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MULTIVARIATE HYBRID ORTHOGONAL FUNCTIONS

CLEONICE F. BRACCIALI AND TERESA E. PÉREZ

Abstract. We consider multivariate orthogonal functions satisfying hybrid
orthogonality conditions with respect to a moment functional. This kind of

orthogonality means that the product of functions of different parity order is

computed by means of the moment functional, and the product of elements
of the same parity order is computed by a modification of the original mo-

ment functional. Results about existence conditions, three term relations with
matrix coefficients, a Favard type theorem for this kind of hybrid orthogo-

nal functions are proved. In addition, a method to construct bivariate hybrid

orthogonal functions from univariate orthogonal polynomials and univariate
orthogonal functions is presented. Finally, we give a complete description of a

sequence of hybrid orthogonal functions on the unit disk on R2, that includes,

as particular case, the classical orthogonal polynomials on the disk.

1. Introduction

In [2] a class of orthogonal functions defined on the interval [−1, 1] has been
studied. These functions can be defined as

wn(x) = pn(x) +
√

1− x2qn−1(x), n > 0,

where pn(x) and qn−1(x) are real polynomials of respective degrees n and n − 1,
and satisfy pn(−x) = (−1)npn(x), qn−1(−x) = (−1)n−1qn−1(x).

Sequences of functions that have some orthogonality properties defined using a
positive measure φ on the interval [−1, 1] was also considered in [2]. Namely, the
sequence of functions {wn}n>0 satisfies∫ 1

−1

w2n+l(x)w2m+l(x)
√

1− x2 dφ(x) = h2n+l δn,m, l = 0, 1,∫ 1

−1

w2n+1(x)w2m(x) dφ(x) = 0,

(1.1)

for n,m = 0, 1, 2, . . ., with h2n+l 6= 0, δn,m = 0, if n 6= m and δn,m = 1, if n = m.
We refer to the functions {wn}n>0 satisfying (1.1) as hybrid orthogonal functions
in one variable.
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2 C. F. BRACCIALI AND T. E. PÉREZ

A function wn which satisfies the hybrid orthogonality properties (1.1), has ex-
actly n simple zeros on the interval (−1, 1), see [2, 5]. Hybrid orthogonal functions
in one variable were introduced in [4], as a special example, and in [5], where an
interesting connection with orthogonal polynomials on the unit circle was estab-
lished.

In this paper we extend results obtained in both papers [2, 5] in two directions.
On one hand, we consider hybrid orthogonality associated to moment functionals,
and then, as occurs in one variable ([3, Chapter 1]) new questions about existence
and a Favad type theorem arise in an natural way. On the other hand, we intro-
duce the multivariate version of the hybrid orthogonality that has allowed us to
give a common frame for this kind of hybrid orthogonality. In this way, a non
trivial extension of univariate hybrid orthogonal functions associated with moment
functionals to several variables is given. We work on Bd = {x ∈ Rd : ‖x‖ 6 1}, the
unit ball of Rd, for d > 1, the natural extension of the interval [−1, 1].

The paper is structured as follows. Section 2 is devoted to recall and establish
the basic facts about multivariate sets. Also, in this section, we define the func-
tional systems that we deal with and the multivariate orthogonal functions systems
satisfying hybrid orthogonality conditions with respect to a moment functional.

In Section 3 we give conditions for the existence of such type of hybrid orthog-
onal functions for a given moment functional. We prove three term relations with
matrix coefficients, and a Favard type theorem that allows to recover the hybrid
orthogonality from the three term relations.

A method to construct bivariate hybrid orthogonal functions system based in the
well known Koornwinder’s method ([6], [10]) is developed in Section 4. To construct
systems of bivariate hybrid orthogonal functions we use both univariate hybrid
orthogonal functions and univariate orthogonal polynomials. Also, the explicit
expressions of the entries of the matrix coefficients of the three term relations are
given.

In the last section we give two examples. The first example is a complete de-
scription of a sequence of hybrid orthogonal functions on the unit disk on R2 that
extends a family studied in [2] to the bivariate case. This description includes, as
particular case, the classical orthogonal ball polynomials ([6]). In the second ex-
ample we connect univariate hybrid orthogonal functions with bivariate orthogonal
polynomials on the bivariate semisphere H1 = {(x1, x2) ∈ R2 : x2

1+x2
2 = 1, x2 > 0}.

2. Definitions and first properties

In this Section, we introduce the main tools that we need for the rest of the
paper. We will work in any dimension d > 1, and then, the results given in [2]
can be deduced as a particular case of our study. Sometimes, we particularize our
results for the univariate case.

Let d > 1 be the number of variables. As usual, the Euclidean norm for x ∈ Rd
will be denoted by ‖x‖ =

√
x2

1 + x2
2 + · · ·+ x2

d, and the unit ball in Rd by

Bd = {x ∈ Rd : ‖x‖2 6 1}.

Along this paper, we work on the unit ball Bd, that is, we suppose that ‖x‖2 6 1,
for every x = (x1, x2, . . . , xd). When d = 1, we are working on the interval [−1, 1],
as in [2].
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We denote by α = (α1, α2, . . . , αd) ∈ Nd0 a multi-index, and we define |α| =
α1+α2+· · ·+αd. We order the multi-indexes by means of the graded lexicographical
order, that is, α < β if and only if |α| < |β|, and in the case |α| = |β|, the first
entry of β − α different from zero is positive.

Given x = (x1, x2, . . . , xd) and α = (α1, α2, . . . , αd) ∈ Nd0, we say that

xα = xα1
1 xα2

2 · · · x
αd

d

is a monomial of total degree |α| = α1 + α2 + · · · + αd. A real polynomial in d
variables of total degree n is defined by a linear combination of monomials such as

p(x) =
∑
|α|6n

aα x
α, aα ∈ R.

We denote by

Pdn = span{xα : |α| = n},
the linear space of homogeneous polynomials of exact degree n with real coefficients.
We must observe that

rdn := dimPdn = #{xα : |α| = n} =

(
n+ d− 1

d− 1

)
, n > 0.

That is, rdn express the number of different monomials for a fixed degree n > 0. In
addition, we define the linear spaces of multivariate real polynomials

Πd
n =

⋃
m6n

Pdm, and Πd =
⋃
n>0

Πd
n,

such that

sdn = dim Πd
n =

(
n+ d

d

)
=

n∑
m=0

rdm.

Observe that, for d = 1 we get r1
n = 1, s1

n = n + 1, P1
n = span{xn}, and Π1

n =
span{1, x, . . . , xn}. Therefore, we include the univariate case ([2]) as a part of our
study.

A useful tool along this paper is the canonical basis of Πd, formed as a sequence
of column vectors of increasing size rdn, {Xn}n>0, whose entries are all monomials
of total degree n ordered by using the reverse graded lexicographical order

Xn = (xα)|α|=n, n > 0.

For instance, for d = 3, the first elements of this basis are given by

X0 = (1); X1 = (x1, x2, x3)T ; X2 = (x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3)T , . . .

where the superscript T means, as usual, the transpose.
We must observe that the set of entries of {X0,X1, . . . ,Xn} is a basis of Πd

n, and
by extension, we say that the set {Xm}nm=0 form a basis of Πd

n.
Following [6, p. 71], for n > 0, we introduce the matrices Ln,k of size rdn × rdn+1

defined by

xk Xn = Ln,k Xn+1, 1 6 k 6 d, (2.1)

that represent the raising operator given by the multiplication by xk expressed in
the canonical basis. The matrices Ln,k, for 1 6 k 6 d and n > 0, are matrices of
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full rank rdn. We compute

‖x‖2 Xn =

d∑
k=1

x2
k Xn =

d∑
k=1

Ln,k Ln+1,k Xn+2 = L(1)
n Xn+2, (2.2)

defining the rdn × rdn+2 matrix L
(1)
n =

∑d
k=1 Ln,k Ln+1,k. It is easy to verify that

L
(1)
n is a matrix of full rank rdn. For d = 1, L

(1)
n = Ln,1 = 1, for all n > 0.

Now, we define the linear space of functions that we study in this work. These
new linear spaces are closely related to the linear spaces of polynomials defined
before. Observe that the case d = 1 is included as a particular case of this study.

For m > 0, let Ωdm be the linear space of functions defined on Bd generated by
means of the basis

Ωd2n = span{X2n,
√

1− ‖x‖2 X2n−1, . . . ,
√

1− ‖x‖2 X1,X0},
in the even case, and, in the odd case, we get the basis

Ωd2n+1 = span{X2n+1,
√

1− ‖x‖2 X2n, . . . ,X1,
√

1− ‖x‖2 X0}.
As before, the basis is the set of all entries of the vectors, and, for extension, we say
that the set of vectors is a basis. Notice that the dimension of Ωdm is sdm, m > 0.

Observe that a function R(x) ∈ Ωdm if it can be written in the form

R(x) = Pm(x) +
√

1− ‖x‖2Qm−1(x), (2.3)

where Pm(x) ∈ Πd
m, Qm−1(x) ∈ Πd

m−1 are both symmetric polynomials, that is,

Pm(−x) = (−1)m Pm(x), and Qm−1(−x) = (−1)m−1Qm−1(x),

with −x = (−x1,−x2, . . . ,−xd).
This means that, if R ∈ Ωd2n then P2n(x) is an even polynomial of degree at

most 2n, and Q2n−1(x) is an odd polynomial of degree at most 2n − 1. Likewise,
if R ∈ Ωd2n+1 then P2n+1(x) is an odd polynomial of degree at most 2n + 1, and
Q2n(x) is an even polynomial of degree at most 2n.

2.1. Functional Systems. For n > 0, we define the following vector of functions
of increasing size rdn

Wn = Wn(x) =
(
Wn

1 (x),Wn
2 (x), . . . ,Wn

rdn
(x)
)T

,

where Wn
m(x) ∈ Ωdn, for 1 6 m 6 rdn, and takes the form as in (2.3). Using the

vector representation, it is clear that

Wn =

bn2 c∑
i=0

Gnn−2i Xn−2i +
√

1− ‖x‖2
bn−1

2 c∑
i=0

Gnn−(2i+1) Xn−(2i+1), (2.4)

where Gnn−j are rdn×rdn−j real matrices. The matrices Gnn and Gnn−1 are respectively
called the first and the second leading coefficients of the vector of functions Wn.

Since all entries Wn
m(x) are in Ωdn, for 0 6 m 6 rdn, then by extension we write

that Wn ∈ Ωdn, for n > 0.
We say that Wn is of degree n if the matrix Gnn have full rank, that is, it is

invertible. If Wn is of degree n, then, its entries Wn
m(x), for 1 6 m 6 rdn, are

independent functions, and the entries of two vectors Wn and Wm of respective
degrees n and m, n 6= m, are independent functions as well.
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Observe that, if Gnn is an invertible matrix, then we can define a monic vector
of functions from (2.4) in the form

Wn(x) =(Gnn)−1Wn(x)

=Xn +

bn2 c∑
i=1

G
n

n−2iXn−2i +
√

1− ‖x‖2
bn−1

2 c∑
i=0

G
n

n−(2i+1) Xn−(2i+1),

where G
n

m = (Gnn)−1Gnm are rdn× rdm real matrices. Obviously, if Wn(x) ∈ Ωdn, then
Wn(x) ∈ Ωdn.

