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NONDEGENERATE INVARIANT SYMMETRIC BILINEAR FORMS ON
SIMPLE LIE SUPERALGEBRAS IN CHARACTERISTIC 2

ANDREY KRUTOVA,B,F , ALEXEI LEBEDEVC , DIMITRY LEITESD,E , IRINA SHCHEPOCHKINAF

Abstract. As is well-known, the dimension of the space of non-degenerate invariant symmet-
ric bilinear forms (NISes) on any simple finite-dimensional Lie algebra or Lie superalgebra is
equal to at most 1 if the characteristic of the ground field is distinct from 2.

We prove that in characteristic 2, the superdimension of the space of NISes can be equal
to 0, or 1, or 0|1, or 1|1. This superdimension is equal to 1|1 if and only if the Lie superal-
gebra is a queerification (defined in arXiv:1407.1695) of a simple restricted Lie algebra with
a NIS (for examples of such Lie algebras, although mainly in characteristic distinct from 2, see
arXiv:1806.05505).

We give examples of NISes on deformations with both even and odd parameter of several
simple finite-dimensional Lie superalgebras in characteristic 2.

1. Main theorem

This paper is a sequel to [BKLS], where non-degenerate invariant symmetric bilinear forms
(NISes) on known simple Lie algebras and Lie superalgebras (finite-dimensional and Z-graded
of polynomial growth) are listed if the characteristic p of the ground field K is distinct from 2,
and for p = 2 there are given occasional examples . Here we mainly consider the algebraically
closed field K for p = 2. For numerous applications of Lie (super)algebras with a NIS, see [DSB].

1.1. On the contents of this paper. In the background we give a little more information
than is strictly needed to understand the Main Theorem 1.3 — the most interesting result of
the paper. Partly, this information is not as well-known, as it deserves; it places the strictly
needed facts in proper surroundings.

1.2. Generalities. The ground field is algebraically closed of characteristic p (mainly, p =
2 or 0), unless otherwise specified. We consider only finite-dimensional spaces; for infinite-
dimensional examples, see [BGLLS] and [KS, KT].

In this note, all (super)commutative (super)algebras are supposed to be associative with 1;
their morphisms should send 1 to 1, and the morphisms of supercommutative superalgebras
should preserve parity.

From the superK0-functor point of view, see [Mi], the superdimension of a given superspace V
is sdimV := dimV0̄ + ε dimV1̄, where ε2 = 1; usually one writes sdimV = dimV0̄ | dimV1̄, so
ε = 0|1. We write dimV := dimV0̄ + dimV1̄.

A non-degenerate invariant symmetric bilinear form on a Lie (super)algebra will be briefly
called NIS; just invariant and symmetric one will be briefly called IS. Speaking about “the
space of non-degenerate forms” we exercise the usual abuse of the language: we are speaking
about the space spanned by all non-degenerate forms, but not all forms in this space have to
be non-degenerate. For example, the zero form is never non-degenerate (and in the case where
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“the space of non-degenerate forms” is of superdimension 1|1, it contains a 1-dimensional
inhomogeneous subspace of degenerate forms.)

In § 2, we recall basics on Lie superalgebras, especially for p = 2. We also give the definitions
in terms of the functor of points needed to take into account odd parameters of deformations.

Our main result is a newly discovered fact in characteristic 2: the description of the possible
superdimension of the space of NISes on a given simple Lie superalgebra.

For completeness, we consider Theorem 1.3 for any characteristic since we do not know if it
was ever published in full generality, although well-known as a folklore. If p 6= 2, Theorem 1.3
seems to be “just a direct generalization” of a well-known fact about Lie algebras, unless we
realize that we might encounter inhomogeneous objects. For p = 2, the situation is even more
delicate; its complete description is a new result.

1.3. Theorem. 1) If p 6= 2, any NIS on a simple finite-dimensional Lie superalgebra is ho-
mogeneous with respect to parity and the dimension of the space of NISes is ≤ 1.

More precisely, the superdimension of the space of NISes is either 0, or 1 (in this case, all
NISes are even), or ε (in this case, all NISes are odd).

2) If p = 2, the superdimension of the space of NISes on a simple finite-dimensional Lie
superalgebra is equal to either 0, or 1, or ε, or 1|1.

This superdimension is equal to 1|1 if and only if the Lie superalgebra is a queerification (see
Subsection 2.5) of a simple restricted (in the classical sense, see Subsection 2.3; for other restrict-
ednesses, see [BLLS]) Lie algebra with a NIS (for examples of such Lie algebras, see [BKLS]).

1.4. Comment. The proof of Theorem 1.3 in case p = 2 actually proves the following Theo-
rem 1.4.1, which implies Theorem 1.3 for p = 2 in its turn.

1.4.1. Theorem. Let p = 2.
If a simple finite-dimensional Lie superalgebra g has a NIS, then
• the dimension of the space of even IS-forms on g is ≤ 1;
• the dimension of the space of odd IS-forms on g is ≤ 1.

(That is, the space of all IS-forms on g is a superspace whose superdimension is equal to either
0, or 1, or ε, or 1|1 since the even and odd components of an IS-form are also IS-forms).
• Any homogeneous IS-form on any simple finite-dimensional Lie superalgebra g is either 0

or non-degenerate.

Proof. Beginning of the proof of Theorem 1.3. Let g be a simple finite-dimensional Lie
superalgebra over an algebraically closed field K of characteristic p. Let us first prove several
lemmas which allow us to restrict ourselves to homogenous NIS forms.

1.5. Lemma. Let g be a simple finite-dimensional Lie superalgebra over a field of character-
istics p 6= 2. Then, any homogenous IS on g is either 0 or non-degenerate.

Proof. Let ω be a homogenous IS-form on g. Then, Kerω is a subsuperspace of g invariant
with respect to adg, i.e., it is an ideal. Since g is simple, either Kerω = 0, in which case ω is
non-degenerate, or Kerω = g, in which case ω = 0. �

The statement of Lemma 1.5 is not true in characteristic 2. The problem is that even though
Kerω is invariant with respect to adg, it may be not an ideal, since it may be not closed under
squaring. Before we formulate a similar statement for p = 2, let us prove two more lemmas,
where we assume p = 2. (The lemmas are true for p 6= 2 as well, but they are trivial in that
case.)
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1.6. Lemma. Let p = 2. Let g be a simple Lie superalgebra with a NIS (−,−). Then,
[g, g] = g.

1.6.1. Comment. One might think “since [g, g] is an ideal in g which is supposed to be simple,
we have nothing to prove”. But for Lie superalgebras in characteristic 2 there is a difference
between the first derived algebra and the commutant [g, g] := Span([x, y] | x, y ∈ g), which is
not necessarily closed with respect to squaring, and hence may be not an ideal. Recall that the
derived Lie superalgebras of g are defined to be (for i ≥ 0)

(1) g(0) := g, g(i+1) =

{
[g(i), g(i)] for p 6= 2,

[g(i), g(i)] + Span{g2 | g ∈ g
(i)

1̄
} for p = 2.

Proof. Suppose [g, g] 6= g. Then, the orthogonal complement to [g, g] with respect to (−,−)
contains a non-zero element u. Since g is simple, it has zero center, and hence there exists
an x ∈ g such that [u, x] 6= 0. Since the form (−,−) is non-degenerate, there exists a y ∈ g
such that ([u, x], y) 6= 0. But then (u, [x, y]) = ([u, x], y) 6= 0, contradicting the fact that
u ∈ [g, g]⊥. �

The next statement is a direct corollary of Lemma 1.6.

1.6.2. Corollary. Let p = 2. Let g be a simple Lie superalgebra and F(g) its desuperization,
i.e., F is the functor that forgets squaring and parity. Let [g, g] = g, then g has a NIS if and
only if F(g) has a NIS.

1.7. Lemma. Let p = 2. Let g be a simple Lie superalgebra such that [g, g] = g, and S ⊆ g
its subsuperspace such that [S, g] ⊆ S. Then, either S = 0 or S = g.

