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A surprising connection between
quantum mechanics and shallow
water waves

Jake Fillman e Tom VandenBoom

We describe a connection between quantum mechan-
ics and nonlinear wave equations and highlight a few
problems at the forefront of modern research in the
intersection of these areas.

1 Introduction

Quantum mechanics grew out of attempts to understand the structure of micro-
scopic systems (likes atoms and molecules) and to explain observed phenomena
in electromagnetism (such as blackbody radiation and the photoelectric effect).
These phenomena could only be explained by the presence of an irreducible quan-
tity of energy. The observed behavior of such small-scale systems is markedly
different from the observed behavior of the macroscopic systems which con-
stitute the world we observe in our daily life; for example, it is impossible to
simultaneously measure a particle’s position and momentum with perfect accu-
racy. One of the deepest insights gleaned from the modern theory of quantum
mechanics is the famous notion of “wave-particle duality”: particles that are
sufficiently small behave like waves until observed, at which point they develop
the more familiar behavior of a completely localized particle.

This duality was not a simple idea to develop. Indeed, there were a wide
variety of competing theories that adopted specific wave or particle conventions
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for distinct physical phenomena on a rather ad hoc basis; for example, René
Descartes (1596-1650) believed that light behaved like a wave in a medium,
whereas Isaac Newton (1643-1727) suggested the way light reflects was best
explained by a particulate model. Ultimately, two developments in the study
of electromagnetism forced the quantum paradigm shift. On one hand, in
the late nineteenth century, Maxwell’s equations conclusively demonstrated
that electromagnetic radiation was a wave generated by the motion of charged
particles through an electromagnetic field. On the other hand, in the early twen-
tieth century, experiments showed that electromagnetism propagates through
a vacuum, which a wave was thought to be unable to do. In this sense, in
order for physicists to understand how quantum particles traveled, it became
completely fundamental to understand interactions of waves.

The study of waves dates back to humanity’s earliest attempts to understand
the physical world. Mathematically, we model waves using functions that are
smooth, so small changes in the variables lead to small changes in the value of
the function, and periodic, so the function returns to the same value after a
regular interval. A basic example is the sine function, where sin(z) = sin(z+2m).
Here 27 is the period. Perhaps the first use of the mathematics of waves is
due to the Babylonians, who used repeating functions to make predictions
about the motions of the stars and planets. Greek mathematicians studied the
properties of a vibrating string and how its physical properties influenced the
sound it produced when plucked, and Hindi mathematicians in the 4th and 5th
centuries developed the first trigonometric functions related to chords of the
circle. Much later, Joseph Fourier (1768-1830) showed that many functions
could be built by using the constructive and destructive interference of waves
[3]. As such, by the twentieth century researchers had thoroughly developed the
mathematics of waves, which is collectively known as harmonic analysis. Our
mathematical understanding of waves has applications manifest throughout our
everyday lives, from technologies built into noise-canceling headphones to the
architecture of cacophonous sporting arenas; as such, it is critically important
that we understand, to the best of our ability, how waves change over time.

This snapshot considers two different and seemingly unrelated models for
how certain waves evolve. The first one is the Schrodinger equation. This
equation gives a quantum-mechanical description of how microscopic particles
interact with electrostatic potential barriers, which is the obstacle that such
particles encounter when approaching the atoms that constitute matter at the
microscopic scale. The second is the Korteweg—de Vries equation, which is
a macroscopic model of the evolution of a cross-section of a wave in shallow
water. Remarkably, these equations — designed to describe completely different
phenomena — were discovered to be fundamentally linked by the mathematician
Peter Lax in the late 1960s [13]. This surprising connection, which we describe
below, continues to yield new mathematical insights today.
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2 Quantum dynamics in one dimension

