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SPLITTING NECKLACES, WITH CONSTRAINTS

DUŠKO JOJIĆ, GAIANE PANINA, AND RADE ŽIVALJEVIĆ

Abstract. We prove several versions of Alon’s necklace-splitting theorem,
subject to additional constraints, as illustrated by the following results.

(1) The “almost equicardinal necklace-splitting theorem” claims that,
without increasing the number of cuts, one guarantees the existence of a
fair splitting such that each thief is allocated (approximately) one and the
same number of pieces of the necklace, provided the number of thieves
r = pν is a prime power.

(2) The “binary splitting theorem” claims that if r = 2d and the thieves
are associated with the vertices of a d-cube then, without increasing the
number of cuts, one can guarantee the existence of a fair splitting such that
adjacent pieces are allocated to thieves that share an edge of the cube.

This result provides a positive answer to the “binary splitting necklace
conjecture” of Asada at al. (Conjecture 2.11 in [5]) in the case r = 2d.

1. Introduction

The Splitting Necklace Theorem of Noga Alon [1, 2] is one of the best known
early results of topological combinatorics where the methods of algebraic topol-
ogy were applied with great success. The name of the theorem stems from the
interpretation of the interval [0, 1] as an open (unclasped), continuous necklace
where n probability measures µi describe the distribution of “precious gem-
stones” of n different type. The result, together with its discrete version [1, 3],
solves the problem of finding the minimum number of the cuts of the necklace
needed for a fair distribution of pieces among r persons (r “thieves” who stole
the necklace).

Theorem 1.1. ([1]) Let µ1, µ2, . . . , µn be a collection of n continuous prob-
ability measures on [0, 1]. Let r ≥ 2 and N := (r − 1)n. Then there exists
a partition of [0, 1] by N cut points into N + 1 intervals I1, I2, . . . , IN+1 and
a function f : {1, 2, . . . , N + 1} → {1, . . . , r} such that for each µi and each
j ∈ {1, 2, . . . , r}, ∑

f(p)=j

µi(Ip) = 1/r . (∗)

The “fair splitting condition” (∗) illustrates the requirement that each thief
should be treated fairly and receive an equal net value of the necklace, as
evaluated by each of the measures µi. Theorem 1.1 is optimal, as far as the

Key words and phrases. Splitting necklaces theorem, collectively unavoidable complexes,
discrete Morse theory, configuration space/test map scheme.
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2 D. JOJIĆ, G. PANINA, AND R. ŽIVALJEVIĆ

number of cuts is concerned, which means that for a generic choice of measures
a fair partition with less than (r − 1)n cuts is not possible. However, it is an
interesting question if the necklace-splitting theorem can be refined by adding
extra conditions (constraints) on how the pieces of the necklace are distributed
among the thieves.

1.1. Splitting necklaces with additional constraints. Additional con-
straints in the necklace splitting problem (and in the general Tverberg prob-
lem) were originally introduced and studied in [21]. The emphasis in this and
in a subsequent paper [10] was on finding good lower bounds on the number
of distinct fair splittings of a generic necklace.

The more recent paper [5] links the necklace splitting problem with other
fair division problems and emphasizes the importance of the so called “binary
splitting of necklaces” for studying the equipartitions of mass distributions by
hyperplanes.

Our central new results are necklace splitting theorems with constraints of
the following two types:

(1) “Almost equicardinal splitting” (Theorem 4.3, Corollary 4.4). Assum-
ing that r is a prime power we show (Theorem 4.3) that, with the same
number of cuts N := (r − 1)n as in the original Alon’s theorem, it
is always possible to fairly divide the necklace such that each of the
thieves is given either t or t + 1 pieces where t := b(N + 1)/rc. In
the special case when N + 1 is divisible by r we obtain as a corollary
the result that there exists an equicardinal fair splitting of the necklace
when each thief is given exactly the same number t := (N + 1)/r of
pieces.

An interesting feature of the proof is that we initially use a larger
number of cuts. Eventually we get rid of superfluous cuts and end up
with the desired number N := (r − 1)n. Unlike the original Alon’s
theorem we need the condition that r = pν is a prime power and it
remains an interesting open problem if this condition can be relaxed.