Proof. Let S 6= 0, let S be the completion of S with respect to squaring. Since S is a subsuper-
space of g, is closed under squaring, and [S, g] = [S, g] ⊆ S, it follows that S is an ideal, and
hence S = g. But then g = [g, g] = [S, g] ⊆ S, and therefore S = g. �

Now we can formulate the statement we will use instead of Lemma 1.5 when p = 2:

1.8. Lemma (Analog of Lemma 1.5). Let p = 2. Let g be a simple Lie superalgebra with
a NIS. Then, any homogenous IS on g is either zero or non-degenerate.

Proof. The proof is analogous to the proof of Lemma 1.5, but we use Lemmas 1.6 and 1.7 to
show that Kerω is either 0 or g. �

Completion of the proof of Theorem 1.3. Now we can restrict ourselves to homogenous
ω1 and ω2, since for any inhomogenous IS, its even and odd components are invariant and
symmetric, and hence non-degenerate by Lemmas 1.5 and 1.8.

Fix a basis in g, and let B1 and B2 be Gram matrices of non-degenerate homogenous
invariant symmetric forms ω1 and ω2; consider the 1-parameter family of invariant symmetric
forms ωλ with Gram matrices Bλ = B1 + λB2. Consider Bλ just as a matrix, not supermatrix,
and calculate its determinant; it is a polynomial of λ. Since K is algebraically closed, there
exists a λ0 ∈ K such that detBλ0 = 0. Then, the form ωλ0 is degenerate. If the forms ω1 and
ω2 are of the same parity, then ωλ0 = 0 by Lemmas 1.5 and 1.8. This means that ω1 = −λ0ω2,
i.e., any two homogeneous NISes of the same parity are proportional to one another. So, if ω1

and ω2 are even, then the superdimension of the space of even NISes is equal to 1; if ω1 and ω2

are odd, then the superdimension of the space of odd NISes is equal to ε.
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Let now forms ω1 and ω2 be of different parity. Then, Kerωλ0 is a non-trivial adg-invariant
subspace, but it is not a subsuperspace. Consider two subspaces

V := Kerωλ0 ∩ g0̄ ⊕Kerωλ0 ∩ g1̄,
W := pr0̄(Kerωλ0)⊕ pr1̄(Kerωλ0),

where pr0̄ and pr1̄ are projections to g0̄ and g1̄, respectively. Since both V and W are adg-
invariant subsuperspaces, they are either 0 or g by Lemmas 1.6 and 1.7. Since ωλ0 is non-zero,
V 6= g, so V = 0; since ωλ0 is degenerate, W 6= 0, so W = g. Hence, there exists an odd
isomorphism f between linear superspaces g0̄ and g1̄ such that

Kerωλ0 = Span{x+ f(x) | x ∈ g0̄}.

Since Kerωλ0 is adg-invariant, we see that for all a, b ∈ g0:

(2)

[a, b+ f(b)] = [a, b] + [a, f(b)] =⇒ [a, f(b)] = f([a, b]);
[a+ f(a), b] = [a, b] + [f(a), b] =⇒ [f(a), b] = f([a, b]);
[f(a), b+ f(b)] = [f(a), b] + [f(a), f(b)]
= [f(a), f(b)] + f([a, b]) =⇒ f([a, b]) = f([f(a), f(b)]).

The bottom line in (2) implies that

(3) [f(a), f(b)] = [a, b] for all a, b ∈ g0̄.

Up to this moment our reasoning did not depend on p.
Now, let p 6= 2. Notice that the left-hand side of the equality (3) is symmetric while the

right-hand side is anti-symmetric. Hence,

[f(a), f(b)] = [a, b] = 0 and [f(a), b] = f([a, b]) = 0 for all a, b ∈ g0̄,

and so g is commutative, i.e., has zero bracket. This contradicts the simplicity of g, and
hence there can not exist two NISes of different parity on a simple Lie superalgebra over an
algebraically closed field of characteristic p 6= 2. There can not exist an inhomogeneous NIS
in this situation either, as was mentioned above. This completes the proof of the theorem if
p 6= 2.

If p = 2, no such conclusion follows from equality (3); it only tells us that g is a queerification
of g0̄ and g0̄ is restricted. Besides, the restriction of the even of the two forms ωi to g0̄ is a NIS.

Conversely, let g be a queerification of a simple restricted Lie algebra g0̄ with a NIS ω. Then,
g can be represented in the form g = g0̄ ⊗A, where A is an associative and commutative, but
not supercommutative,1 superalgebra spanned by an even element 1 (unit) and an odd one a,
subject to the relation a2 = 1, and the natural bracket (for squaring, see Subsection 1.8.1):

[x⊗ ϕ, y ⊗ ψ] = [x, y]⊗ ϕψ for any x, y ∈ g0̄, ϕ, ψ ∈ A.

Determine two bilinear forms on g := g0̄ ⊗A:

ωi(x⊗ ϕ, y ⊗ ψ) = ω(x, y)fi(ϕψ) for i = 1, 2,

where f1(α · 1 + β · a) = α and f2(α · 1 + β · a) = β for any α, β ∈ K. It is clear that both these
forms are non-degenerate, invariant, and symmetric; ω1 is even and ω2 is odd. �

1Recall that in any supercommutative superalgebra A, we have a2 = 0 for any a ∈ A1̄.
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1.8.1. Under what conditions on A is g0̄⊗A a Lie superalgebra?. (A more general, but
non-super, setting is discussed in [Z].) It is well-known that for any Lie algebra L and any commutative
associative algebra A, one can introduce a Lie algebra structure on L⊗A by setting

[l1 ⊗ a1, l2 ⊗ a2] := [l1, l2]⊗ a1a2 for any li ∈ L and ai ∈ A.

The commutativity of A is required for this bracket to be antisymmetric.
Analogously, if p 6= 2, L is any Lie superalgebra, and A is any supercommutative associative

superalgebra, then one can introduce a Lie superalgebra structure on L⊗A by setting

[l1 ⊗ a1, l2 ⊗ a2] := (−1)p(l2)p(a1)[l1, l2]⊗ a1a2.

Again, the supercommutativity of A is required for this bracket to be super antisymmetric.
If p = 2, then the bracket on the Lie superalgebra is again just antisymmetric, so one could assume

that the above definition would work even if A is just commutative, not supercommutative (note that
if p = 2, then a supercommutative superalgebra is commutative as well). But if p = 2, one has to
define the squaring on (L⊗A)1̄ separately from the bracket. For an arbitrary Lie superalgebra L, this
can be done only if A is a supercommutative associative superalgebra, and the definition is as follows:

(l ⊗ a)2 = 0 for l ∈ L0̄, a ∈ A1̄;
(l ⊗ a)2 = l2 ⊗ a2 for l ∈ L1̄, a ∈ A0̄;

 ∑
1≤i≤n

li ⊗ ai

2

=
∑

1≤i≤n
(li ⊗ ai)2 +

∑
1≤i<j≤n

(−1)p(lj)p(ai)[li, lj ]⊗ aiaj

for any homogenous li ∈ L and ai ∈ A such that p(li) + p(ai) = 1̄ for all i. (The sign (−1)p(lj)p(ai) is
not needed if p = 2, but it is introduced here so that the definition would work for other characteristics
as well.)

Observe that if A is just commutative, not supercommutative, it is impossible to define (l⊗ a)2 for
any l even and a odd. One can not set (l ⊗ a)2 := l2 ⊗ a2, because for any even l its square is not
defined. If A is supercommutative, then for a odd, we set a2 = 0, and everything is OK.

