(t, x)) respectively.
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2. Preliminaries and notations

We recall that for d = 1, 2 and for any fixed t > 0, the fundamental solution G(t) to

the partial differential operator ∂2

∂t2
−∆x, is a function. More precisely,

G(t, x) =

{
1
2 1{|x|<t}, x ∈ R,
1

2π
1√

t2−|x|2
1{|x|<t}, x ∈ R2,

(2.1)

while for d = 3,

G(t, dx) =
1

4πt
σt(dx), x ∈ R3, (2.2)

where σt(dx) denotes the uniform surface measure on the sphere centred at zero and with
radius t, (see e.g. [12][Ch. 5]). By integration, we see that∫

Rd
G(t, dx) = t, (2.3)

where, for d = 1, 2, G(t, dx) := G(t, x)dx. Observe that G(t) is symmetric in x.
The fundamental solution G(t) satisfies the scaling property

G(t, dx) = t G(1, dz), t ≥ 0. (2.4)

This follows easily by changing the variable x into tz in (2.1) and (2.2). Also, for any
continuous function f defined on Rd, d = 1, 2, 3, and any s, t > 0,∫

Rd
G(s, dx) f(x) =

s

t

∫
Rd
G(t, dx) f

(s
t
x
)
, (2.5)

as can be checked by applying the change of variable u 7→ t
su. This property will be used

in the proof of Proposition 4.6.
We recall also that, for any d ≥ 1, the Fourier transform of G(t, ·) is

FG(t, ·)(ζ) =

∫
Rd
e−ix·ζϕ(x) dx =

sin(t|ζ|)
|ζ|

(2.6)

(see [28][p. 49]).
Throughout the paper, we will write G(t, x−dy) to denote the translation by −x of the

measure G(t, dy) in the distribution sense (see e.g. [25][p. 55]).
Let B(0; ρ) denote the Euclidean ball centred at 0 and with radius ρ ≥ 0. Because of

the special form of the support of the fundamental solution G, if the initial values u0,
v0 have compact support included in B(0; ρ) for some ρ > 0, the support of the solution
(u(t, x); (t, x) ∈ [0, T ] × Rd) is included in [0, T ] × B(0; ρ + T ). This fact will be used in
several computations.

Throughout the article, we will often write (1.3) in the compact form

u(t, x) =
2∑
i=0

Ii(t, x), t ∈ [0, T ], x ∈ Rd, (2.7)

where

I0(t, x) =[G(t) ∗ v0](x) +
∂

∂t

[
G(t) ∗ u0

]
(x),

I1(t, x) =

∫ t

0
ds [G(s) ∗ b(u(t− s, ·))](x),
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I2(t, x) =

∫ t

0

∫
Rd
G(t− s, x− dy)σ(u(s, y))W (ds, dy). (2.8)

In some proofs, the following facts will be used.
For any γ > 0, k ≥ 1,

sup
t≥0

(
tk e−γt

)
= kkγ−ke−k. (2.9)

Since the function t −→ 1− e−γt(1 + γt) is increasing,

sup
t≥0

[
1− e−γt(1 + γt)

]
= lim

t→∞

[
1− e−γt(1 + γt)

]
= 1.

This implies

sup
t≥0

(∫ t

0
s e−γsds

)
= γ−2 sup

t≥0

[
1− e−γt(1 + γt)

]
= γ−2. (2.10)

Integrating by parts twice, we obtain,∫ t

0
s2e−γsds = 2 γ−3

[
1− e−γt(1 + γt+ γ2t2/2)

]
. (2.11)

Notations

For a Lipschitz continuous function g : R→ R, we set c(g) = |g(0)| and denote by L(g)
its Lipschitz constant. Thus,

|g(x)| ≤ c(g) + L(g)|x|, x ∈ Rd. (2.12)

For fixed α > 0, p ∈ [2,∞), and any jointly measurable random field

Φ : Ω× [0, T ]× Rd → R,

we define the family of seminorms

Nα,p(Φ) := sup
t≥0

sup
x∈Rd

e−αt‖Φ(t, x)‖p, (2.13)

where ‖ · ‖p denotes the norm in Lp(Ω).
For φ : R→ R, set ‖φ‖∞ = supx∈R |φ(x)| and, for R ≥ 0, ‖φ‖∞,R = sup|x|≤R |φ(x)|. For

γ ∈ (0, 1), we define

‖φ‖γ = sup
x 6=y

|φ(x)− φ(y)|
|x− y|γ

, (2.14)

We denote by C∞0 (Rk;R) the space of real-valued, infinitely differentiable functions

with compact support. As usual, except if specified otherwise, C, C̄, C̃, c, . . . are positive
constants that may change throughout the paper, and C(a), C̄(a), etc., denote positive
constants depending on the parameter a.

3. The stochastic wave equation in dimension one with space-time white
noise

In this section, we consider the stochastic wave equation (1.3) for d = 1, with a space-
time white noise W , and coefficients satisfying the superlinear growth condition (1.2). The
goal is to prove the existence of a global random field solution. The study goes through
several steps developed in the next subsections.
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3.1. Qualitative moment estimates. We assume that the coefficients of (1.3), b and
σ, are globally Lipschitz continuous functions. According to (2.12), we have

|b(x)| ≤ c(b) + L(b)|x|, |σ(x)| ≤ c(σ) + L(σ)|x|, x ∈ R. (3.1)

The goal is to obtain upper bounds on supx∈R ‖u(t, x)‖p in terms of the constants c(b),
c(σ), L(b), L(σ) for some range of values of p. This will be done using the approach of
[16][Chapter 5] for the stochastic heat equation (see also [11]).

Using the definition of I0(t, x) and G given in (2.8) and (2.1), respectively, we have

I0(t, x) =
1

2

∫ x+t

x−t
v0(y)dy +

1

2

(
u0(x− t) + u0(x+ t)

)
. (3.2)

From this equality, we deduce

sup
x∈R
|I0(t, x)| ≤ t‖v0‖∞ + ‖u0‖∞. (3.3)

Clearly, if u0, v0 are bounded functions, the right-hand side of (3.3) is finite. Assuming
this fact, from Proposition II.3 in [4] we know that (1.3) has a unique random field solution(
u(t, x); (t, x) ∈ [0, T ]× R

)
, and for any p ∈ [1,∞), this solution satisfies

sup
(t,x)∈[0,T ]×R

‖u(t, x)‖p <∞.

Proposition 3.1. Let u0 and v0 be Borel functions satisfying ‖u0‖∞ + ‖v0‖∞ < ∞.
Suppose that L(b) ≥ 8L(σ)2. Then, there exists a universal constant C > 0 such that, for

any p ∈
[
2, L(b)

4L(σ)2

]
,

N
2
√
L(b),p

(u) ≤ T0 + C
[ c(b)
L(b)

+
c(σ)

L(σ)

]
, (3.4)

where

T0 =
e−1‖v0‖∞√

L(b)
+ 2‖u0‖∞. (3.5)

Thus,

sup
x∈R

E(|u(t, x)|p) ≤ e2pt
√
L(b)

{
T0 + C

[
c(b)

L(b)
+
c(σ)

L(σ)

]}p
, t ∈ [0, T ]. (3.6)

Proof. Fix α > 0 and p ∈ [2,+∞). From (3.3) and (2.9) with k = 1, we obtain

Nα,p(I0) ≤ e−1

α
‖v0‖∞ + ‖u0‖∞. (3.7)

By applying Minkowski’s inequality, and then (3.1), we have

‖I1(t, x)‖p ≤
∫ t

0
ds

∫
R
dy G(t− s, x− y)‖b(u(s, y))‖p

≤
∫ t

0
ds

∫
R
dy G(t− s, x− y) [c(b) + L(b)‖u(s, y)‖p] .

Using (2.3), along with (2.10) and (2.9) with k = 2, we deduce

Nα,p(I1) = sup
t≥0

sup
x∈R

e−αt‖I1(t, x)‖p

≤ c(b) sup
t≥0

(
t2

2
e−αt

)
+ L(b)Nα,p(u) sup

t≥0

∫ t

0
(t− s)e−α(t−s)ds
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≤ 2e−2

α2
c(b) +

1

α2
L(b)Nα,p(u)

≤ 1

α2
[c(b) + L(b)Nα,p(u)] . (3.8)

Using first the version of Burkholder-Davies-Gundy’s inequality given in [16][Theorem
B1, p. 97], and then Minkowski’s inequality, we obtain

‖I2(t, x)‖2p =
∥∥∥∫

R
G(t− s, x− y)σ(u(s, y))W (ds, dy)

∥∥∥2

p

≤ 4p
{
E
(∣∣∣ ∫ t

0

∫
R
G2(t− s, x− y)σ2(u(s, y))dsdy

∣∣∣ p2)} 2
p

= 4p
∥∥∥∫ t

0

∫
R
G2(t− s, x− y)σ2(u(s, y))dsdy

∥∥∥
p
2

≤ 4p

∫ t

0

∫
R
G2(t− s, x− y)‖σ2(u(s, y))‖ p

2
dsdy.

By (3.1), this is bounded above by

8p

{∫ t

0
ds

∫
R
dy G2(t− s, x− y)

[
c(σ)2 + L(σ)2‖u(s, y))‖2p

]}
.

Since G2(t, x) = 1
2G(t, x), the inequalities (2.9) with k = 1 and (2.10) imply

Nα,p(I2) = sup
t≥0

sup
x∈R

e−αt‖I2(t, x)‖p

≤ sup
t≥0

sup
x∈R

e−αt
{

2pc(σ)2t2

+ 8pL(σ)2

∫ t

0
ds

∫
R
dy G2(t− s, x− y)‖u(s, y))‖2p

}1/2

≤
√

2pc(σ) sup
t≥0

(
te−αt

)
+
√

8pL(σ)Nα,p(u)

×
(∫ t

0
ds

∫
R
dy G2(t− s, x− y)e−2α(t−s)

)1/2

≤
√

2p
e−1

α
c(σ) +

√
8pL(σ)Nα,p(u)

(∫ t

0

1

2
se−2αsds

) 1
2

≤
√

2p
e−1

α
c(σ) +

√
p

1

α
L(σ)Nα,p(u)

≤
√
p

α
[c(σ) + L(σ)Nα,p(u)] . (3.9)

The inequalities (3.7), (3.8) and (3.9) imply

Nα,p(u) ≤ e−1

α
‖v0‖∞ + ‖u0‖∞ +

1

α2
c(b) +

√
p

α
c(σ)

+ 2 max
(L(b)

α2
,

√
pL(σ)

α

)
Nα,p(u). (3.10)

Fix α2 = 4L(b); since L(b) ≥ 8L(σ)2, the interval
[
2, L(b)

4L(σ)2

]
is nonempty. Observe

that for any p ∈
[
2, L(b)

4L(σ)2

]
,
√
pL(σ) ≤

√
L(b)

2 = α
4 , and that the choice of α implies
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max
(
L(b)
α2 ,

√
pL(σ)
α

)
= 1

4 , and
√
p
α ≤ 1

4L(σ) . Hence, from (3.10) we deduce (3.4). The

estimate (3.6) is an immediate consequence of the definition of Nα,p(u) for α = 2
√
L(b).

�

Remarks on Proposition 3.1

(1) Assume that L(b) ≥ κL(σ2), for some κ > 4. Then, with the same proof as above, we
obtain

N√
κL(b)

2
,p

(u) ≤ T0 + C
[ c(b)
L(b)

+
c(σ)

L(σ)

]
, (3.11)

and thus,

sup
x∈R

E(|u(t, x)|p) ≤ et
√
κL(b)

2

{
T0 + C

[
c(b)

L(b)
+
c(σ)

L(σ)

]}p
, t ∈ [0, T ], (3.12)

for any p ∈
[
2, 2L(b)

κL(σ)2

]
.

Observe that, in comparison with Proposition 3.1, the constraint on the Lipschitz con-
stants L(b), L(σ) is weaker and the set of values of p for which the uniform Lp estimate
(3.12) holds is larger. However, for the use of Proposition 3.1 we make in this article, this
improvement does not seem to be relevant.

(2) The proof of Proposition 3.1 uses the inequalities (3.1) on the coefficients but not really
the fact that L(b), L(σ) are the Lipschitz constants of b and σ, respectively. Thus, the
assumption L(b) ≥ 8L(σ)2 could be removed by replacing L(b) by some other constant
L̄(b) satisfying L̄(b) ≥ max(L(b), 8L(σ)2). By doing so, the estimates (3.4), (3.6) should
be changed accordingly. If, for example, L̄(b) is a constant multiple of L(b), this will not
have any consequence in the subsequent results of the paper.

3.2. Uniform bounds on moments. In this section, we still assume that the coefficients
of (1.3) are globally Lipschitz continuous functions, thereby satisfying (3.1). We prove an
upper bound for

E

(
sup
t∈[0,T ]

sup
|x|≤R

|u(t, x)|p
)
, (3.13)

for any R > 0, and for a specific range of values of p that depend on the initial values u0,
v0, and the constants c(b), c(σ), L(b), L(σ). This will be a consequence of the following
proposition relative to estimates on moments of space and time increments of the random
field

(
u(t, x); (t, x) ∈ [0, T ]× Rd

)
.

Proposition 3.2. We assume that the initial condition u0 is Hölder continuous with
exponent γ1 ∈ (0, 1] and v0 is continuous. Set γ = γ1 ∧ 1

2 , and fix T,R ≥ 0. Then, for
any p ∈ [2,∞), there exists a positive constant C(p, T,R) such that, for any t, t̄ ∈ [0, T ],
x, x̄ ∈ [−R,R] and α > 0,

‖u(t, x)− u(t̄, x̄)‖p
(|t− t̄|+ |x− x̄|)γ

≤ C(p, T,R)
[
M1 +M2e

αTNα,p(u)
]
, (3.14)

where

M1 = ‖u0‖γ1 + ‖v0‖∞,R+T + c(b) +
√
p c(σ),

M2 = L(b) +
√
p L(σ). (3.15)
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Moreover, if L(b) ≥ 8L(σ)2 then for any p ∈
[
2, L(b)

4L(σ)2

]
,

‖u(t, x)− u(t̄, x̄)‖p
(|t− t̄|+ |x− x̄|)γ

≤ C(p, T,R)

[
M1 +M2e

2
√
L(b)T

(
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

)]
, (3.16)

with T0 given in (3.5).

Proof. Since u0 is γ1-Hölder continuous, we clearly have

|u0(x− t) + u0(x+ t)− (u0(x̄− t̄) + u0(x̄+ t̄))| ≤ 2‖u0‖γ1 (|x− x̄|γ1 + |t− t̄|γ1) .

The function V0(z) =
∫ z

0 v0(y) dy is continuously differentiable; hence,∣∣∣∣∣
∫ x̄+t̄

x̄−t̄
v0(y) dy −

∫ x+t

x−t
v0(y) dy

∣∣∣∣∣ ≤ 2 ‖v0‖∞,R+T (|x− x̄|+ |t− t̄|) .

Consequently, from the expression (3.2) we obtain,

|I0(t, x)− I0(t̄, x̄)| ≤ C(T,R) (‖u0‖γ1 + ‖v0‖∞,R+T ) (|x− x̄|γ1 + |t− t̄|γ1) . (3.17)

for some C(T,R) > 0.
In the next arguments, we will use the following properties on increments of the funda-

mental solution to the one-dimensional wave equation, whose proofs are straightforward.
For all 0 ≤ t̄, t ≤ T , x, x̄ ∈ R, there exists a constant C(T ) such that∫ T

0
ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|

= 2

∫ T

0
ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|2

≤ C(T ) (|t− t̄|+ |x− x̄|) . (3.18)

As in the proof of Proposition 3.1, Minkovski’s inequality along with (3.1) imply

‖I1(t, x)−I1(t̄, x̄)‖p ≤
∫ T

0
ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|‖b(u(s, y))‖p

≤
∫ T

0
ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|

[
c(b) + L(b)‖u(s, y)‖p

]
≤C(T )

[
c(b) + L(b)eαTNα,p(u)

]
(|t− t̄|+ |x− x̄|) , (3.19)

for any α > 0.
Bounds from above of increments of I2, are also obtained following the arguments

in the proof of Proposition 3.1, based on the Burkholder-Davies-Gundy and Minkowski
inequalities. More precisely,

‖I2(t, x)− I2(t̄, x̄)‖2p ≤ 4p
∥∥∥∫ T

0
ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|2σ2(u(s, y))

∥∥∥
p
2

≤ 4p

∫ T

0
ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|2‖σ2(u(s, y))‖ p

2

≤ 8p

∫ T

0
ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|2‖

[
c(σ)2 + L(σ)2‖u(s, y)‖2p

]
≤ 8p C(T )

[
c(σ)2 + L(σ)2e2αTNα,p(u)2

]
(|t− t̄|+ |x− x̄|) ,
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for any α > 0. Consequently,

‖I2(t, x)− I2(t̄, x̄)‖p ≤ 2
√

2C(T )
√
p
[
c(σ) + L(σ)eαTNα,p(u)

]
(|t− t̄|+ |x− x̄|)

1
2 . (3.20)

Let γ = γ1 ∧ 1
2 ; the inequalities (3.17), (3.19) and (3.20) imply (3.14).