(2) “Binary splitting” (Theorem 5.1, Conjecture 5.2). Suppose that r =
2d and assume that thieves are positioned at the vertices of the d-
dimensional cube. A binary necklace splitting is a fair splitting with
N = (r − 1)n cuts with the additional constraint that adjacent (pos-
sibly degenerate) pieces of the necklace are allocated to thieves whose
vertices share an edge.

A binary necklace splitting theorem is proven in [5] for d = 2, that
is for the case of 4 thieves. The idea of the proof was to embed the
necklace into the Veronese (moment) curve, and apply an equipartition
result by two hyperplanes, which turns out to be a binary splitting.

We prove the existence of a binary splitting (Theorem 5.1) for any
r = 2d and with the same number of cuts N := (r − 1)n, by applying
a more direct combinatorial/topological argument.
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1.2. Fair splitting of a discrete necklace. The following theorem is referred
to as the discrete necklace-splitting theorem.

Theorem 1.2. ([1]) Every unclasped necklace with n types of beads and rai
beads of type i ∈ [n] has a fair splitting among r thieves with at most (r− 1)n
cuts.

Theorem 1.2 is a consequence of Theorem 1.1 by an elementary combi-
natorial argument, see [1, p. 249] [3, Lemma 7] or [5, Lemma 2.3]. By a
similar argument each continuous necklace-splitting theorem with additional
constraints, mentioned in Section 1.1, has an obvious discrete version.

Acknowledgement. This research was supported through the programme
“Research in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach in
2019. Gaiane Panina was supported by the RFBR Grant 20-01-00070. Rade
Živaljević was supported by the Grants 174020 and 174034 of the Ministry of
Education, Science and Technological Development of Serbia.

2. Preliminaries and main definitions

2.1. Partition/allocation of a necklace. A partition of a necklace [0, 1]
into m = N + 1 parts is described by a sequence of cut points

0 = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ xm = 1 .

(Here and in the sequel, m = N + 1.)
The associated, possibly degenerate intervals Ij := [xj−1, xj] (j = 1, . . . ,m)

are distributed among the thieves by an allocation function f : [m] → [r].
The pair (x, f), where x = (x1, x2, . . . , xN) is the sequence of cuts is called a
partition/allocation of a necklace.

2.2. Fair and (k, s)-equicardinal partitions/allocations.

(1) A partition/allocation (x, f) of a necklace is fair if each measure is
evenly distribute among the thieves, i.e. if for each measure µj and
each thief i ∈ [r],

µj(
⋃

ν∈f−1(i)

Iν) =
1

r
.

(2) A partition/allocation (x, f) is (k, s)-equicardinal if
(i) each thief gets no more than k + 1 parts (intervals), and (ii) the
number of thieves receiving exactly k + 1 parts is not greater than s.

Note that for an equicardinal fair division it is not important where we allo-
cate the degenerate (one-point) segments. Actually, in our setting for almost
equicardinal necklace-splitting, we prefer (Section 3) not to allocate them at
all. However, we will use degenerate segments in a binary splitting.
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2.3. Collectively unavoidable complexes. Collectively unavoidable r-tuples
of complexes are introduced in [13]. They were originally studied as a com-
mon generalization of pairs of Alexander dual complexes, Tverberg unavoidable
complexes of [7] and r-unavoidable complexes from [12].

Definition 2.1. An ordered r-tuple K = 〈K1, . . . , Kr〉 of subcomplexes of
2[m] is collectively r-unavoidable if for each ordered collection (A1, . . . , Ar) of
pair-wise disjoint sets in [m] there exists i such that Ai ∈ Ki.

2.4. Balanced simplicial complexes.

Definition 2.2. We say that a simplicial complex K ⊆ 2[m] is (m, k)-balanced
if it is positioned between two consecutive skeleta of the simplex on m vertices,

(1)

(
[m]

6 k

)
⊆ K ⊆

(
[m]

6 k + 1

)
.

2.5. Borsuk-Ulam theorem for fixed point free actions.

Theorem 2.3. (Volovikov [20]) Let p be a prime number and G = (Zp)k an
elementary abelian p-group. Suppose that X and Y are fixed-point free G-spaces

such that H̃ i(X,Zp) ∼= 0 for all i ≤ n and Y is an n-dimensional cohomology
sphere over Zp. Then there does not exist a G-equivariant map f : X → Y .