However, if p = 2 and L is a Lie superalgebra with a 2|4-structure (in particular, if L is a restricted

Lie algebra with a 2-structure l 7−→ l[2] for any l ∈ L), then one can introduce a Lie superalgebra
structure on L⊗A even if A is a commutative associative superalgebra, as follows:

(l ⊗ a)2 = l[2] ⊗ a2 for any l ∈ L0̄ and a ∈ A1̄;
(l ⊗ a)2 = l2 ⊗ a2 for any l ∈ L1̄ and a ∈ A0̄;

 ∑
1≤i≤n

li ⊗ ai

2

=
∑

1≤i≤n
(li ⊗ ai)2 +

∑
1≤i<j≤n

[li, lj ]⊗ aiaj

for any homogenous li ∈ L and ai ∈ A such that p(li) + p(ai) = 1̄ for all i. (No signs here because
2|4-structure exists only if p = 2.)

1.9. On degenerate invariant symmetric bilinear forms. Let p = 2 and let g be a simple
finite-dimensional Lie superalgebra such that [g, g] 6= g, i.e., there are elements which can
not be obtained by bracketing, only by squaring, and let k := codim[g, g]; for example, if

g = osp
(1)
IΠ(1|2), then k = 2. The dimension of the space of degenerate invariant symmetric

bilinear forms on g is ≥ 1
2
k(k + 1) = dimS2(g/[g, g]). These are forms whose kernel contains

[g, g]. Such forms (−,−) are invariant because for them

([x, y], z) = (x, [y, z]) = 0 for any x, y, z ∈ g.
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2. Basics, naively

2.1. Sign Rule, skew and anti. The definitions of Lie superalgebra are the same for any
p 6= 2 or 3: they are obtained from the definition of the Lie algebra using the Sign Rule “if
something of parity p is moved past something of parity q, the sign (−1)pq accrues; formulas
defined on homogeneous elements are extended to any elements via linearity”.

In addition to the Sign Rule, note that morphisms of superalgebras are only even ones.
Observe that sometimes applying the Sign Rule requires some dexterity (we have to distin-

guish between two versions both of which turn in the nonsuper case into one, called either skew-
or anti-commutativity, see [Gr])

ba = (−1)p(b)p(a)ab (supercommutativity)
ba = −(−1)p(b)p(a)ab (superanticommutativity)
ba = (−1)(p(b)+1)(p(a)+1)ab (superskew-commutativity)
ba = −(−1)(p(b)+1)(p(a)+1)ab (superantiskew-commutativity)

The skew formulas are those that can be “straightened” by the change of parity of the space
on which the structure is considered, whereas the prefix anti requires an overall minus sign
regardless of parity. In what follows the symmetry of bilinear forms and commutativity of
superalgebras are named according to the above definitions.
2.2. Lie superalgebra, pre-Lie superalgebra, Leibniz superalgebra.

For any p, a Lie superalgebra is a superspace g = g0̄ ⊕ g1̄ such that the even part g0̄ is a Lie
algebra, the odd part g1̄ is a g0̄-module (made into the two-sided one by anti -symmetry, i.e.,
[y, x] = −[x, y] for any x ∈ g0̄ and y ∈ g1̄) and on g1̄, a squaring x 7→ x2 and the bracket are
defined via a linear2 map s : S2(g1̄) −→ g0̄, where S2(g1̄) is the symmetric square of g1̄, as
follows:

x2 := s(x⊗ x).(4)

[x, y] := s(x⊗ y + y ⊗ x) for any x, y ∈ g1̄.(5)

The linearity of the g0̄-valued function s implies that

(ax)2 = a2x2 for any x ∈ g1̄ and a ∈ K, and(6)

[x, y] = (x+ y)2 − x2 − y2 for any x, y ∈ g1̄,(7)

and the bracket on g1̄ is a bilinear form with values in g0̄.(8)

For p 6= 2 or 3, the Jacoby identity for three equal to each other odd elements is

3[x, [x, x]] = 0

2Squaring is a nonlinear map from g1̄ to g0̄, whereas s is a linear map from S2(g1̄) to g0̄. From this linearity
we deduce that

(ax)2 = s((ax)⊗ (ax)) = s(a2 · x⊗ x) = a2s(x⊗ x) = a2x2

and

(x+ y)2 − x2 − y2 = s((x+ y)⊗ (x+ y))− s(x⊗ x)− s(y ⊗ y)

= s((x+ y)⊗ (x+ y)− x⊗ x− y ⊗ y) = s(x⊗ y + y ⊗ x) = [x, y].

What is nice in this approach: before, we had to state conditions

“(ax)2 = a2x2” and

“(x+ y)2 − x2 − y2 is a bilinear form”

separately; now, they both follow from the definition “x2 = s(x⊗ x), where s is a linear map on S2(g1̄)”. Both
concepts “linear map” and “symmetric square” are simple and natural.
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which is equivalent to

(9) [x, [x, x]] = 0 for any x ∈ g1̄ if p 6= 3.

If p = 3, to the antisymmetry and Jacoby identity amended by the Sign Rule, we have to add
condition (9), separately. The superalgebra satisfying the antisymmetry and Jacoby identity,
but not the condition (9) is called pre-Lie superalgebra; for examples, see [BBH].

If p = 2, the antisymmetry for p = 2 should be replaced by an equivalent for p 6= 2, but
otherwise stronger alternating or antisymmetry condition

[x, x] = 0 for any x ∈ g0̄.

The Jacobi identity involving odd elements takes the form of the following two conditions:

[x2, y] = [x, [x, y]] for any x ∈ g1̄, y ∈ g0̄,(10)

[x2, x] = 0 for any x ∈ g1̄.(11)

The superalgebra satisfying Jacoby identity, but just symmetry not the antisymmetry for its
even elements is a special case of Leibniz superalgebra.

Over Z/2, the condition (11) must (see Example 2.2.1) be replaced with a more general one:

(12) [x2, y] = [x, [x, y]] for any x, y ∈ g1̄.

For any other ground field this more general condition is a corollary of condition (11).

2.2.1. Example. This example shows that over Z/2, condition (12) is not a corollary of con-
dition (11). Take a 2|3-dimensional algebra g with the even part spanned by elements A and
B, the odd part spanned by elements X, Y and Z, and the algebraic structure given as follows:
• the even part is commutative;
• the action of g0̄ on g1̄ is given by the following multiplication table

X Y Z
A 0 Z 0
B Z 0 0

• the squaring on g1̄ is given by the formula

(aX + bY + cZ)2 = a2A+ b2B for all a, b, c ∈ Z/2.
This algebra g satisfies (11) since

[(aX + bY + cZ)2, aX + bY + cZ] = [a2A+ b2B, aX + bY + cZ] = (a2b+ ab2)Z,

and since a, b ∈ Z/2, we have a2 = a and b2 = b, so a2b+ ab2 = 0.
But the algebra g does not satisfy (12): [X2, Y ] = Z 6= [X, [X, Y ]] = 0.

2.2.2. Other requirements. If one wants der g to be a Lie superalgebra for any Lie superal-
gebra g, one has to add the condition

(13) D(x2) = [Dx, x] for any odd element x ∈ g and any D ∈ der g.

Condition (13) is a generalization of (10), (11) for D = adx, where x ∈ g.
By an ideal of a Lie superalgebra one always means an homogeneous ideal; for p = 2, the

ideal should be closed with respect to squaring.
The Lie superalgebra g is said to be simple if dim g > 1 and g has no nontrivial (distinct

from 0 and g) ideals.
For p = 2, the definition of the derived algebra of the Lie superalgebra g changes, see eq. (1).
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An even linear map r : g −→ gl(V ) is said to be a representation of the Lie superalgebra g
and V is a g-module if

r([x, y]) = [r(x), r(y)] for any x, y ∈ g;
r(x2) = (r(x))2 for any x ∈ g1̄.