Let α = 2
√
L(b) and p ∈

[
2, L(b)

4L(σ)2

]
; from (3.4) we obtain (3.16). The proof of the

proposition is complete. �

Combining Proposition 3.2 and the version of Kolmogorov’s continuity lemma given in
[10][Theorem A.3.1] (see also [16][Theorem C.6]) leads to an upper bound for uniform Lp

moments in (3.13). The precise statement is as follows.

Proposition 3.3. Let the initial values u0, v0 be as in Proposition 3.2. Let γ = γ1∧ 1
2 and

suppose that L(b) > 8
γL(σ)2. Then u has a Hölder continuous version, jointly in (t, x),

still denoted be u, with exponent η ∈ (0, γ), and for any p ∈
(

2
γ ,

L(b)
4L(σ)2

]
, there exists a

constant C(p, T,R) such that,

E

(
sup
t∈[0,T ]

sup
|x|≤R

|u(t, x)|p
)
≤ 2p−1‖u0‖p∞,R+C(p, T,R)

[
Mp

1 +Mp
2M

p
3 e

2pT
√
L(b)
]
, (3.21)

where M1, M2 are defined in (3.15), and

M3 =
e−1‖v0‖∞,R√

L(b)
+ 2‖u0‖∞,R + C

[ c(b)
L(b)

+
c(σ)

L(σ)

]
,

with C the universal constant in the right-hand side of (3.4).

Proof. For any s, t ∈ [0, T ], x, y ∈ [−R,R], set

∆(t, x; s, y) = |t− s|γ + |x− y|γ .
Proposition 3.2 implies that

E(|u(t, x)− u(s, y)|p) ≤ K(∆(t, x; s, y))p,

with
K := C(p, T,R)

[
Mp

1 +Mp
2e
αpTNα,p(u)p

]
(3.22)

for any α > 0.
Apply [10][Theorem A.3.1] with k = 1, α1 = α2 = γ, I = [0, T ], J = [−R,R], p ∈(

2
γ ,∞

)
, to infer the existence of a version of u (that we still denote by u) with jointly

Hölder continuous sample paths of exponent η ∈ (0, γ). Moreover, since by (1.1),

C1 := E

(
sup
|x|≤R

|u(0, x)|p
)

= ‖u0‖p∞,R,

we deduce from [10][Equation(2.8.50)],

E

(
sup
t∈[0,T ]

sup
|x|≤R

|u(t, x)|p
)
≤ 2p−1‖u0‖p∞,R + C(p, T,R)K, (3.23)

with K is defined in (3.22). Observe that K depends on α.

Choose α = 2
√
L(b). Then (3.23) and (3.22) yield

E

(
sup
t∈[0,T ]

sup
|x|≤R

|u(t, x)|p
)
≤ 2p−1‖u0‖p∞,R
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+ C(p, T,R)
[
Mp

1 +Mp
2e

2pT
√
L(b)N

2
√
L(b),p

(u)p
]
. (3.24)

Notice that, since γ ≤ 1/2, the condition L(b) > 8
γL(σ)2 implies that the hypotheses of

Proposition 3.1 are satisfied. Hence, using (3.4) to upper estimate N
2
√
L(b),p

(u) on the

right-hand side of (3.24), and since we are considering |x| ≤ R, we obtain (3.21). �

3.3. Existence and uniqueness of global solution. In this section, we consider the
equation (1.3) with coefficients having superlinear growth. More precisely, we introduce
the following hypothesis that implies (1.2).

(Cs) The functions b, σ : R→ R are locally Lipschitz and are such that:

(1) |b(0)| ≤ θ1 and |σ(0)| ≤ σ1, for some θ1, σ1 ∈ R+;

(2) as |x|, |y| → ∞,

|b(x)− b(y)| ≤ θ2|x− y| [ln+(|x− y|)]δ , |σ(x)− σ(y)| ≤ σ2|x− y| [ln+(|x− y|)]a ,

where θ2, σ2,∈ (0,∞), δ, a > 0, and ln+(z) = ln(z ∨ e) for z ≥ 0.

We also assume that the coefficient b dominates σ, in the way formulated by the following
assumption.

(C1) The parameters δ, a in (1.2) satisfy one of the properties:

(1) δ > 2a,
(2) δ = 2a and the constants θ2 and σ2 are such that θ2 > γ̄σ2

2, for some γ̄ > 0.

The next theorem proves existence and uniqueness of global random field solution to
Equation (1.3).

Theorem 3.4. Assume that the initial conditions u0, v0 are functions with compact sup-
port included in [−ρ, ρ], for some ρ > 0, that u0 is Hölder continuous with exponent γ1

and v0 is continuous. Set γ = γ1 ∧ 1
2 ; let the coefficients b and σ satisfy (Cs) and (C1)

with δ < 2 and γ̄ = 8γ−1.
Then, there exists a random field solution

(
u(t, x); (t, x) ∈ [0, T ] × R

)
to (1.3). This

solution is unique and satisfies

sup
(t,x)∈[0,T ]×R

|u(t, x)| <∞, a.s. (3.25)

Proof. We notice that because of the properties of the initial values, if a solution to (1.3)
exists, it should have its support on [0, T ] × [−R,R], where R = ρ + T . Hence, (3.25) is
equivalent to

sup
(t,x)∈[0,T ]×[−(ρ+T ),ρ+T ]

|u(t, x)| <∞, a.s.

Solution for truncated Lipschitz continuous coefficients.

For a locally Lipschitz function g : R → R and N ≥ 1, we define a globally Lipschitz
function gN by

gN (x) = g(x)1{|x|≤N} + g(N)1{x>N} + g(−N)1{x<−N}. (3.26)

Using this definition for σ and b, we consider (1.1) with coefficients σN , bN , and denote
by uN := (uN (t, x); (t, x) ∈ [0, T ]× R) its unique random field solution (see the first part
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of Section 3.1 for details). From (Cs) we see that if N ≥ 2, σN , bN satisfy the conditions
(3.1) with

c(bN ) = θ1, c(σN ) = σ1, L(bN ) = θ2(ln(2N))δ, L(σN ) = σ2(ln(2N))a. (3.27)

Therefore, Proposition 3.2 applies and by Kolmogorov’s continuity criterion, there is a
version of uN with jointly Hölder continuous sample paths of exponent η ∈ (0, γ) in both
variables. In the sequel we will consider this version that we will still denote by uN .

Bounds for Lp moments of uN .

Assume that condition (C1) (1) holds. Then, for N large enough, we have L(bN ) >
8
γL(σN )2. On the other hand, if condition (C1) (2) is satisfied, then L(bN ) > 8

γL(σN )2

holds for any N ≥ 2. We can therefore apply Proposition 3.3 to see that for any p ∈(
2
γ ,

θ2(ln(2N))δ

4σ2
2(ln(2N))2a

]
, R > 0, N large enough (if necessary).

E
(

sup
t∈[0,T ]

sup
|x|≤R

|uN (t, x)|p
)
≤ 2p−1‖u0‖p∞,R

+ C(p, T,R)
[
Mp

1 +Mp
2(N)Mp

3(N) e2pT
√
L(bN )

]
, (3.28)

where

M1 =‖u0‖γ1 + ‖v0‖∞,R+T + θ1 +
√
p σ1,

M2(N) =L(bN ) +
√
p L(σN ),

M3(N) =
e−1‖v0‖∞,R√

L(bN )
+ 2‖u0‖∞,R + C

[
θ1

L(bN )
+

σ1

L(σN )

]
. (3.29)

Existence and uniqueness of global solution

For any N ≥ 2, set

τN := inf
{
t > 0 : sup

|x|≤R
|uN (t, x)| ≥ N

}
∧ T. (3.30)

The uniqueness of the solution and the local property of stochastic integrals imply that
uN (t, x) = uN+1(t, x) a.s. for t ≤ τN . Hence, almost surely, (τN )N≥2 is an increasing
sequence, bounded by T .

Assume that supN τN = T , a.s., and thus {t ≤ τN} ↑ Ω, a.s. On {t ≤ τN}, define
(u(t, x), (t, x) ∈ [0, T )×R) by u(t, x) = uN (t, x); then u(t, x) = uM (t, x), for every M ≥ N .
The random variable u(t, x) is well-defined and moreover, for any (t, x),(1.3) holds a.s.
Indeed, on {t ≤ τN}, by definition,

u(t, x) = I0(t, x) +

∫ t

0
ds

∫
R
dy G(t− s, x− y)bN (uN (s, y))

+

∫ t

0

∫
R
G(t− s, x− y)σN (uN (s, y))W (ds, dy).

But on {t ≤ τN}, bN (uN (s, y)) = b(uN (s, y)) = b(u(s, y)) and σN (uN (s, y)) = σ(uN (s, y)) =
σ(u(s, y)). Since {t ≤ τN} ↑ Ω a.s., we conclude that (u(t, x), (t, x) ∈ [0, T ) × R) satisfies
(1.3). Notice that, in this case, the stochastic integral in (1.3) is not defined in L2(Ω), but
using instead an extension defined a.s. (see e.g. [10]).
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The last part of the proof is devoted to check that indeed, supN τN = T a.s. This will
follow from the property

lim
N→∞

P (τN < T ) = 0, (3.31)

that we now establish.
Let C(p, T,R,N) denote the right-hand side of (3.28). To emphasise the terms that

depend on N , we write

C(p, T,R,N) = C1(p, T,R) + C2(p, T,R,N), (3.32)

with

C1(p, T,R) = 2p−1‖u0‖p∞,R + C(p, T,R)Mp
1,

C2(p, T,R,N) = C2(p, T,R)Mp
2(N)Mp

3(N) e2pT
√
L(bN ).

Fix p ∈
(

2
γ ,

θ2(ln(2N))δ

4σ2
2(ln(2N))2a

]
. Applying Chebychev’s inequality and then (3.28), we have

P (τN < T ) ≤ P

(
sup
t∈[0,T ]

sup
|x|≤R

|uN (t, x)| ≥ N

)

≤ N−pE

(
sup
t∈[0,T ]

sup
|x|≤R

|uN (t, x)|p
)

≤ N−pC(p, T,R,N) = N−p [C1(p, T,R) + C2(p, T,R,N)] . (3.33)

Assume that

C2(p, T,R,N) = o(Np). (3.34)

Then, from (3.33), we clearly obtain (3.31).
For the proof of (3.34), we first write the expressions of M2(N) and M3(N) in (3.29),

substituting L(bN ) and L(σN ) by their respective values given in (3.27). Because of the
property supN≥2M3(N) ≤ C, we obtain

C2(p, T,R,N) = C̃2(p, T,R) exp
(
p(δ ∨ a) ln[ln(2N)] + 2pTθ

1/2
2 [ln(2N)]δ/2

)
.

This implies (3.34), because δ < 2. The proof of the theorem is complete. �

4. The stochastic wave equation in dimensions d = 2, 3 with coloured noise

The aim of this section is to discuss the same questions as in Section 3 in the setting of
a noise W white in time and spatially correlated, with d = 2, 3. It is well-known that for
dimensions d ≥ 2, if W is a space-time white noise, the stochastic convolution in (1.3) fails
to be a well-defined random variable in L2(Ω), for almost any (t, x) ∈ [0, T ] × Rd. This
is the case even if σ is constant. However, we can still obtain a random field solution of
(1.3) by taking a smoother noise in the spatial variable (see e.g. [29]). This leads to the
introduction in the next subsection 4.1 of a new class of Gaussian noises that are white in
time and correlated in space.
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4.1. Spatially homogeneous Gaussian noise and stochastic integrals. Let Λ be a
non-negative definite distribution in S ′(Rd). By the Bochner-Schwartz theorem (see e.g.
[25][Chap. VII, Thoerem XVIII]), Λ is the Fourier transform of a non-negative, tempered,
symmetric measure µ on Rd called the spectral measure of Λ. In particular, Λ is also a
tempered distribution.

On a complete probability space (Ω,A, P ), we consider a Gaussian process {W (ϕ), ϕ ∈
C0(Rd+1}, indexed by the set of Schwartz test functions, with mean zero and covariance

E (W (ϕ)W (ψ)) =

∫ ∞
0

dt

∫
Rd

Λ(dx)
(
ϕ(t) ∗ ψ̃(t)

)
(x), (4.1)

where “∗” denotes the convolution operator in the spatial variable and ψ̃ means reflection
in the spatial variable too.

We will consider spatial covariances Λ satisfying the following hypothesis ([6]):

(h0) The spectral measure µ = F−1Λ is such that∫
Rd

µ(dζ)

1 + |ζ|2
<∞. (4.2)

Using (2.6), this is seen to be equivalent to∫ T

0
dt

∫
Rd
µ(dζ) |FG(t)(ζ)|2 <∞.

Consider a jointly measurable adapted process Z =
(
Z(t, x), (t, x) ∈ [0, T ]× Rd

)
such

that sup(t,x)∈[0,T ]×Rd E(|Z(t, x|p) < ∞, for some p ∈ [2,∞), and assume (h0). Then, the
stochastic integral

((GZ) ·W )(t, x) :=

∫ t

0

∫
Rd

G(t− s, x− y)Z(s, y) W (ds, dy)

is a well-defined random variable. Moreover, for any x ∈ Rd, the process ((GZ)·W )(t, x), t ∈
[0, T ]) is a martingale with respect to the natural filtration generated by W and, by
Burholder’s inequality ([16][Theorem B.1]), the moment estimate

‖((GZ) ·W )(t, x)‖pp ≤ (2
√
p)p
(∫ t

0
ds

∫
Rd
µ(dζ)|FG(s)(ζ)|2

) p
2
−1

×
∫ t

0
ds

(
sup
x∈Rd

E(|Z(s, x)|p)

)∫
Rd
µ(dζ)|FG(s)(ζ)|2, (4.3)

holds (see [10], [22]).

In this paper, we will consider the particular class of covariances Λ described in (h1)
below.

(h1) Λ is an absolutely continuous measure, Λ(dx) = f(x)dx, f ≥ 0. Its spectral measure
µ = F−1Λ is such that, for all signed measures Φ and Ψ with finite total variation,∫

Rd

∫
Rd

Φ(dx) Ψ(dy)f(x− y) = C

∫
Rd
µ(dζ)FΦ(ζ)FΨ(ζ), (4.4)

for some positive and finite constant C.

Observe that (4.4) is a generalized version of Parseval’s identity.
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Remark 4.1. Assume
∫
Rd µ(dζ)|F(|Φ|)(ζ)|2 <∞,

∫
Rd µ(dζ)|F(|Ψ|)(ζ)|2 <∞, where here

the notation | · | stands here for the total variation. Suppose also that f : Rd → [0,+∞]
is lower semi-continuous. Then if Φ = Ψ, [18][Corollary 3.4] implies the validity of (4.4)
(with C = (2π)−d). By a polarity argument, the result can be extended to Φ 6= Ψ.

Assume (h0) and (h1). Since for any t > 0, G(t, dx) is a non-negative finite measure
with compact support, the identity (4.4) applied to Φ = G(t, dx) and Ψ = G(s, dy), s, t > 0
yields∫

Rd

∫
Rd
G(t, dx) G(s, dy)f(x− y) =

1

(2π)d

∫
Rd
µ(dζ)FG(t, ·)(ζ)FG(s, ·)(ζ). (4.5)

In particular,

J(t) :=

∫
Rd

∫
Rd
G(t, dy)G(t, dz)f(y − z) =

1

(2π)d

∫
Rd
µ(dζ)|FG(t)(ζ)|2. (4.6)

Using (2.6), we have

|FG(t)(ζ)|2 ≤ 2

1 + |ζ|2
1{|ζ|≥1} + t2 1{|ζ|<1} ≤

2(1 + t2)

1 + |ζ|2
, t > 0.

Therefore,

J(t) ≤ 2(1 + t2)Cµ, (4.7)

with

Cµ :=
1

(2π)d

∫
Rd

µ(dζ)

1 + |ζ|2
<∞, (4.8)

which implies, supt∈[0,T ] J(t) <∞.

Assuming (h0) and (h1), the stochastic integral ((GZ) ·W )(t, x) satisfies the sharper
estimate (in comparison with (4.3)),

‖((GZ) ·W )(t, x)‖pp ≤ (2
√
p)p

× E
(∫ t

0
ds

∫
Rd

∫
Rd

G(t− s, x− dy)G(t− s, x− dz)f(y − z)Z(s, y)Z(s, z)

) p
2

, (4.9)

(see e.g. [10], [22]). This fact will be used repeatedly throughout the article.

We end this section with a technical lemma related with the identity (4.4). It will be
applied at several points in the next proofs.