Next Lemma collects some basic properties that we will use later.

Lemma 2.1. Let Wn be a vector of functions defined as in (2.4). Then,

(i)
√

1− ‖x‖2 Wn(x) ∈ Ωdn+1,

(ii) xkWn(x) ∈ Ωdn+1, 1 6 k 6 d,

(iii) xk
√

1− ‖x‖2 Wn(x) ∈ Ωdn+2, 1 6 k 6 d,

(iv) (1− ‖x‖2)Wn(x) ∈ Ωdn+2.

Proof. (i) Computing directly in (2.4), using (2.2), and arranging it, we get

√
1− ‖x‖2 Wn(x) =

bn+1
2 c∑
i=0

[Gnn−(2i−1) −G
n
n−(2i+1)L

(1)
n−(2i+1)]Xn+1−2i

+
√

1− ‖x‖2
bn2 c∑
i=0

Gnn−2i Xn+1−(2i+1).

Now, we define

G̃n+1
n+1−2i = Gnn−(2i−1) −G

n
n−(2i+1)L

(1)
n−(2i+1), 0 6 i 6 bn+ 1

2
c,

G̃n+1
n+1−(2i+1) = Gnn−2i, 0 6 i 6 bn

2
c,

(2.5)

such as Gn−1 = Gn−2 = Gnn+1 are considered as zero matrices of appropriate sizes.
Then, we can write

√
1− ‖x‖2 Wn(x) =

bn+1
2 c∑
i=0

G̃n+1
n+1−2i Xn+1−2i

+
√

1− ‖x‖2
bn2 c∑
i=0

G̃n+1
n+1−(2i+1)Xn+1−(2i+1),

and therefore
√

1− ‖x‖2 Wn(x) ∈ Ωdn+1. Observe that G̃n+1
m are matrices of sizes

rdn × rdm, for 0 6 m 6 n+ 1.

(ii) Again, using (2.1) in (2.4), we deduce

xkWn(x) =

bn2 c∑
i=0

Ĝn+1,k
n+1−2iXn+1−2i +

√
1− ‖x‖2

bn−1
2 c∑
i=0

Ĝn+1,k
n+1−(2i+1)Xn+1−(2i+1),

(2.6)
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where

Ĝn+1,k
n+1−2i = Gnn−2i Ln−2i,k, 0 6 i 6 bn

2
c

Ĝn+1,k
n+1−(2i+1) = Gnn−(2i+1)Ln−(2i+1),k, 0 6 i 6 bn− 1

2
c,

and Ĝn+1,k
m are matrices of respective sizes rdn× rdm. Hence, we see that xkWn(x) ∈

Ωdn+1, for 1 6 k 6 d.
Finally, (iii) and (iv) can be obtained by iterating (i) and (ii). �

Now, we can study a basis of the linear spaces Ωdn.

Lemma 2.2. Let {Wn}n>0 be a sequence defined as in (2.4). For n = 0, we define
Γ0 = G0

0, and, for n > 0, we define the square rdn + rdn+1 matrices

Γn+1 =

(
Gnn −Gnn−1L

(1)
n−1

Gn+1
n Gn+1

n+1

)
, n > 0.

Denote ρn = det Γn, for n > 0. Then,

(i) the set of vector functions

{W2n,
√

1− ‖x‖2W2n−1,W2n−2,
√

1− ‖x‖2W2n−3, . . . ,
√

1− ‖x‖2W1,W0},

is a basis of Ωd2n if and only if
∏n
i=0 ρ2i 6= 0.

(ii) The set

{W2n+1,
√

1− ‖x‖2W2n,W2n−1,
√

1− ‖x‖2W2n−2, . . . ,W1,
√

1− ‖x‖2W0},

is a basis of Ωd2n+1 if and only if
∏n
i=0 ρ2i+1 6= 0.

Proof. We consider only the even case since the odd case is similar.
We prove the result by studding the matrix of change of basis. For n > 0, we

construct the column vector of the original basis of Ωd2n

X2n = (XT0 ,
√

1− ‖x‖2 XT1 , · · · ,
√

1− ‖x‖2 XT2n−1,XT2n)T ,

of size sd2n × 1. Let define the sd2n × 1 vector containing the set of functions

W2n = (WT
0 ,
√

1− ‖x‖2 WT
1 , · · · ,

√
1− ‖x‖2 WT

2n−1,WT
2n)T .

Then, there exists a square matrix B2n of size sd2n such that

B2n X2n =W2n, n > 0.

We construct that matrix and study its non-singularity. For n = 0, since W0 =
G0

0X0 6= 0, it is clear that the 1× 1 matrix B0 = (G0
0) is non-singular.

For n = 1, using (2.4) and Lemma 2.1, we get

W0 = G0
0X0√

1− ‖x‖2W1 = G̃2
0X0 + G̃2

1

√
1− ‖x‖2X1 + G̃2

2X2

W2 = G2
0X0 +G2

1

√
1− ‖x‖2X1 +G2

2X2,
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where G0
0 is a constant, G̃2

i are matrices of size rd1 × rdi , and G2
i are matrices of size

rd2 × rdi , for i = 0, 1, 2. Then, the sd2-size block matrix B2 reads as

B2 =

 G0
0 0 0

G̃2
0 G̃2

1 G̃2
2

G2
0 G2

1 G2
2

 ,

and the determinant of B2 is given by

detB2 = G0
0

∣∣∣∣∣ G̃2
1 G̃2

2

G2
1 G2

2

∣∣∣∣∣ = G0
0

∣∣∣∣∣ G1
1 −G1

0L
(1)
0

G2
1 G2

2

∣∣∣∣∣ = ρ0 ρ2,

by using the explicit expressions of G̃2
i given in (2.5).

For n > 1, it can be checked that B2n is a lower triangular block matrix such
that its first block is the non-zero constant G0

0, and the successive square diagonal
blocks are(

G̃2m
2m−1 G̃2m

2m

G2m
2m−1 G2m

2m

)
=

(
G2m−1

2m−1 −G2m−1
2m−2L

(1)
2m−2

G2m
2m−1 G2m

2m

)
= Γ2m, 1 6 m 6 n,

of size rd2m + rd2m+1. Then, detB2n = ρ0 ρ2 · · · ρ2n, and the result follows. �

An interesting consequence is the following result.

Proposition 2.3. If {Wn,
√

1− ‖x‖2Wn−1,Wn−2,
√

1− ‖x‖2Wn−3, . . .}, is a ba-

sis of Ωdn, then, the following square matrices

γn = Gnn +Gnn−1L
(1)
n−1(Gn+1

n+1)−1Gn+1
n , (2.7)

γ̃n+1 = Gn+1
n+1 +Gn+1

n (Gnn)−1Gnn−1L
(1)
n−1, (2.8)

are non-singular, and its respective inverses are given by

γ−1
n = (Gnn)−1 − (Gnn)−1Gnn−1L

(1)
n−1γ̃

−1
n+1G

n+1
n (Gnn)−1,

γ̃−1
n+1 = (Gn+1

n+1)−1 − (Gn+1
n+1)−1Gn+1

n γ−1
n Gnn−1L

(1)
n−1(Gn+1

n+1)−1.

Proof. Using Lemma 2.2, ρn = det Γn 6= 0, for n > 0. Using the well know formulas
for the determinant of a bock matrix, we deduce that∣∣∣∣∣ Gnn −Gnn−1L

(1)
n−1

Gn+1
n Gn+1

n+1

∣∣∣∣∣ = det[Gnn] det[Gn+1
n+1 +Gn+1

n (Gnn)−1Gnn−1L
(1)
n−1]

= det[Gn+1
n+1] det[Gnn +Gnn−1L

(1)
n−1(Gn+1

n+1)−1Gn+1
n ].

Therefore, γn and γ̃n+1 defined in (2.7) and (2.8), are non-singular. Using the
Sherman-Morrison-Woodbury identity (see [7]), we get the expressions for the re-
spective inverses. �

Definition 2.4. A functional system (FS) is a sequence of vectors of functions
{Wn}n>0 defined as (2.4), such that the set

{Wn,
√

1− ‖x‖2Wn−1,Wn−2,
√

1− ‖x‖2Wn−3, . . .},
are linearly independent.

Moreover, we say that it is a monic functional system (MFS) if the matrix leading
coefficient Gnn is the identity matrix of size rdn, for n > 0.
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2.2. Hybrid Orthogonality. Given a sequence of real numbers {µα : |α| = n, n >
0}, we define the functional

u : Πd −→ R
xα 7−→ 〈u, xα〉 = µα

extended by linearity to all polynomials as

〈u, p(x)〉 =
∑
|α|6n

aα〈u, xα〉 =
∑
|α|6n

aαµα, for p(x) =
∑
|α|6n

aαx
α.

In this case, µα = 〈u, xα〉, are called moments, and we say that u is a moment
functional.

Let A =
(
ai,j(x)

)n,m
i,j=1

be a matrix of multivariate polynomials. Then, the action

of u over a matrix is given by

〈u, A〉 =
(
〈u, ai,j(x)〉

)n,m
i,j=1

,

and then, if A =
(
ai,j(x)

)n,m
i,j=1

and B =
(
bi,j
)m,h
i,j=1

, is a matrix of constants, we get

that

〈u, AB〉 = 〈u, A〉B,
is a n × h matrix with real entries, and, on the contrary, if A =

(
ai,j
)n,m
i,j=1

is a

matrix of constants, and B =
(
bi,j(x)

)m,h
i,j=1

is a matrix of polynomials, then

〈u, AB〉 = A 〈u, B〉.
We introduce the moment functional u1/2 as the following perturbation of u

〈u1/2, p q〉 = 〈
√

1− ‖x‖2 u, p q〉 = 〈u,
√

1− ‖x‖2 p q〉. (2.9)

Now, we define the hybrid orthogonality property for a functional system.

Definition 2.5. A FS {Wn}n>0 is a hybrid orthogonal functional system (HOFS)
with respect to a moment functional u if satisfies the hybrid orthogonality conditions

〈u,W2m+1 WT
2n〉 = 0, ∀n,m,

〈u1/2,W2m+lWT
2n+l〉 = 0, n 6= m, l = 0, 1,

〈u1/2,W2n+lWT
2n+l〉 = H2n+l, n > 0, l = 0, 1,

(2.10)

where H2n+l is a rd2n+l × rd2n+l symmetric and non-singular matrix, and 0 denotes
the zero matrix of appropriate size.

If H2n+l is a diagonal matrix, then the system is said to be a mutually hybrid
orthogonal functional system.

A moment functional u is called quasi-definite if there exists a HOFS associated
with u. Moreover, u is positive definite if it is quasi-definite, and the non-singular
matrices H2n+l are positive definite for n > 0, and l = 0, 1.

