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Abstract

In connection with Galois Theory and Algebraic Curves, this paper investigates rational
functions h(x) = f(x)/g(x) ∈ Fq(x) for which the value set Vh = {h(α) | α ∈ Fq ∪ {∞}} is
relatively small. In particular, under certain circumstances, it proves that h(x) having a small
value set is equivalent to the field extension Fq(x)/Fq(h(x)) being Galois.

1 Introduction

Let q be a power of a prime p, and let Fq be the finite field with q elements. For any rational function
h(x) ∈ Fq(x), its value set is defined as

Vh = {h(α) | α ∈ P1} ⊂ P1 = Fq ∪ {∞}.

If h(x) = f(x)
g(x)
∈ Fq(x) is a rational function of degree d, that is, f(x), g(x) ∈ Fq[x] are such that

gcd(f(x), g(x)) = 1 and d = max{deg f, deg g}, then one has the trivial bound⌈
q + 1

d

⌉
≤ #Vh ≤ q + 1. (1)

Hereafter, a rational function for which the lower bound in (1) is achieved will be called minimal
value set rational function, abbreviated as m.v.s.r.f..

∗daniele.bartoli@unipg.it
†hborges@icmc.usp.br
‡luciane@im.ufrj.br
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The previous definition is analogous to the well-known notion of minimal value set polynomials,
that is, polynomials f ∈ Fq[x] of degree d ≥ 1 for which the value set Vf = {f(α) | α ∈ Fq} has the
smallest possible size

⌈
q
d

⌉
. Note, however, that minimal value set polynomials f(x) ∈ Fq[x], seen as

rational functions for which f(∞) =∞, may not give rise to m.v.s.r.f.. In fact, if a such polynomial
f is considered as a rational function in Fq(x), then one can easily check that Vf = {f(α) | α ∈ P1}
satisfies

#Vf =


⌈
q+1
d

⌉
if d divides q,⌈

q+1
d

⌉
+ 1 otherwise,

(2)

where d = deg f . This immediately raises a few questions:

i) Do m.v.s.r.f. of degree d, where d - q, exist? Can they be characterized?

ii) What about the ones where d | q? Do they all arise from minimal value set polynomials?

iii) More generally, can one characterize all rational functions h ∈ Fq(x) for which
#Vh =

⌈
q+1
d

⌉
or #Vh =

⌈
q+1
d

⌉
+ 1?

Motivated by these natural questions, this paper investigates rational functions h ∈ Fq(x) with
somewhat small value set. It addresses many instances of the questions above. In particular, the
following main results are proved.

Theorem 1.1. If the rational function h(x) ∈ Fq(x) is such that Fq(x)/Fq(h(x)) is a Galois exten-
sion, then either #Vh =

⌈
q+1
d

⌉
or #Vh =

⌈
q+1
d

⌉
+ 1. Moreover, an explicit description of each case

can be provided.

Theorem 1.2. Let h(x) = f(x)/g(x) be a rational function, where f(x) and g(x) are coprime
polynomials over Fq, deg(g) = d and deg(f) = d − s, 0 < s ≤ d. If δ :=

√
q − (d − s)(d − s + 1) is

positive, and

#Vh <

⌈
q + 1

d

⌉
+

δ2 + 1

(d− 1)d2
− 1.

then Fq(x) | Fq(h(x)) is a Galois extension.

The paper is organized as follows. In Section 2, some notation are presented, and a connection
between rational functions h(x) ∈ Fq(x) and certain plane algebraic curves Ch is established. Section
3 proves Theorem 1.1. Section 4 discusses rational functions of degree 3 as a prototype for the
following sections. Section 5, in connection with Galois Theory, proves the main facts regarding the
components of the plane curve associated to the rational function h(x). Section 6 proves a general
result which implies Theorem 1.2.

Remark 1.3. As the paper is still under revision, the proofs of some assertions are omitted. The
complete proofs will appear in a preprint.
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2 Value set and algebraic curves

Given a rational function h(x) = f(x)/g(x), let us consider the algebraic curve Ch : G(X, Y ) = 0,
where

G(X, Y ) = f(X)g(Y )− f(Y )g(X). (3)

Note that if h(x) is not a permutation of P1(Fq), then one can always assume that g(x) has no roots
in Fq. In this case, for any given a point P = (x0, y0) ∈ Ch ∩ AG(2, q), we have

f(x0)/g(x0) = f(y0)/g(y0).

This gives a close relationship between Vh ∩ Fq = {α1, . . . , αr} and the affine Fq-points on curve Ch.
Note that for ni := #h−1(αi), we clearly have

∑r
i=1 ni = q.