Lemma 4.2. Let d ≥ 1, t > 0 and G(t) be the fundamental solution of the wave operator
on Rd. Let ϕ, ψ be bounded Borel measurable functions defined on Rd. Let Λ be a sym-
metric measure satisfying (h1), with corresponding spectral measure µ = F−1Λ satisfying
(h0). Then, for any s, t > 0 and z ∈ Rd, we have∫

Rd

∫
Rd
ϕ(x)G(t, dx)ψ(y)G(s, dy)f(x− y + z)

=
1

(2π)d

∫
Rd
F (ϕG(t)) (ξ)F (ψG(s)) (ξ)e−iz·ξ µ(dξ). (4.10)

Proof. By applying the translation τzx = x+ z, the left-hand side of (4.10) equals∫
Rd

∫
Rd
ϕ(τ−zx)τ−zG(t, dx)ψ(y)G(s, dy)f(τzx− y) =

∫
Rd

∫
Rd
f(w − y) Φ(dw)Ψ(dy),
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where Φ(dw) = ϕ(τ−zw)τ−zG(t, dw) and Ψ = ψ(y)G(s, dy). We recall that τ−zG(t, dw)
stands for the translation of the measure G(t, dw) by −z in the distribution sense (see e.g.
[25][p. 55]).

Because of the assumptions on ϕ and ψ, the measures Φ(dw) and Ψ(dy) are signed
measures with finite total variation. We can therefore apply (4.4) to deduce∫

Rd

∫
Rd
f(z − y) Φ(dw)Ψ(dy) =

1

(2π)d

∫
Rd
Ff(ξ)F(Φ)(ξ)F(Ψ)(ξ) dξ.

Using the identities

F(Φ)(ξ) = F (τ−zϕ(·)τ−zG(t, ·)) (ξ)

=

∫
Rd
e−iξ·vτ−zϕ(v)τ−zG(t, dv) = e−iξ·zF (ϕG(t, ·)) (ξ),

we obtain (4.10). �

Remark 4.3. Lemma 6.5 in [14] gives a proof of (4.10) for d = 3 by using the particular
expression of G(t) in this dimension.

4.2. Qualitative moment estimates. We introduce a set of assumptions that ensure
the existence and uniqueness of a random field solution to (1.3).

(he)

(i) The coefficients b and σ are Lipschitz continuous functions, therefore satisfying (2.12)
with g := b, σ.

(ii) W is a spatially homogeneous noise as described in Section 4.1. Its covariance and
spectral measures (Λ and µ, respectively) satisfy (h0) and (h1).

(iii) The initial values u0, v0 are such that the function (t, x) 7→ I0(t, x) defined in (2.8) is
continuous and

sup
(t,x)∈[0,T ]×Rd

|I0(t, x)| <∞. (4.11)

Theorem 4.4. Assume that (he) is satisfied. Then there exists a random field solution(
u(t, x), (t, x) ∈ [0, T ]× Rd

)
to (1.3), and for any p ∈ [1,∞),

sup
(t,x)∈[0,T ]×Rd

‖u(t, x)‖p <∞. (4.12)

This solution is unique in the class of jointly measurable, adapted processes u satisfying
(4.12) with p = 2.

In the case u0 = v0 = 0, this follows from Theorem 13 [6] applied to the wave operator.
For non-null initial conditions, this follows from [7][Theorem 4.3].

Estimates of Nα,p(u) for covariances Λ satisfying (h0) and (h1)

Proposition 4.5. In addition to (he), we assume that the initial values u0, v0, satisfy
the following conditions:

(1) for d = 2, u0 is a continuous, bounded, continuous differentiable function with
bounded partial derivatives; v0 is continuous and bounded;

(2) for d = 3, u0 is a continuous, bounded, twice continuous differentiable function
with bounded second order partial derivatives; v0 is continuous and bounded.
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We also suppose that the covariance measure Λ satisfies (h1), and the Lipschitz constants
L(b), L(σ) are such that L(b) ≥

(
212 32C2

µ L(σ)4
)
∨ 1

4 , where Cµ is given in (4.8). Then,

for any p ∈
[
2,

√
L(b)

25 3Cµ L(σ)2

]
we have

N
2
√
L(b),p

(u) ≤ C
[
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

]
, (4.13)

where C is a universal constant and

T0 =

‖u0‖∞ + 1√
L(b)

(
‖∇u0‖∞ + ‖v0‖∞

)
, if d = 2,

‖u0‖∞ + ‖∆u0‖∞ + 1√
L(b)
‖v0‖∞, if d = 3.

(4.14)

As a consequence, we deduce that for t ∈ [0, T ] and p ∈
[
2,

√
L(b)

25 3Cµ L(σ)2

]
,

sup
x∈Rd

E(|u(t, x)|p) ≤ Cp e2pt
√
L(b)

[
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

]p
. (4.15)

Proof. We will consider the contributions to Nα,p of each of the terms Ii(t, x) in (2.8)
separately.

Estimates of Nα,p(I0)

Let d = 2; using [20][(1.11), (1.12)], we have for t > 0 and x ∈ R2

∣∣[G(t) ∗ v0](x)
∣∣ ≤ t ‖v0‖∞,

∣∣∣∣ ∂∂t[G(t) ∗ u0

]
(x)

∣∣∣∣ ≤ C {‖u0‖∞ + t ‖∇u0‖∞} .

Hence, using (2.9) with k = 1 we deduce that for any α > 0 and p ∈ [2,∞),

Nα,p(I0) ≤ C
[
‖u0‖∞ +

e−1

α

(
‖v0‖∞ + ‖∇u0‖∞

)]
. (4.16)

Let d = 3. Using (2.2) and (2.3), we obtain, for t > 0 and x ∈ R3,

|[G(t) ∗ v0](x)| =

∣∣∣∣∣
∫
|y|=t

v0(x− y) G(t, dy)

∣∣∣∣∣ ≤ ‖v0‖∞
∫
|y|=t

G(t, dy) = t‖v0‖∞.

By applying the formula

d

dt

(
G(t) ∗ u0

)
=

1

t

(
G(t) ∗ u0

)
+

1

4π

∫
{|y|≤1}

(∆u0)(.+ ty)dy

(see [26]), we have ∣∣∣∣ ddt(G(t) ∗ u0

)
(x)

∣∣∣∣ ≤ ‖u0‖∞ +
1

3
‖∆u0‖∞.

Therefore, using (2.9) with k = 1 we deduce,

Nα,p(I0) ≤ e−1

α
‖v0‖∞ + ‖u0‖∞ +

1

3
‖∆u0‖∞. (4.17)

Estimates of Nα,p(I1)
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Use the expresion of I1(t, x) given in (2.8) and then Minkovski’s inequality along with
(2.12) with g := b and (2.3) to obtain

‖I1(t, x)‖p =

∥∥∥∥∫ t

0
ds

∫
Rd
G(t− s, dy)b(u(s, x− y))

∥∥∥∥
p

≤
∫ t

0
ds

∫
Rd
G(t− s, dy) ‖b(u(s, x− y))‖p

≤
∫ t

0
ds

∫
Rd
G(t− s, dy)

[
c(b) + L(b) ‖u(s, x− y)‖p

]
≤ t2

2
c(b) + L(b)

∫ t

0
ds sup

x∈Rd
‖u(s, x)‖p

∫
Rd
G(t− s, dy)

=
t2

2
c(b) + L(b)

∫ t

0
ds (t− s)

(
sup
x∈Rd

‖u(s, x)‖p

)
.

From the above estimates, using an argument similar to that used to prove (3.8), we
deduce,

Nα,p(I1) = sup
(t,x)∈[0,T ]×Rd

e−αt‖I1(t, x)‖p

≤ c(b) sup
t≥0

(
t2

2
e−αt

)
+ L(b) sup

t∈[0,T ]

∫ t

0
ds(t− s)e−α(t−s)

(
sup

(s,x)∈[0,T ]×Rd
e−αs‖u(s, x)‖p

)

≤ 2e−2

α2
c(b) +

1

α2
L(b)Nα,p(u), (4.18)

where we have used (2.9) with k = 2 and (2.10).

Estimates of Nα,p(I2)

By applying (4.9) with Z(s, y) := σ(u(s, y)), then Minkowski’s inequality and (2.12)
with g := σ, we obtain

‖I2(t, x)‖2p ≤ 4p

{
E
[ ∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)

×σ(u(s, y))σ(u(s, z))
] p

2

} 2
p

≤ 4p

∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)‖σ(u(s, y))σ(u(s, z))‖ p

2

≤ 4p

∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)‖σ(u(s, y))‖p‖σ(u(s, z))‖p

≤ 4p

∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)

×
[
c(σ) + L(σ)‖u(s, y)‖p

][
c(σ) + L(σ)‖u(s, z)‖p

]
.
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Thus, the inequality 2ab ≤ a2 + b2, valid for any a, b ∈ R implies

‖I2(t, x)‖2p ≤ 4p

∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)

×
[
c(σ) + L(σ)‖u(s, y)‖p

]2
≤ 8p

∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)

×
[
c(σ)2 + L(σ)2‖u(s, y)‖2p

]
. (4.19)

Using the notation introduced in (4.6), we can rewrite (4.19) as follows

‖I2(t, x)‖2p ≤ 8p

[
c(σ)2

∫ t

0
ds J(t− s) + L(σ)2

∫ t

0
ds J(t− s) sup

y∈Rd
‖u(s, y)‖2p

]
. (4.20)

From here, using the change of varables s 7→ t− s, we have,

Nα,p(I2) = sup
t∈[0,T ]

sup
x∈Rd

e−αt‖I2(t, x)‖p

≤
√

8p ν1(α) c(σ) +
√

8p ν2(α)L(σ)Nα,p(u), (4.21)

where

ν1(α) := sup
t∈[0,T ]

(
e−2αt

∫ t

0
dsJ(s)

) 1
2

<∞,

ν2(α) := sup
t∈[0,T ]

(∫ t

0
ds e−2αsJ(s)

) 1
2

<∞. (4.22)

Thus, owing to (4.18), (4.21), we have

Nα,p(u) ≤ Nα,p(I0) +
2e−2

α2
c(b) +

√
8p c(σ) ν1(α)

+ 2 max

[
L(b)

α2
,
√

8pL(σ) ν2(α)

]
Nα,p(u). (4.23)

Using (4.7), (2.9) with k = 1, 3 we obtain

ν1(α) ≤ C
1
2
µ sup

t∈[0,T ]

(
e−2αt

∫ t

0
2 (1 + s2) ds

) 1
2

≤ C
1
2
µ

(e−1

α
+

9

4

e−3

α3

) 1
2
, (4.24)

where Cµ is defined in (4.8). Furthermore, the inequalities (4.7) and (2.11) imply

ν2(α) ≤ C
1
2
µ sup

t∈[0,T ]

(∫ t

0
2(1 + s2) e−2αsds

) 1
2

≤ C
1
2
µ sup

t∈[0,T ]

[ 1

α
− 1

α
e−2αt +

1

2α3
− e−2αt

2α3

(
1 + 2αt+ 2α2t2

)] 1
2

≤ C
1
2
µ

( 1

α
+

1

2α3

) 1
2
. (4.25)
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Thus, (4.23) – (4.25) yield

Nα,p(u) ≤ Nα,p(I0) +
2e−2

α2
c(b) +

√
8p c(σ)C

1
2
µ

(
e−1

α
+

9

4

e−3

α3

) 1
2

+ 2 max

[
L(b)

α2
,
√

8pL(σ)C
1
2
µ

( 1

α
+

1

2α3

) 1
2

]
Nα,p(u). (4.26)

Choose α2 = 4L(b). Since by assumption L(b) ≥ 1
4 , we have α ≥ 1, which yields

e−1

α
+

9

4

e−3

α3
≤ 13

8e
L(b)−

1
2 ,

1

α
+

1

2α3
≤ 3

4
L(b)−

1
2 .

Moreover, using once more the assumption L(b) ≥
[
212 32C2

µ L(σ)4
]
∨ 1

4 , we see that for

α2 = 4L(b) and for any p ∈
[
2,

√
L(b)

25 3Cµ L(σ)2

]
,

max

[
L(b)

α2
,
√

8pL(σ)C
1
2
µ

( 1

α
+

1

2α3

) 1
2

]
≤ max

[
1

4
,
√

8pL(σ)C
1
2
µ

(
3

4
L(b)−

1
2

) 1
2

]
=

1

4
.

Hence, from (4.26), taking the upper bound p ≤
√
L(b)

25 3Cµ L(σ)2 , we deduce

N
2
√
L(b),p

(u) ≤ 2N
2
√
L(b),p

(I0) + e−2 c(b)

L(b)
+

(
13

3e23

) 1
2 c(σ)

L(σ)

≤ C1T0 + C2

[
c(b)

L(b)
+
c(σ)

L(σ)

]
,

with T0 defined in (4.14), and we have used (4.16) and (4.17).
This completes the proof of (4.13). The inequality (4.15) follows from (4.13) using the

definition of Nα,p(u). �

4.3. Uniform bounds on moments. In this section, we address the problems of Sec-
tion 3.2 in the setting of a noise W white in time and coloured in space, and dimensions
d = 2, 3. The main task is to prove the analogue of Proposition 3.2 on moment estimates
of increments in time and in space for the solution to equation (1.3) with globally Lipschitz
coefficients. Since in comparison with the case d = 1 and space-time white noise, compu-
tations are much more intricate, for the sake of clarity, we divide the study of increments
into several parts.

Increments of I0(t, x) in time and space.

Proposition 4.6. Let I0(t, x), (t, x) ∈ [0, T ]× Rd be as in (2.8) and R ≥ 0 be fixed.

(1) Let d = 2. Assume that u0 is C1, ∇u0 is Hölder continuous with exponent γ1 ∈
(0, 1], and v0 is Hölder continuous with exponent γ2 ∈ (0, 1]. Then, there exists a
positive constant C(T,R) such that, for any t, t̄ ∈ [0, T ], and any x, x̄ ∈ B(0;R),

|I0(t, x)− I0(t̄, x̄)| ≤ C(T,R) (‖v0‖∞,R+T + ‖v0‖γ2 + ‖∇u0‖∞,R+T + ‖∇u0‖γ1)

×
(
|t− t̄|γ1∧γ2 + |x− x̄|γ1∧γ2

)
. (4.27)
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(2) Let d = 3. Assume that u0 is C2, ∆u0 is Hölder continuous with exponent γ1 ∈
(0, 1], and v0 is Hölder continuous with exponent γ2 ∈ (0, 1]. Then, there exists a
positive constant C(T,R) such that, for any t, t̄ ∈ [0, T ], and any x, x̄ ∈ B(0;R),

|I0(t, x)−I0(t̄, x̄)| ≤ C(T,R)
[
‖v0‖γ2+‖∇u0‖∞,R+T+‖∆u0‖γ1

]
×
(
|t− t̄|γ1∧γ2 + |x− x̄|γ1∧γ2

)
.

(4.28)

Proof. (2). Let 0 ≤ t ≤ t̄ ≤ T and x ∈ B(0;R) be fixed. Using (2.5), we have

|[G(t)−G(t̄)] ∗ v0(x)| =
∣∣∣∣∫

R2

G(t, dy)

(
v0(x− y)− v0

(
x− t̄

t
y

)
t̄

t

)∣∣∣∣
≤ t̄

t

∫
R2

G(t, dy)

∣∣∣∣v0(x− y)− v0

(
x− t̄

t
y

)∣∣∣∣
+

∣∣∣∣1− t̄

t

∣∣∣∣ ∫
R2

G(t, dy) |v0(x− y)|.

Applying (2.3), we deduce

t̄

t

∫
R2

G(t, dy)

∣∣∣∣v0(x− y)− v0

(
x− t̄

t
y

)∣∣∣∣ ≤ T‖v0‖γ2 |t− t̄|γ2 ,∣∣∣∣1− t̄

t

∣∣∣∣ ∫
R2

G(t, dy) |v0(x− y)| ≤ ‖v0‖∞,R+T |t− t̄|.

Consequently,

sup
|x|≤R

|[G(t)−G(t̄)] ∗ v0(x)| ≤ C(T ) (‖v0‖∞,R+T + ‖v0‖γ2) ||t− t̄|γ2 .

According to the computations in [20][p. 812-813], we have

sup
|x|≤R

∣∣∣ ∂
∂t

[
G(t) ∗ u0(x)−G(t̄) ∗ u0(x)

]∣∣∣ ≤ C(‖∇u0‖∞,R+T |t− t̄|+ ‖∇u0‖γ1

)
|t− t̄|γ1 .

Thus,

sup
|x|≤R

|I0(t, x)−I0(t̄, x)| ≤ C(T )
(
‖v0‖∞,R+T +‖v0‖γ2 +‖∇u0‖∞,R+T +‖∇u0‖γ1

)
|t− t̄|γ1∧γ2 .