2.3. The p|2p-structure or restricted Lie superalgebra. Let the ground field K be of
characteristic p > 0, and g a Lie algebra. For every x ∈ g, the operator (adx)

p is a derivation
of g. If this derivation is an inner one, then the Lie algebra g is said to be restricted or having
a p-structure. In other words, a p-structure is a map [p] : g −→ g, x 7→ x[p] such that

[x[p], y] = (adx)
p(y) for any x, y ∈ g,

(ax)[p] = apx[p] for any a ∈ K, x ∈ g,
(x+ y)[p] = x[p] + y[p] +

∑
1≤i≤p−1

si(x, y) for any x, y ∈ g,

where isi(x, y) is the coefficient of λi−1 in (adλx+y)
p−1(x).

For a Lie superalgebra g in characteristic p > 0, let the Lie algebra g0̄ be restricted and

(14) [x[p], y] = (adx)
p(y) for any x ∈ g0̄, y ∈ g.

This gives rise to the map (recall that the bracket of odd elements is the polarization of the
squaring x 7→ x2)

[2p] : g1̄ → g0̄, x 7→ (x2)[p],

satisfying the condition

(15) [x[2p], y] = (adx)
2p(y) for any x ∈ g1̄, y ∈ g.

The pair of maps [p] and [2p] is called a p-structure (or, sometimes, a p|2p-structure) on g, and
g is said to be restricted. It suffices to determine the p|2p-structure on any basis of g; on simple
Lie superalgebras there is at most one p|2p-structure.
• If (15) is not satisfied, the p-structure on g0̄ does not have to generate a p|2p-structure

on g: even if the actions of (adx)
p and adx[p] coincide on g0̄, they do not have to coincide on

the whole of g. The restricted universal enveloping U [p](g) is defined for Lie algebras g as the
quotient of the universal enveloping U(g) modulo the two-sided ideal i generated by g⊗p − g[p]

for any g ∈ g.
For the Lie superalgebra g The restricted universal enveloping U [p](g) is the quotient of U(g)

modulo the two-sided ideal i generated by g⊗p − g[p] for any g ∈ g0̄.
The seemingly needed further factorization modulo the two-sided ideal generated by the

elements g⊗2p − g[2p] for any g ∈ g1̄ is not needed: these elements are in i automatically, as is
not difficult to show.
• If p = 2, there are other, seemingly natural, versions of restrictedness, see [BLLS]; we will

not consider them in this text.

2.4. Linear (matrix) Lie superalgebras. Certain basics of Linear Superalgebra are not
well-known, no harm in reminding a bit more than is strictly necessary: (1) the Lie superalgebra
of series q is an analog of gl; (2) we consider non-degenerate symmetric bilinear forms, so it is
natural to introduce the Lie superalgebras of series osp (resp. pe) which preserve even (resp.
odd) such forms.

The general linear Lie superalgebra of all supermatrices of size Par corresponding to linear
operators in the superspace V = V0̄ ⊕ V1̄ over the ground field K is denoted by gl(Par), where
Par = (p1, . . . , p|Par |) is an ordered collection of parities of the basis vectors of V for which
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we take only vectors homogeneous with respect to parity and |Par | := dimV . Usually, for the
standard (simplest from a certain point of view) format, gl(0̄, . . . , 0̄, 1̄, . . . , 1̄) is abbreviated to
gl(dimV0̄| dimV1̄). Any supermatrix in gl(Par) can be uniquely expressed as the sum of its
even and odd parts; in the standard format this is the following block expression; on non-zero
summands the parity is defined:(

A B
C D

)
=

(
A 0
0 D

)
+

(
0 B
C 0

)
, p

((
A 0
0 D

))
= 0̄, p

((
0 B
C 0

))
= 1̄.

The supertrace is the map gl(Par) −→ K, (Xij) 7−→
∑

(−1)piXii. Thus, in the standard format,

str

(
A B
C D

)
= trA−trD. Observe that for Lie superalgebra glC(p|q) over a supercommutative

superalgebra C, i.e., for supermatrices with elements in C, we have

strX = trA− (−1)p(X) trD for any X =

(
A B
C D

)
,

where p(X) = p(Aij) = p(Dkl) = p(Bil) + 1̄ = p(Ckj) + 1̄,

so on odd supermatrices with entries in C such that C1̄ 6= 0, the supertrace coincides with the
trace.

Since str[x, y] = 0, the subsuperspace of supertraceless matrices constitutes a Lie subsuper-
algebra called special linear and denoted sl(Par).

There are, however, at least two super versions of gl(n), not one; for reasons, see [Lsos, Ch1,
Ch.7]. The other version — q(n) — is called the queer Lie superalgebra and is defined as the
one that preserves — if p 6= 2 — the complex structure given by an odd operator J , i.e., q(n)
is the centralizer C(J) of J :

q(n) = C(J) = {X ∈ gl(n|n) | [X, J ] = 0}, where J2 = − id .

It is clear that by a change of basis we can reduce J to the form (shape) J2n in the standard
format, and then the elements of q(n) take the form

(16) q(n) =

{
(A,B) :=

(
A B
B A

)
, where A,B ∈ gl(n) and J2n :=

(
0 1n
−1n 0

)}
.

(Over any algebraically closed field K, instead of J we can take any odd operator K such that
K2 = a idn|n, where a ∈ K×; and the Lie superalgebras C(K) are isomorphic for distinct K; if
p = 2, it is natural to select K2 = id.)

On q(n), the queertrace is defined: qtr : (A,B) 7−→ trB. Denote by sq(n) the Lie superalge-
bra of queertraceless matrices; set psq(n) := sq(n)/K12n.

Clearly, gl and q correspond to the super version of Schur’s lemma over an algebraically closed
field: an irreducible module over a collection S of homogeneous operators can be absolutely
irreducible, i.e., have no proper invariant subspaces, then the only operator commuting with S
is a scalar (the gl case), or can have in invariant subspace, which is not a subsuperspace, then
the superdimension of the module is of the form n|n and an odd operator K interchanges the
homogeneous components of the module (the q case).

2.4.1. Supermatrices of operators. To the linear map of superspaces F : V −→ W there
corresponds the dual map F ∗ : W ∗ −→ V ∗ between the dual superspaces. In bases consisting
of homogeneous vectors vi ∈ V of parity p(vi), and wj ∈ W of parity p(wj), the formula
F (vj) =

∑
iwiXij assigns to F the supermatrix X. In the dual bases, the supertransposed
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matrix Xst corresponds to F ∗:

(Xst)ij = (−1)(p(vi)+p(wj))p(wj)Xji.

In the standard supermatrix format we have

X :=

(
A B
C D

)
7−→ Xst =

(
At (−1)p(X)Ct

−(−1)p(X)Bt Dt

)
=



(
At Ct

−Bt Dt

)
if p(X) = 0̄,(

At −Ct

Bt Dt

)
if p(X) = 1̄.

2.4.2. Supermatrices of bilinear forms. Having selected a basis (by definition consisting of
vectors homogeneous with respect to parity) of the superspace V , we define the Gram matrix
B = (Bij) of the bilinear form Bf on V by the formula

(17) Bij = (−1)p(B)p(vi)Bf (vi, vj) for the basis vectors vi ∈ V .

This formula for the Gram matrix of Bf allows us to identify any bilinear form B(V,W ) with
an operator, an element of Hom(V,W ∗), see [Lsos, Ch.1].

Recall that the upsetting of bilinear forms u : Bil(V,W ) −→ Bil(W,V ) is given by the formula

(18) u(Bf )(w, v) = (−1)p(v)p(w)Bf (v, w) for any v ∈ V and w ∈ W .