Since h(x) = h(y) for each x, y ∈ h−1(αi), there are exactly
∑r

i=1 n
2
i points in Ch∩AG(2, q). Also,

such a number strictly depends on the number of absolutely irreducible components defined over Fq
of Ch. Roughly speaking, if the degree of h (and then the degree of Ch) is small with respect to q,
the smaller the value set the larger the number of absolutely irreducible components defined over Fq
of Ch. This idea will be better detailed in Theorems 6.1 and 6.2. Actually, the type and the number
of components of Ch gives even more information.

Example 2.1. Let us consider the following example. Let h(x) = f(x)
g(x)

= 2x5−5x4+5x2−2x
x6−15x4+20x3−6x+1

, where

6 | (q+1). It can be proved that h(x) is a m.v.s.r.f.. The polynomial G(X, Y ) = f(X)g(Y )−f(Y )g(X)
factorizes as

(X − Y )(XY − Y + 1)(XY − 2X + Y + 1)(XY −X + 1)(XY +X − 2Y + 1)(2XY −X − Y + 2).

The components of Ch consist of the line X = Y and the five conics

Y = c1(X) =
1

1−X
, Y = c2(X) =

2X − 1

X + 1
, Y = c3(X) =

X − 1

X
,

Y = c4(X) =
X + 1

2−X
, Y = c5(X) =

X − 2

2X − 1
.

Consider for instance the component Y = 2X−1
X+1

. For each x0 6= −1 ∈ Fq, we have that h(x0) =

h(c2(x0)) = h
(

2x0−1
x0+1

)
. On the other hand

h(x0) = h(c2(x0)) = h(c2(c2(x0))) = · · · = h(c2(c2(· · · c2(x0)))).

This shows that all the components of Ch can be “composed” in the following way: from Y = ci(X)
and Y = cj(X) one gets Y = ci(cj(X)). Each of the above conics can be represented by a 2 × 2
matrix with entries in Fq in the following way

Y =
αX + β

γX + δ
7→ σ =

 α β

γ δ

 . (4)
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Table 1: Rational functions h(x) arising from particular subgroups H of G

C3
x3−3x−1
x2+x

C4
x4−6x2+1
x3−x , (p > 2)

C5
2x5−20x3+(10i−10)x2+(5i−5)x−2

x4−(i−1)x3−(i−1)x2+x , where i2 = 5

C6
x6−15x4+20x3−6x+1
2x5−5x4+5x2−2x (p > 3)

S3
x6+3x5−5x3+3x+1

x4+2x3+x2

D8
x8+14x4+1
x6−2x4+x2

D12
4x10−20x9+25x8+20x7−58x6+20x5+25x4−20x3+4x2

4x12−24x11+220x9−165x8−924x7+1782x6−924x5−165x4+220x3−24x+4

PGL(2, q) (xq
2−x)q+1

(xq−x)q2+1

Clearly, the matrix (as the conic itself) is defined up to a scalar multiple, and its determinant does
not vanish and therefore we can suppose it is 1. Also, σ can be seen as an element of PGL(2, q).
In the example considered above the six matrices associated with the line X = Y and the five conics
form a group isomorphic to the cyclic group C6 of order 6. Actually, we will show that this is not an
isolated case. Indeed, to each rational function h can be attached a group which correspond to lines
and conics which are components of Ch; see Theorem 5.7.

3 Galois extensions and the smallest value sets

The aim of this section is to prove Theorem 1.1. We are going to construct rational functions with
“small” value set from certain Galois extensions. We begin with some preliminary facts.

Let G = PGL(2, q) be the automorphism group of the rational function field F = Fq(x). For
any subgroup H = {id = σ0, σ, . . . , σd−1} of G of order d, consider its fixed field FH and the Galois
extension F | FH of degree d. The minimum polynomial of x over FH is

pH(t) = a0 + a1t+ · · ·+ ad−1t
d−1 + td, (5)

where ak = (−1)d−k
∑

0≤i1<···<id−k≤d−1 σ
i1(x) · · ·σik(x) ∈ FH, k = 0, . . . , d− 1.

Lemma 3.1. Following the notation above, for any k = 1, . . . , d such that ak is not a constant we
have FH = Fq(ak(x)).

In Table 1, we list some examples of rational functions h(x) arising from particular subgroups H
of G such that FH = Fq(h(x)). Actually, in these examples h(x) is always a0 in (5).