From (2.10), since W0 is a non-zero constant, we deduce that

〈u,W2m+1〉 = 0, m > 0,

〈u1/2,W2m〉 = 〈u,
√

1− ‖x‖2W2m〉 = 0, m > 1.

We prove that hybrid orthogonality for a sequence of functions as (2.4) implies
the linear independence.
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Proposition 2.6. Let u be a moment functional, and let {Wn}n>0 be a sequence
of functions defined as in (2.4) satisfying the hybrid orthogonal conditions (2.10).
Then, the set

{Wn,
√

1− ‖x‖2 Wn−1,Wn−2,
√

1− ‖x‖2 Wn−3, . . .},
is a basis of Ωdn.

Proof. We only prove the result for the even case because the odd case is analogous.
We construct the following linear combination

aT0 W0 + aT1
√

1− ‖x‖2 W1 + · · ·+ aT2n−1

√
1− ‖x‖2 W2n−1 + aT2nW2n = 0, (2.11)

where ai are vectors of real constants of respective sizes rdi × 1, for 0 6 i 6 2n.
First, we multiply (2.11) by WT

1 and apply the moment functional u to obtain

aT0 〈u,W0WT
1 〉+ aT1 〈u,

√
1− ‖x‖2W1WT

1 〉+ · · ·

+ aT2n−1〈u,
√

1− ‖x‖2W2n−1WT
1 〉+ aT2n〈u,W2nWT

1 〉 = 0.

Then, by using (2.10), we deduce that, for 1 6 j 6 n− 1,

〈u,
√

1− ‖x‖2W2j+1WT
1 〉 = 〈u1/2,W2j+1WT

1 〉 = 0,

and 〈u,
√

1− ‖x‖2W1WT
1 〉 = 〈u1/2,W1WT

1 〉 = H1. Also, because of the different

parity order, 〈u,W2jWT
1 〉 = 0, for 0 6 j 6 n. In this way, we get

aT1 H1 = 0,

since H1 is an invertible matrix, we have a1 = 0.
Similarly, multiplying (2.11) by WT

2j−1, for 2 6 j 6 n, and applying the moment
functional u, we get a2j−1 = 0, for 2 6 j 6 n. Then, equation (2.11) becomes

aT0 W0 + aT2 W2 + · · ·+ aT2n−2 W2n−2 + aT2nW2n = 0.

Now, we multiply last equation by WT
0 and apply the moment functional u1/2 to

get

aT0 〈u1/2,W0WT
0 〉+ aT2 〈u1/2,W2WT

0 〉+ · · ·

+ aT2n−2〈u1/2W2n−2WT
0 〉+ aT2n〈u1/2,W2nWT

0 〉 = 0.

Again, by (2.10), we know that 〈u1/2,W2mWT
0 〉 = 0, for 1 6 m 6 n. Then,

aT0 〈u1/2,W0WT
0 〉 = aT0 H0 = 0,

therefore a0 = 0. In a similar way, we show that a2j = 0, for 1 6 j 6 n. We
conclude that ai = 0 in (2.11), for 0 6 i 6 2n, which completes the proof. �

Next Lemma brings some consequences of the hybrid orthogonality.

Lemma 2.7. Let {Wn}n>0 be a HOFS associated with the moment functional u.
Then, for n > 1, the following statements hold

(i) For any function F (x) ∈ Ωdn−(2i+1), 0 6 i 6 bn−1
2 c, then

〈u, F (x)WT
n 〉 = 0.

(ii) For any function F (x) ∈ Ωdn−2i, 1 6 i 6 bn2 c, then

〈u1/2, F (x)WT
n 〉 = 0.
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(iii) For 1 6 k 6 d and 1 6 i 6 bn2 c, we get

〈u, xkWn−2iWT
n 〉 = 0.

(iv) For 1 6 k 6 d and 1 6 i 6 bn−1
2 c, we get

〈u1/2, xkWn−(2i+1)WT
n 〉 = 0.

(v) For 0 6 i 6 bn/2c and 0 6 j 6 b(n+ 1)/2c, i 6= j, we get

〈u1/2,
√

1− ‖x‖2 Wn−2iWT
n+1−2j〉 = 0.

Proof. (i) Since F (x) ∈ Ωn−(2i+1), using the basis given in Lemma 2.2, there exist

vectors of real constants of respective sizes rdi × 1, such that F (x) can be expressed
in terms of that basis in the form

F (x) =cTn−(2i+1) Wn−(2i+1) + cTn−(2i+2)

√
1− ‖x‖2 Wn−(2i+2)

+ cTn−(2i+3) Wn−(2i+3) + · · ·

Therefore,

〈u, F (x)WT
n 〉 =cTn−(2i+1)〈u,Wn−(2i+1)WT

n 〉+ +cTn−(2i+2)〈u1/2,Wn−(2i+2)WT
n 〉

+ cTn−(2i+3)〈u,Wn−(2i+3)WT
n 〉+ · · · = 0,

by using the hybrid orthogonality conditions (2.10).

(ii) As above, since F (x) ∈ Ωn−2i, using the basis given in Lemma 2.2, there exist
vectors of real constants of respective sizes rdi × 1, such that F (x) can be expressed
in terms of that basis as

F (x) =cTn−2iWn−2i + cTn−(2i+1)

√
1− ‖x‖2 Wn−(2i+1)

+ cTn−(2i+2) Wn−(2i+2) + · · ·

Therefore,

〈u1/2, F (x)WT
n 〉 =cTn−2i〈u1/2,Wn−2iWT

n 〉+ cTn−(2i+1)〈u, (1− ‖x‖
2)Wn−(2i+1)WT

n 〉

+ cTn−(2i+2)〈u1/2,Wn−(2i+2)WT
n 〉+ · · · = 0,

by using the hybrid orthogonality conditions (2.10).

(iii) and (iv) can be deduced directly from (i) and (ii) because xkWn−2i ∈ Ωdn−2i+1

and xkWn−(2i+1) ∈ Ωdn−2i.

(v) We know that (1 − ‖x‖2)Wn−2i ∈ Ωdn−2i+2, 0 6 i 6 bn2 c, thus we can express
it in terms of a basis as

(1− ‖x‖2)Wn−2i =En−2i+2
n−2i+2Wn−2i+2 + En−2i+2

n−2i+1

√
1− ‖x‖2Wn−2i+1

+ En−2i+2
n−2i Wn−2i + · · ·

where En−2i
m are matrices of real constants of sizes rdn−2i × rdm. Therefore,

〈u1/2,
√

1− ‖x‖2 Wn−2iWT
n+1−2j〉 = 〈u, (1− ‖x‖2)Wn−2iWT

n+1−2j〉

=En−2i+2
n−2i+2〈u,Wn−2i+2WT

n+1−2j〉+ En−2i+2
n−2i+1〈u1/2,Wn−2i+1WT

n+1−2j〉

+ En−2i+2
n−2i 〈u,Wn−2iWT

n+1−2j〉+ · · · = 0,
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for 0 6 j 6 bn+1
2 c, i 6= j, because of the hybrid orthogonality conditions (2.10). �

The definition of hybrid orthogonality can be given in terms of the canonical
basis {Xn}n>0, as we show in the next result.

Theorem 2.8. Let u be a moment functional, and let {Wn}n>0 be a FS. Then,
{Wn}n>0 is a HOFS associated with u if, and only if

〈u,Xn−(2i+1) WT
n 〉 = 0, 0 6 i 6 bn−1

2 c,
〈u1/2,Xn−2iWT

n 〉 = 0, 1 6 i 6 bn2 c,
〈u1/2,XnWT

n 〉 = Sn, n > 0,

(2.12)

where Sn is a square non-singular real matrix of size rdn.

Proof. The first two conditions are clear, since Xm ∈ Ωdm, for m > 0.
Reciprocally, suppose that hybrid orthogonality conditions (2.12) hold. Then,

without loss of generality we consider n > m, use expression (2.4), and compute

〈u,W2m+1WT
2n〉 =

b 2m+1
2 c∑
i=0

G2m+1
2m+1−2i〈u,X2m+1−2iWT

2n〉

+

b 2m2 c∑
i=0

G2m+1
2m−2i〈u1/2,X2m−2iWT

2n〉 = 0,

that vanishes because 2m + 1 − 2i < 2n and the change of parity in the first
summation, and 2m− 2i < 2n and the use of u1/2, in the second one.

Moreover, for n > m, and l = 0, 1,

〈u1/2,W2m+lWT
2n+l〉 =

b 2m+l
2 c∑
i=0

G2m+l
2m+l−2i〈u1/2,X2m+l−2iWT

2n+l〉

+

b 2m+l−1
2 c∑
i=0

G2m+l
2m+l−(2i+1)〈u, (1− ‖x‖

2)X2m+l−(2i+1)WT
2n+l〉 = 0,

by using (2.2).

Now, we study 〈u1/2,XnWT
n 〉 and 〈u1/2,WnWT

n 〉. Since
√

1− ‖x‖2Xn ∈ Ωdn+1,

then there exist rdn × rdm matrices F̃n+1
m such that√

1− ‖x‖2Xn = F̃n+1
n+1 Wn+1 + F̃n+1

n

√
1− ‖x‖2Wn + F̃n+1

n−1Wn−1 + · · ·

Then, using the hybrid orthogonality conditions (2.10) as well as the linearity, we
directly compute

〈u1/2,XnWT
n 〉 =〈u,

√
1− ‖x‖2XnWT

n 〉

=F̃n+1
n+1 〈u,Wn+1WT

n 〉+ F̃n+1
n 〈u,

√
1− ‖x‖2WnWT

n 〉

+ F̃n+1
n−1 〈u,Wn−1WT

n 〉+ · · ·

=F̃n+1
n Hn.
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Now, we wish to compute the matrix F̃n+1
n . Using expression (2.4) and Lemma

2.1, we get√
1− ‖x‖2Xn =F̃n+1

n+1 [Gn+1
n+1Xn+1 +Gn+1

n

√
1− ‖x‖2Xn +Gn+1

n−1Xn−1 + · · · ]

+ F̃n+1
n [G̃n+1

n+1Xn+1 + G̃n+1
n

√
1− ‖x‖2Xn + · · · ] + · · · .

Adjusting leading coefficients, and using again Lemma 2.1, we get the matrix
linear system

F̃n+1
n+1G

n+1
n+1 − F̃n+1

n Gnn−1L
(1)
n−1 = 0,

F̃n+1
n+1G

n+1
n + F̃n+1

n Gnn = Irdn ,

with matrix unknowns F̃n+1
n+1 and F̃n+1

n . Observe that this linear system can be
written as

(Irdn , 0) = (F̃n+1
n , F̃n+1

n+1 )

(
Gnn −Gnn−1L

(1)
n−1

Gn+1
n Gn+1

n+1

)
,

where the coefficient matrix is the non singular square rdn+rdn+1 matrix Γn+1 defined

in Lemma 2.2. Then, the system has unique solution. Since Gn+1
n+1 is non singular,

then

F̃n+1
n+1 = F̃n+1

n Gnn−1L
(1)
n−1(Gn+1

n+1)−1.

