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Is i t possible to predict the far
future before the near future is

known accurately?

Mar t in J. Gander

It has always been the dream of mankind to pre-
dict the future. If the future is governed by laws
of physics, like in the case of the weather, one can
try to make a model, solve the associated equations,
and thus predict the future. However, to make accu-
rate predictions can require extremely large amounts
of computation. If we need seven days to compute
a prediction for the weather tomorrow and the day
after tomorrow, the prediction arrives too late and
is thus not a prediction any more. Although it may
seem improbable, with the advent of powerful com-
puters with many parallel processors, it is possible to
compute a prediction for tomorrow and the day after
tomorrow simultaneously. We describe a mathemati-
cal algorithm which is designed to achieve this.

1 Introduct ion

Many time-dependent phenomena in nature, science, and engineering can be
described by systems of time-dependent differential equations. We will see a
concrete example below, but generally speaking, a differential equation is an
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equation that describes how a rate of change (the derivative) in one (or more)
variable is related to that or other variables. They arise naturally in many appli-
cations; typical examples are weather and climate prediction, the computation
of orbital trajectories of spacecraft, the traveling of wireless signals, the blood
flow in the human body, flooding and more general catastrophes in nature, and
there are many more. These equations are often too complex to permit exact
solutions, and numerical approximations are used to better understand and
predict such phenomena. Methods to obtain numerical approximations start
from an initial condition, for example the current status of the weather, given
by the current pressure, temperature, and wind direction, and then compute a
prediction proceeding step by step into the future, computing the evolution of
the pressure, the temperature, and the wind directions over the coming minutes,
hours, and days. If these computations take longer than the actual weather
evolution, the prediction becomes useless, so weather prediction, and several of
the other applications mentioned above, are real-time problems that have to be
solved rapidly.

Until 2004, the processors we use in our computers doubled their computing
speed every 18 month, a fact known as Moore’s law 1 . However, since 2004,
computers are only getting faster by using more and more processors; the speed
of each processor is not increasing any more because our current processor
technology has reached its physical limits. We therefore now have multicore
processing units in our computers and smart phones, and this trend is even
more accentuated in today’s supercomputers. Supercomputers worldwide are
ranked every 6 month on the TOP500 webpage (https://www.top500.org/).
In November 2018, the fastest computer was an IBM at Oak Ridge National
Laboratory in the USA, with 2,397,824 processing cores, and the third fastest,
a supercomputer in China that was the fastest in the world previously, has
10,649,600 processing cores. Naturally the question arises of how to use so
many processors to simulate time-dependent phenomena, and in particular real-
time phenomena like the weather, as fast as possible. One idea is to compute
such phenomena by using some processors to compute the near future and
simultaneously other processors to compute the far future, so that one gets the
entire solution in time at once.

This idea seems unlikely to work. Consider, for instance, a space craft sent
from the earth into an orbit around the moon. How should one compute the
trajectory around the moon before knowing exactly where the orbit will start?
The purpose of this snapshot is to explain one of the many methods that have
been invented over the past five decades to do precisely such a “time parallel

1 Moore’s law is named after Gordon Moore, the co-founder of Fairchild Semiconductor and
CEO of Intel, who described in a 4 page manuscript [6] a doubling every year in the number
of components per integrated circuit.
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time integration”. For a complete review of all such mathematical techniques
up to 2015, see [1].

To explain this time parallel method, it is best to work with a simple model
problem, described by the system of ordinary differential equations

du(t)
dt

= f(u(t)), t ∈ (0, T ), u(0) = u0, (1)

where the function f is a given function describing the physical phenomenon
we are interested in, and [0, T ] is a given time interval. For example, if we are
interested in cellular growth, and there is unlimited food supply, such as when
an embryo begins to form, each cell partitions itself into two new cells, which
means that we obtain from one cell two, then from two four, and from four
eight, and so on. Each new generation of cells is twice the previous one. The
change in the cell population is proportional to its size, and this can be modeled
by choosing in (1) for the right hand side f(u(t)) := au(t), where a models the
growth rate. Now if initially we have u0 cells, the function u(t) = eatu0 is a
solution of (1), as one can see by checking first that u(0) = e0u0 = u0, that
is, that the solution matches the initial condition, and then by computing the
derivative in time of the solution:

du(t)
dt

= d

dt
(eatu0) = aeatu0 = au(t).