Next proposition provides a link between the Galois group and the ramification structure of
Fq(x)|Fq(h(x)).
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Proposition 3.2. Consider a rational function h(x) over Fq of degree d ≥ 2 such that the extension
field Fq(x) | Fq(h(x)) is Galois of degree d. For any divisor α of d denote by nα the number of places
in Fq(h(x)) that decomposes in α places in Fq(x). Then one of the following holds.

i) n1 = 2 and nα = 0 for each α > 1,

ii) d = 24, n6 = n8 = n12 = 1, or

iii) d = 60, n12 = n20 = n30 = 1.

In Table 2 we list for each subgroup G of PGL(2, q) all the possible configurations of short orbits

according to [1]. Here ∆ is the difference between the lower bound
⌈
q+1
|G|

⌉
and the value set of η

where Fq(x) | Fq(η) has G as Galois group.

Theorem 3.3. Let h(x) ∈ Fq(x) be a rational function for which Fq(x)/Fq(h(x)) is a Galois exten-
sion, and let G ≤ PGL(2, q) be such that Gal(Fq(x)/Fq(h(x))) ∼= G. Then

∆ := #Vh −
⌈
q + 1

d

⌉
∈ {0, 1}

is given according to Table 2.

Table 2: Oberwolfach table

Group G Conditions Short Fq-orbits Value set size Lower bound ∆

C2

q ≡ 1 (mod 4) 2O1
q−1
2

+ 2 q+1
2

1

q ≡ 1 (mod 4) −− q+1
2

q+1
2

0

q ≡ −1 (mod 4) 2O1
q−1
2

+ 2 q+1
2

1

q ≡ −1 (mod 4) −− q+1
2

q+1
2

0

Cd, d > 2

d | q + 1,

q ≡ 1 (mod 4)
−− q+1

d
q+1
d

0

d | q − 1,

q ≡ 1 (mod 4)
2O1

q−1
d

+ 2 q−1
d

+ 1 1

d | q + 1,

q ≡ −1 (mod 4)
−− q+1

d
q+1
d

0

d | q − 1,

q ≡ −1 (mod 4)
2O1

q−1
d

+ 2 q−1
d

+ 1 1

D4

q ≡ 1 (mod 4) 3O2
q+1−6

4
+ 3 q−1

4
+ 1 1

q ≡ 1 (mod 4) 1O2
q−1
4

+ 1 q−1
4

+ 1 0

q ≡ −1 (mod 4) 2O2
q+1−4

4
+ 2 q+1

4
1

q ≡ −1 (mod 4) −− q+1
4

q+1
4

0
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Group Conditions Short Fq-orbits Value set Lower bound ∆

D2d, d > 2

d | q+1
2

, q ≡ 1 (mod 4) 2Od q+1−2d
2d

+ 2 q+1
2d

+ 1 1

d | q+1
2

, q ≡ 1 (mod 4) −− q+1
2d

q+1
2d

0

d | (q + 1)

d - q+1
2

q ≡ 1 (mod 4)

1Od q+1−d
2d

+ 1 q+1−d
2d

+ 1 0

d | q−1
2

, q ≡ 1 (mod 4) 1O2, 2Od q−1−2d
2d

+ 3 q−1
2d

+ 1 1

d | q−1
2

, q ≡ 1 (mod 4) 1O2
q−1
2d

+ 1 q−1
2d

+ 1 0

d | (q − 1)

d - q−1
2

q ≡ 1 (mod 4)