Substituting this expression in the second equation, we get

F̃n+1
n [Gnn +Gnn−1L

(1)
n−1(Gn+1

n+1)−1Gn+1
n ] = Irdn .

Using Proposition 2.3 we know that γn = Gnn +Gnn−1L
(1)
n−1(Gn+1

n+1)−1Gn+1
n is invert-

ible, and then

F̃n+1
n = γ−1

n .

In this way,

〈u1/2,XnWT
n 〉 = γ−1

n 〈u1/2,WnWT
n 〉,

or equivalently,

Sn = γ−1
n Hn.

Then, Sn is non-singular if and only if Hn is non-singular. That completes the
proof. �

3. Existence, Three term relations and Favard type Theorem

First, we need to discuss the existence of a HOFS in terms of a given moment
functional u.

3.1. Existence. To simplify the notation we define Gn,Tm := (Gnm)T . We also con-
sider the moment matrices

Mn
m = 〈u,XnXTm〉 and Nn

m = 〈u1/2,Xn XTm〉, (3.1)

of respective sizes rdn × rdm.
From (2.4) and 0 6 j 6 bn−1

2 c, we can write

〈u,Xn−(2j+1) WT
n 〉 =

bn2 c∑
i=0

〈u,Xn−(2j+1) XTn−2i〉G
n,T
n−2i
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+

bn−1
2 c∑
i=0

〈u1/2,Xn−(2j+1) XTn−(2i+1)〉G
n,T
n−(2i+1),

where Gn,Tm are constant matrices of respective sizes rdm × rdn, for 0 6 m 6 n given
in the expression (2.4).

Therefore, from Lemma 2.7 and using (3.1), we get

bn2 c∑
i=0

M
n−(2j+1)
n−2i Gn,Tn−2i +

bn−1
2 c∑
i=0

N
n−(2j+1)
n−(2i+1) G

n,T
n−(2i+1) = 0, (3.2)

for 0 6 j 6 b(n− 1)/2c. Also, using notation (3.1), we deduce

〈u1/2,Xn−2jWT
n 〉 =

bn2 c∑
i=0

〈u1/2,Xn−2j XTn−2i〉G
n,T
n−2i

+

bn−1
2 c∑
i=0

〈u, (1− ‖x‖2)Xn−2j XTn−(2i+1)〉G
n,T
n−(2i+1)

=

bn2 c∑
i=0

Nn−2j
n−2i G

n,T
n−2i +

bn−1
2 c∑
i=0

Jn−2j
n−(2i+1)G

n,T
n−(2i+1),

for 0 6 j 6 bn/2c, where Jn−2j
n−(2i+1) = Mn−2j

n−(2i+1) − L
(1)
n−2jM

n+2−2j
n−(2i+1). Then, from

Lemma 2.7, we get

bn2 c∑
i=0

Nn−2j
n−2i G

n,T
n−2i +

bn−1
2 c∑
i=0

Jn−2j
n−(2i+1)G

n,T
n−(2i+1) = 0, (3.3)

for 1 6 j 6 bn/2c, and for j = 0,

bn2 c∑
i=0

Nn
n−2iG

n,T
n−2i +

bn−1
2 c∑
i=0

Jnn−(2i+1)G
n,T
n−(2i+1) = Sn, (3.4)

where Sn = 〈u1/2,XnWT
n 〉.

Considering the matrix equations (3.2), (3.3) and (3.4), we get a linear sys-
tem of sdn =

∑n
i=0 r

d
i equations which solution is the column vector of the matrix

coefficients of Wn, in the form

Msdn
Gsdn = Ssdn ,

where

Gsdn =



Gn,T0

Gn,T1

...

Gn,Tn−1

Gn,Tn


, Ssdn =



0

0

...

0

Sn


,

are column vectors of matrices of total size sdn × rdn. The coefficient matrix is a
square block matrix of size sdn × sdn whose structure depends on the parity of n in
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the form

Msdn
=



Mn−1
0 Nn−1

1 Mn−1
2 Nn−1

3 · · · Nn−1
n−1 Mn−1

n

Mn−3
0 Nn−3

1 Mn−3
2 Nn−3

3 · · · Nn−3
n−1 Mn−3

n

...
...

...
...

...
...

M1
0 N1

1 M1
2 N1

3 · · · N1
n−1 M1

n

Nn
0 Jn1 Nn

2 Jn3 · · · Jnn−1 Nn
n

Nn−2
0 Jn−2

1 Nn−2
2 Jn−2

3 · · · Jn−2
n−1 Nn−2

n

...
...

...
...

...
...

N0
0 J0

1 N0
2 J0

3 · · · J0
n−1 N0

n



,

for n even, and for n odd,

Msdn
=



Nn−1
0 Mn−1

1 Nn−1
2 · · · Mn−1

n−2 Nn−1
n−1 Mn−1

n

Nn−3
0 Mn−3

1 Nn−3
2 · · · Mn−3

n−2 Nn−3
n−1 Mn−3

n

...
...

...
...

...
...

N0
0 M0

1 N0
2 · · · M0

n−2 N0
n−1 M0

n

Jn0 Nn
1 Jn2 · · · Nn

n−2 Jnn−1 Nn
n

Jn−2
0 Nn−2

1 Jn−2
2 · · · Nn−2

n−2 Jn−2
n−1 Nn−2

n

...
...

...
...

...
...

J1
0 N1

1 J1
2 · · · N1

n−2 J1
n−1 N1

n



.

Then, we have the following result.

Theorem 3.1. Let u be a moment functional. Then a hybrid orthogonal functional
system associated with u exists if and only if Msdn

is a non singular matrix, for
n > 0.

3.2. Three term relations. In the following, we use the definition of joint matrix
(see [6, p. 71]). Given n×m matrices M1,M2, . . . ,Md, we define their joint matrix
as

M = (MT
1 ,M

T
2 , . . . ,M

T
d )T ,

of size dn×m.
In the next theorem we deduce matrix three term relations for a HOFS {Wn}n>0.

Theorem 3.2. Let {Wn}n>0 be a HOFS associated with the moment functional u.
Then, for n > 0 and 1 6 k 6 d, there exist matrices An,k, Bn,k, Cn,k of respective
sizes rdn × rdn+1, rdn × rdn and rdn × rdn−1 such that

xkWn(x) = An,kWn+1(x) +Bn,k
√

1− ‖x‖2 Wn(x) + Cn,kWn−1(x), (3.5)

with W−1(x) = 0 and W0(x) = 1.
In addition,

An,k = [〈u1/2, xkWnWT
n+1〉 −Bn,k〈u1/2,

√
1− ‖x‖2WnWT

n+1〉] H−1
n+1,
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Bn,k = 〈u, xkWnWT
n 〉 H−1

n ,

Cn,k = [〈u1/2, xkWnWT
n−1〉 −Bn,k〈u1/2,

√
1− ‖x‖2WnWT

n−1〉] H−1
n−1.

Proof. For 1 6 k 6 d, and Lemma 2.1, we know that xkWn ∈ Ωdn+1, and it can be
express in terms of the basis given in Lemma 2.2. Then,

xkWn =

bn+1
2 c∑
i=0

En+1,k
n+1−2iWn+1−2i +

√
1− ‖x‖2

bn2 c∑
i=0

En+1,k
n+1−(2i+1) Wn+1−(2i+1), (3.6)

where the coefficients En+1,k
m are real matrices of size rdn × rdm.

From part (i) of Lemma 2.7, we know that

〈u, xkWnWT
n−2j〉 = 〈u,Wn(xkWn−2j)

T 〉 = 0, 1 6 j 6 bn/2c,

since xkWn−2j ∈ Ωn+1−2j . Then, we multiply (3.6) by WT
n−2j , for 1 6 j 6 bn/2c,

and apply the moment functional u to obtain

0 = 〈u, xkWnWT
n−2j〉 =

bn+1
2 c∑
i=0

En+1,k
n+1−2i 〈u,Wn+1−2iWT

n−2j〉

+

bn2 c∑
i=0

En+1,k
n+1−(2i+1) 〈u,

√
1− ‖x‖2 Wn+1−(2i+1) WT

n−2j〉.

By using the hybrid orthogonality (2.10), the first summation vanishes, and all
terms in the second summation vanishes except for i = j. Therefore,

0 = En+1,k
n+1−(2j+1)〈u1/2,Wn−2jWT

n−2j〉 = En+1,k
n−2j Hn−2j ,

hence En+1,k
n−2j = 0, for 1 6 j 6 bn/2c. Then, (3.6) can be written as

xkWn(x) =

bn+1
2 c∑
i=0

En+1,k
n+1−2iWn+1−2i(x) + En+1,k

n

√
1− ‖x‖2Wn(x). (3.7)

Now, xkWn+1−2j ∈ Ωn+2−2j , and applying part (ii) of Lemma 2.7, we deduce that

〈u1/2, xkWnWT
n+1−2j〉 = 〈u1/2,Wn(xkWn+1−2j)

T 〉 = 0, 2 6 j 6 b(n+ 1)/2c.

In this way, we multiply relation (3.7) by WT
n+1−2j , for 2 6 j 6 b(n+ 1)/2c, apply

the moment functional u1/2, and we get

0 = 〈u1/2, xkWnWT
n+1−2j〉 =

bn+1
2 c∑
i=0

En+1,k
n+1−2i 〈u1/2,Wn+1−2iWT

n+1−2j〉

+ En+1,k
n 〈u1/2,

√
1− ‖x‖2 WnWT

n+1−2j〉.

From the hybrid orthogonality conditions (2.10), only the term corresponding to
i = j in the first summation is different from zero, and using part (v) of Lemma

2.7, 〈u1/2,
√

1− ‖x‖2 WnWT
n+1−2j〉 = 0. Hence,

0 = En+1,k
n+1−2j〈u1/2,Wn+1−2jWT

n+1−2j〉 = En+1,k
n+1−2jHn+1−2j ,

and En+1,k
n+1−2j = 0, for 2 6 j 6 b(n + 1)/2c. Then, (3.6) becomes the three term

relation (3.5), defining An,k = En+1,k
n+1 , Bn,k = En+1,k

n , and Cn,k = En+1,k
n−1 .
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Now, we compute the matrix coefficients. To get Bn,k, we multiply relation (3.5)
by WT

n , apply the moment functional u, deducing

〈u, xkWnWT
n 〉 = An,k〈u,Wn+1WT

n 〉+Bn,k〈u1/2,WnWT
n 〉+ Cn,k〈u,Wn−1WT

n 〉,

and, from the hybrid orthogonality (2.10), we obtain

Bn,kHn = 〈u, xkWnWT
n 〉.

Similarly, to obtain An,k, we multiply by WT
n+1, and apply the moment functional

u1/2, obtaining

〈u1/2, xkWnWT
n+1〉 =An,k〈u1/2,Wn+1WT

n+1〉+Bn,k〈u1/2,
√

1− ‖x‖2WnWT
n+1〉

+ Cn,k〈u1/2,Wn−1WT
n+1〉,

and

An,kHn+1 = 〈u1/2, xkWnWT
n+1〉 −Bn,k〈u1/2,

√
1− ‖x‖2WnWT

n+1〉.