Let now W = V , and Bil(V ) := Bil(V, V ). The shape of the Gram matrix Bu of a homoge-
neous form u(Bf ) in the standard format of V is as follows

(19) Bu =

(
Rt (−1)p(B)T t

(−1)p(B)St −U t

)
for B =

(
R S
T U

)
,

The form Bf is said to be symmetric if Bu = B, and antisymmetric if Bu = −B. (Here we
correct terminology of [BKLS]: there are no supersymmetric bilinear forms.) In particular, the
form on gl(V ) (resp. q(V )) given by

(X, Y ) = str(XY ) for any X, Y ∈ gl(V ) (resp. (X, Y ) = qtr(XY ) for any X, Y ∈ q(V ))

is symmetric.
Clearly, the upsetting of Gram matrices of bilinear forms is not supertransposition.
Observe that the passage from V to Π(V ) turns every symmetric form B on V into

an antisymmetric one on Π(V ) and vice versa.
Most popular normal shapes of the (Gram matrices of) the even non-degenerate symmetric

form are the ones which in the standard format are as follows:

Bev(m|2n) = diag(1m, J2n) :=

(
1m 0
0 J2n

)
or diag(Am, J2n) :=

(
Am 0
0 J2n

)
,

where J2n = antidiag(1n,−1n) :=

(
0 1n
−1n 0

)
and Am = antidiag(1, . . . , 1).

The Lie superalgebra aut(B) ⊂ gl(Par) that preserves the Gram matrix B of the form
Bf ∈ Bil(V ) consists of the supermatrices X ∈ gl(Par) such that

XstB + (−1)p(X)p(B)BX = 0 for an homogeneous matrix B ∈ gl(Par).

The usual notation for aut(Bev(m|2n)) is osp(m|2n); sometimes one writes more explicitly,
ospsy(m|2n). Observe that the antisymmetric non-degenerate bilinear form is preserved by the
“symplectico-orthogonal” Lie superalgebra ospa(m|2n) isomorphic to ospsy(m|2n).
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A non-degenerate symmetric odd bilinear form Bodd(n|n) can be reduced to a normal
shape whose matrix in the standard format is J2n, see (19), NOT Π2n := antidiag(1n, 1n)
which is antisymmetric, see [Lsos], contrary to hasty expectations. The usual notation for
aut(Bodd(Par)) is pe(Par). The passage from V to Π(V ) establishes an isomorphism pesy(Par) ∼=
pea(Par). These isomorphic Lie superalgebras are called, as A. Weil suggested, periplectic.

A large class of Lie superalgebras either simple, or relatives of simple, have a Cartan matrix.
Neither periplectic superalgebras nor their simple relatives have Cartan matrices; this is not
so for p = 2, see [BGL1] for a classification of all finite-dimensional modular Lie superalgebras
with indecomposable Cartan matrix over any algebraically closed field.

2.5. Queerification for p = 2 (from [BLLS]). If p = 2, then we can queerify any restricted
Lie algebra g as follows. We set q(g)0̄ = g and q(g)1̄ = Π(g); define the multiplication involving
the odd elements as follows:

(20) [x,Π(y)] = Π([x, y]); (Π(x))2 = x[2] for any x, y ∈ g.

Clearly, if g is restricted and i ⊂ q(g) is an ideal, then i0̄ and Π(i1̄) are ideals in g. So, if g is
restricted and simple, then q(g) is a simple Lie superalgebra. (Note that g has to be simple as
a Lie algebra, not just as a restricted Lie algebra, i.e., g is not allowed to have any ideals, not
only restricted ones.)

As an aside remark, observe that (the generalization of) the queerification is one of the two
procedures producing all simple Lie superalgebras, see [BLLS].

3. Basics, continued: the functor of points approach

3.1. Morphisms of supervarieties. Recall the definition of supermanifolds, see, e.g., [Del,
Ch.1], [MaG]. Same as manifolds are glued from coordinate patches locally diffeomorphic
to a ball in Rn, supermanifolds are ringed spaces,3 i.e., pairs M := (M,OM), where M
is an m-dimensional manifold and OM is the structure sheaf of M, locally isomorphic to
C∞(U)⊗ Λ

.
(n), where U is a domain in M , and Λ

.
(n) is the Grassmann algebra with n an-

ticommuting generators. Pairs U := (U,C∞(U)⊗ Λ
.
(n)) are called superdomains. Morphisms

of supermanifolds M −→ N are pairs (ϕ, ϕ∗), where ϕ : M −→ N is a diffeomorphism and
ϕ∗ : ON −→ OM is a preserving the natural parity of Grassmann-valued sheaves of functions
morphism of sheaves.

That was definition of a superdomain over R. Over any ground field K, we will later define
affine superschemes (which play the role of superdomains in the algebraic setting).

Consider a superdomain U of superdimension 0|n. Unlike superdomains of superdimension
a|b with a 6= 0, we can consider U over any ground field K and call it superpoint. The underlying
domain (or variety) of U is a single point. Since O(U) = Λ

.
(n), the superpoint U has a lot of

nontrivial automorphisms, namely the group Aut0̄ Λ
.
(n) of parity preserving automorphisms of

Λ
.
(n). All such automorphisms are of the form (here the ξi are generators of Λ

.
(n))

(21) ξj 7→
∑
r

ϕrjξr +
∑
s≥1

∑
j1<···<j2s+1

ϕ
j1...j2s+1

j ξj1 . . . ξj2s+1 ,

where the matrix (ϕrj) with elements in K is invertible. We see that such automorphisms
constitute the algebraic group (or a Lie group if charK = 0) whose Lie algebra consists of the
even elements of the Lie superalgebra vect(0|n) := derΛ

.
(n).

3To understand the definition of ringed spaces, read [MaAG].
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What corresponds to the odd vector fields from derΛ
.
(n)? We consider the answer in the

following more general setting, the one involving both even and odd indeterminates, but only
for K = R or C. In the absence of even indeterminates the displayed formulas below in this
subsection are meaningful for any K, i.e., for superpoints.

Let E be the trivial vector bundle over a domain U of dimension m with fiber V of dimen-
sion n; let Λ

.
(E) be the exterior algebra of E. To the bundle E, we assign the superdomain

U = (U,C∞(U)), where C∞(U) is the superalgebra of smooth sections of Λ
.
(E). Clearly, each

automorphism of the pair (U,Λ
.
(E)), i.e., of the vector bundle Λ

.
(E), induces an automorphism

of the superdomain U .
However, not all automorphisms of the superdomain U are obtained in this way. By defi-

nition, every morphism of superdomains ϕ : U −→ V is in one-to-one correspondence with a
homomorphism of the superalgebras of functions ϕ∗ : C∞(V) −→ C∞(U).

Every homomorphism ϕ∗ is defined on the (topological4) generators of the superalgebra, in
other words: coordinates. Consider the corresponding formulas

(22)


ϕ∗(ui) = ϕ0

i (u) +
∑
r≥1

∑
i1<···<i2r

ϕi1...i2ri (u)ξi1 . . . ξi2r ,

ϕ∗(ξj) =
∑
r≥0

∑
j1<···<j2r+1

ψ
j1...j2r+1

j (u)ξj1 . . . ξj2r+1 .

A) The terms ϕ∗(ui) = ϕ0
i (u) determine an endomorphism of the underlying domain U .

B) The linear terms ϕ∗(ξj) =
∑

i ψ
i
j(u)ξi determine endomorphisms of the fiber V (over each

point its own fiber, as the dependence on u shows).
C) The higher terms in ξ from the right-hand side of the expression of ϕ∗(ξj) in (22) determine

an endomorphism of the larger fiber — the Grassmann superalgebra Λ
.
(E).

The endomorphisms A)–C) existed in Differential Geometry, and no need to introduce a flashy
prefix “super” was felt.

The difference between the vector bundle Λ
.
(E) and the superdomain U is most easily un-

derstood when the reader looks at the boxed terms in (22). These terms, meaningless in the
conventional Differential Geometry, make sense in the new paradigm:

In the category of superdomains there are more morphisms than in the category
of vector bundles: morphisms with non-vanishing boxed terms in (22) are exactly
the additional ones.