1O2, 1Od q−1−d
2d

+ 2 q−1−d
2d

+ 1 1

d | q−1
2

, q ≡ −1 (mod 4) 1O2
q−1
2d

+ 1 q−1
2d

+ 1 0

d | q−1
2

, q ≡ −1 (mod 4) 1O2, 2Od q−1−2d
2d

+ 3 q−1
2d

+ 1 1

d | (q − 1), d - q−1
2

q ≡ −1 (mod 4)
1O2, 1Od q−1−d

2d
+ 2 q−1−d

2d
+ 1 1

d | q+1
2

, q ≡ −1 (mod 4)−− q+1
2d

q+1
2d

0

d | q+1
2

, q ≡ −1 (mod 4) 2Od q+1−2d
2d

+ 2 q+1
2d

1

d | (q + 1), d - q+1
2

,

q ≡ −1 (mod 4)
1Od q+1−d

2d
+ 1 q+1−d

2d
+ 1 0

A4

q ≡ 1 (mod 12) 1O6, 2O4
q+1−6−8

12
+ 3 q−1

12
+ 1 1

q ≡ 5 (mod 12) 1O6
q+1−6

12
+ 1 q−5

12
+ 1 0

q ≡ 9 (mod 12) 1O6, 1O4
q+1−4−6

12
+ 2 q−9

12
+ 1 1

q ≡ 7 (mod 12) 2O4
q+1−8

12
+ 2 q−7

12
+ 1 1

q ≡ 11 (mod 12) −− q+1
12

q+1
12

0

q ≡ 3 (mod 12) 1O4
q+1−4

12
+ 1 q−3

12
+ 1 0

S4

q ≡ 1 (mod 24) 1O6, 1O8, 1O12
q+1−6−8−12

24
+ 3 q−1

24
+ 1 1

q ≡ 3 (mod 24) 1O4,
q+1−4

24
+ 1 q−3

24
+ 1 0

q ≡ 5 (mod 24) 1O6,
q+1−6

24
+ 1 q−5

24
+ 1 0

q ≡ 7 (mod 24) 1O8,
q+1−8

24
+ 1 q−7

24
+ 1 0

q ≡ 9 (mod 24) 1O4, 1O6
q+1−10

24
+ 2 q−9

24
+ 1 1

q ≡ 11 (mod 24) 1O12
q+1−12

24
+ 1 q−11

24
+ 1 0

q ≡ 13 (mod 24) 1O6, 1O8
q+1−6−8

24
+ 2 q−13

24
+ 1 1

q ≡ 17 (mod 24) 1O6, 1O12
q+1−6−12

24
+ 2 q−17

24
+ 1 1

q ≡ 19 (mod 24) 1O8, 1O12
q+1−8−12

24
+ 2 q−19

24
+ 1 1

q ≡ 23 (mod 24) −− q+1
24

q+1
24

0

S5

q ≡ 1 (mod 60) 1O12, 1O20, 1O30
q+1−12−20−30

60
+ 3 q−1

60
+ 1 1
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Group Conditions Short Fq-orbits Value set Lower bound ∆

q ≡ 9 (mod 60) 1O10
q+1−10

60
+ 1 q−9

60
+ 1 0

q ≡ 11 (mod 60) 1O12
q+1−12

60
+ 1 q−11

60
+ 1 0

q ≡ 19 (mod 60) 1O20
q+1−20

60
+ 1 q−19

60
+ 1 0

q ≡ 21 (mod 60) 1O10, 1O12
q+1−10−12

60
+ 2 q−21

60
+ 1 1

q ≡ 29 (mod 60) 1O30
q+1−30

60
+ 1 q−29

60
+ 1 0

q ≡ 31 (mod 60) 1O12, 1O20
q+1−12−20

60
+ 2 q−31

60
+ 1 1

q ≡ 41 (mod 60) 1O12, 1O30
q+1−12−30

60
+ 2 q−41

60
+ 1 1

q ≡ 49 (mod 60) 1O20, 1O30
q+1−20−30

60
+ 2 q−49

60
+ 1 1

q ≡ 59 (mod 60) −− q+1
60

q+1
60

0

Zmp pm ≤ q = ph 1O1
q+1−1
pm

+ 1 q
pm

+ 1 0

Zmp n Cd d | (q − 1), d | (pm − 1) 1O1, 1Odpm q+1−1−pm
dpm

+ 2 q−pm
dpm

+ 1 1

PSL(2, pm)
h = 2km

1Opm+1,

1Opm(pm−1)

q+1−1−pm−pm(pm−1)
pm(p2m−1)/2 + 2 q−p2m

pm(p2m−1)/2 + 1 1

h = (2k + 1)m 1Opm+1
q+1−1−pm
pm(p2m−1)/2 + 1 q−pm

pm(p2m−1)/2 + 1 0

PGL(2, pm)
h = 2km

1Opm+1,

1Opm(pm−1)

q+1−1−pm−pm(pm−1)
pm(p2m−1) + 2 q−p2m

pm(p2m−1) + 1 1

h = (2k + 1)m 1Opm+1
q+1−1−pm
pm(p2m−1) + 1 q−pm

pm(p2m−1) + 1 0

Remark 3.4. The examples listed in Table 2 provide m.v.s.r.f., depending on the characteristic of
the field and the size of the subgroup.

4 Degree three rational functions

In this section, we provide a more specific description of the spectrum of possible sizes of the value
set of a degree-three rational function h(x). The results here, which are interesting on their own,
will serve as prototype for what will be proved in the next sections. Assume char(k) 6= 2, 3, and
suppose d 6= 0. Without loss of generality, up to Möebius transformations, we can consider h(x) =

x2+d
x3+ax2+bx+c

∈ Fq(x). The curve Ch has equation (X − Y )F (X, Y ) = 0, where

F (X, Y ) := X2Y 2 + dX2 + (d− b)XY + (ad− c)X + dY 2 + (ad− c)Y + bd.