Finally, to obtain Cn,k, we multiply (3.5) by WT
n−1 by means of the moment func-

tional u1/2, and we get

Cn,kHn−1 = 〈u1/2, xkWnWT
n−1〉 −Bn,k〈u1/2,

√
1− ‖x‖2 WnWT

n−1〉.

Observe that

HnC
T
n+1,k = 〈u1/2, xkWnWT

n+1〉 − 〈u1/2,
√

1− ‖x‖2 WnWT
n+1〉BTn+1,k,

and then

An,kHn+1 +Bn,kΛn = HnC
T
n+1,k + ΛnB

T
n+1,k,

where Λn = 〈u1/2,
√

1− ‖x‖2 WnWT
n−1〉. �

Now, we analyse the matrix coefficient of the three term relations (3.5).

Proposition 3.3. Let {Wn}n>0 be a HOFS associated with the moment functional
u, and let An,k, Bn,k be the first coefficient matrices of the three term relations (3.5).
Then,

An,k = [GnnLn,k +Gnn−1Ln−1,k(Gnn)−1Gnn−1L
(1)
n−1]γ̃−1

n+1, (3.8)

Bn,k = [Gnn−1Ln−1,k −GnnLn,k(Gn+1
n+1)−1Gn+1

n ]γ−1
n , (3.9)

where

γn = Gnn +Gnn−1L
(1)
n−1(Gn+1

n+1)−1Gn+1
n ,

γ̃n+1 = Gn+1
n+1 +Gn+1

n (Gnn)−1Gnn−1L
(1)
n−1,

were defined by (2.7) and (2.8) in Proposition 2.3.
Moreover, rankAn,k = rdn, and rankAn = rdn+1, where An is the respective join

matrix.

Proof. Adjusting leading coefficients in (3.5) and using Lemma 2.1, we get the linear
system

GnnLn,k = An,kG
n+1
n+1 −Bn,kGnn−1L

(1)
n−1,

Gnn−1Ln−1,k = An,kG
n+1
n +Bn,kG

n
n,

(3.10)
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with matrix unknowns An,k, Bn,k. This linear system can be written as

(Gnn−1Ln−1,k, G
n
nLn,k) = (Bn,k, An,k)

(
Gnn −Gnn−1L

(1)
n−1

Gn+1
n Gn+1

n+1

)
,

that is,

(Gnn−1Ln−1,k, G
n
nLn,k) = (Bn,k, An,k)Γn+1,

where Γn+1 is the non singular square rdn + rdn+1 matrix defined in Lemma 2.2.
Then, the system has unique solution, and we will compute it.

Since Gn+1
n+1 is non singular, then first equation in (3.10) can be written up as

An,k = [GnnLn,k +Bn,kG
n
n−1L

(1)
n−1](Gn+1

n+1)−1.

Substituting this expression in the second equation, we get

Gnn−1Ln−1,k = [GnnLn,k +Bn,kG
n
n−1L

(1)
n−1](Gn+1

n+1)−1Gn+1
n +Bn,kG

n
n.

Now, grouping terms in Bn,k, we deduce

Bn,k[Gnn +Gnn−1L
(1)
n−1(Gn+1

n+1)−1Gn+1
n ] = Gnn−1Ln−1,k −GnnLn,k(Gn+1

n+1)−1Gn+1
n .

Using Proposition 2.3 we know that γn = Gnn +Gnn−1L
(1)
n−1(Gn+1

n+1)−1Gn+1
n is invert-

ible, and (3.9) follows.
Returning the system (3.10), we can do the same process starting in the second

equation as

Bn,k = [Gnn−1Ln−1,k −An,kGn+1
n ](Gnn)−1,

substituting in the first one

GnnLn,k = An,kG
n+1
n+1 − [Gnn−1Ln−1,k −An,kGn+1

n ](Gnn)−1Gnn−1L
(1)
n−1,

grouping terms in An,k,

An,k[Gn+1
n+1 +Gn+1

n (Gnn)−1Gnn−1L
(1)
n−1] = GnnLn,k +Gnn−1Ln−1,k(Gnn)−1Gnn−1L

(1)
n−1,

and using that the matrix γ̃n+1 = Gn+1
n+1 + Gn+1

n (Gnn)−1Gnn−1L
(1)
n−1 is invertible by

Proposition 2.3, we get (3.8).
Now, we study the rank of the matrix An,k. We write (3.10) as

GnnLn,k +Bn,kG
n
n−1L

(1)
n−1 = An,kG

n+1
n+1,

Gnn−1Ln−1,k −Bn,kGnn = An,kG
n+1
n .

Observe that we can express the matrix linear system in the form

(−Bn,k, Irdn)

(
Gnn −Gnn−1L

(1)
n−1

Gnn−1Ln−1,k GnnLn,k

)
= (An,kG

n+1
n , An,kG

n+1
n+1).

This matrix linear system has unique solution, and the block matrix of coefficients

Γ̃n =

(
Gnn −Gnn−1L

(1)
n−1

Gnn−1Ln−1,k GnnLn,k

)
has full rank 2rdn. Therefore, by [12], we deduce that

2rdn = rank Γ̃n = rankGnn + rank[GnnLn,k +Gnn−1Ln−1,k(Gnn)−1Gnn−1L
(1)
n−1],

and then, since rankGnn = rdn, the result follows.
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Finally, in order to get the rank of the join matrix An, we extend the matrix
linear system (3.10) to join matrices as follows,

diag(Gnn)Ln = AnG
n+1
n+1 −BnGnn−1L

(1)
n−1,

diag(Gnn−1)Ln−1 = AnG
n+1
n +BnG

n
n,

where Ln, An and Bn are the respective join matrices. Working as above, we get
rankAn = rdn+1. �

Finally, we study the expression of Cn,k. We need a technical Proposition.

Proposition 3.4. Let {Wn}n>0 be a HOFS associated with the moment functional
u. Then,

(i) Let κ
(1)
n,k = Gn−1

n−1Ln−1,k +Gn−1
n−2L

(1)
n−2Ln,k(Gn+1

n+1)−1Gn+1
n . Then

〈u, xk
√

1− ‖x‖2Wn−1WT
n 〉 = κ

(1)
n,kγ

−1
n Hn.

(ii) Let κ
(2)
n = −Gn−1

n−2L
(1)
n−2 +Gn−1

n−1L
(1)
n−1(Gn+1

n+1)−1Gn+1
n . Therefore,

〈u, (1− ‖x‖2)Wn−1WT
n 〉 = κ(2)

n γ−1
n Hn.

(iii) Let κ
(3)
n,k = Gnn−1Ln−1,k −GnnLn,k(Gn+1

n+1)−1Gn+1
n . Thus,

〈u, xkWnWT
n 〉 = κ

(3)
n,kγ

−1
n Hn.

(iv) The explicit expression of Cn,k is given by

CTn,k = H−1
n−1[κ

(1)
n,k − κ

(2)
n γ−1

n κ
(3)
n,k]γ−1

n Hn. (3.11)

Moreover, κ
(1)
n,k and [κ

(1)
n,k − κ

(2)
n γ−1

n κ
(3)
n,k] are full rank matrices, as well as their

respective join matrices.

Proof. (i) Since xk
√

1− ‖x‖2Wn−1 ∈ Ωdn+1, there exist rdn−1 × rdm matrices of

constants Ẽn+1,k
m such that

xk
√

1− ‖x‖2Wn−1 = Ẽn+1,k
n+1 Wn+1 + Ẽn+1,k

n

√
1− ‖x‖2Wn + Ẽn+1,k

n−1 Wn−1 + · · · .
(3.12)

Using the hybrid orthogonality, we compute

〈u, xk
√

1− ‖x‖2Wn−1WT
n 〉 =Ẽn+1,k

n+1 〈u,Wn+1WT
n 〉+ Ẽn+1,k

n 〈u,
√

1− ‖x‖2WnWT
n 〉

+ Ẽn+1,k
n−1 〈u,Wn−1WT

n 〉+ · · ·

=Ẽn+1,k
n 〈u1/2,WnWT

n 〉 = Ẽn+1,k
n Hn.

Then, we need to compute Ẽn+1,k
n . From part (iii) of Lemma 2.1, and comparing

leading coefficients of both sides of (3.12), we obtain

−Gn−1
n−2L

(1)
n−2Ln,k = Ẽn+1,k

n+1 Gn+1
n+1 − Ẽn+1,k

n Gnn−1L
(1)
n−1,

Gn−1
n−1Ln−1,k = Ẽn+1,k

n+1 Gn+1
n + Ẽn+1,k

n Gnn,
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that can be seen as a matrix linear system with matrix unknowns Ẽn+1,k
n+1 and

Ẽn+1,k
n . We can express it by using again the matrix Γn+1 in the form

(Gnn−1Ln−1,k, −Gn−1
n−2L

(1)
n−2Ln,k) = (Ẽn+1,k

n , Ẽn+1,k
n+1 )

(
Gnn −Gnn−1L

(1)
n−1

Gn+1
n Gn+1

n+1

)
,

and then, there exist unique solution. Computing as above, we substitute

Ẽn+1,k
n+1 = [Ẽn+1,k

n Gnn−1L
(1)
n−1 −G

n−1
n−2L

(1)
n−2Ln,k](Gn+1

n+1)−1

in the second equation

Gn−1
n−1Ln−1,k = [Ẽn+1,k

n Gnn−1L
(1)
n−1 −G

n−1
n−2L

(1)
n−2Ln,k](Gn+1

n+1)−1Gn+1
n + Ẽn+1,k

n Gnn,

and we obtain

Ẽn+1,k
n = [Gn−1

n−1Ln−1,k +Gn−1
n−2L

(1)
n−2Ln,k(Gn+1

n+1)−1Gn+1
n ]γ−1

n .

The rank condition of the matrix κ
(1)
n,k is deduced by means of a similar reasoning

as in Proposition 3.3.

(ii) Again, (1− ‖x‖2)Wn−1 ∈ Ωdn+1, then we express

(1− ‖x‖2)Wn−1 = Ên+1
n+1Wn+1 + Ên+1

n

√
1− ‖x‖2Wn + Ên+1

n−1Wn−1 + · · ·
Therefore,

〈u, (1− ‖x‖2)Wn−1WT
n 〉 = Ên+1

n+1〈u,Wn+1WT
n 〉+ Ên+1

n 〈u,
√

1− ‖x‖2WnWT
n 〉

+ Ên+1
n−1〈u,Wn−1WT

n 〉+ · · · = Ên+1
n Hn.