(4.29)
Let now 0 ≤ t ≤ T and x, x̄ ∈ B(0, R) be fixed; then

|(G(t ∗ v0)(x)− (G(t ∗ v0)(x̄)| ≤
∫
R2

G(t, y)|v0(x− y)− v0(x̄− y)| dy

≤ ‖v0‖γ2 |x− x̄|γ2

(∫
R2

G(t, y) dy

)
= t‖v0‖γ2 |x− x̄|γ2 ≤ T‖v0‖γ2 |x− x̄|γ2 , (4.30)

where in the last inequality we have used (2.3).
According to the computations in [20][p. 815-816], we have∣∣∣ ∂

∂t

[
G(t)∗u0(x)−G(t)∗u0(x̄)

]∣∣∣ ≤ C(‖∇u0‖∞,T+R|x− x̄|+‖∇u0‖γ1 |x− x̄|γ1
)
, t ∈ [0, T ].

Therefore,

sup
0≤t≤T

|I0(t, x)− I0(t, x̄)| ≤ C(T,R)
(
‖v0‖γ2 + ‖∇u0‖∞,T+R + ‖∇u0‖γ1

)
|x− x̄|γ1∧γ2 . (4.31)

From the estimates (4.29)–(4.31), we deduce (4.27).
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(3). Let 0 ≤ t ≤ t̄ ≤ T and x ∈ B(0, R) be fixed. According to [8][Lemma 4.9, p. 43], we
have

sup
|x|≤R

∥∥∥∥ ∂∂t (G(·) ∗ u0) (x)

∥∥∥∥
γ1

≤ C (‖∇u0‖∞,R+T + ‖∆u0‖γ1) ,

sup
|x|≤R

‖ (G(·) ∗ v0) (x)‖γ2 ≤ C‖v0‖γ2 ,

where C > 0 is a universal constant. Consequently,

sup
|x|≤R

|I0(t, x)− I0(t̄, x)| ≤ C(T,R)
(
‖∇u0‖∞,R+T + ‖∆u0‖γ1 + ‖v0‖γ2

)
|t− t̄|γ1∧γ2 . (4.32)

Let 0 ≤ t ≤ T and x, x̄ ∈ B(0, R) be fixed. Observe that the computations in (4.30)
also hold in dimension d = 3, therefore yielding

sup
0≤t≤T

|(G(t ∗ v0)(x)− (G(t ∗ v0)(x̄)| ≤ T‖v0‖γ2 |x− x̄|γ2 .

Using the computations in [14][p. 362] (see also [8][Chapter 4]), we have

sup
0≤t≤T

∣∣∣ ∂
∂t

[
G(t) ∗ u0(x)−G(t) ∗ u0(x̄)

]∣∣∣ ≤ C (‖∇u0‖∞,R+T + ‖∆u0‖γ1) |x− x̄|γ1 .

Hence,

sup
0≤t≤T

|I0(t, x)− I0(t, x̄)| ≤ C(T,R)
(
‖∇u0‖∞,R+T + ‖∆u0‖γ1 + ‖v0‖γ2

)
|x− x̄|γ1∧γ2 . (4.33)

The proof of (4.28) is a consequence of (4.32) and (4.33). �

Remark 4.7. In comparison with the assumptions (1) and (2) in Proposition 4.5, in
Proposition 4.6 we restrict the space variable to a bounded set, therefore having the bound-
edness hypotheses satisfied.

Increments of I1(t, x) in time and space.

Proposition 4.8. Let I1(t, x), (t, x) ∈ [0, T ]× Rd be as in (2.8).

1. Assume that the hypotheses (he) are satisfied. Then there exists a positive constant
C(T ) depending on T such that for any (t, x), (t̄, x̄) ∈ [0, T ]× Rd and for any p ∈ [2,∞),

‖I1(t, x)− I1(t̄, x̄)‖p

≤ C(T )

{
L(b)

∫ t

0
ds

(
sup

|z1−z2|=|x−x̄|
‖u(s, z1)− u(s, z2)‖p + sup

|z1−z2|≤|t−t̄|
‖u(s, z1)− u(s, z2)‖p

)

+|t− t̄|

[
c(b) + L(b) sup

(t,x)×Rd
‖u(t, x)‖p

]}
. (4.34)

2. Assume the hypotheses of Proposition 4.5. Then there exists a positive constant C(T )

depending on T such that for any p ∈
[
2,

√
L(b)

253CµL(σ)2

]
and any (t, x), (t̄, x̄) ∈ [0, T ]× Rd,

‖I1(t, x)− I1(t̄, x̄)‖p

≤ C(T )

{
L(b)

∫ t

0
ds

(
sup

|z1−z2|=|x−x̄|
‖u(s, z1)− u(s, z2)‖p + sup

|z1−z2|≤|t−t̄|
‖u(s, z1)− u(s, z2)‖p

)
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+|t− t̄|
[
c(b) + L(b)e2T

√
L(b)N

2
√
L(b),p

(u)
]}

, (4.35)

with N
2
√
L(b),p

(u) satisfying (4.13).

Proof. 1. Fix t ∈ [0, T ] and x, x̄ ∈ Rd. The Minkoswki inequality, the Lipschitz continuity
property of b and (2.3) yield

‖I1(t, x)− I1(t, x̄)‖p =

∥∥∥∥∫ t

0
ds

∫
Rd
G(t− s, dy)[b(u(s, x− y))− b(u(s, x̄− y))]

∥∥∥∥
p

≤ L(b)

∫ t

0
ds

∫
Rd
G(t− s, dy) ‖u(s, x− y)− u(s, x̄− y)‖p

≤ L(b)

∫ t

0
ds (t− s)

[
sup

|z1−z2|=|x−x̄|
‖u(s, z1)− u(s, z2)‖p

]

≤ L(b)T

∫ t

0
ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖p . (4.36)

Let 0 ≤ t ≤ t̄ ≤ T . By the triangular inequality

‖I1(t̄, x)− I1(t, x)‖p ≤ T1(p; t, t̄, x) + T2(p; t, t̄, x),

with

T1(p; t, t̄, x) =

∥∥∥∥∫ t

0
ds

∫
Rd

[
G(t̄− s, dy)−G(t− s, dy)

]
b(u(s, x− y))

∥∥∥∥
p

,

T2(p; t, t̄, x) =

∥∥∥∥∥
∫ t̄

t
ds

∫
Rd
G(t̄− s, dy)b(u(s, x− y))

∥∥∥∥∥
p

.

By the scaling property (2.4) of the fundamental solution G(t),

T1(p; t, t̄, x)

=

∥∥∥∥∫ t

0
ds

∫
Rd
G(1, dz) [(t− s)b(u(s, x− (t− s)z))− (t̄− s)b(u(s, x− (t̄− s)z))]

∥∥∥∥
p

.

Apply Minkowski’s inequality to deduce

T1(p; t, t̄, x)

≤
∫ t

0
ds

∫
Rd
G(1, dz) ‖(t− s)b(u(s, x− (t− s)z))− (t̄− s)b(u(s, x− (t̄− s)z))‖p

≤ L(b)

∫ t

0
ds

∫
Rd
G(1, dz)(t− s) ‖u(s, x− (t− s)z))− u(s, x− (t̄− s)z))‖p

+ |t− t̄|
∫ t

0
ds

∫
Rd
G(1, dz)

[
c(b) + L(b)‖u(s, x− (t̄− s)z))‖p

]
, (4.37)

where we have used the Lipschitz continuity property of b and (2.12) with g = b.

Since the support of G(1, dz) is included in the closed ball B(0, 1), we have∫ t

0
ds (t− s)

∫
Rd
G(1, dz) ‖u(s, x− (t− s)z))− u(s, x− (t̄− s)z))‖p

≤ T
∫ t

0
ds

∫
Rd
G(1, dz) sup

|z1−z2|≤|t−t̄|
‖u(s, z1)− u(s, z2)‖p
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= T

∫ t

0
ds sup
|z1−z2|≤|t−t̄|

‖u(s, z1)− u(s, z2)‖p .

As for the last term in (4.37), the identity (2.3) shows that it is bounded from above by

|t− t̄|
{
Tc(b) + L(b)

∫ t

0
ds sup

x∈Rd
‖u(s, x)‖p

}
. (4.38)

Thus,

T1(p; t, t̄, x) ≤T

(
L(b)

∫ t

0
sup

|z1−z2|≤|t−t̄|
‖u(s, z1)− u(s, z2)‖p ds

+|t− t̄|
{
c(b) + L(b) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

})
. (4.39)

With the same kind of arguments as for T1(p; t, t̄, x), we deduce the following upper
bounds for T2(p; t, t̄, x):

T2(p; t, t̄, x) ≤
∫ t̄

t
ds

∫
Rd
G(t̄− s, dy) ‖b(u(s, x− y))‖p

≤ c(b)
∫ t̄

t
ds

∫
Rd
G(t̄− s, dy) + L(b)

∫ t̄

t
ds(t̄− s) sup

x∈Rd
‖u(s, x)‖p

≤ c(b)
∫ t̄−t

0
s ds+ L(b)

∫ t̄−t

0
ds s sup

x∈Rd
‖u(t̄− s, x)‖p

≤ c(b)(t̄− t)2

2
+ L(b)

(t̄− t)2

2
sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p . (4.40)

From (4.36), (4.39) and (4.40), we obtain (4.34).

2. Assume now the hypotheses of Proposition 4.5. The term defined in (4.38) is bounded
by

|t− t̄|
{
Tc(b) + L(b)

∫ t

0
ds sup

x∈Rd
‖u(s, x)‖p

}
≤ C|t− t̄|

{
Tc(b) + L(b)

∫ t

0
ds e2s

√
L(b)N

2
√
L(b),p

(u)
}

≤ CT |t− t̄|
{
c(b) + L(b) e2T

√
L(b)N

2
√
L(b),p

(u)
}
.

Therefore,

T1(p; t, t̄, x) ≤ T
(
L(b)

∫ t

0
sup

|z1−z2|≤|t−t̄|
‖u(s, z1)− u(s, z2)‖p

+ |t− t̄|
{
c(b) + L(b) e2T

√
L(b)N

2
√
L(b),p

(u)
})

. (4.41)

As for T2(p; t, t̄, x), concatenating with the last line in (4.40), we obtain,

T2(p; t, t̄, x) ≤ (t̄− t)2

2

[
c(b) + L(b) e2T

√
L(b)N

2
√
L(b),p

(u)
]
. (4.42)
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From (4.36), (4.41) and (4.42), we obtain (4.35).
�

Space increments of I2(t, x)

While keeping assumption (h1), we consider a strengthening of (h0), by adding con-
dition (c′) in [14][p. 367] relative to the spectral measure µ. More precisely, we introduce
the following hypothesis:

(h2) There exists γ ∈ (0, 1) such that the Fourier transform of the tempered measure
|ζ|2γµ(dζ) is a non negative locally integrable function gγ , and moreover,∫

Rd

µ(dζ)

1 + |ζ|2−2γ
<∞.

Set

C(γ)
µ :=

1

(2π)d

∫
Rd

µ(dζ)

1 + |ζ|2−2γ
. (4.43)

Proposition 4.9. Let I2(t, x), (t, x) ∈ [0, T ]× Rd be as in (2.8).

1. Assume that the hypotheses (he), (h1) and (h2) are satisfied. Then, for any p ∈ [2,∞)
and t ∈ [0, T ], there exists a positive constant C such that, for every x, x̄ ∈ Rd, t ∈ [0, T ],

‖I2(t, x)− I2(t, x̄)‖2p ≤ Cp (1 + T 2)CµL(σ)2

(∫ t

0
ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p

)

+ Cp (T + T 3)C(γ)
µ |x− x̄|2γ

[
c(σ) + L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2

, (4.44)

where Cµ, C
(γ)
µ are defined in (4.8), (4.43), respectively.

2. Assume that the hypotheses of Proposition 4.5 hold. Then, for any p ∈
[
2,

√
L(b)

253CµL(σ)2

]
,

there exists a positive constant C such that, for every x, x̄ ∈ Rd, t ∈ [0, T ],

‖I2(t, x)− I2(t, x̄)‖2p ≤ Cp (1 + T 2)CµL(σ)2

(∫ t

0
ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p

)

+ Cp (T + T 3)C(γ)
µ |x− x̄|2γ

[
c(σ) + L(σ)e2T

√
L(b)N

2
√
L(b),p

(u)
]2
, (4.45)

where Cµ, C
(γ)
µ are defined in (4.8), (4.43), respectively, with N

2
√
L(b),p

(u) satisfying

(4.13).

Proof. To simplify the presentation, we will use the notation of [14][Theorem 3.1] that we
now recall. For s ∈ [0, T ] and x, x̄, y, z ∈ Rd, set ξ = x− x̄ and

Σx(s, y) =σ(u(s, x− y)),

Σx,x̄(s, y) =σ(u(s, x− y))− σ(u(s, x̄− y)),

h1(s, y, z) =f(y − z)Σx,x̄(s, y)Σx,x̄(s, z),

h2(s, y, z) =
[
f(y − z + ξ)− f(y − z)

]
Σx(s, z)Σx,x̄(s, y),

h3(s, y, z) =
[
f(y − z − ξ)− f(y − z)

]
Σx(s, y)Σx,x̄(s, z),



26 A. MILLET AND M. SANZ-SOLÉ

h4(s, y, z) =
[
2f(y − z)− f(y − z + ξ)− f(y − z − ξ)

]
Σx(s, y)Σx(s, z).

Fix p ∈ [2,∞) and apply the Burkholder-Davies-Gundy inequality to obtain

‖I2(t, x)− I2(t, x̄)‖2p ≤ 4p‖Q(t;x, x̄)‖ p
2
, (4.46)

where

Q(t;x, x̄) =

∫ t

0
ds

∫
Rd

∫
Rd
σ(u(s, y))

[
G(t− s, x− dy)−G(t− s, x̄− dy)

]
× f(y − z)σ(u(s, z))

[
G(t− s, x− dz)−G(t− s, x̄− dz)

]
.

Use the transfer of increments strategy introduced in [8] (used also in [14]), to deduce

Q(t;x, x̄) =
4∑
i=1

Qi(t;x, x̄),

where, for i = 1, . . . , 4,

Qi(t;x, x̄) =

∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, dy)G(t− s, dz)hi(s, y, z).

Therefore,

‖I2(t, x)− I2(t, x̄)‖2p ≤ 4p
4∑
i=1

‖Qi(t;x, x̄)‖ p
2
.

In the proof of Theorem 3.2 in [14] (where d = 3), bounds from above for each term
‖Qi(t;x, x̄)‖ p

2
are established. We will here sketch the proofs of these bounds with special

attention on the value of constants that are relevant in our context. We will also check
that the arguments of the proofs hold for d = 1, 2, thereby providing a unified approach
to the analysis in dimensions d = 1, 2, 3.

Upper bound of ‖Q1(t;x, x̄)‖ p
2
.

Using Minkowski’s inequality, then the Cauchy-Schwarz inequality and the Lipschitz
property of σ, we obtain

‖Q1(t;x, x̄)‖ p
2
≤
∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, dy)G(t− s, dz)f(y − z)‖Σx,x̄(s, y)Σx,x̄(s, z)‖ p

2

≤ L(σ)2

∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, dy)G(t− s, dz)f(y − z)

×
[

sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p
]

≤ L(σ)2

∫ t

0
dsJ(t− s)

[
sup

|z1−z2|=|x−x̄|
‖u(s, z1)− u(s, z2)‖2p

]
≤ 2L(σ)2(1 + T 2)Cµ

∫ t

0
ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p, (4.47)

where in the last inequality we have used (4.7).

For the study of the remaining terms ‖Qi(t;x, x̄)‖ p
2
, i = 2, 3, 4, in order to be in the

setting of Lemma 4.2, we use a truncation argument on the processes Σx(s, y), Σx,x̄(s, y).
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For k ≥ 1, set Σk
x(s, y) = Σx(s, y)1{|Σx(s,y)|≤k}, Σk

x,x̄(s, y) = Σx,x̄(s, y)1{|Σx,x̄(s,y)|≤k}, and

Qki (t;x, x̄) =

∫ t

0
ds

∫
Rd

∫
Rd
G(t− s, dy)G(t− s, dz)hki (s, y, z), i = 2, 3, 4,

where each hki (s, y, z) is defined as hi(s, y, z) by replacing Σx(s, y) and Σx,x̄(s, y) by Σk
x(s, y)

and Σk
x,x̄(s, y), respectively.

Upper bound for ‖Qk2(t;x, x̄)‖ p
2
.

Apply Lemma 4.2 to the bounded functions ϕ(z) = Σk
x(s, z) and ψ(y) = Σk

x,x̄(s, y).

Then, up to the factor (2π)−d, Qk2(t;x, x̄) is equal to∫ t

0
ds

∫
Rd
F
(
Σk
x(s, .)G(t− s, .)

)
(ζ) F

(
Σk
x,x̄(s, .)G(t− s, .)