In the usual formulation of quantum mechanics, the information about the
physical system under consideration is encoded in the wave function, ¥ (z,t),
which is a function of position x and time ¢. For simplicity, we will consider
quantum dynamics in one spatial dimension (imagine a particle confined to an
extremely thin wire). The standard interpretation of the wave function is that
the square of its modulus, |¥(z,t)|?, represents the likelihood of finding the
quantum state near the position x at the time ¢. More concretely, the probability
of finding the quantum state ¥ in the interval (a,b) at time ¢ is given by

Prob(a <z <b) = /b\II(m7t)|2 dx (1)

Of course, the particle under consideration must be somewhere, and hence the
probability of finding it in the interval (—oo, c0) must be one. This allows us to
conclude that a wave function should obey the normalization condition

oo
/ |U(x,t)|? dz = 1 for every t.
— 00

Then, if we wish to understand the behavior of a quantum state, we need
to understand how the wave function changes as time passes. The evolution
equation for a wave function corresponding to a quantum state of mass m is
the Schrodinger equation, which reads:

v h? 9%w
z’haa—t(x,t) = —%g?(x,t) + V(2)¥(z,t). (2)
This equation is a partial differential equation for the wave function W. It
is determined by the values of W, the first-order partial derivative of ® with
respect to time ¢t and the second-order partial derivative of ® with respect
to position z. Note that the Schrédinger equation is a complex equation,
due to the presence of the imaginary number i defined by > = —1. The
wave function ¥ solution to this equation is therefore complex-valued, which is
why we need to work with the square of its modulus in order to extract physically
meaningful information. In the Schrédinger equation, the quantity & denotes
the reduced Planck constant. Furthermore, V() represents the potential energy
of the quantum state ¥ at position x, which models the environment with which
the particle is interacting. In analogy with classical mechanics, where systems
evolve when subject to the action of external forces like gravity for example, one
can think of U as being acted upon by a conservative external force F', given by

dv

F(z) = I



Since the physical constants clutter the notation without changing the quali-
tative characteristics of solutions, we choose physical units so that A =1 and
the mass m = 1/2, so our Schrédinger equation becomes

ov 0%
IS t) = s (,0) + V(@) U, 1), 3)
A free quantum particle is obtained by setting V(z) = 0; this choice of V
represents a quantum particle with no external forces acting upon it, hence the
term “free”. Then, our Schrodinger Equation (3) becomes

oV y 0%
ot (@,1) = Ox2
Based on physical intuition, we expect solutions of this equation to “propagate
freely at constant speed”, since there is no external force acting to slow down
or speed up the particle. One might think of this as analogous to the situation
in Newton’s first law of motion: “An object in an inertial frame of reference
either remains at rest or travels in a straight line at constant speed unless it is
acted upon by a net external force.”
Solutions to the free Schrodinger Equation (4) can be expressed quite ele-
gantly in terms of the compler exponential function:

(x,1). (4)

¢ = cos(z) 4+ isin(x), x a real number.
The complex exponential function encodes the two periodic functions sin(x)
and cos(z) and can be used to represent more general periodic functions. One
solution of the free Schrédinger Equation (4) is

\I/(LL', t) _ ei(kw—th)7

where k is a constant. This represents a freely traveling wave, also called a
plane wave. To see why, let us pick a value for k and focus on the real part
cos(kz — k?t). Let us choose k = 1 and plot cos(z —t) for ¢ € {0,0.5,1,1.5}, as
shown in Figure 1.

The observant reader will notice that the ¥’s that we have written down are
not quite proper wave functions for the following reason: no matter how the
variables k, x, and t are chosen,

W(z, )2 = |e"*F D2 = cos?(ka — k%t) + sin®(kx — k%) = 1,

/ |\Il(z,t)\2dz:/ 1dz = co.

which means that
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Figure 1: Traveling wave.

Despite this minor shortcoming, these plane wave solutions are exceptionally
important in mathematical physics. Even though they do not represent a proper
normalized wave function, plane waves are the fundamental building blocks
for physical solutions to the free Schrédinger equation. In other words, wave
functions can be represented in terms of such plane waves.