To obtain the cell division solution example, which doubles the amount of cells
every integer time instant, we can start with u0 = 1, which gives u(0) = 1, and
then choose a = ln 2, which gives u(1) = eln 2u0 = 2 · 1 = 2, u(2) = eln 2·2u0 =
22 ·1 = 4, u(3) = eln 2·3u0 = 23 ·1 = 8, and so on. For other phenomena, like the
computation of the trajectory of a space craft, or weather prediction, the right
hand side f is more complicated, and it is in general not possible to determine
the solution u(t) as a “closed form” function of time.

Leonhard Euler (1707–1783) already invented a method to obtain numerical
approximations to the solution of (1), which is now called the Forward Euler
method: one partitions the time interval (0, T ) into M small time steps ∆t =
T/M , and then computes at the time points tm := m∆t, where m is an
integer smaller than M , approximate values um ≈ u(tm) of the solution by
approximating the time derivative in (1) by a finite difference,

du(tm)
dt

≈ u(tm+1)− u(tm)
∆t

, (2)

which is quite natural, since if one lets ∆t go to zero, this limit actually defines
the derivative. Replacing the derivative in the differential equation (1) by the
approximation (2), we obtain at the discrete time points the relation

um+1 − um

∆t
= f(um). (3)
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Starting with the initial condition u0, we can compute successively the approxi-
mation um+1 at the next time point tm+1 from the approximation um at the
time point tm, by writing the Forward Euler method solved for um+1,

um+1 = um + ∆tf(um). (4)

This clearly shows that solving problems of the form (1) is a sequential process,
to compute um+1 one needs to know um, and it is difficult to imagine how
one could compute a good approximation of um+1 before knowing um. Also
more sophisticated numerical methods than the Forward Euler method have
this sequential nature, since the underlying evolution problem (1) itself has this
property: one needs to know u(t) to compute a solution u(t1) at a later time
t1 > t.

2 The Parareal Algor i thm

We now describe a time parallel time integration method which tries to break
the sequential nature of the evolution problem (1) and its approximation (4),
namely the parareal algorithm. The parareal algorithm was invented by Lions,
Maday and Turinici in [5], and the authors give explicitly the reason for their
invention:

“Elle a pour principale motivation les problèmes en temps réel, d’où
la terminologie proposée de pararéel. 2 ”

The purpose of the method is thus encoded in the name the authors gave to
their algorithm: parareal for parallel computing for real time applications. To
define the parareal algorithm for solving problems of the form (1), we need two
ingredients:

1. A “coarse” solver G(T2, T1, u1). This solver should approximate the solution
u(T2) of the differential equation in (1) for a given starting value u1 at time
T1 in an inexpensive way that can be quite inaccurate, hence the name 3 .
One could for example compute one (or a few) Forward Euler steps in the
time interval (T1, T2) to do this.

2. A “fine” solver F (T2, T1, u1). This solver should also approximate the
solution u(T2) of the differential equation in (1) for a given starting value u1
at time T1, and it can and should be computationally expensive, because it
should give a high accuracy approximation. One could for example compute

2 The main motivation is to solve problems in real time, which explains the name parareal
we propose for the method.
3 The “G” here stands for “grossier”, which is French for “coarse”.
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a large number of Forward Euler steps in the time interval (T1, T2) to do
this.

The parareal algorithm is based on a decomposition of the time interval (0, T )
of interest into N smaller time intervals of size ∆T , Tn := n∆T . It starts by
computing an initial approximation U0

n ≈ u(Tn) to the solution using the coarse
time integrator,

U0
n+1 = G(Tn+1, Tn, U0

n), U0
0 = u0, for n = 0, . . . , N − 1. (5)

It then corrects this approximation by iteration, computing for iteration index
k = 0, 1, 2, . . .