)
(ζ)
[
e−iξ.ζ − 1

]
µ(dζ),

where ξ = x − x̄. Since |e−iξ.ζ − 1| ≤ C|ξ.ζ|γ ≤ C|ξ|γ |ζ|γ is valid for any γ ∈ (0, 1], and

2
√
ab ≤ (a+ b) for a, b ≥ 0, computations similar to that in [14][p. 368] imply

‖Qk2(t;x, x̄)‖ p
2
≤ C

(
‖Qk,12 (t;x, x̄)‖ p

2
+ ‖Qk,22 (t;x, x̄)‖ p

2

)
, (4.48)

where

Qk,12 (t;x, x̄) := |ξ|2γ
∫ t

0
ds

∫
Rd

∣∣∣F(Σk
x(s, .)G(t− s, .)

)
(ζ)
∣∣∣2 |ζ|2γµ(dζ),

Qk,22 (t;x, x̄) :=

∫ t

0
ds

∫
Rd

∣∣∣F(Σk
x,x̄(s, .)G(t− s, .)

)
(ζ)
∣∣∣2 µ(dζ).

Set

J (γ)(t) =
1

(2π)d

∫
Rd
µ(dζ)|ζ|2γ |FG(t)(ζ)|2.

A slight modification in the proof of (4.7) and assumption (h2) imply that for C
(γ)
µ defined

in (4.43), J (γ)(t) can be upper estimated as follows

J (γ)(t) ≤ 2(1 + t2)C(γ)
µ <∞. (4.49)

Using the Plancherel identity, the Minkowski inequality with respect to the non negative
measure [G(t− s, .) ∗G(t− s, .)](y)gγ(y) dy ds, once more the Plancherel identity and the

equality G̃(s, .) = G(s, .), we deduce

‖Qk,12 (t;x, x̄)‖ p
2

≤ C|x− x̄|2γ
∥∥∥∥∫ t

0
ds

∫
Rd

[(
Σk
x(s, .)G(t− s, .)

)
∗
( ˜Σk

x(s, .)G(t− s, .)
)]

(y)gγ(y)dy

∥∥∥∥
p
2

≤ C|x− x̄|2γ
∫ t

0
ds

∫
Rd

[G(t− s, .) ∗G(t− s, .)](y)gγ(y) sup
y,z∈Rd

‖Σk
x(s, z)Σk

x(s, y + z)‖ p
2
dy

≤ C|x− x̄|2γ sup
(s,y)∈[0,T ]×Rd

‖Σk
x(s, y)‖2p

∫ t

0
ds

∫
Rd
µ(dζ)|ζ|2γ |FG(t− s)(ζ)|2

≤ C|x− x̄|2γT (1 + T 2)C(γ)
µ sup

(s,y)∈[0,T ]×Rd
‖Σk

x(s, y)‖2p.

The definition of Σx(s, y) implies

sup
(s,y)∈[0,T ]×Rd

‖Σx(s, y)‖p ≤ c(σ) + L(σ) sup
(s,y)∈[0,T ]×Rd

‖u(s, y)‖p.
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Therefore,

‖Qk,12 (t;x, x̄)‖ p
2
≤ C|x− x̄|2γ(T + T 3)C(γ)

µ

[
c(σ) + L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2

(4.50)

for some universal positive constant C.
With similar arguments, we obtain

‖Qk,22 (t;x, x̄)‖ p
2
≤C

∫ t

0
ds
[
G(t− s, .) ∗G(t− s, .)

]
(y)f(y)

× sup
y,z∈Rd

‖Σk
x,x̄(s, y)Σk

x,x̄(y + z)‖ p
2
dy

≤ C
∫ t

0
ds sup

y∈Rd
‖Σk

x,x̄(s, y)‖2p
∫
Rd
|F(G(t− s, .))(ζ)|2 µ(dζ)

≤ C
∫ t

0
sup
y∈Rd

‖Σk
x,x̄(s, y)‖2pJ(t− s)ds

≤ C (1 + T 2)Cµ

∫ t

0
sup
y∈Rd

‖Σk
x,x̄(s, y)‖2pds,

where in the last inequality, we have used (4.7).
The definition of Σx,x̄(s, y) and the Lipschitz property of σ imply

sup
y∈[0,T ]×Rd

‖Σx,x̄(s, y)‖p ≤ L(σ) sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖p.

Hence, since ‖Σk
x,x̄(s, y)‖p ≤ ‖Σx,x̄(s, y)‖p,

‖Qk,22 (t;x, x̄)‖ p
2
≤ C(1 + T 2)CµL(σ)2

∫ t

0
ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p, (4.51)

for some universal constant C > 0.
Summarising, (4.48), along with (4.50) and (4.51), we have

‖Qk2(t;x, x̄)‖ p
2
≤ C(T + T 3)C(γ)

µ |x− x̄|2γ
[
c(σ) + L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2

+ C(1 + T 2)CµL(σ)2

∫ t

0
ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p, (4.52)

for some universal positive constant C.
Notice that, since |e−iξ.ζ −1| = |eiξ.ζ −1|, exchanging y and z we deduce that the upper

bound estimate in (4.52) also holds for ‖Qk3(t;x, x̄)‖ p
2
.

Upper bound of ‖Qk4(t;x, x̄)‖ p
2
.

To upper bound ‖Qk4(t;x, x̄)‖ p
2
, we use Lemma 4.2 with ϕ = ψ = Σk

x(s, .); this yields

|Qk4(t;x, x̄)| ≤ 1

(2π)d

∫ t

0
ds

∫
Rd
dy
∣∣1− e−iξ.ζ + 1− eiξ.ζ

∣∣ ∣∣F(ϕG(t− s, .)
)∣∣2 µ(dζ)

Since |1− cos(ξ.ζ)| ≤ C(|ξ||ζ|)2γ holds for γ ∈ (0, 1], Plancherel’s identity implies

|Qk4(t;x, x̄)| ≤ C|ξ|2γ
∫ t

0
ds

∫
Rd
dy gγ(y)

[(
Σk
x(s, .)G(t− s, .)

)
∗ ˜(

Σk
x(s, .)G(t− s, .)

)]
(y).
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Consider the non negative measure gγ(y)
[
G(t− s, .) ∗G(t− s, .)

]
(y)ds dy. The Minkowski

inequality with respect to this measure, the Plancherel identity and (4.49) yield

‖Qk4(t;x, x̄)‖ p
2
≤ C|ξ|2γ

∫ t

0
ds

∫
Rd
dy gγ(y)

[
G(t− s, .) ∗G(t− s, .)

]
(y)

× sup
y,z∈Rd

‖Σk
x(s, y)Σk

x(s, y + z)‖ p
2

≤ C|ξ|2γ
∫ t

0
ds sup

y∈Rd
‖Σx(s, y)‖2p 2(1 + T 2)C(γ)

µ .

Thus, an argument similar to that proving (4.50) implies

‖Qk4(t;x, x̄)‖ p
2
≤ C(T + T 3)C(γ)

µ |x− x̄|2γ
[
c(σ) + L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2
. (4.53)

The upper estimates (4.46), (4.47), (4.52) and (4.53) conclude the proof of (4.44).

The statement in part 2 is an immediate consequence of the definition of N
2
√
L(b),p

(u)

and Proposition 4.5. The proof of the proposition is complete. �

From Propositions 4.5–4.9, we derive estimates for space increments of the random field
solution (1.3) with d = 2, 3. They will be used later on to deduce estimates for time
increments of I2(t, x). To write the statement in a more compact form, we introduce some
notation. Let

K0(u0, v0) =

{
‖v0‖γ2 + ‖∇u0‖∞,R+T + ‖∇u0‖γ1 , d = 2,

‖v0‖γ2 + ‖∇u0‖∞,R+T + ‖∆u0‖γ1 , d = 3.
(4.54)

Proposition 4.10. We are assuming the following.

(1) The initial value functions u0 and v0 satisfy the conditions of Proposition 4.6 with
some Hölder exponents γ1, γ2 ∈ (0, 1].

(2) The coefficients σ and b are globally Lipschitz continuous functions.
(3) The covariance measure Λ of the noise W satisfies (h1), and the corresponding

spectral measure µ satisfies (h2).

(i) Fix T,R > 0. Then, for any p ∈ [2,∞) and α > 0, there exist positive constants
c1(T,R), c2(T ) and c3(T ) such that if

C1 := c1(T,R) K0(u0, v0),

C2 := c2(T )
(
pC(γ)

µ

) 1
2

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
≤ c2(T )

(
pC(γ)

µ

) 1
2
[
c(σ) + L(σ)eαTNα,p(u)

]
,

C3 := c3(T )
[
L(b)2 + pCµ L(σ)2

]
, (4.55)

with Cµ, C
(γ)
µ , defined in (4.8), (4.43), respectively, then for any t ∈ [0, T ], and x, x̄ ∈

B(0;R),

sup
|z1−z2|≤|x−x̄|

‖u(t, z1)− u(t, z2)‖2p ≤ exp(TC3)
(
C2

1 |x− x̄|2(γ1∧γ2) + C2
2 |x− x̄|2γ

)
. (4.56)
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Consequently,

sup
t∈[0,T ]

sup
|z1−z2|≤|x−x̄|

‖u(t, z1)− u(t, z2)‖p ≤ C̃|x− x̄|ν1 , (4.57)

with ν1 = min(γ, γ1, γ2) and

C̃ = (C1 + C2) exp(TC3/2). (4.58)

(ii) Suppose furthermore that the Lipschitz constants L(b), L(σ) are such that L(b) ≥(
212 32C2

µ L(σ)4
)
∨ 1

4 . Then, for p ∈
[
2,

√
L(b)

25 3Cµ L(σ)2

]
we have

C2 ≤ c2(T )
(
pC(γ)

µ

) 1
2

[
c(σ) + L(σ) e2T

√
L(b)N

2
√
L(b),p

(u)
]
,

with N
2
√
L(b),p

(u) satisfying (4.13).

Proof. (i) Recall the decomposition u(t, z1) − u(t, z2) =
∑2

i=0 [Ii(t, z1)− Ii(t, z2)] (see
(2.8)); we first prove

sup
|z1−z2|≤|x−x̄|

‖u(t, z1)− u(t, z2)‖2p

≤ C2
1 |x− x̄|2(γ1∧γ2) + C2

2 |x− x̄|2γ + C3

∫ t

0
ds sup
|z1−z2|≤|x−x̄|

‖u(s, z1)− u(s, z2)‖2p. (4.59)

Indeed, the first term on the right-hand side comes from (4.31) and (4.33). The second
one comes from the last term on the right-hand side of (4.44). Finally, the very last term
is obtained by the sum of the upper bound (4.36) (in the proof of Proposition 4.8) and
the first term on the right-hand side of (4.44).

Apply the Gronwall lemma to the real valued function t 7→ sup{‖u(t, z1) − u(t, z2)‖2p :
|z1 − z2| ≤ |x− x̄|} to obtain (4.56), and then (4.57).

The claim (ii) follows form the definition of N
2
√
L(b),p

(u) and Proposition 4.5. �

Time increments of I2(t, x)

In order to deduce Lp estimates of increments in time of the stochastic integral term
I2(t, x), additional assumptions on the covariance of the noise are needed.

(h3) The spectral measure µ is such that there exists ν > 0 and C > 0 for which∫
Rd
|FG(t)(ζ)|2 µ(dζ) ≤ Ctν , (4.60)

for any t ∈ [0, T ].

(h4) The covariance density function f satisfies the following conditions (1) and (2).

(1) There exists b > 0 and C > 0 such that for any h ∈ [0, T ],∫ T

0
ds s

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
∣∣f(s(y + z) + h(y + z))− f(s(y + z) + hz)

∣∣ ≤ Chb. (4.61)
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(2) There exists b̄ > 0 and C > 0 such that for any h ∈ [0, T ],∫ T

0
ds s2

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
∣∣f(s(y + z) + h(y + z)

)
− f

(
s(y + z) + hy

)
− f

(
s(y + z) + hz

)
+ f

(
s(y + z)

)∣∣
≤ Chb̄. (4.62)

According to the discussion in Section 4.1 (see (4.6)–(4.8)), the supremum over t on
a bounded interval of the left-hand side of (4.60) is finite. Assumption (h3) provides a
qualitative estimate on the way this supremum depends on t.

Up to scalings, the assumption (h4) is on estimates of one and two-dimensional incre-
ments of the covariance density in a L2 type norm. We shall see later that in the particular
example of Riesz covariance densities, (h4) is a consequence from the semigroup property
of Riesz kernels (see [8]).

Proposition 4.11. Assume that the hypotheses (1)–(3) of Proposition 4.10 hold. Suppose
also that the hypotheses (h3) and (h4) on the covariance of the noise are satisfied. Then
there exists a constant C(T, ν) such that for any p ∈ [2,∞), t, t̄ ∈ [0, T ] and x ∈ Rd,

‖I2(t, x)− I2(t̄, x)‖2p ≤ C(T, ν)p

(
CµL(σ)2C̃2|t− t̄|2ν1

+
[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]2{
|t− t̄|1+ν + |t− t̄|min(b+1,b̄,α̃)

}
+ L(σ)C̃

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
|t− t̄|ν1+min(b,1)

)
, (4.63)

where ν1 = min(γ, γ1, γ2), C̃ is defined in (4.58), α̃ = (1 + ν) ∧ 2 if ν 6= 1 and α̃ < 2 if
ν = 1.

If, as in Proposition 4.5, the Lipschitz constants L(b), L(σ) are such that L(b) ≥(
212 32C2

µ L(σ)4
)
∨ 1

4 , where Cµ is given in (4.8), then there exists a constant C(ν, T )

such that for p ∈
[
2,

√
L(b)

25 3Cµ L(σ)2

]
, t, t̄ ∈ [0, T ] and x ∈ Rd,

‖I2(t, x)−I2(t̄, x)‖2p ≤ C(ν, T )p

(
C(T )CµL(σ)2C̃2|t− t̄|2ν1

+
[
c(σ) + L(σ)e2T

√
L(b)N

2
√
L(b),p

(u)
]2{
|t− t̄|1+ν + |t− t̄|min(b+1,b̄,α̃)

}
+ L(σ)C̃

[
c(σ) + L(σ)e2T

√
L(b)N

2
√
L(b),p

(u)
]
|t− t̄|ν1+min(b,1)

)
, (4.64)

with N
2
√
L(b),p

(u) satisfying (4.13).

Proof. For 0 ≤ t ≤ t̄ ≤ T and x ∈ Rd, set

I2,1(t, t̄;x) =

∫ t̄

t

∫
Rd
G(t̄− s, x− dy)σ(u(s, y)) W (ds, dy).
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By applying Burkholder-Davis-Gundy’s inequality, and then the Minkowski and Cauchy-
Schwarz inequalities, we deduce

‖I2,1(t, t̄;x)‖2p ≤ 4p
∥∥∥∫ t̄

t
ds

∫
Rd

∫
Rd
G(t̄− s, x− dy)G(t̄− s, x− dz)f(y − z)

× σ(u(s, y))σ(u(s, z))
∥∥∥
p
2

≤ 4p

∫ t̄

t
ds

∫
Rd

∫
Rd
G(t̄− s, x− dy)G(t̄− s, x− dz)f(y − z)

× ‖σ(u(s, y))σ(u(s, z)‖ p
2

≤ 4p

∫ t̄

t
dsJ(t̄− s) sup

y∈Rd
‖σ(u(s, y))‖2p

≤ p C|t− t̄|1+ν

[
c(σ) + L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2

,

where J is defined in (4.6), and the last upper estimate is deduced from (h3) (see (4.60)).
Let

I2,2(t, t̄;x) =

∫ t

0

∫
Rd

[G(t̄− s, x− dy)−G(t− s, x− dy)] σ(u(s, y)) W (ds, dy). (4.65)

We study the Lp norm of this term following the proof of [14][Theorem 4.1]. This uses
the transfer of increments trick introduced in [8][Section 3.2]. Applying the Burkholder-
Davies-Gundy inequality, we obtain

‖I2,2(t, t̄;x)‖2p ≤ 4p
4∑
i=1

‖Ri(t, t̄;x)‖ p
2
,

where, letting h := t̄− t and Θt,x(s, y) = σ(u(t− s, x− y)), we set

R1(t, t̄;x) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)(s+ h)2f

(
(s+ h)y − (s+ h)z

)
×
[
Θt,x(s, (s+ h)y)−Θt,x(s, sy)

][
Θt,x(s, (s+ h)z)−Θt,x(s, sz)

]
,

R2(t, t̄;x) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
[
(s+ h)2f

(
(s+ h)y − (s+ h)z

)
− s(s+ h)f

(
sy − (s+ h)z

)]
×
[
Θt,x(s, (s+ h)z)−Θt,x(s, sz)

]
Θt,x(s, sy),

R3(t, t̄;x) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
[
(s+ h)2f

(
(s+ h)y − (s+ h)z

)
− s(s+ h)f

(
(s+ h)y − sz

)]
×
[
Θt,x(s, (s+ h)y)−Θt,x(s, sy)

]
Θt,x(s, sz),

R4(t, t̄;x) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
[
(s+ h)2f

(
(s+ h)y − (s+ h)z

)
− s(s+ h)f

(
sy − (s+ h)z

)
− s(s+ h)f

(
(s+ h)y − sz

)
+ s2f

(
sy − sz

)]
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×Θt,x(s, sy)Θt,x(s, sz).