For the purpose of our discussion, we now need to introduce the notion of
“reflectionless” potentials. Qualitatively, reflectionless potentials share many
properties with a repeating periodic potential, where we recall that this means
the potential satisfies

Vie+T)=V(z)

for some real T' > 0. In other words, V is periodic if you can translate it by a
nontrivial amount and land exactly where you started. The exact definition of
a reflectionless potential is beyond the scope of the current article, but here is a
rough description: Consider a solution ¥(z,t) of the Schrodinger equation (2).
Recall that we view |¥(x,t)|? as a probability amplitude, giving us an estimate
of how likely it is to find the wave function near x at time ¢. In light of this, we
say that U originates at —oo if for each real number a,

lim Prob(z < a) =1,
t——o0
where the probability is defined in (1). Similarly, we say that ¥ propagates
to +oo if, for each real a,

lim Prob(z >a)=1
t——+oo
If V(z) is periodic, then any wave function ¥(x,t) that originates at —oo
also propagates to +oo as time advances. Thus, solutions to the Schrodinger
equation (2) with a periodic potential do not get “stuck” anywhere. The class
of reflectionless potentials comprises those potentials which share this quantum
dynamical property.



3 The Korteweg—de Vries equation

I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat suddenly
stopped — not so the mass of water in the channel which it had put
in motion; it accumulated round the prow of the vessel in a state
of violent agitation, then suddenly leaving it behind, rolled forward
with great velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving
its original figure some thirty feet long and a foot to a foot and a
half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel. Such, in
the month of August 1834, was my first chance interview with that
singular and beautiful phenomenon which I have called the Wave of
Translation.

-John Scott Russell (1808-1882) [14]

John Scott Russell’s “Wave of Translation”, observed in Scotland’s Union
Canal in 1834 [14], is the first scientifically noted example of what are now
known as solitons or solitary waves. Solitons are characterized as localized waves
of fixed shape traveling at constant velocity. Physically speaking, solitons are
very easy to generate: Imagine fixing a length of string to a wall, pulling it tight,
and swiftly flicking it. The string will form a bump, approximately the height of
your flick, which will travel towards the wall at a fixed speed. Mathematically,
solitons are more tricky to generate, but are generally understood to be a
consequence of special nonlinear differential systerns.

One such nonlinear differential system is the Korteweg-de Vries (KdV)
equation. The KdV equation describes waves in shallow water, and looks like
this:

ou 6 ou  Ou
ot~ oz T o
where u(zx,t) is the amplitude of the wave. The KdV equation gets its name
from the work of Diederik Johannes Korteweg (1848-1941) and Gustav de

=0, (5)

A partial differential equation (PDE) is called linear when the sum of several of its
solutions is also a solution. Namely, if u, @ are solutions of a linear PDE, then u + 4 is also
a solution of this PDE. If that is not the case, the PDE is said nonlinear. Notice that the
Schrodinger equation is a linear PDE. In general, linear equations are much easier to solve
than nonlinear ones, although they occur less frequently in applications.
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Figure 2: A moving soliton.

Vries (1868-1934) [12], though it was discovered even earlier by Joseph Valentin
Boussinesq (1842-1929) [2]. The main feature that makes the KdV equation
special is the existence of soliton solutions. One example of a soliton solution
to Equation (5) is

1 2

eé(x—t) 4 e—%(ac—t)

u(z,t) = -2

This soliton travels to the right at a speed of one unit of distance per second;
see Figure 2. One of the most prominent aspects of the KdV equation is its
nonlinearity. This is what makes Equation (5) so challenging and interesting to
study. More specifically, the second term of Equation (5) contains a product
of u and its partial derivative with respect to x, which is the source of the
nonlinearity. This means that waves that solve the KdV equation do not obey the
principle of superposition; that is to say, if v and @ are solutions of Equation (5),
there is no reason that u + @ will also solve Equation (5).

However, the Schrodinger Equation (2) is a linear equation. So, how are the
KdV and Schrodinger equations connected? Suppose u(x,t) is a solution to the
KdV equation. Then, we can imagine using the KdV equation to generate two
potential energy functions for the Schrédinger equation by freezing u at two
particular times; say,

Vo(z) = u(z,0), Vi(z)=u(x,1).