2.6. Connectivity of symmetrized deleted joins.

Definition 2.4. The deleted join [17, Section 6] of a family K = 〈Ki〉ri=1 =
〈K1, . . . , Kr〉 of subcomplexes of 2[m] is the complex K∗∆ = K1 ∗∆ · · · ∗∆ Kr ⊆
(2[m])∗r where A = A1 t · · · t Ar ∈ K∗∆ if and only if Aj are pairwise disjoint
and Ai ∈ Ki for each i = 1, . . . , r. In the case K1 = · · · = Kr = K this reduces
to the definition of r-fold deleted join K∗r∆ , see [17].

The symmetrized deleted join [16] of K is defined as

SymmDelJoin(K) :=
⋃
π∈Sr

Kπ(1) ∗∆ · · · ∗∆ Kπ(r) ⊆ (2[m])∗r∆ ,

where the union is over the set of all permutations of r elements and (2[m])∗r∆
∼=

[r]∗m is the r-fold deleted join of a simplex with m vertices.

An elementA1t· · ·tAr ∈ (2[m])∗r∆ is from here on recorded as (A1, A2, . . . , Ar;B)
where B is the complement of ∪ri=1 Ai, so in particular A1t· · ·tAr tB = [m]
is a partition of [m] such that Ai 6= ∅ for some i ∈ [r].

Lemma 2.5. The dimension of the simplex can be read of from |B| as

dim(A1, . . . , Ar;B) = m− |B| − 1.

The following theorem is one of the two main results from [14].

Theorem 2.6. Suppose that K = 〈Ki〉ri=1 = 〈K1, . . . , Kr〉 is a collectively r-
unavoidable family of subcomplexes of 2[m]. Moreover, we assume that there
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exists k ≥ 1 such that Ki is (m, k)-balanced for each i = 1, . . . , r. Then the
associated symmetrized deleted join

SymmDelJoin(K) = SymmDelJoin(K1, . . . , Kr)

is (m− r − 1)-connected.

The following theorem [16, Theorem 3.3] was originally proved by a direct
shelling argument. As demonstrated in [14] it can be also deduced from The-
orem 2.6.

Theorem 2.7. Let r, d ≥ 2 and assume that rt + s = (r − 1)d where r and s
are the unique integers such that t ≥ 1 and 0 ≤ s < r. Let N = (r− 1)(d+ 2)
and m = N + 1. Then the symmetric deleted join SymmDelJoin(K1, . . . , Kr)
of the following skeleta of the simplex ∆N = 2[N+1],

(2) K1 = · · · = Ks =

(
[N + 1]

6 t+ 2

)
, Ks+1 = · · · = Kr =

(
[N + 1]

6 t+ 1

)
.

is (m− r − 1)-connected.

3. New configuration spaces for constrained splittings

Perhaps the main novelty in our approach and the central new idea, empha-
sizing the role of collectively unavoidable complexes, is the construction and
application of modified (refined) configuration spaces for splitting necklaces.

We begin by recalling a “deleted join” version of the configuration space/test
map scheme [25], applied to the problem of splitting necklaces, as described in
[21] (see also [17] for a more detailed exposition).

3.1. Primary configuration space. The configuration space of all sequences
0 = x0 ≤ x1 ≤ . . . ≤ xN ≤ xm = 1 (m = N + 1) is an N -dimensional
simplex ∆N , where the numbers λj := xj − xj−1 (j = 1, . . . ,m) play the role
of barycentric coordinates. For a fixed allocation function f : [m] → [r], the
set of all partitions/allocations (x, f) is also coordinatized as a simplex Cf ∼=
∆N . The primary configuration space, associated to the necklace-splitting
problem, is obtained by gluing together N -dimensional simplices Cf , one for
each function f : [m] → [r]. Note that the common face of Cf1 and Cf2 is
the set of all pairs (x, f1) (∼ (x, f2)) such that Ij = [xj−1, xj] is degenerate if
f1(j) 6= f2(j).