Notice that the linear growth and Lipschitz continuity assumptions on σ imply that for
any p ∈ [2,∞), every s, t ∈ [0, T ] and x, y, z ∈ Rd,

‖Θt,x(s, y)‖p ≤ c(σ) + L(σ)‖u(t− s, x− y)‖p,
‖Θt,x(s, y)−Θt,x(s, z)‖p ≤ L(σ)‖u(t− s, x− y)− u(t− s, x− z)‖p. (4.66)

Therefore,

sup
0≤s≤t≤T ;(x,y)∈Rd

‖Θt,x(s, y)‖p ≤ c(σ) + L(σ) sup
(t,x)∈[0,T ]×Rd

‖u(t, x)‖p, (4.67)

and by applying (4.57), we deduce that for every r > 0,

sup
0≤s≤t≤T ;(x,y,z)∈Rd,|y−z|≤r

‖Θt,x(s, y)−Θt,x(s, z)‖p ≤ L(σ) sup
t∈[0,T ],|y−z|≤r

‖u(t, y)− u(t, z)‖p

≤ L(σ)C̃rν1 , (4.68)

where C̃ is defined in (4.58).

Upper bound of ‖R1(t, t̄;x)‖ p
2
.

We apply the Minkowski and Cauchy-Schwarz inequalities. Then, since the support
of the measure G(1, dy) is included in the closed ball B(0; 1), and because of (4.68), we
obtain

‖R1(t, t̄;x)‖ p
2
≤ L(σ)2C̃2|t− t̄|2ν1

×
∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)(s+ h)2f

(
(s+ h)y − (s+ h)z

)
. (4.69)

Consider the change of variables ((s+ h)y, (s+ h)z) 7→ (y, z); using (2.4), (4.6) and (4.7),
we deduce ∫

Rd

∫
Rd
G(1, dy)G(1, dz)(s+ h)2f

(
(s+ h)y − (s+ h)z

)
=

∫
Rd

∫
Rd
G(s+ h, dy)G(s+ h, dz)f(y − z)

= (2π)−d
∫
Rd
|FG(s+ h)(ζ)|2 µ(dζ) ≤ 2(1 + (2T )2))Cµ. (4.70)

Hence, (4.69), (4.70) imply

‖R1(t, t̄;x)‖ p
2
≤ 2

[
1 + (2T )2

]
CµL(σ)2C̃2|t− t̄|2ν1 , (4.71)

where C̃ is defined in (4.58).

Upper bound of ‖R2(t, t̄;x)‖ p
2

and ‖R3(t, t̄;x)‖ p
2
.

We will only consider ‖R2(t, t̄;x)‖ p
2
, since ‖R3(t, t̄;x)‖ p

2
is similar.

Set

R2,1(t, t̄;x) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

× s(s+ h)
[
f
(
(s+ h)y − (s+ h)z

)
− f

(
sy − (s+ h)z

)]
×
[
Θt,x(s, (s+ h)z)−Θt,x(s, sz)

]
Θt,x(s, sy),
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Apply the change of variable z 7→ −z along with the Minkowski and Cauchy-Schwarz
inequalities to obtain

‖R2,1(t, t̄;x)‖ p
2

≤ sup
0≤s≤t≤T ;(x,z1,z2)∈Rd,|z1−z2|≤h

(‖Θt,x(s, z1)−Θt,x(s, z2)‖p) sup
0≤s≤t≤T ;(x,y)∈Rd

(‖Θt,x(s, y)‖p)

×
∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)s(s+ h)

∣∣f((s(y + z) + h(y + z)
)
− f

(
s(y + z) + hz

)∣∣
≤ CTL(σ)C̃|t− t̄|ν1+b

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
, (4.72)

where we have used (4.67), (4.68) and assumption (h4) (see (4.61)).

Define

R2,2(t, t̄;x) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)h(s+ h)f

(
(s+ h)y − (s+ h)z

)
×
[
Θt,x(s, (s+ h)z)−Θt,x(s, sz)

]
Θt,x(s, sy),

A computation similar to that used to upper estimate ‖R2,1(t, t̄;x)‖p implies

‖R2,2(t, t̄;x)‖ p
2

≤ sup
0≤s≤t≤T ;(x,z1,z2)∈Rd,|z1−z2|≤h

(‖Θt,x(s, z1)−Θt,x(s, z2)‖p) sup
0≤s≤t≤T ;(x,y)∈Rd

(‖Θt,x(s, y)‖p)

×
∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)h(s+ h)

∣∣f((s(y + z) + h(y + z)
)∣∣

≤ CL(σ)C̃|t− t̄|ν1

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
×
∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)h(s+ h)

∣∣f((s+ h)y − (s+ h)z
)∣∣.

Using the change of variables ((s+h)y, (s+h)z) 7→ (y, z), (2.4), (4.6) and (h3), we obtain∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)h(s+ h) [f((s+ h)y − (s+ h)z)]

= h

∫ t

0

ds

s+ h

∫
Rd

∫
Rd
G(s+ h, dy)G(s+ h, dz)f(y − z)

= (2π)−dh

∫ t

0

ds

s+ h

∫
Rd
µ(dζ)|FG(s+ h)(ζ)|2

≤ C h

∫ t

0
ds (s+ h)ν−1 ≤ C T ν h.

Thus,

‖R2,2(t, t̄;x)‖ p
2
≤ CT νL(σ)C̃|t− t̄|ν1+1

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
. (4.73)

Since R2(t, t̄;x) = R2,1(t, t̄;x) +R2,2(t, t̄;x), from (4.72) and (4.73), we deduce,

‖R2(t, t̄;x)‖ p
2
≤ C(T + T ν)L(σ)C̃|t− t̄|ν1+min(b,1)

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
.

(4.74)
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Upper bound of ‖R4(t, t̄;x)‖ p
2
.

Applying Minkowski’s inequality and using (4.67), we obtain

‖R4(t, t̄;x)‖ p
2
≤
[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]2
I(t, h),

where

I(t, h) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∣∣∣(s+ h)2f
(
(s+ h)(y − z)

)
− s(s+ h)f

(
sy − (s+ h)z

)
− s(s+ h)f

(
(s+ h)y − sz

)
+ s2f

(
s(y − z)

)∣∣∣.
Use the change of variable z 7→ −z to see that I(t, h) =

∑4
j=1 Ĩj(t, h), with

Ĩ1(t, h) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)s2

×
∣∣f((s+ h)(y + z)

)
− f

(
sy + (s+ h)z

)
− f

(
(s+ h)y + sz

)
+ f

(
s(y + z)

)∣∣,
Ĩ2(t, h) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz) sh

×
∣∣f((s+ h)y + (s+ h)z)

)
− f

(
sy − (s+ h)z

)∣∣,
Ĩ3(t, h) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz) sh

×
∣∣f((s+ h)y + (s+ h)z

)
− f

(
(s+ h)y + sz

)∣∣,
Ĩ4(t, h) =

∫ t

0
ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz) h2

∣∣f((s+ h)y + (s+ h)z
)∣∣.

The hypothesis (h4) implies Ĩ1(t, h) ≤ C hb̄ and Ĩ2(t, h)+Ĩ3(t, h) ≤ C hb+1, (see (4.62) and

(4.61), respectively). As for Ĩ4(t, h), we apply the change of variables ((s+h)y, (s+h)z) 7→
(y, z), (2.4), (4.6) and (h3); this yields

Ĩ4(t, h) =

∫ t

0

ds

(s+ h)2
h2

∫
Rd

∫
Rd
G(s+ h, dy)G(s+ h, dz)f(y − z)

= (2π)−dh2

∫ t

0

ds

(s+ h)2

∫
Rd
µ(dζ)|FG(s+ h)(ζ)|2

≤ Ch2

∫ t

0
(s+ h)ν−2 ds.

This yields for h ∈ (0, T ]

Ĩ4(t, h) ≤ C ×


h2 T ν−1 ν > 1,

hν+1, ν < 1,

T εh2−ε, ν = 1,

where ε > 0 is arbitrarily small.

Summarising the estimates above, we obtain

‖I2(t, x)− I2(t̄, x)‖2p ≤ 2
(
‖I2,1(t, t̄;x)‖2p + ‖I2,2(t, t̄, x)‖2p

)
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≤ Cp

([
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]2
|t− t̄|1+ν

+ CµL(σ)2C̃2|t− t̄|2ν1

+ (T + T ν)L(σ)C̃
[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
|t− t̄|ν1+min(b,1)

+ C̃(ν, T )
[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]2
|t− t̄|min(b+1,b̄,α̃)

)
, (4.75)

where α̃ = (1 + ν) ∧ 2 if ν 6= 1, while α̃ < 2 if ν = 1, and C̃(ν, T ) is a positive constant.
This completes the proof of (4.63).

From (4.63), using Proposition 4.5, we deduce (4.64). This concludes the proof of the
proposition. �

From Propositions 4.6–4.11 we deduce Theorem 4.12 below, which is the main ingredient
towards obtaining uniform bounds on moments.

In the next Theorem,

ν1 = min(γ, γ1, γ2), ν2 = min

(
ν1,

1

2
[ν1 + min(b, 1)],

1 + ν

2
,
b+ 1

2
,
b̄

2
,
α̃

2

)
. (4.76)

We recall that γ1, γ2, are the Hölder exponents of the initial values (see Proposition 4.6),
γ is the parameter in the assumption (h2), ν is defined in (h3), b and b̄ in (h4), and α̃
in the last part of the proof of Proposition 4.11.

Let

K̄0(u0, v0) =

{
‖v0‖γ2 + ‖∇u0‖∞,R+T + ‖∇u0‖γ1 + ‖v0‖∞,R+T , d = 2,

‖v0‖γ2 + ‖∇u0‖∞,R+T + ‖∆u0‖γ1 , d = 3.
(4.77)

Comparing this definition with (4.54), we see that K0(u0, v0) ≤ K̄0(u0, v0).

Theorem 4.12. 1. Suppose that the hypotheses (1)–(3) of Proposition 4.10 hold, and that
the conditions (h3) and (h4) on the covariance of the noise are satisfied. Fix T,R > 0.
Then, for any p ∈ [2,∞), there exists a constant C(p, T,R) such that, for any t, t̄ ∈ [0, T ],
x, x̄ ∈ B(0;R) and α > 0,

‖u(t, x)− u(t̄, x̄)‖p
|x− x̄|ν1 + |t− t̄|ν2

≤ C(p, T,R)
[
M1 +M2 +M3 e

TαNα,p(u)
]
, (4.78)

where

M1 = K̄0(u0, v0)

{
1 +

[
L(b) +

√
p
(

1 +
√
Cµ

)
L(σ)

]
exp

(
TC3

2

)}
,

M2 = c(b) +
√
pc(σ)

{
1 + (C(γ)

µ )1/2
[
L(b) +

√
p
(

1 +
√
Cµ

)
L(σ)

]
exp

(
TC3

2

)}
,

M3 =
[
L(b) +

√
p
(

1 +
√
Cµ

)
L(σ)

]{
1 + (pC(γ)

µ )1/2L(σ) exp

(
TC3

2

)}
, (4.79)

with K̄0(u0, v0) and C3 given in (4.77) and (4.55), respectively.
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2. In addition to the assumptions of part 1., suppose that L(b) ≥
(
21232C2

µL(σ)4
)
∨ 1

4 .

Then, for any p ∈
[
2,

√
L(b)

253CµL(σ)2

]
,

‖u(t, x)− u(t̄, x̄)‖p
|x− x̄|ν1 + |t− t̄|ν2

≤ C(p, T,R)

[
M1 +M2 +M3 e

2T
√
L(b)

(
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

)]
,

(4.80)

with T0 defined in (4.14).

Proof. Fix x ∈ B(0;R) and consider the time increment ‖u(t, x) − u(t̄, x)‖p, with t, t̄ ∈
[0, T ]. Using the estimates (4.29), (4.32) for the increments of I0 in dimension d = 2, 3,

respectively, then (4.41), (4.42) with α instead of 2
√
L(b) for the increments of I1, and

finally (4.64) and (4.58) for the increments of I2, we obtain

‖u(t, x)− u(t̄, x)‖p ≤ C(T,R)
{
K̄0(u0, v0)|t− t̄|min(γ1,γ2) +

[
c(b) + L(b)eTαNα,p(u)

]
|t− t̄|

+ C̃
([
L(b) +

√
p
√
CµL(σ)

]
|t− t̄|ν1 +

√
pL(σ)|t− t̄|

1
2

[ν1+min(b,1)]
)

+
√
p
[
c(σ) + L(σ)eTαNα,p(u)

]
×
[
|t− t̄|

1
2

[ν1+min(b,1)] + |t− t̄|
1+ν

2 + |t− t̄|
1
2

min(b+1,b̄,α̃)
]}

, (4.81)

where we have applied the inequality
√
AB ≤ 1

2(A+B) to the product of constants

A := C̃L(σ) and B :=
[
c(σ) + L(σ)eTαNα,p(u)

]
appearing in the last line of (4.64) with α instead of 2

√
L(b).

Since by (4.57) we have supt∈[0,T ] ‖u(t, x) − u(t, x̄)‖p ≤ C̃|x − x̄|ν1 for x, x̄ ∈ B(0;R),

we deduce that the Lp norm or space-time increment ‖u(t, x)− u(t̄, x̄)‖p is bounded from

above by the sum of the left-hand side of (4.81) and C̃|x− x̄|ν1 . Using the definition of C̃
(see (4.58)) and grouping terms, we obtain the inequality (4.78).

The assertion of part 2. follows from Proposition 4.5 (see in particular (4.13)). This
concludes the proof of the Proposition. �

From statement 2. of Proposition 4.12, in a similar way as in Section 3, we apply
the version of the Kolmogorov continuity lemma given in [10] [Theorem A.3.1] to deduce
uniform Lp moments estimates. Such estimates, stated in the following Proposition, are
the key ingredient in the proof of existence and uniqueness of global random field solution
to (1.3).

To simplify the notation, set

K(c(b), c(σ), L(b), L(σ)) =M1 +M2 +M3e
2T
√
L(b)

(
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

)
, (4.82)

where Mj , j = 1, 2, 3 and T0 are defined in (4.79) and (4.14), respectively. Observe that,
up to a constant factor depending on T , K(c(b), c(σ), L(b), L(σ)) equals the right-hand
side of (4.80).

Proposition 4.13. Suppose that the hypotheses (1)–(3) of Proposition 4.10 hold. and
also that the hypotheses (h3) and (h4) on the covariance of the noise are satisfied. Let
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ν1 and ν2 be the parameters defined in (4.76). Suppose that the Lipschitz coefficients L(b)
and L(σ) satisfy L(b) ≥

(
21232C2

µL(σ)4
)
∨ 1

4 and√
L(b)

253CµL(σ)2
>

1

ν1
+

d

ν2
, d = 1, 2, 3. (4.83)

Then, for any p ∈
(

1
ν1

+ d
ν2
,

√
L(b)

253CµL(σ)2

]
, there exists positive constants C1 and C2(p, T,R)

such that

E
(

sup
(t,x)∈[0,T ]×B(0;R)

|u(t, x)|p
)
≤ 2p−1C1 + C2(p, T,R)K(c(b), c(σ), L(b), L(σ)), (4.84)

with K(c(b), c(σ), L(b), L(σ)) defined in (4.82).

The proof is analogous to that of Proposition 3.3 and is omitted.

4.4. Existence and uniqueness of a global solution. In this section, we consider the
equation (1.3) in spatial dimension d = 2, 3. We assume that the coefficients b and σ
satisfy the hypothesis (Cs) of Section 3.3, thereby having superlinear growth. We also
assume that b dominates σ, meaning condition (Cd) below.

(Cd) The parameters δ and a in (1.2) satisfy one of the properties:
(1) δ > 4a,

(2) δ = 4a and θ2 and σ2 are such that θ2 > 21232C2
µσ

4
2

(
1
ν1

+ d
ν2

)2
, d = 2, 3,

where Cµ is defined in (4.8) and ν1, ν2 are given in (4.76).

The next theorem, which states existence and uniqueness of a global random field
solution to (1.3) for d = 2, 3, is the main result of this section.

Theorem 4.14. The hypothesis are as follows.

(1) The initial values u0 and v0 are functions with compact support included in B(0; ρ)
for some ρ > 0, and satisfy the hypotheses of Proposition 4.6 with some Hölder
exponents γ1, γ2 ∈ (0, 1).

(2) The coefficients b and σ satisfy (Cs) and (Cd) with δ < 1
2 .

(3) The covariance of the noise satisfies conditions (h1), (h2), (h3) and (h4).