Then, the Schrodinger equations with potentials V) and V; will share all of
the same essential qualitative characteristics. For example, if 1} is reflection-
less, then Vi shall be reflectionless as well4 This means that the quantum
particles will behave similarly whether they propagate in a potential Vj or V.

These comments hold true for all fixed times to; we simply chose t9p = 0, 1 for convenience.



More specifically, the particles have access to the same energy levels in both
potentials.

The mechanism that produces this relationship between Schrédinger and
KdV equations is called a Lax pair, so called in honor of Peter Lax’s seminal
work on the subject [13]. The exact nature of the Lax pair is a bit beyond the
scope of this article; one could describe the Lax pair by saying that it is possible
to decompose the KdV equation in terms of a pair of linear differential equations
in a helpful fashion. What’s especially remarkable is that one of the linear
differential equations in the Lax pair for the KdV equation is the Schrédinger
equation! This discovery allowed mathematicians to translate knowledge about
the well-studied Schrédinger equation into new facts about the KdV equation.
One such application of this general technique is the inverse scattering transform,
a method to solve some nonlinear partial differential equations, which we will
not discuss here; on this topic the curious reader can see for example [9, 10].

One of the most pressing problems that remains in the study of the KdV
equation is determining when a solution exists. In fact, even when a solution
exists, it’s hard to say that there is exactly one solution! This is an important
physical consideration. After all, if a model describes a deterministic physical
system, it should have a solution (something should happen) and the solution
ought to be unique (exactly one thing should happen). Thus, some of the main
questions that researchers would like to answer about the KdV equation are:

For what sort of initial wave shapes is the KdV equation solvable?
In the instances in which the KdV equation is solvable, what sorts of wave
shapes are preserved by the KdV equation?

e What other kinds of quantum physics are preserved by the KdV equation?

In the 1970s, researchers focused on the case of periodic wave shapes. Many
authors worked very hard to understand the KdV in this setting. For a book-
length synthesis of results, see [11]. Recently, researchers have focused on these
questions in the event that the initial data are almost periodic. What does it
mean to be “almost periodic”? Let us recall that V is periodic (with period T') if

Viz+T)=V(x). (6)

In fact, once one has a single period T, one has lots of periods! If Equation (6)
holds true, then V(x) =V (z+T)=V(x+2T) =V (x+3T)... and so on. An
almost-periodic function is one for which this is almost true. In other words,
V is almost periodic if there are many values of T for which V(z) — V(z + T)

One of the particularities of quantum mechanics is that the energy of particles propagating
in a potential can only take some specific values. We say that the energy is quantized in
discrete energy levels. Other energy values cannot be attained.



is extremely small (for every z). Percy Deift has conjectured that the KdV
equation is solvable when u(x,0) is almost periodic, and, moreover, that the
solution remains almost periodic [7].

Utilizing the Lax pair relationship to the Schrédinger equation, reflectionless
operators give us a hook into these questions! To be more specific, if the
initial wave shape u(z,0) is a reflectionless potential, we know that if a solution
exists, then u(z,tp) has to also be a reflectionless potential for every value of ¢g.
Additionally, we know that reflectionless potentials are almost periodic (under
some technical restrictions that we won’t discuss here). This confers several
advantages:

e It narrows down the “search space.” If we know that the solution should
look like a bunch of reflectionless potentials stapled together, then we don’t
need to look at any other possible solution shapes, which narrows down the
realm of possibilities to analyze.

e The reflectionless operators have a very nice way of being parameterized
that allows us to change variables in the KdV equation.

Researchers have been successful with this approach in recent years, but
there’s still plenty of interesting work to be done. For example, it was recently
discovered that there are potentials V' for which the current notions of reflec-
tionlessness are wholly inadequate [5]. Future work will need to push beyond
what is currently known to understand these highly singular initial data.
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