Uk+1
n+1 = F (Tn+1, Tn, Uk

n) + G(Tn+1, Tn, Uk+1
n )−G(Tn+1, Tn, Uk

n). (6)

There are two important observations: the first one is that since at iteration
step k all approximate values Uk

n are known, one can compute all the fine
solutions F (Tn+1, Tn, Uk

n) in parallel using N processors, that is, one computes
simultaneously on all time intervals, both in the near and far future, a new
approximate fine solution. Let us reiterate that the fine solver in each time step
∆T will use a large number of smaller time intervals, say of size ∆T/1000, to
compute the new approximation (whereas the coarse solver will perhaps use
∆T itself, or a small number of subdivisions). The second observation is that
once one has all these fine solutions, to obtain the new approximation Uk+1

n+1 ,
one needs to know Uk+1

n for the first coarse evaluation G(Tn+1, Tn, Uk+1
n ) on

the right in (6) (the second one is known from the previous iteration). So this
second step is sequential again from Tn to Tn+1, but it only involves the coarse
and inexpensive G propagator, and is thus much faster than solving the problem
with the fine propagator.

We show in Figure 1 an illustration of how the parareal algorithm approx-
imates a numerical solution in one spatial dimension. We see an interesting
property of the parareal algorithm: in the first iteration, the approximation
of the parareal algorithm becomes identical to the fine solution on the first
coarse time interval (0, T1), since the fine solver F starts at the correct initial
condition. In the second iteration, the approximation of the parareal algorithm
becomes identical also to the fine solution on the second coarse time interval
(T1, T2), since the first iteration provided already the fine accuracy on the first
coarse time interval (0, T1), and by induction, this process continues. So the
parareal algorithm will converge to the fine accuracy at the latest after k = N
iterations. This is however too late, since then we will have performed N times,
once in each iteration, a fine solution in parallel using N processors on all coarse
time intervals (Tn, Tn+1), and it would have taken the same time to do the
fine solution sequentially starting with the first time interval (0, T1), then the
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Figure 1: Illustration of how the parareal algorithm approximates the solution
of a one dimensional evolution problem. Top: approximate solution
to be computed. Second line: initial coarse approximation computed
by parareal. Third line: fine corrections computed in parallel in red.
Fourth line: completion of the first parareal correction step using the
coarse approximation sequentially. Last line: second fine corrections
computed in parallel in red.
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second time interval (T1, T2), and so on, until reaching the last time interval
(TN−1, TN ), and this using only one processor, so no extra speed would have
been obtained. In order to be useful, the parareal algorithm must therefore
converge to the fine accuracy for a number of iterations k much smaller than N .
We illustrate that indeed this can happen in the next section.

3 Numer ical exper iment: an Arenstorf orbi t

Arenstorf orbits are stable orbits of a space craft to travel between the earth and
the moon, named after the mathematician Richard F. Arenstorf (1929–2014).
This is a “three-body problem”, where the three bodies are the earth, the moon
and the spacecraft, and for these problems a general analytic solution cannot be
found. Arenstorf worked for Nasa during the Apollo program and found such
a stable orbit in the shape of a figure eight, which was the basis for the lunar
landing program. He also found an emergency rescue orbit which was used to
bring Apollo 13 back home after the incident that forced them to abort the
moon landing. Assuming that the trajectory lies in a plane, the equations of
motion for the coordinates x(t) and y(t) of the spacecraft are (see [4])

dx

dt
= x + 2ẏ − b

x + a

D1
− a

x− b

D2
,

dy

dt
= y − 2ẋ− b

y

D1
− a

y

D2
,

where Dj , j = 1, 2 are the functions of x and y given by

D1 = ((x + a)2 + y2) 3
2 , D2 = ((x− b)2 + y2) 3

2 .