As above, we compute the matrix Ên+1
n by comparing leading coefficients, obtaining

−Gn−1
n−1L

(1)
n−1 = Ên+1

n+1G
n+1
n+1 − Ên+1

n Gnn−1L
(1)
n−1,

−Gn−1
n−2L

(1)
n−2 = Ên+1

n+1G
n+1
n + Ên+1

n Gnn,

that has unique solution since Γn+1 is again the matrix coefficient. Working as
before, we substitute

Ên+1
n+1 = [Ên+1

n Gnn−1L
(1)
n−1 −G

n−1
n−1L

(1)
n−1](Gn+1

n+1)−1

in the second equation

−Gn−1
n−2L

(1)
n−2 = [Ên+1

n Gnn−1L
(1)
n−1 −G

n−1
n−1L

(1)
n−1](Gn+1

n+1)−1Gn+1
n + Ên+1

n Gnn,

we group the terms

Ên+1
n [Gnn +Gnn−1L

(1)
n−1(Gn+1

n+1)−1Gn+1
n ] = Gn−1

n−1L
(1)
n−1(Gn+1

n+1)−1Gn+1
n −Gn−1

n−2L
(1)
n−2,

and we obtain

Ên+1
n = [Gn−1

n−1L
(1)
n−1(Gn+1

n+1)−1Gn+1
n −Gn−1

n−2L
(1)
n−2]γ−1

n .

(iii) The proof is analogous.

(iv) We only need to compute

Hn−1C
T
n,k = 〈u1/2, xkWn−1WT

n 〉 − 〈u1/2,
√

1− ‖x‖2Wn−1WT
n 〉BTn,k

= κ
(1)
n,kγ

−1
n Hn − κ(2)

n γ−1
n HnH

−1
n 〈u, xkWnWT

n 〉

= κ
(1)
n,kγ

−1
n Hn − κ(2)

n γ−1
n κ

(3)
n,kγ

−1
n Hn
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= [κ
(1)
n,k − κ

(2)
n γ−1

n κ
(3)
n,k]γ−1

n Hn.

In order to study the rank of the matrix [κ
(1)
n,k−κ

(2)
n γ−1

n κ
(3)
n,k], we construct the block

matrix (
γn κ

(3)
n,k

κ
(2)
n,k κ

(1)
n,k

)
,

we use that γn and κ
(1)
n,k are full rank matrix, and we work as Proposition 3.3. �

Remark 3.5. For a fixed 1 6 k 6 d, we must observe that three term relation (3.5)
can not be used to compute the monic HOFS. Although we can write

An,kWn+1(x) = [xkIrdn −Bn,k
√

1− ‖x‖2]Wn(x)− Cn,kWn−1(x), n > 0, (3.13)

the matrices An,k are rdn × rdn+1 matrices, except for the univariate case (d = 1)
where An,1 are non-zero constant, for n > 0. We know that, since An,k is a full
rank matrix, there exists a (not unique) pseudo inverse only by the right side ([8]).

Following [6, p. 72], in Proposition 3.3 we proved that the rank of the drdn×rdn+1

join matrix An = (ATn,1, A
T
n,2, . . . , A

T
n,d)

T is rdn+1, there exists a (not unique) rdn+1×
drdn block matrix Dn = (Dn,1, Dn,2, . . . , Dn,d), with Dn,k matrices of respective sizes
rdn+1 × rdn, such that

DnAn = (Dn,1, Dn,2, . . . , Dn,d)


An,1
An,2

...
An,d

 =

d∑
k=1

Dn,kAn,k = Irdn+1
.

Then, multiplying relations (3.13) by Dn,k, and summing, we get

Wn+1(x) =
[ d∑
k=1

Dn,kxk − B̂n
√

1− ‖x‖2
]
Wn(x)− ĈnWn−1(x),

for n > 0, where

B̂n =

d∑
k=1

Dn,kBn,k, Ĉn =

d∑
k=1

Dn,kCn,k.

Then, we can compute the functions recursively.

3.3. Favard type Theorem. Now we present a Favard type result for the hybrid
orthogonal functions. See [3, p. 21] for Favard’s Theorem for orthogonal polynomi-
als on the real line, and [6, p. 73] for multivariate orthogonal polynomials.

Theorem 3.6. For n > 0 and 1 6 k 6 d, let An,k, Bn,k, Cn,k be matrices of
respective sizes rdn × rdn+1, rdn × rdn and rdn × rdn−1 such that rankAn,k = rdn,

rankCn,k = rdn−1, and rankAn = rdn+1, rankCn = rdn, where An and Cn are
the respective join matrices.

Let Dn = (Dn,1, Dn,2, . . . , Dn,d), with Dn,k matrices of respective sizes rdn+1×rdn,
be a pseudo inverse of An.
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Define the sequence of vector functions given by W−1(x) = 0, W0(x) = 1, and

Wn+1(x) =
[ d∑
k=1

Dn,kxk − B̂n
√

1− ‖x‖2
]
Wn(x)− ĈnWn−1(x), n > 0, (3.14)

where B̂n =
∑d
k=1Dn,kBn,k, and Ĉn =

∑d
k=1Dn,kCn,k, and satisfying (3.5) for

1 6 k 6 d. Then,

(i) {Wn}n>0 is a functional sequence (FS).
(ii) There exist a moment functional u such that {Wn}n>0 is a HOFS associated

with u.

Proof. (i) The matrices Dn,k are full rank matrices, and then we can compute the
functions recursively.

Now, we study the coefficient matrices. From Lemma 2.1, comparing the first
and the second leading coefficients of expressions (2.6) and (3.5), we get

An,kG
n+1
n+1 −Bn,kGnn−1L

(1)
n−1 = GnnLn,k,

An,kG
n+1
n +Bn,kG

n
n = Gnn−1Ln−1,k,

for 1 6 k 6 d, that can be written as

(Bn,k, An,k)

(
Gnn −Gnn−1L

(1)
n−1

Gn+1
n Gn+1

n+1

)
= (Gnn−1Ln−1,k, G

n
nLn,k),

that is,

(Bn,k, An,k)Γn+1 = (Gnn−1Ln−1,k, G
n
nLn,k),

where Γn+1 is the square rdn + rdn+1 matrix defined in Lemma 2.2. In this way, we
can see Γn+1 as the coefficient matrix of a linear system with unique solution, then
Γn+1 is non-singular and the set

{Wn,
√

1− ‖x‖2Wn−1,Wn−2,
√

1− ‖x‖2Wn−3, . . .},
is a basis of Ωdn for n > 0 by using Lemma 2.2.

(ii) We define a moment functional u by

〈u1/2,W0〉 = 1,

〈u1/2,W2n〉 = 〈u,
√

1− ‖x‖2 W2n〉 = 0, n > 1,

〈u,W2n+1〉 = 0, n > 0.

We prove that the functional system {Wn}n>0 defined by (3.14) satisfy the hybrid
orthogonality conditions (2.10) by an inductive reasoning.

From the definition W0 = 1, and then

〈u1/2,W0WT
0 〉 = 1,

〈u,W0WT
1 〉 = 〈u,WT

1 〉 = 0.

Now, we follow the reasoning given in [6, p. 74] in order to prove the hybrid
orthogonality (2.10). In fact, let n > 0 be an integer and suppose that

〈u,WnWT
n+2i+1〉 = 0, i > 0,

〈u1/2,WnWT
n+2i〉 = 0, i > 1.
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Now, we want to prove that result for n + 1. In this way, for i > 0, we use (3.14)
and induction hypothesis to compute

〈u,Wn+1WT
n+1+(2i+1)〉 =

d∑
k=1

Dn,k〈u, xkWnWT
n+2i+2〉

− B̂n〈u1/2,WnWT
n+2i+2〉 − Ĉn〈u,Wn−1WT

n+2i+2〉

=

d∑
k=1

Dn,k〈u,Wn(xkWn+2i+2)T 〉

=

d∑
k=1

Dn,k

[
〈u,WnWT

n+2i+3〉ATn+2i+2,k

+ 〈u1/2,WnWT
n+2i+2〉BTn+2i+2,k

+ 〈u,WnWT
n+2i+1〉CTn+2i+2,k

]
= 0,

and then, we have the first part of the induction. Next, we work with u1/2 and
i > 1,

〈u1/2,Wn+1WT
n+1+2i〉 =

d∑
k=1

Dn,k〈u1/2, xkWnWT
n+1+2i〉

− B̂n〈u1/2,
√

1− ‖x‖2WnWT
n+1+2i〉 − Ĉn〈u1/2,Wn−1WT

n+1+2i〉

=

d∑
k=1

Dn,k〈u1/2, xkWnWT
n+1+2i〉 − B̂n〈u, (1− ‖x‖2)WnWT

n+1+2i〉,

by using induction hypothesis. We know that (1 − ‖x‖2)Wn ∈ Ωdn+2, and then,
there exists matrix coefficients of adequate size such that

(1− ‖x‖2)Wn =

bn+2
2 c∑
i=0

En+2
n+2−2iWn+2−2i +

√
1− ‖x‖2

bn+1
2 c∑
i=0

En+2
n+1−2iWn+1−2i.

Therefore, 〈u, (1− ‖x‖2)WnWT
n+1+2i〉 = 0, and then,

〈u1/2,Wn+1WT
n+1+2i〉 =

d∑
k=1

Dn,k〈u1/2, xkWnWT
n+1+2i〉.

Substituting again the three term relation for xkWn+1+2i, we get

〈u1/2,Wn+1WT
n+1+2i〉 =

d∑
k=1

Dn,k〈u1/2,Wn(xkWn+2i+1)T 〉 = 0,

and the induction is complete.
Next, we prove that Hn = 〈u1/2,WnWT

n 〉 is non-singular, for n > 0. First,

H0 = 〈u1/2,W0WT
0 〉 = 1, and then, it is invertible.

Now, we suppose that the square and symmetric matrix Hn = 〈u1/2,WnWT
n 〉 is

invertible. Using expression (3.11)

Hn C
T
n+1,k = Mn+1,kγ

−1
n+1Hn+1.
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where Mn,k = [κ
(1)
n,k − κ

(2)
n γ−1

n κ
(3)
n,k], we get

diag{Hn, . . . ,Hn}CTn+1 = Mn+1γ
−1
n+1Hn+1.

In this way, since Hn is invertible, diag{Hn, . . . ,Hn} is also invertible, and by
hypothesis, rankCn+1 = rdn+1. Therefore

rank(Mn+1γ
−1
n+1Hn+1) = rdn+1.

Then,

rankHn+1 > rank(Mn+1γ
−1
n+1Hn+1) > rankMn+1 + rank(γ−1

n+1Hn+1)− rdn+1

= rankHn+1,

and finally, rankHn+1 = rdn+1. �

4. A method to construct bivariate hybrid orthogonal functions

To construct bivariate hybrid orthogonal functions, we develop a similar con-
struction as the well known Koornwinder’s method ([6], [10]), used to obtain or-
thogonal polynomials in d = 2 variables from univariate orthogonal polynomials.

More precisely, let ω1(x) be an even weight function in one variable defined on
the interval (−1, 1). In this way, the moment functional is defined as

〈v1, f〉 =

∫ 1

−1

f(x)ω1(x) dx,

for every univariate polynomial f(x).