Then, there exists a random field solution
(
u(t, x), (t, x) ∈ [0, T ]× Rd

)
to (1.3). This so-

lution is unique and is such that

sup
(t,x)∈[0,T ]×Rd

|u((t, x)| <∞, a.s.

Proof. We use the same approach as in the proof of Theorem 3.4. First, for g = b, σ,
we consider the truncated globally Lipschitz functions bN , σN , defined in (3.26). The
assumption (Cs) imply that (3.27) holds. Moreover, by (Cd), we see that the Lipschitz
coefficients L(bN ), L(σN ) satisfy the hypotheses of Proposition 4.13.

Let uN =
(
uN (t, x), (t, x) ∈ [0, T ]× Rd

)
be the unique global random field solution to

(1.3) with coefficients bN , σN . Under the standing hypotheses, we can apply Proposition

4.13 to the stochastic process uN to deduce that, for any p ∈
(

1
ν1

+ d
ν2
,

√
L(bN )

253CµL(σN )2

]
(and N

large enough if necessary), there exist positive constants C1 and C2(p, T,R), not depending
on N , such that

E
(

sup
(t,x)∈[0,T ]×B(0;R)

|uN (t, x)|p
)
≤ 2p−1C1 + C2(p, T,R)K(c(bN ), c(σN ), L(bN ), L(σN )).

(4.85)
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Here, K(c(bN ), c(σN ), L(bN ), L(σN )) is given by (4.82), with c(b), c(σ), L(b), L(σ) replaced
by c(bN ), c(σN ), L(bN ), L(σN ). Recall that

c(bN ) = θ1, c(σN ) = σ1, L(bN ) = θ2(ln(2N))δ, L(σN ) = σ2(ln(2N))a,

(see (3.27)). Because of (Cd), and since max(a, δ) = δ < 1
2 , we have

K(c(bN ), c(σN ), L(bN ), L(σN )) = o(Np). (4.86)

Consider the sequence of increasing stopping times defined in (3.30). Using (4.86), we
see that supN τN = T , a.s. By the standard localization argument (see the details of the
proof of Theorem 3.4), we finish the proof. �

5. Examples of covariance densities

In this section, we give three examples of spatial covariances which satisfy the assump-
tions of section 4. For d = 3, the same covariances are studied in [14].

5.1. Riesz kernels. For β ∈ (0, d), let fβ : Rd → [0,+∞] be defined by fβ(x) = |x|−β for

x ∈ Rd \ {0}, and fβ(0) = +∞. The inverse Fourier transform, is

(
F−1f

)
(ζ) = cd,βfd−β(ζ) dζ, cd,β = 2−β+d/2

Γ
(
d−β

2

)
Γ
(
β
2

) , (5.1)

where Γ denotes the Euler Gamma function (see [27][Chapter V]).
Let Λ be the non-negative definite tempered distribution given by Λ(dx) = fβ(x) dx.

According to (5.1), its spectral measure is µβ(dζ) = cd,βfd−β(ζ) dζ. Observe that the

integral
∫
Rd

µβ(dζ)

1+|ζ|2 converges if and only if β ∈ (0, 2 ∧ d).

In the remaining of this section, we consider the dimensions d = 2, 3, and assume that
β ∈ (0, 2). From the previous discussion, we obtain that µβ satisfies condition (h0). Since
fβ is a lower semi-continuous function, from Remark 4.1 we see that it satisfies (h1).

Let γ ∈ (0, 1). Using polar coordinates if d = 2 and spherical coordinates if d = 3, we
have ∫

Rd

µβ(dζ)

1 + |ζ|2−2γ
= Cβ,d

∫ ∞
0

ρβ−1

1 + ρ2−2γ
dρ.

The integral on the right-hand side is finite if and only if γ < (2−β)/2. Since |ζ|2γµβ(dζ) =

cd,β|ζ|−(d−β−2γ)dζ, and the Fourier transform of this measure is gγ(x) = c̃(β, d)|x|−(β+2γ)

(for some positive constant c̃(β, d)), if β + 2γ < d, the function |ζ|2γµβ(dζ) is locally
integrable. Therefore, µβ satisfies the condition (h2) for any γ ∈ (0, (2− β

)
/2).

Apply the change of variable η = tζ to deduce∫
Rd
|FG(t)(ζ)|2 µβ(dζ) = cd,β

∫
Rd

sin2(t|ζ|)
|ζ|2

|ζ|−d+βdζ = cd,β t
2−β

∫
Rd

sin2(|η|)
|η|2+d−β dη.

Since the integral Id,β :=
∫
Rd

sin2(|η|)
|η|2+d−β dη is finite, µβ satisfies the condition (h3) with

ν = 2− β and C := cd,β Id,β.

The function fβ satisfies the condition (h4)(1) for any b ∈ (0,min(2 − β, 1)). Indeed,
the proof relies on [8][Lemma 2.6, p. 10] (which holds in any dimension d ≥ 1) as follows.
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Choose b > 0 satisfying 0 < β + b < d. Letting a := d − (β + b), we have a + b ∈ (0, d).
Then, by applying Lemma 2.6 (a) in [8], we have

fβ(s(y + z) + h(y + z))− fβ(s(y + z) + hz) = |h|b
∫
Rd
dw|s(y + z) + hz − hw|−(β+b)

×
[
|w + y|−(d−b) − |w|−(d−b)

]
.

Consequenly, (h4)(1) will be established if we prove∫ T

0
ds s

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
∫
Rd
dw
∣∣s(y + z) + hz − hw

∣∣−(β+b)
∣∣∣|w + y|−(d−b) − |w|−(d−b)

∣∣∣ <∞. (5.2)

A small modification of the proof of Lemma 6.4 in [8] shows that (5.2) holds for d = 2, 3,
and for any b such that b ∈ (0,min(2 − β, 1)). We refer also to [14][Proposition 5.3, p.
383-385] for a proof of (5.2) in dimension d = 3. Going through the details of the proof
of this proposition, we see that it can be extended to d = 2, thanks to Lemma 4.2. This
completes the proof of the validity of (h4)(1) for fβ, with b ∈ (0,min(2− β, 1)).

Finally, we prove that fβ, satisfies the condition (h4)(2) for any b̄ ∈ (0, 2 − β). The
proof relies on [8][Lemma 2.6, p. 10]. As in the proof of (h4)(1), we choose b̄ > 0 satisfying
0 < β + b̄ < d. Letting a := d − (β + b̄), we have a + b̄ ∈ (0, d). Then, Lemma 2.6 (e) in
[8] implies

fβ
(
s(y + z) + h(y + z)

)
− fβ

(
s(y + z) + hy

)
− fβ

(
s(y + z) + hz

)
+ fβ

(
s(y + z)

)
≤ |h|b̄

∫
Rd
dw |y − hz|−(β+b̄)

×
[
|w + hy + hz|−(d−b̄) − |w + hy|−(d−b̄) − |w + hz|−(d−b̄) + |w|−(d−b̄)

]
.

Consequently, (h4)(2) will follow from∫ T

0
ds s2

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∫
Rd
dw|y − hz|−(β+b̄)

×
∣∣∣|w + hy + hz|−(d−b̄) − |w + hy|−(d−b̄) − |w + hz|−(d−b̄) + |w|−(d−b̄)

∣∣∣ <∞. (5.3)

With a slight modification (and simplification) of the proof of Lemma 6.5 in [8], we can
check that (5.3) holds for d = 2, 3 and for any b̄ ∈ (0, 2 − β). Using ideas introduced in
the proof of this lemma, [14][Proposition 5.3, p. 385-386] provides also a proof of (5.3)
in dimension d = 3 with b̄ ∈ (0, 2 − β). Going through the details of the proof of this
proposition, we see that it can be extended to d = 2, thanks once more to Lemma 4.2.
Therefore, fβ satisfies (h4)(2) with b̄ ∈ (0, 2− β).

Conclusion. Let d = 2, 3 and β ∈ (0, 2). For spatially homogeneous Gaussian noises with
covariance function given by (4.1) with Λ(dx) = fβ(x) dx, the parameters ν1, ν2 in (4.76)

are ν1 = ν2 = min(γ, γ1, γ2), with γ < 2−β
2 .

Observe that, as a by-product, from (4.78) we deduce that, almost all sample paths
of the solution to (1.3) are locally Hölder continuous, jointly in (t, x), with exponent
θ ∈]0,min((2 − β)/2, γ1, γ2[. For d = 3, this is [8][Theorem 4.11, p. 48]. Moreover, the
critical exponent min((2− β)/2, γ1, γ2) is sharp in both dimensions, d = 2, 3 (see [8], [9]).
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5.2. Bessel kernels. For any κ > 0, the Bessel kernel is the function defined by f̃κ(x) =∫∞
0 w

κ−d−2
2 e−we−

|x|2
4w dw for x ∈ Rd \ {0}, f̃κ(0) = ∞ if 0 < κ ≤ d, and f̃κ(0) = c(d, κ)

if κ > d, where 0 < c(d, κ) < ∞ (see [27][Chapter V]) and [1]). The inverse Fourier
transform is (

F−1f̃κ

)
(ζ) = Cd,κ

(
1 + |ζ|2

)−κ
2 . (5.4)

Let Λ be the measure defined by Λ(dx) = f̃κ(x) dx. From (5.4), we have that the corre-

sponding spectral measure is µ̃κ(dζ) = Cd,κ
(
1 + |ζ|2

)−κ
2 dζ.

Throughout this section, we consider the case d = 2, 3, and we assume κ > d− 2. Our
aim is to prove that hypotheses (h0)–(h4) are satisfied.

The function f̃κ is lower-semi continuous, and Remark 4.1 implies that condition (h1)
holds.

Fix γ ≥ 0. Using polar coordinates for d = 2 and spherical coordinates for d = 3, we
obtain ∫

Rd

µ̃κ(dζ)

1 + |ζ|2−2γ
= C(d, κ)

∫ ∞
0

rd−1
( 1

1 + r2

)κ
2 1

1 + r2−2γ
dr.

The integral on the right-hand side is finite if and only if 2γ < κ − d + 2. Take γ = 0

to deduce that (h0) holds. Furthermore, for γ ∈
(
0,min

(
κ−d+2

2 , 1
))

, the constant C
(γ)
µ̃κ

defined in (4.43) is finite and therefore, (h2) holds.

We next check (h3). For any t > 0 we have∫
Rd
|FG(t)(ζ)|2µ̃κ(dζ) = Cd,κ

∫
Rd

sin2(t|ζ|)
|ζ|2 (1 + |ζ|2)

κ
2

dζ = C̃d,κ

∫ ∞
0

rd−1 sin2(tr)

r2

(
1+r2

)−κ
2 dr.

Splitting the last integral, for any t ∈ (0, T ] we obtain∫ ∞
0

rd−1 sin2(tr)

r2

(
1 + r2

)−κ
2 dr ≤

∫ 1

0
t2rd−1dr +

∫ T
t

1
t2rd−1−κdr +

∫ ∞
T
t

rd−1r−2r−κdr

≤ t2

d
+

∫ T
t

1
t2rd−1−κdr +

1

κ− d+ 2

( t
T

)κ−d+2
.

Furthermore, by setting I(t) :=
∫ T
t

1 t2rd−1−κdr, we have

I(t) ≤


t2

d−κ

(
T
t

)d−κ
, if d− 2 < κ < d,

t2 ln
(
T
t

)
, if κ = d,

t2

κ−d , if d < κ.

This implies ∫
Rd
|FG(t)(ζ)|2µ̃κ(dζ) ≤ C(d, κ, T ) tν , t ∈ [0, T ],

where C(d, κ, T ) is some positive constant and ν < min(2, κ − d + 2). Therefore, (h3)
holds with ν < min(2, κ− d+ 2).

For d = 3, the validity of (h4) is proved in [14][Section 5.3]. Going through the argu-
ments of this reference, we see that they also hold for d = 2. For the sake of completeness
we give some details.
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Let us first focus on (h4)(1). Set

I1 =

∫ T

0
ds s

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∣∣f̃κ((s+ h)(y + z)
)
− f̃κ

(
(s+ h)z + sy

)∣∣.
Fix y, z ∈ Rd, s, h ∈ [0, T ] and b ∈ (0, 1). By writing the inequality in [14][p. 390, line 3]
with x := (s+ h)z + sy and ξ := y, we see that∣∣∣∣e− |(s+h)(y+z)|2

4w − e−
|(s+h)z+sy|2

4w

∣∣∣∣
≤ C

(
h√
w

)b ∫ 1

0
dλ

(
e−
|(s+h)z−(s+λh)y|2

8w + e−
|(s+h)(y+z)|2

4w + e−
|(s+h)z+sy|2

4w

)
.

Hence, by the definition of f̃κ,∣∣f̃κ((s+ h)(y + z)
)
−f̃κ

(
(s+ h)z + sy

)∣∣ ≤ Chb ∫ 1

0
dλ

∫ ∞
0

dw w
κ−b−d−2

2 e−w

×
(
e−
|(s+h)z−(s+λh)y|2

8w + e−
|(s+h)(y+z)|2

4w + e−
|(s+h)z+sy|2

4w

)
,

and therefore,

I1 ≤ C hb
∫ ∞

0
dw w

κ−b−d−2
2 e−w

3∑
i=1

Ti(w),

where

T1(w) =

∫ 1

0
dλ

∫ T

0
s ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)e−

|(s+h)z−(s+λh)y|2
8w ,

T2(w) =

∫ T

0
s ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)e−

|(s+h)(y+z)|2
4w ,

T3(w) =

∫ T

0
s ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)e−

|(s+h)z+sy|2
4w .

Apply the change of variables x = (s + h)z, x̄ = (s + λh)y, and then Parseval’s identity,
to deduce∫
Rd

∫
Rd
G(1, dy)G(1, dz)e−

|(s+h)z−(s+λh)y|2
8w

=
1

(s+ h)(s+ λh)

∫
Rd

∫
Rd
G(s+ h, dx)G(s+ λh, dx̄)e−

|x−x̄|2
8w

=

(
2

π

) d
2 1

(s+ h)(s+ λh)

∫
Rd
w
d
2 e−2w|ζ|2

(
sin
(
(s+ h)|ζ|

)
|ζ|

)(
sin
(
(s+ λh)|ζ|

)
|ζ|

)
dζ.

(5.5)

This yields

T1(w) ≤
(

2

π

) d
2

w
d
2

∫ 1

0
dλ

∫ T

0
ds

s

(s+ h)1−ε(s+ λh)1−ε

∫
Rd
e−2w|ζ|2 |ζ|2ε−2 dζ, (5.6)

where in the last inequality, ε ∈ (0, 1), and we have used the estimate | sin(a|x|)|
a|x| ≤ 1, a > 0,

which implies | sin(a|x|)|
a|x| ≤

( sin(a|x|)
a|x|

)1−ε ≤ aε−1|x|ε−1.

Since ε ∈ (0, 1), for every λ ∈ (0, 1) we have
∫ T

0
s

(s+h)1−ε(s+λh)1−εds ≤
∫ T

0 s−1+2εds <∞.
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Applying the change of variables η =
√
wζ, we obtain

T1(w) ≤ C w
d
2

∫
Rd
e−2|η|2 |η|2ε−2 w1−ε w−

d
2 dη

≤ Cw1−ε
∫ ∞

0
e−2ρ2

ρ2(ε−1) ρd−1 dρ ≤ Cw1−ε. (5.7)

Indeed, the last integral is finite if and only if 2ε > 2 − d; since d = 2, 3 and ε > 0 this
constraint is satisfied. Similarly, for any ε ∈ (0, 1),

T2(w) + T3(w) ≤ Cw1−ε.

Thus, for any h ∈ [0, T ] and b ∈ (0, 1), we have proved

I1 ≤ Chb
∫ ∞

0
w
κ−b−d−2

2 e−ww1−ε dw. (5.8)

By taking ε arbitrarily close to zero, we see that this integral is finite if b < κ − d + 2.
Consequently, (h4)(1) is satisfied for b < min(κ− d+ 2, 1).

Finally, we address the validity of (h4)(2), by using a similar approach as for (h4)(1).
Set

I2 =

∫ T

0
ds s2

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
∣∣f̃κ((s+ h)(y + z)

)
− f̃κ

(
(s+ h)y + sz

)
− f̃κ

(
sy + (s+ h)z

)
+ f̃κ

(
s(y + z)

)
|.