The simplicial complex obtained by this construction turns out to be (the
geometric realization of) the deleted join (∆N)∗r∆

∼= [r]∗m. Indeed, a simplex
τ = (A1, A2, . . . , Ar;B) ∈ (∆N)∗r∆ is described as a partition A1tA2t· · ·tArt
B = [m], and a partition/allocation (x, f) is in (the geometric realization of) τ
if and only if B = {j ∈ [m] | Ij = [xj−1, xj] is degenerate} and Ai = f−1(i) \B
is the set of all non-degenerate intervals allocated to i ∈ [r].

In other words, (x, f) is in the common face τ = (A1, A2, . . . , Ar;B) of Cf1
and Cf2 iff B = {j ∈ [m] | f1(j) 6= f2(j)} and for each i ∈ [r], Ai = f−1

1 (i)\B =
f−1

2 (i) \B.



6 D. JOJIĆ, G. PANINA, AND R. ŽIVALJEVIĆ

3.2. The test map for detecting fair splittings. Let µ = (µ1, . . . , µn) be
the vector valued measure associated to the collection of measures {µj}nj=1. If
(x, f) ∈ (A1, . . . , Ar;B) ∈ [r]∗m is a partition/allocation of the necklace let

φi(x, f) := µ(
⋃
j∈Ai

Ij) =
∑
j∈Ai

µ(Ij) ∈ Rn

be the total µ-measure of all intervals Ij = [xj−1, xj], allocated to the thief
i ∈ [r]. If φ(x, f) := (φ1(x, f), . . . , φn(x, f)) ∈ (Rn)r then (x, f) is a fair
splitting if and only if φ(x, f) ∈ D, where D := {(v, . . . , v) | v ∈ Rn} ⊂ (Rn)r

is the diagonal subspace.
Summarizing, (x, f) ∈ (∆N)∗r∆ is a fair splitting of the necklace ([0, 1]; {µj}nj=1)
if and only if (x, f) is a zero of the composition map

(3) φ̂ : (∆N)∗r∆ −→ (Rn)r/D .

3.3. The group of symmetries. The final ingredient in applications of the
configuration space/test map scheme is a group G of symmetries [25], charac-
teristic for the problem. In the chosen scheme it is the p-toral group G = (Zp)ν ,
where p is a prime and r = pν . The group G acts freely on the deleted join
(∆N)∗r∆ and without fixed points on the sphere S((Rn)r/D) ⊂ (Rn)r/D.

Moreover, the map (3) is clearly G-equivariant.

3.4. New (refined) configuration spaces. For each constraint an adequate
refined configuration space should be carefully designed. In principle the con-
straint dictates the choice of an appropriate configuration space, as a subspace
of (∆N)∗r∆ . However this choice may not be unique and even the initial choice
of the parameter N may depend on the constraint.

Refined configuration spaces for the almost equicardinal splitting problem. In
order to derive Alon’s necklace-splitting theorem (Theorem 1.1) it is natural
to choose N , the dimension of the primary configuration space (∆N)∗r∆ , to be
equal to the expected number of cuts, N = (r − 1)n.

Our basic new idea is to allow (initially) a larger number of cuts, but to
force some of these cut points to coincide, by an appropriate choice of the
configuration space. This is achieved by choosing a G-invariant, (r − 1)n-
dimensional subcomplex K of the primary configuration space (∆N)∗r∆ , where
N is (typically) larger than the number (r − 1)n of essential cut points.

Our first choice for a refined configuration space K ⊆ (∆N)∗r∆ is the sym-
metrized deleted join SymmDelJoin(K) of a family K = {Ki}ri=1 of collec-
tively unavoidable subcomplexes of 2[m] where m = N + 1 = (r−1)(n+ 1) + 1.

Refined configuration spaces for the binary splitting problem. For the binary
splitting theorem we choose the usual parameter N = (r − 1)n, as in Alon’s
original theorem. Recall that maximal simplices (facets) of the primary con-
figuration space (∆N)∗r∆

∼= [r]∗(N+1) can be interpreted as the graphs Γ(f) ⊂
[N + 1]× [r] of functions f : [N + 1]→ [r].
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Assuming that r = 2d thieves are positioned on the vertices of a d-dimensional
cube, we consider a subcomplex K ⊂ (∆N)∗r∆ that includes the graphs of
functions corresponding to binary splitting of the necklace. More explicitly
Γ(f) ∈ K if and only if for each i ∈ [N ] either f(i) = f(i+1) or {f(i), f(i+1)}
is an edge of the d-cube.