For m > 0, we denote by {p(m)
n (x)}n>0 the family of polynomials orthogonal

with respect to the even weight function (1 − x2)m+1 ω1(x) on (−1, 1). Then, the

polynomials are even functions, that is, p
(m)
n (−x) = (−1)np

(m)
n (x), for n,m > 0

and x ∈ (−1, 1).
Let {qn(x)}n>0 be a sequence of univariate hybrid orthogonal functions in the

sense of presented in [2], satisfying univariate hybrid orthogonal conditions as in
(2.10), associated with a non symmetric weight function ω2(x) on (−1, 1), in the
form

〈v2, f〉 =

∫ 1

−1

f(x)ω2(x) dx.

We define the sequence of functions {Wn}n>0, where

Wn = (Wn
0 (x1, x2),Wn

1 (x1, x2), . . . ,Wn
n (x1, x2))T , n > 0, (4.1)

and

Wn
m(x1, x2) = p

(m)
n−m(x1)

(√
1− x2

1

)m
qm

(
x2√

1− x2
1

)
, 0 6 m 6 n. (4.2)

It is easy to check that the function Wn
m(x1, x2) has degree n, for 0 6 m 6 n, and

then {Wn}n>0 defined as above is a FS.
Observe that there is an essential difference from the classical method by Koorn-

winder ([10]), apart from the fact that the second family is a hybrid orthogonal

sequence, the polynomials {p(m)
n }n>0 are orthogonal with respect to the weight

function ρ(x)2m+2ω1(x), taking ρ(x) =
√

1− x2, and in the Koornwinder’s classi-
cal construction they are orthogonal with respect to ρ(x)2m+1ω1(x).

We show the following result.
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Proposition 4.1. Let {Wn}n>0 be a FS defined as in (4.1)-(4.2). Then, {Wn}n>0

is a HOFS with respect to the weight function

ω(x1, x2) = ω1(x1)ω2

(
x2√

1− x2
1

)
,

on the region R = {(x1, x2) : −1 < x1 < 1, −
√

1− x2
1 < x2 <

√
1− x2

1}.

Proof. We denote by u and u1/2 the moment functionals respectively defined by

〈u, p〉 =
x

R

p(x1, x2)ω(x1, x2) dx1 dx2

and

〈u1/2, p〉 = 〈u,
√

1− ‖x‖2 p〉 =
x

R

p(x1, x2)
√

1− x2
1 − x2

2 ω(x1, x2) dx1 dx2.

For brevity, we denote ρ(x) =
√

1− x2 and t = x2/
√

1− x2
1. Observe that

ρ(x1) ρ(t) =
√

1− x2
1

√
1− t2 =

√
1− x2

1 − x2
2 =

√
1− ‖x‖2.

For 0 6 m 6 n and 0 6 k 6 h, we compute the inner product of two functions as
follows

〈u,Wn
mW

h
k 〉 =

x

R

Wn
m(x1, x2)Wh

k (x1, x2)ω(x1, x2)dx1dx2

=
x

R

p
(m)
n−m(x1) p

(k)
h−k(x1) ρ(x1)m+k ω1(x1)

× qm
(

x2

ρ(x1)

)
qk

(
x2

ρ(x1)

)
ω2

(
x2

ρ(x1)

)
dx1dx2

=

∫ 1

−1

p
(m)
n−m(x1) p

(k)
h−k(x1) ρ(x1)m+k+1 ω1(x1) dx1

×
∫ 1

−1

qm(t)qk(t)ω2(t)dt,

(4.3)

and, in the same way,

〈u1/2,W
n
mW

h
k 〉 =

x

R

Wn
m(x1, x2)Wh

k (x1, x2)
√

1− ‖x‖2ω(x1, x2)dx1dx2

=

∫ 1

−1

p
(m)
n−m(x1) p

(k)
h−k(x1) ρ(x1)m+k+2 ω1(x1) dx1

×
∫ 1

−1

qm(t) qk(t) ρ(t)ω2(t) dt.

(4.4)

To prove the hybrid orthogonality we need to split it in the following four cases:

(i) 〈u,W 2n+1
2m+l W

2h
2k+l〉 = 0,

(ii) 〈u,W 2n+1
2m W 2h

2k+1〉 = 0,

(iii) 〈u1/2,W
2n+l
2m W 2h+l

2k+1〉 = 0,

(iv) 〈u1/2,W
2n+l
2m+iW

2h+l
2k+i 〉 = h

(l,i)
n,m δn,h δm,k, h

(l,i)
n,m > 0,
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for any 0 6 m 6 n, 0 6 k 6 h, and l, i = 0, 1.

Cases (i) and (iii) are deduced from the fact that the first integral in last term in

(4.3) and (4.4) vanishes since in both cases p
(m)
n−m(x) p

(k)
h−k(x) is an odd polynomial,

and the function ρ(x)m+k+1+lω1(x) is even, for any n,m, h, k and l = 0, 1.

For case (ii), using the fact that {qm(t)}n>0 are univariate hybrid orthogonal func-
tions, the last integral in the last term in expressions (4.3) and (4.4) vanishes for
any m, k, and then, for any n, h.

Case (iv) is deduced as case (ii), the last integral in the last term of (4.4) vanishes
except for m = k. We denote∫ 1

−1

qm(t)2
√

1− t2 ω2(t)dt = h(q)
m > 0,

and using the orthogonality of the polynomials {p(m)
n }n>0, we get

〈u1/2,W
2n+l
2m+iW

2h+l
2k+i 〉 = h

(p)
2n+l−(2m+i) h

(q)
2m+i δn,h δm,k,

for l = 0, 1 and i = 0, 1, where

h
(p)
n−m =

∫ 1

−1

p
(m)
n−m(x1)2 ρ(x1)2m+2ω1(x1)dx1 > 0.

This completes the proof. �

For bivariate hybrid orthogonal functions constructed by this method, we give
explicitly the matrices of the three term relations (3.5) for k = 1, 2,

xkWn(x) = An,kWn+1(x) +Bn,k
√

1− ‖x‖2 Wn(x) + Cn,kWn−1(x),

whereAn,k, Bn,k, Cn,k are matrices of respective sizes (n+1)×(n+2), (n+1)×(n+1),
and (n+ 1)× n, such that An,k, Cn,k, An and Cn have full rank.

To this aim, we adapt the results given in [11].

As it is well known, the symmetric univariate orthogonal polynomial sequence

{p(m)
n (x)}n>0 satisfies a three term recurrence relation ([3], [13]). Then, there exist

non zero constants a
(m)
n , c

(m)
n such that

x p(m)
n (x) = a(m)

n p
(m)
n+1(x) + c(m)

n p
(m)
n−1(x), n > 0, (4.5)

p
(m)
−1 (x) = 0, p

(m)
0 (x) = 1, m > 0.

The univariate hybrid orthogonal sequence {qm(t)}m>0 also satisfies a three term
recurrence relation ([2])

t qm(t) = ãm qm+1(t) + b̃m
√

1− t2 qm(t) + c̃m qm−1(t), m > 0, (4.6)

q−1(t) = 0, q0(t) = 1,

with ãm and c̃m non zero constants.
Moreover, we need relations between the symmetric adjacent families of orthog-

onal polynomials {p(m)
n }n>0 and {p(m+1)

n }n>0. In [11] it was proved the existence
of the relations

p(m)
n (x) = δ(m)

n p(m+1)
n (x) + ζ(m)

n p
(m+1)
n−2 (x), (4.7)

ρ(x)2 p(m+1)
n (x) = η(m)

n p
(m)
n+2(x) + ϑ(m)

n p(m)
n (x), (4.8)
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where δ
(m)
n , ζ

(m)
n , η

(m)
n and ϑ

(m)
n are constants. Observe that the symmetry of the

polynomials yields shorter relations than in the general case.

Therefore, we can give explicit expressions of the coefficient matrices for the
three term relations for the bivariate hybrid orthogonal function sequence defined
in (4.2). The matrices for the first three term relation are diagonal.

Proposition 4.2. Let {Wn}n>0 be a hybrid orthogonal FS constructed by means
of (4.2). The matrix coefficients in the first three term relation (3.5) are given by

An,1 = diag{a(m)
n−m : 0 6 m 6 n}Ln,1,

Bn,1 = 0,

Cn,1 =LTn−1,1 diag{c(m)
n−m : 0 6 m 6 n− 1},

where a
(m)
n−m and c

(m)
n−m, for 0 6 m 6 n, are the coefficients in (4.5), and the matrices

Ln,1, Ln−1,1 were defined in (2.1).

Proof. Multiplying (4.2) by x1, and applying relation (4.5), we obtain

x1W
n
m(x1, x2) =x1 p

(m)
n−m(x1) ρ(x1)m qm

(
x2

ρ(x1)

)
= [a

(m)
n−mp

(m)
n−m+1(x1) + c

(m)
n−mp

(m)
n−m−1(x1)]ρ(x1)m qm

(
x2

ρ(x1)

)
= a

(m)
n−mW

n+1
m (x1, x2) + c

(m)
n−mW

n−1
m (x1, x2).

The result follows from the above relation for m = 0, 1, 2, . . . , n, and the vector
notation (4.1). �

In the next theorem, we prove that the matrix coefficients of the second three
term relation for {Wn}n>0 are tridiagonal.

Proposition 4.3. The matrix coefficients of the second three term relation (3.5)
for an orthogonal PS generated by (4.2) are given by the tridiagonal matrices

An,2 =


0 â

(0)
n © 0

ã
(1)
n−1 0

. . .
...

. . .
. . . â

(n−1)
1 0

© ã
(n)
0 0 â

(n)
0

 ,

where

â
(m)
n−m = ãm δ

(m)
n−m, 0 6 m 6 n,

ã
(m)
n−m = c̃m η

(m−1)
n−m , 1 6 m 6 n,

Cn,2 =



0 ĉ
(0)
n ©

c̃
(1)
n−1 0

. . .

. . .
. . . ĉ

(n−2)
2

© c̃
(n−1)
1 0

0 . . . 0 c̃
(n)
0


,
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where

ĉ
(m)
n−m = ãm ζ

(m)
n−m, 0 6 m 6 n− 2,

c̃
(m)
n−m = c̃m ϑ

(m−1)
n−m , 1 6 m 6 n− 1,

and Bn,2 = diag{b̃m : 0 6 m 6 n}.

Proof. Multiplying (4.2) by x2, denoting t = x2/ρ(x1), and using (4.6), we get

x2W
n
m(x1, x2) = p

(m)
n−m(x1) ρ(x1)m+1 x2

ρ(x1)
qm

(
x2

ρ(x1)

)
= ãm p

(m)
n−m(x1) ρ(x1)m+1 qm+1(t)

+ b̃m p
(m)
n−m(x1) ρ(x1)m+1

√
1− t2 qm(t)

+ c̃m ρ(x1)2 p
(m)
n−m(x1) ρ(x1)m−1 qm−1(t).