However, even the boxed terms in eq. (22) is not all we get in the new setting: we still did not
describe any of odd parameters of endomorphisms. To account for the odd parameters, we
have to consider the functor from the category of supercommutative superalgebras
to the category of groups C 7−→ Aut0̄

C(C∞(U) ⊗ C),i.e., the parity preserving5 C-linear

4A topological algebra A over a topological field K is a topological vector space together with a bilinear
multiplication A × A −→ A, continuous in a certain sense, and such that A is an algebra over K. Usually
the continuity of the multiplication means that the multiplication is continuous as a map between topological
spaces A×A −→ A. A set S is a generating set of a topological algebra A if the smallest closed subalgebra of
A containing S is A.

5It took a while to acknowledge the fact that there are automorphisms of the Grassmann algebra C[ξ],
considered as an associative algebra, and more generally, of C[x, ξ], where x = (x1, . . . , xm) and ξ = (ξ1, . . . , ξn),
not preserving parity, see [LSe]. The meaning of such general automorphisms is unclear at the moment. D.L.
conjectures that by analogy with supersymmetries that are wider than symmetries under groups or Lie algebras,
these general automorphisms further widen supersymmetries. Recently, U. Iyer proved that Volichenko algebras,
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automorphisms of the form

(23)



ϕ∗(ui) = ϕ0
i (u) +

∑
r≥1

∑
i1<···<ir

ϕi1...iri (u)ξi1 . . . ξir ,

ϕ∗(ξj) =
∑
r≥0

∑
j1<···<j2r+1

ψ
j1...j2r+1

j (u)ξj1 . . . ξj2r+1

+ ψ0
i (u) +

∑
r≥1

∑
j1<···<j2r

ψj1...j2rj (u)ξj1 . . . ξj2r ,

where

ϕ0
i (u), ϕi1...i2ri (u), ψ

j1...j2r+1

j (u) ∈ C0̄ whereas ψ0
i (u), ψj1...j2rj (u), ϕ

i1...i2r+1

i (u) ∈ C1̄

for all r are parameters of the infinite-dimensional supergroup (infinitesimally: Lie superalgebra
vect(m|n)) of automorphisms of C∞(U) or, equivalently, of diffeomorphisms of U ..

3.2. Supervarieties and superschemes (after [L1]). Over the ground field R or C, let E
be a vector bundle over M with fiber V . Let Λ

.
(V ) be the Grassmann superalgebra of V and

U ⊂M is an open domain.
A supervariety is a ringed space M = (M,OM), where M is a variety, and the sheaf OM

is locally isomorphic to OU ⊗ Λ
.
(V ), or its quotient. A supervariety isomorphic to the ringed

space whose structure sheaf is the sheaf of sections of the vector bundle Λ
.
(E) over M is called

split.
Observe that every object in the category of smooth supervarieties (= supermanifolds) is split

(for a 1-line proof, see [MaG]), and therefore there is a one–to–one correspondence between the
set of objects in the category of vector bundles over manifolds M and the set of objects in the
category of smooth supermanifolds. The latter category has, however, many more morphisms
than the former, see eq. (23).

A purely algebraic version of the supermanifold over any field (or any commutative ring) of
any characteristic is an affine superscheme SpecC, where C is a supercommutative superalgebra
or a superring. The affine superscheme is defined literally as the affine scheme: its points are
prime ideals defined literally as in the commutative case, i.e., p ( C is prime6

(24) if a, b ∈ C and ab ∈ p, then either a ∈ p or b ∈ p.

The space of any affine scheme is endowed with Zariski topology and the structure sheaf, defined
as in the commutative case, see [MaAG], whose 1968 edition was the source of inspiration
for [L1].

NB: there is just one subtlety: the localization of the superalgebra (or superring) C at the
prime ideal p should be performed with respect to the multiplicative system Sp := C \ p and
it is not at all obvious if we should consider — in order to have well-defined fractions with

defined as the nonhomogeneous subalgebras of Lie superalgebras, play the role of Lie algebras for the groups of
C-points of such general automorphisms, see [I].

6K. Coulembier pointed out to us that the so far conventional definitions in the non-commutative case are at
variance with the common sense: at the moment, if (24) holds, p is called (say, in Wikipedia) completely prime
while it would be natural to retain the term prime, as is done in [L1] and by J. Bernstein, P. Deligne et al in
[Del], since the definition is the same as in the commutative case despite the fact that supercommutative rings
are not commutative, whereas the term prime is (so far) applied to any ideal P ( R of the non-commutative
ring R which for any two ideals A and B in R satisfies the following version of (24):

if AB ⊂ P , then either A ⊂ P or B ⊂ P .
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non-homogeneous denominators — only left fractions b−1a or only right fractions ab−1 or the
equivalence (equality) of fractions does not depend on the choice (left or right). This is the
only non-trivial place in the transition from Grothendieck’s schemes to superschemes.

3.3. The functor of points represented by a supervariety or a superscheme. Smooth
manifolds can be described as sets of points with a topology. For manifolds-with-boundary
(which, strictly speaking, are not manifolds, hence the suggestive notation “in one word”) or
over fields of characteristic p > 0, the set of points does not define the variety or scheme; the
same is true for supervarieties and superschemes. To determine one of such objects M, we
consider it parametrized by a superscheme SpecC. In other words, we consider collections
Hom(SpecC,M) of SpecC-points ofM, usually called C-points of M. IfM can be recovered
from its algebra of functions F , as is the case, e.g., with affine (super)schemes, we can consider
Hom(F , C) instead of Hom(SpecC,M).

3.3.1. Linear supervariety←→linear superspace. First, recall that there is a one-to-one
correspondence between linear (a.k.a. vector) superspaces V and the linear supervarieties

V = (V0̄,OV0̄
⊗ Λ

.
(V ∗1̄ )).

The morphisms of linear superspaces constitute the space Hom(V,W ) := (Hom(V,W ))0̄, whereas
the supervariety of linear homomorphisms V −→ W is the linear supervariety corresponding
to the superspace Hom(V,W ) := Hom(V,W ).

In various instances, e.g., dealing with actions of supergroups, it is more convenient for
many7 to consider, instead of vector superspace V and even the linear supermanifold V , the
functor ScommSalgsK  ModK from the category of supercommutative K-superalgebras C to
the category of C-modules represented by V and V :

C 7−→ V(C) = V (C) := V ⊗ C for any C,

where “any” is understood inside a suitable category (e.g., finitely generated over K).

3.3.2. Lie superalgebras. In the above terms, a Lie superalgebra in the category of superva-
rieties is a vector superspace g, or a linear supervariety (supermanifold) G corresponding to it,
corepresenting the functor from the category of supercommutative K-superalgebras C to the
category of Lie superalgebras understood “naively”.

In other words, considering corepresenting functor instead of a representing one, we replace
g, or the linear supervariety corresponding to it, by the algebra P (g) of polynomial functions
on g. (Even over R we have to replace the spaces by the algebras of polynomial functions on
these spaces.)

Clearly, P (g) is a free supercommutative (and associative with 1) superalgebra generated by
g∗, i.e., there is a natural isomorphism of functors

C 7→ HomScommSalgsK(P (g), C) and C 7→ HomK-V ect(g
∗, C),

whereas the second functor is naturally isomorphic to C 7→ ForgetK-V ect→Sets(g⊗ C).
At least, so it works for finite-dimensional and purely even g.
To the Lie superalgebra homomorphisms (in particular, to representations) a morphism of

the respective functors should correspond.

7This convenience is not just a matter of taste or experience and habit. More precisely, one has to work
with either commuting diagrams, like in [MaAG, Section 1.15.4], or with matrix realizations, as one does when
working with Lie group actions. The language of points allows one to actually compute something, like passing
from the invariant language of operators (commutative diagrams) to matrices.
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Clearly, if g is a Lie superalgebra, then g(C) := g ⊗ C is also a Lie superalgebra for any C
functorially in C. The last three words mean that

(25)

for any morphism of supercommutative superalgebras C −→ C ′, there exists
a morphism of Lie superalgebras g ⊗ C −→ g ⊗ C ′ so that a composition of
morphisms of supercommutative superalgebras

C −→ C ′ −→ C ′′

goes into the composition of Lie superalgebra morphisms

g(C) −→ g(C ′) −→ g(C ′′);

the identity map goes into the identity map, etc.