4. Almost equicardinal necklace-splitting theorem

We begin with a very simple example of a necklace where all fair parti-
tions/allocations are easily described.

Example 4.1. Assume that the measures µj (j = 1, . . . , n) are supported by
pairwise disjoint subintervals of [0, 1]. In this case we need at least (r−1)n cuts
which dissect the necklace into (r−1)n+1 parts. We observe that for this choice
of measures there always exists a (k, s)-equicardinal, fair partition/allocation
of measures to r thieves where k is the quotient and s the corresponding
remainder, on division of (r − 1)n+ 1 by r.

The choice of measures in Example 4.1 is rather special and it is natural to
ask if such a partition is always possible.

Problem 4.2. For a given collection {µj}nj=1 of continues measures on [0, 1]
and r thieves, is it always possible to find a fair, (k, s)-equicardinal partition/allo-
cation of the necklace where k and s are chosen as in Example 4.1?

The following extension of the classical necklace theorem of Alon provides
an affirmative answer to Problem 4.2.

Theorem 4.3. (Almost equicardinal necklace-splitting theorem) For given
positive integers r and n, where r = pν is a power of a prime, let k = k(r, n) and
s = s(r, n) be the unique non-negative integers such that (r− 1)n+ 1 = kr+ s
and 0 ≤ s < r. Then for any choice of n continuous, probability measures
on [0, 1] there exists a fair partition/allocation of the associated necklace with
(r − 1)n cuts which is also (k, s)-equicardinal in the sense that:
(1) each thief gets no more than k + 1 parts (intervals);
(2) the number of thieves receiving exactly k + 1 parts is not greater than s.

Proof. As emphasized in Section 3.4, the basic idea of the proof is to initially
allow a larger number of cuts, and then to force some of these cuts to be
superfluous by an appropriate choice of the configuration space.

Our choice for a refined configuration space is the symmetric deleted join
K := SymmDelJoin(K1, . . . , Kr) of the family K = 〈Ki〉ri=1,

(4) K1 = · · · = Ks =

(
[N + 1]

6 k + 1

)
, Ks+1 = · · · = Kr =

(
[N + 1]

6 k

)
of subcomplexes of the simplex ∆N = 2[N+1], where N = (r − 1)(n+ 1), and

(5) m = N + 1 = (r − 1)(n+ 1) + 1 = r(k + 1) + s− 1 .
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By substituting k = t + 1 and n = d + 1 in Theorem 2.7 we observe
that the complex K is (m − r − 1)-connected. By construction (Section 3)
a partition/allocation (x, f) ∈ K corresponds to a fair division if and only if

φ̂(x, f) = 0, where φ̂ is the test map described in the equation (3). If a fair
division (x, f) does not exist there arises a G-equivariant map

φ̂ : K −→ S(Rnr/D)
G' S(r−1)n−1

where G = (Zp)r and S(V ) is a G-invariant sphere in a G-vector space V .
Since by (5)

m− r − 1 = [(r − 1)(n+ 1) + 1]− r − 1 = (r − 1)n− 1

this contradicts Volovikov’s theorem (Theorem 2.3).
Suppose that (x, f) ∈ (A1, . . . , Ar;B). Then, with a possible reindexing of

thieves, (x, f) ∈ τ = (A1, . . . , Ar;B) where |Ai| ≤ k + 1 for i = 1, . . . , s and
|Aj| ≤ k for j = s + 1, . . . , r. From here it immediately follows that (x, f)
describes a (k, s) balanced partition/allocation of the necklace. �

Corollary 4.4. (Equicardinal necklace-splitting theorem) In the special case
s = 0, or equivalently if (r− 1)n+ 1 is divisible by r, Theorem 4.3 guarantees
the existence of a fair partition/allocation which is equicardinal in the sense
that each thief is allocated exactly the same number of pieces of the necklace.
Here we tacitly assume that the necklace is generic, i.e. that all (r − 1)n cuts
are needed.

Splitting necklaces and collectively unavoidable complexes. Collec-
tively unavoidable complexes K = {Ki}ri=1, introduced in [13], include as a
special case pairs of Alexander dual complexes [17] (in the case r = 2) and
unavoidable complexes [7, 12] (in the case K1 = · · · = Kr). As shown in
[14], they are a very useful tool for proving theorems of Van Kampen-Flores
type. Here we demonstrate that they also provide a natural environment for
necklace-splitting theorems with constraints.