(4.9)

The terms of the above sum will be studied separately. For the first term, using
(4.7), we deduce

p
(m)
n−m(x1)ρ(x1)m+1qm+1(t)

=
[
δ

(m)
n−m p

(m+1)
n−m (x1) + ζ

(m)
n−m p

(m+1)
n−m−2(x1)

]
ρ(x1)m+1 qm+1(t)

= δ
(m)
n−mW

n+1
m+1(x1, x2) + ζ

(m)
n−mW

n−1
m+1(x1, x2).

Now, we consider the second term of (4.9). Since ρ(x1)
√

1− t2 =
√

1− x2
1 − x2

2,
the second term yields

p
(m)
n−m(x1) ρ(x1)m+1

√
1− t2 qm(t) = p

(m)
n−m(x1) ρ(x1)m

√
1− x2

1 − x2
2 qm(t)

=
√

1− x2
1 − x2

2W
n
m(x1, x2).

For m > 1, last term in (4.9) is computed substituting (4.8) in the form

ρ(x1)2 p
(m)
n−m(x1) ρ(x1)m−1 qm−1(t)

=
[
η

(m−1)
n−m p

(m−1)
n−m+2(x1) + ϑ

(m−1)
n−m p

(m−1)
n−m (x1)

]
ρ(x1)m−1 qm−1(t)

= η
(m−1)
n−m Wn+1

m−1(x1, x2) + ϑ
(m−1)
n−m Wn−1

m−1(x1, x2).

Finally, replacing above expressions into (4.9), we get

x2W
n
m(x1, x2) = c̃m η

(m−1)
n−m Wn+1

m−1(x1, x2) + ãm δ
(m)
n−mW

n+1
m+1(x1, x2)

+ b̃m

√
1− x2

1 − x2
2W

n
m(x1, x2)

+ c̃m ϑ
(m−1)
n−m Wn−1

m−1(x1, x2) + ãm ζ
(m)
n−mW

n−1
m+1(x1, x2).

�
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5. Examples

We present some special examples of bivariate HOFS generated by sequences
of hybrid orthogonal functions of one variable satisfying univariate (2.10) and se-
quences of symmetric orthogonal polynomials.

For the first example we use the method described in Section 4.

5.1. Bivariate hybrid functions on the disk. In this example, we construct
a family of bivariate hybrid functions on the unit disk in R2 as an extension of
the classical disk polynomials ([6]) by using the Koornwinder-type construction
described before. To this end, we use classical Gegenbauer polynomials as well
as the univariate hybrid functions described in Example 2 in [2]. We study the
bivariate hybrid orthogonal disk functions, and we deduce explicitly their matrix
three term relations by using a similar technique as in [11].

In this way, we denote by {C̄(λ)
n }n>0 the sequence of monic classical Gegenbauer

polynomials orthogonal on the interval [−1, 1] with respect to the weight function
ω(λ)(x) = (1 − x2)λ−1/2, for λ > −1/2. We include some equations for monic
Gegenbauer polynomials, adapted to the monic case from relations in [1] and [13].

• Three term recurrence relation ([13, (4.7.17)])

x C̄(λ)
n (x) = C̄

(λ)
n+1(x) + d(λ)

n C̄
(λ)
n−1(x),

where

d(λ)
n =

1

4

n (n+ 2λ− 1)

(n+ λ)(n+ λ− 1)
.

• Relation between adjacent families I ([13, (4.7.29)])

C̄(λ)
n (x) = C̄(λ+1)

n (x) + ζ(λ)
n C̄

(λ+1)
n−2 (x)

where

ζ(λ)
n = −1

4

n (n− 1)

(n+ λ)(n+ λ− 1)
.

• Relation between adjacent families II ([1, (22.7.21)])

(1− x2)C̄(λ+1)
n (x) = −C̄(λ)

n+2(x) + ϑ(λ)
n C̄(λ)

n (x)

where

ϑ(λ)
n =

1

4

(n+ 2λ) (n+ 2λ+ 1)

(n+ λ)(n+ λ+ 1)
.

In our case, we take ω1(x) = (1 − x2)λ−1. For m > 0, we use the monic
Gegenbauer polynomials orthogonal with respect to

(
√

1− x2)2m+2 (1− x2)λ−1 = (1− x2)λ+m = ω(λ+m+1/2)(x).

Then, the family of univariate orthogonal polynomials will be taken as Gegenbauer

polynomials of varying parameter, that is, p
(m)
n (x) = C̄

(λ+m+1/2)
n (x), for n > 0,

where C̄
(λ+m+1/2)
n (x) denotes the nth monic Gegenbauer polynomial orthogonal

with respect to the weight function ω(λ+m+1/2)(x).

For the second family we use the univariate monic hybrid orthogonal functions
given in the Example 2 in [2]. This family of functions, denoted here by {Qm}m>0

is hybrid with respect to the weight function

e−2η arccos(x) (1− x2)λ−1, η, λ ∈ R, λ > 1/2,
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and satisfy the three term recurrence relation Q−1(x) = 0, Q0(x) = 1, and

xQm(x) = Qm+1(x) + b̃m
√

1− x2Qm(x) + c̃mQm−1(x), m > 0,

where

b̃m =
η

m+ λ− 1
, c̃m =

1

4

m(m+ 2λ− 1)

(m+ λ)(m+ λ− 1)
.

Observe that when η = 0, then b̃m = 0, and the functions Qm(x) reduce to the

Gegenbauer monic orthogonal polynomials C̄
(λ)
m (x) orthogonal with respect to the

weight function ω(λ)(x) = (1− x2)λ−1/2 ([2]).
As it was showed in Proposition 4.1, the family of vector of functions {Wn}n>0,

where
Wn = (Wn

0 (x1, x2),Wn
1 (x1, x2), . . . ,Wn

n (x1, x2))T , n > 0,

and

Wn
m(x1, x2) = C̄

(λ+m+1/2)
n−m (x1)

(√
1− x2

1

)m
Qm

(
x2√

1− x2
1

)
,

is a mutually HOFS associated with the weight function

ω(x1, x2) = ω1(x1)ω2

(
x2√

1− x2
1

)
= e−2η arccos(x2/

√
1−x2

1) (1− x2
1 − x2

2)λ−1.

Now, we compute the three term relation for these bivariate hybrid orthogonal
functions.

From Proposition 4.2, and the fact that we are using monic Gegenbauer orthog-
onal polynomials, we get

x1 Wn(x1, x2) = Ln,1 Wn+1(x1, x2) + Cn,1 Wn−1(x1, x2),

where

Cn,1 = LTn−1,1 diag

{
1

4

(n−m)(n+m+ 2λ)

(n+ λ+ 1/2)(n+ λ− 1/2)
, 0 6 m 6 n− 1

}
.

The matrix coefficients of the second three term relation

x2 Wn(x1, x2) =An,2 Wn+1(x1, x2) +Bn,2

√
1− x2

1 − x2
2 Wn(x1, x2)

+ Cn,2 Wn−1(x1, x2),

are given in Proposition 4.3, and, in this case, we get

â
(m)
n−m = 1, 0 6 m 6 n,

ã
(m)
n−m = −1

4

m(m+ 2λ− 1)

(m+ λ)(m+ λ− 1)
, 1 6 m 6 n,

ĉ
(m)
n−m = −1

4

(n−m)(n−m− 1)

(n+ λ+ 1/2)(n+ λ− 1/2)
, 0 6 m 6 n− 2,

c̃
(m)
n−m =

1

16

m(m+ 2λ− 1)(n+m+ 2λ− 1) (n+m+ 2λ)

(m+ λ)(m+ λ− 1)(n+ λ− 1/2)(n+ λ+ 1/2)
, 1 6 m 6 n− 1,

and Bn,2 = diag{b̃m : 0 6 m 6 n}.
Then we have done a complete description of a sequence of hybrid orthogonal

functions on the unit ball on R2 that extends a family studied in [2] to the bivari-
ate case. This description includes as particular case the classical orthogonal ball
polynomials ([6]) in the case η = 0.
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5.2. Univariate hybrid orthogonal functions and bivariate polynomials.
Now, we relate univariate hybrid functions, introduced in [2] for the positive-definite
case and extended as particular case of our results for d = 1, and bivariate orthog-
onal polynomials on the unit sphere.

For d = 1 and −1 6 x1 6 1, we consider functions that its explicit expression is
given by (2.4)

wn(x1) =

bn2 c∑
i=0

gnn−2i x
n−2i
1 +

√
1− x2

1

bn−1
2 c∑
i=0

gnn−(2i+1) x
n−(2i+1)
1 , n > 0,

where gnn−j are real numbers, 0 6 j 6 n, and suppose that they satisfy a hybrid
orthogonality with respect to a moment functional v as was given in (2.10).

Now, we take x2 =
√

1− x2
1, and then, we work in the hemisphere H1 =

{(x1, x2) ∈ R2 : x2
1 + x2

2 = 1, x2 > 0}.
Then, we study the bivariate polynomial

Wn(x1, x2) =

bn2 c∑
i=0

gnn−2i x
n−2i
1 +

bn−1
2 c∑
i=0

gnn−(2i+1) x
n−(2i+1)
1 x2, n > 0.

That polynomial can be expressed in terms of the vector canonical basis {Xn}n>0

as

Wn(x1, x2) = (gnn , g
n
n−1, 0, ..., 0)


xn1

xn−1
1 x2

...
x1x

n−1
2

xn2

+ (gnn−2, g
n
n−3, 0, ..., 0)


xn−2

1

xn−3
1 x2

...
x1x

n−3
2

xn−2
2

+ · · ·

=

bn2 c∑
i=0

G̃nn−2iXn−2i,

where G̃nn−2i = (gnn−2i, g
n
n−(2i+1), 0, . . . , 0) are real row vectors of size n − 2i + 1.

Observe that for every bivariate polynomial Wn(x1, x2) obtained as above we only
use the first two entries of each element of the canonical basis {Xn}n>0.

Moreover, the can study the orthogonality properties for this new family of
polynomials. First, we can define a moment functional u over polynomials Wn of
different parity order as

〈u,W2n+1W2m〉 = 〈v, w2n+1 w2m〉 = 0.

The moment functional u1/2 defined as (2.9) belongs to the zero functional, since√
1− ‖x‖2 = 0, for x ∈ H1.
However, polynomials of the same parity order satisfy the following orthogonality

property

〈û,W2n+lW2m+l〉 = 〈u, x2W2n+lW2m+l〉 = 〈u,
√

1− x2
1W2n+lW2m+l〉

= 〈v,
√

1− x2
1w2n+lw2m+l〉 = 〈v1/2, w2n+lw2m+l〉 = h2n+lδn,m,

for l = 0, 1, where h2n+l 6= 0.
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Therefore, the linear space of hybrid orthogonal functions Ω1
n can be seen as a

linear subspace of Π2
n(H1) with a special properties of orthogonality.
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[11] M. Marriaga, T. E. Pérez, M. A. Piñar, Three term relations for a class of bivariate orthogonal

polynomials, Mediterranean Journal of Mathematics, 14(2) (2017), Art. 54, 26 pp.

[12] G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear and
Multilinear Algebra, 2 (1974), 269-292.
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