If the parameters are a = 0.012277471 and b = 1− a, and the initial conditions
are chosen to be x(0) = 0.994, ẋ = 0, y(0) = 0, ẏ(0) = −2.00158510637908,
then the solution is the nice closed orbit shown in Figure 2 with period T =
17.06521656015796, see [4]. Four years before the invention of the parareal
algorithm, Saha, Stadel and Tremaine had already developed a time-parallel
method to compute planetary orbits of our solar system. Their algorithm has
the same structure as the parareal algorithm, except that instead of the coarse
integrator G they used a simpler model, namely, the interaction of each planet
with the sun only, neglecting the interaction with the other planets, see [7]. We
show now how the parareal algorithm can be used to compute the Arenstorf
orbit in Figure 2. We use a classical “fourth order Runge-Kutta method”, which
is essentially similar to Euler’s method outlined above, but it uses a weighted
average of four increments instead of just one at each step and is thus more
accurate. For the time steps we choose ∆T = T

250 for the coarse integrator G,
which means we can use 250 processors in parallel, and ∆t = T

80000 for the fine
integrator F , such that the fine trajectory has an accuracy of 9.98× 10−6, as in

7



−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

spacecraft

earth

moon

Figure 2: A so called Arenstorf orbit of a spacecraft.

[2]. We show in Figure 3 on the left the initial approximation and the first two
iterations of the parareal algorithm computing approximations of the Arenstorf
orbit. We see that the initial coarse approximation is completely incorrect and
shows an approximate trajectory with the blue circles which spirals outward
(note the difference in scale to the figures below). The first parareal correction
that needed one parallel fine solve on 250 processors and one sequential coarse
solve shows a corrected blue trajectory which is already much closer to the
accurate Arenstorf orbit shown in green and computed sequentially with the fine
solver. After the second parareal correction, we can not distinguish the parareal
approximation any more from the accurate Arenstorf orbit. On the right in
Figure 3, we show the error in each coordinate of the initial approximation at
the top and the first two iterations of parareal below. We see that after the
second parareal iteration, the approximation obtained has an accuracy of about
10−4 throughout the time interval of computation. We also show both on the
left (with a red circle) and right (with a red vertical bar) how far one could have
computed the accurate trajectory using only one processor in the same amount
of time, and we see that the parareal algorithm does indeed not need to iterate
k = N = 250 times to reach the fine accuracy in this example, two iterations
suffice! One can thus compute this trajectory with 250 processors 125 times
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Figure 3: Parareal to compute the Arenstorf orbit of a space craft. Left: initial
coarse trajectory (top) and first two parareal iterations below. Right:
error in the two coordinates of the initial coarse trajectory (top) and
error in the first two parareal iterations below.

9



faster than with one processor. Computing rapidly in this way the emergency
trajectory to come back home would certainly have been of interest to the
Apollo 13 mission. This shows that one can indeed predict for this problem the
far future before the near future is known accurately. For a detailed convergence
analysis of the parareal algorithm see [3, 2].

4 Conclusions

We explained one time parallel time integration method, the parareal algorithm,
and we showed that with this algorithm, it is indeed possible to compute an
approximation of a time dependent problem using many processors faster by
parallelization in time than when using only one processor solving the problem
sequentially. This is surprising, because one has at first the feeling it is not
possible to predict the far future before the near future is known accurately.

The parareal algorithm is however only one among many different techniques
to predict the far future and the near future simultaneously. Among the iterative
methods doing this are multiple shooting methods in time of which the parareal
algorithm is a variant, space-time domain decomposition methods, and also
multigrid type methods, of which again the parareal algorithm is a variant with
so called aggressive coarsening. And there are also direct time parallel methods,
which do not even iterate, like the ParaExp method, the method based on
diagonalization of the time stepping matrix, and Revisionist Integral Deferred
Correction (RIDC). An overview of all these methods can be found in [1].

5 For fur ther reading

The snapshot 9/2017 Computing the long term evolution of the solar system
with geometric numerical integrators by S.F. Vilmart and G. Vilmart (https:
//publications.mfo.de/handle/mfo/1355) might be of interest to the reader,
as it also concerns numerical methods for solving differential equations, but
with a view towards long term solutions, rather than obtaining good-quality
predictions of a system in as short a time as possible.
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