Theorem 4.3 turns out to be a very special case of the following theorem
where the constrains on the partition/allocation are ruled by a collectively
unavoidable r-tuple of complexes.

As in Theorem 4.3, we assume that r = pν is a power of a prime number and
m = N + 1 = (r− 1)(n+ 1) + 1. Moreover, k = k(r, n) and s = s(r, n) are the
unique non-negative integers such that (r − 1)n+ 1 = kr + s and 0 ≤ s < r.

Theorem 4.5. Let K = 〈Ki〉ri=1 = 〈K1, . . . , Kr〉 be a sequence of subcomplexes
of 2[m] such that:

(1) each complex Ki is (m, k)-balanced, and
(2) the sequence K is collectively unavoidable.

Choose a collection {µi}ni=1 of n continuous, probability measures on [0, 1].
Then for any company C of r thieves there exists a fair partition/allocation
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(x, f) ∈ SymmDelJoin(K) of the associated necklace with at most n(r − 1)
cuts. More explicitly, there exists a (r − 1)n-dimensional simplex

(A1, . . . , Ar;B) ∈ SymmDelJoin(K)

and a partition/allocation (x, f) ∈ (A1, . . . , Ar;B) which is fair for C, with a
suitable choice of a bijection C ↔ [r].

Proof. The proof is similar to the proof of Theorem 4.3, with an additional
intermediate step allowing us to control the number of essential cut points.

As expected we use Theorem 2.6, instead of Theorem 2.7, which claims that,
under the conditions of the theorem, the complex K := SymmDelJoin(K) is
(m− r − 1)-connected. However, we refine the configuration space even more
by selecting the (m− r)-dimensional skeleton K(m−r) of K as the domain for

our test map φ̂. The complex K(m−r) is also (m − r − 1)-connected and the
condition dim(K(m−r)) = (r − 1)n guarantees that the number of superfluous
cuts (indexed by B) is at least r − 1. �

5. Binary necklace splitting

Recall (see [5] or Section 1.1) that if r = 2d thieves are positioned at the
vertices of the d-dimensional cube then a binary necklace splitting is a fair
splitting with the additional constraint that adjacent (possibly degenerate)
pieces of the necklace are allocated to thieves whose vertices share an edge.

Theorem 5.1. (Binary necklace-splitting theorem) Given a necklace with n
kinds of beads and r = 2d thieves, there always exists a binary necklace splitting
with n(r − 1) cuts.

Note that the authors of [5] originally introduced a slightly more general
binary necklace splitting where r thieves are placed at the vertices of a cube of
dimension dlog2 re (allowing some vertices of the cube to remain unoccupied).

Theorem 5.1 provides an affirmative answer to the following conjecture (Con-
jecture 2.11 in [5]) in the case when r is a power of two.

Conjecture 5.2. Given a necklace with n kinds of beads and r ≥ 4 thieves,
there exists a binary necklace splitting of size n(r − 1).

Both versions of the binary necklace splitting are special cases of the graph-
constrained or G-constrained necklace splitting, where G = (V,E) is a con-
nected graph on the set V ∼= [r] of thieves.

Definition 5.3. Let G = (V,E) be a connected graph where V ∼= [r] is the
set of thieves. A necklace splitting is G-constrained if the corresponding par-
tition/allocation (x, f), where f : [m]→ [r] is the allocation function (Section
2.1), has the property that for each i = 1, . . . ,m− 1 either f(i) = f(i+ 1) or
{f(i), f(i + 1)} ∈ E is an edge of the graph G. A function f satisfying this
condition will be referred to as a G-constrained allocation function.
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Note that if for some f(i) = f(i+ 1) the cut-point xi is superfluous and can
be removed from the necklace splitting.

The following G-constrained simplicial subcomplex Km
G ⊆ (∆N)∗r∆

∼= [r]∗m

of the primary configuration space [r]∗m is a natural choice for a configuration
space suitable for studying the G-constrained splittings of a necklace.

Definition 5.4. Let G = (V,E) = ([r], E) be a connected graph. The G-
constrained complex Km

G ⊂ (∆N)∗r∆
∼= [r]∗m (G-complex for short) is defined

as the union of all simplices Cf (Section 3.1) where f : [m] → [r] is a G-
constrained allocation function (Definition 5.3).