An ideal h ⊂ g represents the collection of ideals h(C) ⊂ g(C) for every C.
In the above terms the action of Lie or algebraic (over any field) supergroup G (which is

a group in the category of supervariaties) in the superspace V is the action of G(C) in V (C)
for every C and these actions should be compatible with morphisms of supercommutative
superalgebras C −→ C ′ in the same sense as in (25).

3.3.3. Non-split supervarieties. The category C of analytic (over C) and algebraic (over any
field) supervarieties have non-split objects. In other words, in the categories of analytic and
algebraic supervarieties with a fixed underlying variety, there are not only more morphisms
than in the category of the vector bundles over the underlying variety, but there are even
more objects. Observe that to every non-split object there corresponds its split version. The
obstructions to splitness were first (and most lucidly) described in [Gre]; for examples, see
[MaG, Va, Vi]. We will not consider such non-split horrors in this note for the following
reasons, see [AD]:

(26) every C∞ supermanifold is locally split;

over any contractible paracompact subset in Rn and over any affine supervariety, all vector
bundles are trivial. Since all (finite-dimensional) linear supervarieties are affine, we do not have
to bother about non-split supervarieties thinking about Lie superalgebras.

Observe that triviality of the vector bundles does not necessarily takes place for algebraic
supervarieties and supeschemes, and also over other fields and non-affine schemes, see [AD].

However, we can consider any such category C; then any object g ∈ ObC of this category
representing the functor C 7→ g(C) := HomC(SpecC, g), i.e., satisfying conditions (25), is said
to be a Lie superalgebra in the category C.

3.3.4. The “even rules principle”, see [Del, §§1.7, 1.8], does not work for p = 2. For
p = 2, the functor

C 7−→ g(C) := (g⊗ C)0̄

defines at best a Z/2-graded Lie algebra. To define a Lie bracket in (g ⊗ C)0̄, it suffices to
know the bracket in g (and the multiplication in C, of course), whereas the squaring in g is not
needed. This leads to the following two problems:

First, the squaring can be non-uniquely recovered from the functor, moreover, different squar-
ings corresponding to the same functor can determine non-isomorphic Lie superalgebras.

For example, consider a 1|1-dimensional superspace spanned by an even element A and
an odd X. On this space, consider two Lie superalgebra structures: in both of them the
bracket is identically equal to 0, but in one of them, denote it g1, we set X2 = 0, i.e., this
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is a commutative Lie superalgebra, whereas in the other one, denote it g2, we set X2 = A.
These Lie superalgebras are non-isomorphic, but the functors of points corresponding to them
coincide (to any supercommutative superalgebra C the functors assign a commutative Lie
algebra), because the brackets in the Lie superalgebras g1 and g2 are the same.

Second, To the functor of points there might correspond a Z/2-graded Lie algebra, to which
a superalgebra corresponds on which it is impossible to define any squaring. For example, con-
sider osp(1|2), spanned by H, X±, X2

±. Now take its first “derived algebra” ignoring squaring,
i.e., take h := Span{[x, y] | x, y ∈ osp(1|2)}; this h is spanned by H and X±. This “derived al-
gebra” is closed with respect to the bracket, so it represents the functor ScommSalgs LieAlgs
given by C 7−→ (h⊗C)0̄. But it is impossible to define squaring on h: the square of X+ should
be an even element x such that adx sends X− to X+, but there is no such element x in h.

3.3.5. The “even rules principle”, see [Del, §§1.7, 1.8], gives too much for p = 3. Any
pre-Lie super algebra represents a functor ScommSalgs  LieAlgsK given by C 7−→ (g ⊗ C)0̄.
Whereas we’d like to have a functor represented by Lie superalgebras, not pre-Lie superalgebras.

3.4. Deformations and deforms with odd parameters. Which of the infinitesimal defor-
mations can be extended to a global one is a separate much tougher question, usually solved
ad hoc; for examples over fields of characteristics 3 and 2, see [BLW] and references therein.
Deformations with odd parameters are always integrable. Let us give two graphic examples.

1) Deformations of representations. Consider a representation ρ : g −→ gl(V ). The
tangent space of the moduli superspace of deformations of ρ is isomorphic to H1(g;V ⊗ V ∗).
For example, if g is the 0|n-dimensional (i.e., purely odd) Lie superalgebra (with the only bracket
possible: identically equal to zero), its only irreducible representations are the 1-dimensional
trivial one, 1, and Π(1). Clearly,

1⊗ 1
∗ ' Π(1)⊗ Π(1)∗ ' 1,

and, because the Lie superalgebra g is commutative, the differential in the cochain complex is
zero. Therefore

H1(g;1) = E1(g∗) ' Π(g∗),

so there are dim g odd parameters of deformations of the trivial representation. If we consider
g “naively”, all of these odd parameters will be lost.

2) Deformations of the brackets. Let C be a supercommutative superalgebra.
Recall, see [Ru], where the non-super case is considered, that a deformation of a Lie super-

algebra g over SpecC, is a Lie algebra G such that G ' g ⊗ C, as spaces. The deformation
is trivial if G ' g ⊗ C, as Lie superalgebras over C, not just as C-modules, and non-trivial
otherwise.

Generally, the deforms — the results of deformations — of a given Lie superalgebra g over
K are Lie superalgebras G⊗I K, where I is any closed point in SpecC.

In particular, consider a deformation with an odd parameter τ . This is a Lie superalgebra G
isomorphic to g⊗K[τ ] as a super space; if, moreover, G ' g⊗K[τ ] as a Lie superalgebra,
i.e.,

[a⊗ f, b⊗ g] = (−1)p(f)p(b)[a, b]⊗ fg for all a, b ∈ g and f, g ∈ K[τ ],

then the deformation is considered trivial (and non-trivial otherwise). Observe that g ⊗ τ is
not an ideal of G: the ideal should be a free K[τ ]-module.

Comment. In a sense, the people who ignore odd parameters of deformations have a point:
we (rather they) consider classification of simple Lie superalgebras (or whatever other problem)
over the ground field K, right? However, the odd parameters of deformations are no less natural,
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actually, than the odd part of the Lie superalgebra itself. In order to see these parameters, we
have to consider whatever we are deforming not over K, but over K[τ ].

We do the same, actually, when τ is even and we consider formal deformations over K[[τ ]].
If the formal series in τ converges in a domain D, we can evaluate τ for any τ ∈ D and — if
dim g < ∞ — consider copies gτ , where τ ∈ D, of the same dimension as g. If the parameter
is formal or odd, such an evaluation is only possible trivially: τ 7→ 0.

4. Examples

For examples (even classification in several cases) of deforms of known symmetric simple mod-
ular Lie superalgebras, see [BGL2], where the cocycles we consider below are given explicitly,
in terms of a Chevalley basis. Here we consider one of the simplest examples of deformations
with an odd parameter and several other examples.

4.1. Lemma. Consider the Lie superalgebra oo
(1)
IΠ(1|2) and its deform with the help of the

cocycle c−2, and oo
(1)
II (1|2) and its deforms with the help of the cocycles c1 or c2, see [BGL2,

§7.2 and §7.3]. There is no NIS on any of these deformed Lie superalgebras g := gci.

Proof. The direct computations show that [g, g] 6= g. Hence, no NIS on g due to Lemma 1.6. �

4.2. On a map of cochains of F(g) to cochains of g. Let g be a Lie superalgebra and F(g)
its desuperization, i.e., F is the functor that forgets squaring and parity. The choice of a basis
in g induces the corresponding choice of a basis in F(g) (the opposite is not true since a basis
vector in F(g) might be inhomogeneous in g). This correspondence between bases defines a K-
linear map i : F(g) → g. If p = 2, then E(V ) ( S(V ), where E(V ) is the exterior algebra
and S(V ) is the symmetric algebra of the space V , and the map i induces an injective map
i∗ : C

.
(F(g)) −→ C

.
(g) between spaces of cochains. The map i∗ does not necessary commute

with the differential: as it was noted in [BGL2, § 7.11], not every cocycle of F(g) defines
a cocycle of g. Interestingly, sometimes, the map i∗ allows us to express some of cocycles of g,
representing cohomology classes, in terms of images of cocycles of F(g) under i∗ (plus perhaps
terms defining a deformation of the squaring), see examples in Lemmas 4.3.1 and 4.3.2.