Apply the first inequality in [14][p. 392] with x := s(y+ z), ξ := y and η := z, to see that,
for any y, z ∈ Rd, s, h ∈ [0, T ] and b̄ ∈ (0, 2),∣∣∣∣e− |(s+h)(y+z)|2

4w − e−
|s(y+z)+hy|2

4w − e−
|sy+(s+h)z|2

4w + e−
|s(y+z)|2

4w

∣∣∣∣ ≤ Chb̄w− b̄2 qh,y,z(s, w),

where

qh,y,z(s, w) =

∫ 1

0
dλ

∫ 1

0
dµ

(
e−
|(s+λh)y+(s+µh)z|2

8w + e−
|(s+h)(y+z)|2

8w + e−
|s(y+z)+hy|2

4w

+e−
|s(y+z)+hz|2

4w + e−
|s(y+z)|2

4w

)
. (5.9)

Therefore,

I2 ≤ C hb̄
∫ ∞

0
dw w

κ−b̄−d−2
2 e−w

∫ T

0
ds s2

∫
Rd

∫
Rd
G(1, dy)G(1, dz)qh,y,z(s, w)

= C hb̄
∫ ∞

0
dw w

κ−b̄−d−2
2 e−w

5∑
i=1

Si. (5.10)

In the last expression,

S1 =

∫ 1

0
dλ

∫ 1

0
dµ

∫ T

0
ds s2

∫
Rd

∫
Rd
G(1, dy)G(1, dz)e−

|(s+λh)y+(s+µh)z|2
8w ,

and Si, i = 2, . . . , 5, are defined in a similar way, by taking each of the remaining expo-
nential terms in (5.9).

As in (5.5),∫
Rd

∫
Rd
G(1, dy)G(1, dz)e−

|(s+λh)y+(s+µh)z|2
8w
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≤
(

2

π

) d
2

w
d
2

1

(s+ λh)1−ε(s+ µh)1−ε

∫
Rd
e−2w|ζ|2 |ζ|2ε−2 dζ,

implying

S1 ≤
(

2

π

) d
2

w
d
2

∫ 1

0
dλ

∫ 1

0
dµ

∫ T

0
ds

s2

(s+ λh)1−ε(s+ µh)1−ε

∫
Rd
e−2w|ζ|2 |ζ|2ε−2 dζ,

for any ε ∈ (0, 1).
Observe the analogy between this inequality and (5.6). Arguing as in the analysis of

the right-hand side of (5.6), we obtain S1 ≤ C(T )w1−ε, and, with similar arguments, also
Si ≤ C(T )w1−ε for any i = 2, . . . , 5. These estimates along with (5.10) yield

I2 ≤ Chb̄
∫ ∞

0
w
κ−b̄−d−2

2 e−ww1−ε dw.

As in (5.8), by taking ε arbitrarily close to zero, we see that the last integral converges if
b̄ < κ− d+ 2, thereby proving that (h4)(2) holds with b̄ < min(κ− d+ 2, 2).

Conclusion. Let d = 2, 3, κ > d − 2. For spatially homogeneous Gaussian noises with
covariance function given by (4.1) with Λ(dx) = f̃κ(x) dx, the parameters ν1, ν2 defined
in (4.76) are ν1 = ν2 = min(γ, γ1, γ2), with γ < min

(
κ−d+2

2 , 1
)
.

Thus, we deduce that almost all sample paths of the solution to (1.3) are locally Hölder
continuous, jointly in (t, x), with exponent θ ∈

]
0,min(κ−d+2

2 , 1, γ1, γ2)
[
. When d = 3, we

recover the results in [14][p. 393]. Whether this Hölder exponent is sharp seems to be an
open question.

5.3. Fractional kernels. Let d = 2, 3 and H = (Hi)1≤i≤d, with 1
2 < Hi < 1. Let f̄H(x) =

CH
∏d
i=1 |xi|2Hi−2, when

∏d
i=1 xi 6= 0, where C(H) =

∏d
i=1Hi(2Hi−1), and f̄H(x) = +∞

otherwise. The inverse Fourier transform of f̄H is
(
F−1f̄H

)
(ζ) = CH

∏d
i=1 |ζi|1−2Hi , where

CH is some positive constant depending only on H.
Consider the non-negative definite tempered distribution Λ(dx) = f̄H(x)dx, whose spec-

tral measure is µ̄H(ζ) = CH
∏d
i=1 |ζi|1−2Hi dζ. In this section, we prove that µ̄H satisfies

the conditions (h0)–(h4).
Since the function f̄H is lower semi-continuous, condition (h1) holds, by Remark 4.1.
We next check Condition (h0). For any H as above, we have

I =

∫
Rd

µ̄H(dζ)

1 + |ζ|2
= CH

∫
Rd

∏d
i=1 |ζi|1−2Hi

1 + |ζ|2
dζ = I(d)Ĩ(d),

where using polar (resp. spherical) coordinates when d = 2 (resp. d = 3), we have

I(d) =

∫ ∞
0

rd−1rd−2
∑d
i=1Hi(1 + r2)−1dr,

and

Ĩ(2) =4

∫ π
2

0
| cos(θ)|1−2H1 | sin(θ)|1−2H2dθ, (5.11)

Ĩ(3) = 2 Ĩ(2)

∫ π
2

0
| sin(φ)|| sin(φ)|2−2(H1+H2)| cos(φ)|1−2H3dφ. (5.12)
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The change of variable u = sin(θ) on the interval (0, π2 ) and the constraints on Hi imply

Ĩ(2) = C

∫ 1

0
u1−2H2(1− u2)−H1du ≤ C

∫ 1

0
u1−2H2(1− u)−H1du <∞.

Similarly, the change of variable v = sin(φ) on the interval (0, π2 ) yields∫ π
2

0
| sin(φ)|3−2(H1+H2)| cos(φ)|1−2H3dφ = 2

∫ 1

0
v3−2(H1+H2)(1− v2)−H3dv <∞;

hence Ĩ(3) <∞.

Finally, it is easy to see that I(d) < ∞ if and only if 2d − 1 − 2
∑d

i=1Hi > −1 and

2d − 3 − 2
∑d

i=1Hi < −1. Since Hi < 1, the first constraint is satisfied. The second one

is equivalent to
∑d

i=1Hi > d− 1. Hence, if
∑d

i=1Hi > d− 1, condition (h0) is satisfied.

Let us now check that condition (h2) is satisfied. Given γ > 0, for Ĩ(d) defined by
(5.11) and (5.12) for d = 2, 3, we have∫

Rd

µ̄(dζ)

1 + |ζ|2−2γ
= Ĩ(d)

∫ ∞
0

rd−1rd−2
∑d
i=1Hi

(
1 + r2−2γ

)−1
dr.

Set

κ̄ =
d∑
i=1

Hi − (d− 1). (5.13)

A computation similar to that used to check (h0) shows that this last integral is finite if

and only if 2d− 3− 2
∑d

i=1Hi + 2γ < −1, that is γ < κ̄, where κ̄ is defined in (5.13).

To check condition (h3), we use similar arguments to deduce that for t ∈ [0, T ], Ĩ(d)
defined as above∫

Rd

∣∣FG(t)(ζ)
∣∣2µ̄H(dζ) =CH

∫
Rd

∣∣∣sin(t|ζ|)
|ζ|

∣∣∣2 d∏
i=1

|ζi|1−2Hidζ

= CH Ĩ(d)

∫ ∞
0

rd−1
∣∣∣sin(tr)

r

∣∣∣2rd−∑d
i=1 Hidr

= C
[ ∫ t−1

0
t2r2d−1−2

∑d
i=1 Hidr +

∫ ∞
t−1

rd−1−2+d−2
∑d
i=1 Hidr

= C
[
t2−2(d−

∑d
i=1 Hi) + t2

∑d
i=1 Hi−2d+2

]
.

We deduce
∫
Rd
∣∣FG(t)(ζ)

∣∣2µ̄H(dζ) ≤ Ct2κ̄, that is (4.60) holds with ν = 2κ̄, where κ̄ is
defined in (5.13).

The proof of (h4) is similar to that of a similar condition in [14]. We sketch it below
for the sake of completeness. We start with (h4)(1). Apply the inequality in [14][p. 395,
bottom] to see that if d = 3,

|f̄H(x+ hy)− f̄H(x)| ≤CH
∣∣|x1 + hy1|2H1−2 − |x1|2H1−2

∣∣|x2 + hy2|2H2−2|x3 + hy3|2H3−2

+ |x1|2H1−2
∣∣|x2 + hy2|2H2−2 − |x1|2H2−2

∣∣|x3 + hy3|2H3−2

+ |x1|2H1−2|x2|2H2−2
∣∣|x3 + hy3|2H3−2 − |x1|2H2−2

∣∣,
while for d = 2

|f̄H(x+ hy)− f̄H(x)| ≤CH
∣∣|x1 + hy1|2H1−2 − |x1|2H1−2

∣∣|x2 + hy2|2H2−2

+ |x1|2H1−2
∣∣|x2 + hy2|2H2−2 − |x1|2H2−2

∣∣.
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In both cases, we have |f̄H(x+hy)− f̄H(x)| =
∑d

i=1 Fd,i(x, y, h). In the sequel, we only
describe the computations in the case d = 3; the case d = 2 is easier and dealt with in a
similar way.

Using the identity (2.11) in [8] for d := 1, a = 2H1 − 1 − ρ, b = ρ for some positive
ρ < (2κ̄) ∧min(2Hi − 1; i = 1, · · · , d), we deduce since a+ b = 2H1 − 1 ∈ (0, 1),∣∣|x1 − hy1|2H1−2 − |x1|2H1−2

∣∣ =
∣∣∣ ∫

R
dw|x1 − w|2H1−2−ρ|w + hy1|ρ−1

−
∫
R
dw|x1 − w|2H1−2−ρ|w|ρ−1

∣∣∣
=
∣∣∣ ∫

R
h dw|x1 − hw|2H1−2−ρhρ−1|w + y1|ρ−1

−
∫
R
h dw|x1 − hw|2H1−2−ρhρ−1|w|ρ−1

∣∣∣.
Hence, changing y1 into −y1, we have

∫
Rd
∫
Rd G(1, dy)G(1, dz)F3,1((s + h)z + sy, y, h) ≤

hρ
∑3

j=1 T1,j(s, h), where

T1,1(s, h) =

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∫
{|w|≤3}

|(s+ h)z1 + sy1 − hw|2H1−2−ρ|w − y1|ρ−1

× |(s+ h)(z2 + y2)|2H2−2|(s+ h)(z3 + y3)|2H3−2dw,

T1,2(s, h) =

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∫
{|w|≤3}

|(s+ h)z1 + sy1 − hw|2H1−2−ρ|w|ρ−1

× |(s+ h)(z2 + y2)|2H2−2|(s+ h)(z3 + y3)|2H3−2dw,

T1,3(s, h) =

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∫
{|w|>3}

|(s+ h)z1 + sy1 − hw|2H1−2−ρ

×
∣∣|w − y1|ρ−1 − |w|ρ−1

∣∣ |(s+ h)(z2 + y2)|2H2−2|(s+ h)(z3 + y3)|2H3−2dw.

To prove an upper estimate of T1,1(s, h), let w̃ = w − y1; then using the scaling property
(2.4) we obtain

T1,1(s, h) =

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∫
{|w̃|≤4}

|(s+ h)(z1 + y1)− hw̃|2H1−2−ρ|w̃|ρ−1

× |(s+ h)(z2 + y2)|2H2−2|(s+ h)(z3 + y3)|2H3−2dw,

=
1

(s+ h)2

∫
Rd

∫
Rd
G(s+ h, dy)G(s+ h, dz)

∫
{|w̃|≤4}

f̄H1− ρ2 ,H2,H3

(
y + z − (hw̃, 0, 0)

)
|w̃|ρ−1dw̃

=
C

(s+ h)2

∫
{|w|≤4}

dw

∫
Rd

∣∣∣sin ((s+ h)|ζ|
)

|ζ|

∣∣∣2∣∣eihwζ1∣∣|ζ1|1−2H1+ρ|ζ2|1−2H2 |ζ3|1−2H3dζ.

Since 1
2 < H1 − ρ

2 < 1, the computations made to check (h3) imply∫ T

0
s T1,1(s, h)ds ≤ C

∫ T

0
(s+ h)2κ̄−1ds ≤ C(T ) <∞

for all h ∈ [0, T ].
We next upper estimate T1,2(s, h) using once more the scaling property; this yields

T1,2(s, h) =

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∫
{|w|≤3}

|(s+ h)z1 + sy1 − hw|2H1−2−ρ |w|ρ−1
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× |(s+ h)(z2 + y2)|2H2−2|(s+ h)(z3 + y3)|2H3−2dw,

=
1

(s+ h)2

∫
Rd

∫
Rd
G(s+ h, dy)G(s+ h, dz)

∫
{|w|≤3}

∣∣∣∣z1 +
s

s+ h
y1 − hw

∣∣∣∣2H1−2−ρ
|w|ρ−1

× |(s+ h)(z2 + y2)|2H2−2|(s+ h)(z3 + y3)|2H3−2dw.

Let ψ(y) =
(

s
s+hy1, y2, y3

)
and Gψ(s + h) denote the image of the measure G(s + h, dy)

by ψ. Then Fubini’s theorem implies for s > 0

T1,2(s, h) =
1

(s+ h)2

∫
{|w|≤3}

|w|ρ−1dw

∫
Rd

[
Gψ(s+ h) ∗G(s+ h)

]
(dx)

× |x1|2H1−ρ−2|x2|2H2−2|x3|2H3−2

≤ C 1

(s+ h)2

∫
{|w|≤3}

|w|ρ−1dw

∫
Rd

∣∣F[Gψ(s+ h) ∗G(s+ h)
]
(ζ)|eiζ1w|

× |ζ1|1+ρ−2H1 |ζ2|1−2H2 |ζ3|1−2H3dζ

≤ C 1

(s+ h)2

∫
{|w|≤3}

|w|ρ−1dw

∫
Rd

∣∣∣sin ((s+ h)|ζ|
)

|ζ|

∣∣∣∣∣∣sin ((s+ h)
∣∣( s
s+hζ1, ζ2, ζ3

)∣∣)∣∣( s
s+hζ1, ζ2, ζ3

)∣∣ ∣∣∣
× |ζ1|1+ρ−2H1 |ζ2|1−2H2 |ζ3|1−2H3dζ

≤ C
∫
{|w|≤3}

|w|ρ−1dw
[ ∫ 1

0
rd−1rd+ρ−2

∑d
i=1 Hidr

+
1

(s+ h)2

s+ h

s

∫ ∞
1

rd−1rd+ρ−2−2
∑d
i=1Hidr

]
.

These integrals are convergent since
∑d

i=1Hi < d implies 2d + ρ − 1 − 2
∑d

i=1Hi > −1,

and since ρ < 2κ̄ implies 2d−3 +ρ−2
∑d

i=1Hi < −1. Therefore,
∫ T

0 sT1,2(s, h)ds ≤ C(T )
for all h ∈ [0, T ].

Finally, ∣∣|w + y1|ρ−1 − |w|ρ−1
∣∣ ≤ ∫ 1

0

∂

∂λ

(
|w + λy1|ρ−1

)
dλ ≤ C|w|ρ−2.

Notice that since ρ < 2H1 − 1 < 1, we have ρ− 2 < −1. Hence arguments similar to that

used to upper estimate T1,2(s, h) imply
∫ T

0 s T1,3(s, h)ds ≤ C(T ) <∞ for all h ∈ [0, T ].
A similar computation implies∫ T

0
ds s

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

d∑
i=1

F3,i((s+ h)z + sy, y, h) ≤ Chρ.

This shows that (4.61) holds with b < (2κ̄) ∧min(2Hi − 1; i = 1, · · · , d).
To prove (h4)(2), we use the inequality∣∣f̄H((s+ h)(y + z)

)
− f̄H

(
(s+ h)y + sz

)
− f̄H

(
(s+ h)z + sy

)
+ f̄H

(
s(y + z)

)∣∣
≤
∣∣f̄H((s+ h)(y + z)

)
− f̄H

(
(s+ h)z + sy

)∣∣+
∣∣f̄H((s+ h)y + sz

)
+ f̄H

(
s(y + z)

)∣∣.
The first difference is estimated by (h4)(1) and the second one is dealt with in a similar
way. Therefore, (4.62) is satisfied with b̄ < (2κ̄) ∧ min(2Hi − 1; i = 1, · · · , d). This
completes the proof.
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Conclusion. Let d = 2, 3 and H = (Hi)1≤i≤d, where 1
2 < Hi < 1. For spatially homo-

geneous Gaussian noises with covariance function given by (4.1) with Λ(dx) = fH(x) dx,
the parameters ν1, ν2 in (4.76) are

ν1 = ν2 = min

(
γ1, γ2, κ̄,min

(
Hi −

1

2
; i = 1, · · · , d

))
, with κ̄ =

d∑
i=1

Hi − (d− 1).

As a consequence, from (4.78) we deduce that almost all sample paths of the solution
to (1.3) are locally Hölder continuous, jointly in (t, x), with exponent

θ ∈
]
0,min

(
γ1, γ2, κ̄,min

(
Hi −

1

2
; i = 1, · · · , d

))[
.

For d = 3, this is [14][Theorem 6.1]. However, following [14][Theorem 6.2], the critical
exponent must be min(γ1, γ2, κ̄), and therefore the result is not optimal.
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