The primary configuration space [r]∗m can be interpreted as the order com-
plex of a poset Π on the set V × [m] ∼= [r] × [m] where (x, i) 4 (y, j) in Π if
and only if i ≤ j.

Similarly let Πm
G be a subposet of Π, defined on the same set of vertices

V × [m], where in Πm
G

(x, i) 4 (y, j)⇔ i 6 j and dist(x, y) ≤ j − i.
(The distance function dist(x, y) is the graph-theoretic distance, i.e. the small-
est number of edges in a path connecting the vertices x, y ∈ V .)

It is clear from the construction that Km
G
∼= ∆(Πm

G ) is the order complex of
the poset Πm

G .

Remark 5.5. By construction Km
G is always a subcomplex of the standard

(primary) configuration space (∆N)∗r∆ (where m = N + 1) and Km
G = (∆N)∗r∆ if

G is the complete graph Kr. If r = 2d and Cd is the vertex-edge graph of the
d-dimensional cube, then Km

Cd is a proper configuration space for the binary
necklace-splitting problem.

As expected, in the course of the proof of Theorem 5.1 the main step is the
proof that the complex KN+1

Cd is N − 1 connected. For an inductive proof of
this fact we need the following definition.

Definition 5.6. For a given graph G = (V,E), where V = {vi}ri=1, let

Prism(G) = (V ′, E ′) to be a new graph with V ′ = {v(1)
i }ri=1

⋃
{v(2)

i }ri=1, as

the set of vertices. The vertices v
(1)
i and v

(1)
j (respectively, v

(2)
i and v

(2)
j ) share

an edge in Prism(G) if and only if {vi, vj} ∈ E. Moreover, the copies of the

same vertex v
(1)
i and v

(2)
i always share an edge in Prism(G).

Note that by definition Cd+1 = Prism(Cd) = Prismd(one-vertex graph).

Proposition 5.7. Suppose that G = (V,E) is a connected graph. If Km
G is

(m− 2)-connected for all m ≥ 2, then Km
Prism(G) is also (m− 2)-connected for

all m ≥ 2.

Proof. The proof is by induction on m. Let Π1 = Πm
Prism(G)\{(v

(1)
i ,m)}ri=1 and

Π2 = Πm
Prism(G) \ {(v

(2)
i ,m)}ri=1 be two subposets of Πm

Prism(G). By definition

Π1 ∪ Π2 = Πm
Prism(G) and Π1 ∩ Π2 = Πm−1

Prism(G).
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If ∆1 = ∆(Π1) and ∆2 = ∆(Π2) are the associated order complexes then
Km
Prism(G) = ∆1 ∪∆2 and Km−1

Prism(G) = ∆1 ∩∆2.

Let us show that the complex ∆1
∼= ∆2 has the same homotopy type as the

complex Km
G = ∆(Πm

G ).

Let e1 : Πm
G → Π1 be the inclusion map which maps (vi, j) to (v

(2)
i , j) and

let ρ1 : Π1 → Πm
G be a monotone map of posets defined by the formula:

ρ1(v(i), j) =

{
(v(2), j), if i = 2;
(v(2), j + 1), if i = 1.

These maps satisfy the relations:

(1) id = ρ1 ◦ e1 : Πm
G → Πm

G , and
(2) e1 ◦ ρ1(x) < x ∀x ∈ Π1.

By the homotopy property of monotone maps, see Quillen [18, Section 1.3]
(or Theorem 12 from [26]), we conclude that both e1 and ρ1 induce homotopy
equivalences of the order complexes ∆1 andKm

G . Similarly, we have a homotopy
equivalence ∆2 ' Km

G .
By the inductive assumption, ∆1∩∆2 = Km−1

Prism(G) is (m−3)-connected and

since both ∆1 and ∆2 are (m − 2)-connected by the Gluing Lemma (see [6,
Lemma 10.3]) the complex Km

Prism(G) is also (m− 2)-connected. �

Corollary 5.8. The complex K
(N+1)

Cd is N − 1 connected.

In light of the discrete-to-continuous reduction, described in Section 1.2,
Theorem 5.1 is a consequence of the following result.