4.3. Two lemmas on NISes on deforms. For n = 3 and 4, the NISes on deforms of wk(n;α)
can be directly translated to the corresponding superizations — deforms of bgl(n;α) — because
the squaring is not involved at all in the invariance condition for the bilinear form. In what
follows gc denotes a deform(ation) of g with the help of a cocycle c.

4.3.1. Lemma. For Lie superalgebra g = bgl(4;α), where α 6= 0, 1, all deforms depend on
even parameters; see [BGL2]. Choose a basis in g as in [BGL2].

These deforms preserve a NIS with the same Gram matrix as that of the NIS on g, except for
the deform gc0 of bgl(4;α) with cocycle c0 in which case the Gram matrix Γc0 is a different one.
The desuperization of Γc0 coincides with the Gram matrix, described in [BKLS, Claim 3.3], of
the corresponding deform of wk(4;α) with cocycle c0.

Proof. For a basis in H2(F(g); F(g)) take (the classes of) c±12, c±10, c1
±8, c2

±8, c1
±6, c2

±6, c1
±4,

c2
±4, c±2, c0; for their explicit expressions, see [BGL2, § 7.12]. Due to the symmetry of the root

system, it suffices to consider only cocycles of non-positive degree. As it was noted in [BGL2,
§ 7.13], the corresponding basis elements (of non-positive degree) in H2(g; g) are the following
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cocycles

c̄−12 = i∗(c−12), c̄−10 = i∗(c−10),

c̄1−8 = i∗(c
1
−8), c̄2−8 = i∗(c

2
−8) + α2(1 + α)h3 ⊗ (x̂11)∧2,

c̄1−6 = i∗(c
1
−6) + (1 + α)h3 ⊗ (x̂9)∧2, c̄2−6 = i∗(c

2
−6) + α2(1 + α)(h3 + h4)⊗ (x̂8)∧2,

c̄1−4 = i∗(c
1
−4) + (1 + α)(h3 + h4)⊗ (x̂6)∧2, c̄2−4 = i∗(c

2
−4) + (1 + α)(h3 + h4)⊗ (x̂6)∧2,

c̄−2 = i∗(c−2) + (1 + α)h4 ⊗ (x̂1)∧2, c̄0 = i∗(c0).

where xi, hi, yi are elements of the basis described in [BGL1]. Hence, since the squaring is not
involved in the invariance condition, a NIS on F(gc) induces a NIS on gc. �

4.3.2. Lemma. For Lie superalgebra g = bgl(1)(3;α)/c, where α 6= 0, 1, all deforms depend
on even parameters; see [BGL2]. Choose a basis in g as in [BGL2].

These deforms preserve a NIS with the same Gram matrix as that of the NIS on g, except for
the deform gc0 of bgl(1)(3;α)/c with cocycle c0 in which case the Gram matrix Γc0 is a different
one. The desuperization of Γc0 coincides with the Gram matrix, described in [BKLS, Claim

3.4], of the corresponding deform of wk(1)(3;α)/c with cocycle c0.

Proof. For the basis inH2(F(g); F(g)) take (the classes of) c±6, c1
±4, c2

±4, c±2, c0; for their explicit
expressions, see [BGL2, § 7.10]. Due to symmetry of the root system, it suffices to consider
only cocycles of non-positive degree. The corresponding basis elements (of non-positive degree)
in H2(g; g) are the following cocycles, see [BGL2, § 7.11]

c̄−4 = i∗(c
2
4), c̄−2 = i∗(c−2), c̄0 = i∗(c0).

Hence, since the squaring is not involved in the invariance condtion, a NIS on F(gc) induces
a NIS on gc. �

4.4. Claim. For g = q(sl(3)), consider its two deformations: gA(τ) given by the odd cocyle A
with parameter τ and gB(ε) with parameter ε given by the even cocycle B; for explicit expressions
of these cocycles, see [BGL2, Lemma 8.3].

The space of NISes on gA(τ) is of rank 1|1 over K[τ ].
The spaces of NISes on gB(ε) is 1|1-dimensional if ε 6= 1, and 0-dimensional if ε = 1.

Proof. Although the proof is analytical, the statement is called Claim because the expressions
of NISes are obtained with the aid of SuperLie.

Choose a basis in g given by the Chevalley basis in sl(3), namely, xi, yi, hi, and Πxi, Πyi,
Πhi, also called elements of the Chevalley basis.

A) There are two NISes, ωtr and ωqtr, on q(sl(3)) defined by the trace and queer trace,
respectively. Then, a NIS ω on gA(τ) is defined as follows

ω = c1ωtr + c2ωqtr + τ(c3ωtr + c4ωqtr + c1B1 + c2B2), c1, c2, c3, c4 ∈ K,
where B1 (resp. B2) is an odd (resp. even) bilinear form for which

B1(Πh1, h1) = B1(Πh1, h2) = B1(Πh2, h1) = B1(Πh2, h2) = 1,
B2(y1, x1) = B2(y3, x3) = B2(Πh2,Πh1) = B2(Πy2,Πx2) = 1.

and zero on all other pairs of the Chevalley basis elements. Observe that gA(τ) is a free module
over K[τ ]. An arbitrary element t = a + bτ ∈ K[τ ] is defined by a pair of numbers a, b ∈ K.
Set t1 = c1 + c3τ and t2 = c2 + c4τ ∈ Λ[τ ]. We have

ω = t1(ωtr + τB1) + t2(ωqtr + τB2)
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Therefore, the space of NISes on gA(τ) is of rank 1|1 over K[τ ].
B) Note that the bracket in gB(ε) is nonlinear with respect to ε. There are two NISes on

gB(ε) when ε 6= 1:
1) An even NIS ωe for which (and zero on all other pairs of the Chevalley basis elements)

ωe(h1, h2) = 1, ωe(x1, y1) = 1 + ε2,
ωe(x2, y2) = 1 + ε2, ωe(x3, y3) = 1 + ε,
ωe(Πh1,Πh2) = 1 + ε, ωe(Πx1,Πy1) = 1 + ε2,
ωe(Πx2,Πy2) = 1 + ε2, ωe(Πx3,Πy3) = 1.

2) An odd NIS ωo for which (and zero on all other pairs of the Chevalley basis elements)

ωo(h1,Πh2) = 1, ωo(h2,Πh1) = 1 + ε,
ωo(x1,Πy1) = 1 + ε2, ωo(y1,Πx1) = 1 + ε,
ωo(x2,Πy2) = 1 + ε2, ωo(y2,Πx2) = 1 + ε,
ωo(x3,Πy3) = 1, ωo(y3,Πx3) = 1.

It is easy to see that ωe is a deformation of the NIS defined by the trace, and ωo is a defor-
mation of the NIS defined by the queer trace.

There is no NIS on gB(ε) for ε = 1.
Thus, the space of NISes on gB(ε) is (1|1)-dimensional if ε 6= 0 and 0-dimensional if ε = 1. �

4.5. Lemma. The Lie superalgebra k(1;n|1) and its (n−2)-parametric family of even deforms
described in [KL, Theorem 6.2] have no NIS.

Proof. For these Lie superalgebras, we have [g, g] 6= g, and hence no NIS due to Lemma 1.6. �
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10000 Zagreb, Croatia; a.o.krutov@gmail.com, cEqua Simulation AB, Råsundavägen 100, Solna,
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