Theorem 5.9. (Continuous binary necklace-splitting theorem) If the number
of thieves is r = 2d, then for each continuous necklace, with n continuous
probability measures µ1, . . . , µn on [0, 1] representing the distribution of n kinds
of beads, there exists a binary necklace splitting of with n(r − 1) cuts.

Proof. The proof is similar to the proof of Theorem 4.3 with Corollary 5.8
playing the role of Theorem 2.7. �

5.1. Binary necklaces plitting and equipartitions by hyperplanes. The
Grünbaum-Hadwiger-Ramos hyperplane mass partition problem [19, 24, 8, 9,
22] is the question of finding the smallest dimension d = ∆(j, k) such that for
every collection of j masses (measurable sets, measures) in Rd there exist k
affine hyperplanes that cut each of the j masses into 2k equal pieces.

Asada et al. in [5] obtained (the continuous version of) Theorem 5.1 in
the case r = 4 by embedding the necklace (= [0, 1]) into the moment curve
{(t, t2, . . . , tD) | −∞ ≤ t ≤ +∞} ⊂ RD and using a necklace splitting arising
from an equipartition of the necklace by two hyperplanes in RD.

These authors correctly observed that their approach would allow them to
deduce the general case r = 2d of Theorem 5.1 from Ramos’ conjecture [19]
which says that each collection of n continuous measures in RD admits an
equipartition by d hyperplanes, provided n(2d − 1) = dD.
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Moreover, they claim (at the end of Section 2) that a partial converse is
true, i.e. that Theorem 5.1 is strong enough to establish Ramos’ conjecture for
measures concentrated on the moment curve.

This is unfortunately not the case since there exist binary necklace splittings
which do not arise from equipartitions by hyperplanes, as illustrated by Exam-
ple 5.10. The reason is that hyperplane splittings have an additional property
of being “balanced”, due to the fact that each hyperplane contributes the same
number of cuts.

Example 5.10. Let r = 4 and n = 2 and suppose that the thieves A,B,C,D
are positioned in a cyclic order on the vertices of a square. By the necklace-
splitting theorem of Alon a continuous necklace with two types of beads (two
measures µ1, µ2) there exists a fair division with n(r−1) = 6 cuts. Assume that
µ1 and µ2 are, as in Example 4.1, uniform probability measures on two disjoint
intervals I and J . Suppose that this fair division arises from an equipartition
by two planes H1 and H2 in R3. The interval I is subdivided into subinter-
vals I1, I2, I3, I4 (by cut points x1 < x2 < x3), similarly J is subdivided into
J1, J2, J3, J4 by cut points y1 < y2 < y3 . By taking into account that each
plane has at most three points in common with the moment curve, we observe
that {x1, x3, y2} ⊂ H1 and {x2, y1, y3} ⊂ H2 (or vice versa). Assume that the
intervals I1, I2, I3, I4 are in this order allocated to thieves A,B,C,D.

From here we deduce that A and B (respectively C and D) are on different
sides of the hyperplane H1. Similarly A and D (respectively B and C) are
on different sides of the hyperplane H2. The rest of the allocation is uniquely
defined and reads as follows, J1 7→ D, J2 7→ A, J3 7→ B, J4 7→ C.

In turn this shows that the binary necklace splitting (Figure 5.1)

I1 7→ A, I2 7→ B, I3 7→ C, I4 7→ D J1 7→ D, J2 7→ C, J3 7→ B, J4 7→ A

cannot be obtained from an equipartition by two hyperplanes.

x1
x2

x3

y1
y2

y3

A
B

C

D

C B

A

A B

D C

Figure 1. A non-balanced binary splitting.
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[9] P.V.M. Blagojević, F. Frick, A. Haase, G. M. Ziegler. Hyperplane mass partitions
via relative equivariant obstruction theory. Documenta Math. 21 (2016), 735–771.

[10] S. Hell, On the number of Tverberg partitions in the prime power case, European
J. Combin. 28 (2007) 347–355.

[11] C.R. Hobby, J.R. Rice. A moment problem in L1 approximation. Proc. Amer. Math.
Soc., 16:665–670, 1965.
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plexes, Publ. Inst. Math. (Beograd) (N.S.) 104(118) (2018), 1–22.
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