We start investigating the main features of the curve F (X, Y ) = 0. We will need these technical
results later on.

Proposition 4.1. If D is the projective closure of F (X, Y ) = 0, then the following holds.

i) (1 : 0 : 0) and (0 : 1 : 0) are two ordinary singularities of D.
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ii) The remaining singular points of D, if any, lie on the pair of lines

(X − Y )

(
X + Y +

ad− c
2d

)
= 0.

iii) The curve D has a singular point on the line X + Y + ad−c
2d

= 0 if and only if


b =

(
ad−c
2d

)2
and(
ad− c

)(
(ad− c)2 + 4d3

)
= 0.

In this case, the singular point is P = (ad−c
2d

: 0 : 1).

iv) The curve D has a singular point on the line X − Y = 0 if and only if

27(ad− c)2 = b(b− 9d)2.

That is, a =
3c+ (b− 9d)

√
b
3

3d
. In this case, the singular point is P = (

√
b
3

:
√

b
3

: 1). 1

v) The curve D is reducible if and only if c = ad and b = 9d. In this case, we have

F (X, Y ) =
(
XY −

√
−dY +

√
−dX − 3d

)(
XY +

√
−dY −

√
−dX − 3d

)
In particular, F (X, Y ) is reducible over Fq if, and only if, −d ∈ Fq is a square.

Moreover, if D is irreducible then D has genus g(D) = 0 in cases (3) and (4), and genus g(D) = 1
otherwise.

Recall that we are interested in the number of points in Ch ∩AG(2, q). By [2, Theorem 9.57] the
number Rq of points in D ∩ PG(2, q) satisfies

q + 1− 2g
√
q − 3 + g ≤ Rq ≤ q + 1 + 2g

√
q + 3− g.

Denote by ` the line X − Y = 0. Concerning the curve Ch, we have the following possibilities.

i) D is irreducible. So Ch factorizes as

(X − Y )F (X, Y )

1Where the choice of
√

b
3 in P = (

√
b
3 :
√

b
3 : 1) follows the same choice of

√
b
3 made in the definition of a.
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and the number of points in Ch ∩ AG(2, q) is

2q − 2
√
q − 7 ≤ q︸︷︷︸

`∩AG(2,q)

+ q + 1− 2g
√
q − 3 + g︸ ︷︷ ︸

D∩PG(2,q)

−6 ≤ Rq ≤

≤ q︸︷︷︸
`∩AG(2,q)

+ q + 1 + 2g
√
q + 3− g︸ ︷︷ ︸

D∩PG(2,q)

−2 ≤ 2q + 2
√
q + 1,

where we deleted the ideal points of X − Y = 0 and of D and the (possible) intersection points
in ` ∩ D.

ii) D is reducible and it is the union of two conics not defined over Fq. It is easily seen that the
two conics intersect at ` and at the ideal line. So, the size of Ch ∩ AG(2, q) is q.

iii) D is reducible and it is the union of two conics defined over Fq. As above the two conics intersect
at ` and at the ideal line and the size of Ch ∩ AG(2, q) is either 3q − 2 or 3q − 6, depending on
3d being or not a square in Fq.

Now, suppose that h(x) is a permutation of P1. Then, the size of Ch ∩AG(2, q) is between q − 1
and q (depending on h(∞) =∞ or not). This clearly corresponds to case (ii).

On the other hand, suppose h(x) is a m.v.s.r.f., or, more in general, its value set has size q/3 + ε,
with ε < (q−2

√
q−1)/6. Let ni be the number of elements α ∈ Fq for which #h−1(α) = i, i = 0, . . . , 3.

Then {
n1 + n2 + n3 = q/3 + ε,

n1 + 2n2 + 3n3 = q.

We conclude that n3 satisfies

3n3 + 2(q/3 + ε− n3) ≥ q =⇒ n3 ≥ q/3− 2ε.

This means that the number of points in Ch ∩ AG(2, q) is at least

n1 + 4n2 + 9n3 = (n1 + 2n2 + 3n3) + 2(n2 + 2n3) + 2n3 ≥ q + 2(2q/3− ε) + 2q/3− 4ε = 3q − 6ε.

Since ε < (q − 2
√
q − 1)/6, this case corresponds to case (3). This concept will be generalized and

clarified in Theorem 6.2.

5 Components of the curve Ch associated to a rational func-

tion h(x)

As we have seen in (4), there is a natural correspondence between elements of PGL(2, q) and degree
one rational functions arising from the factorization of f(X)g(Y )− f(Y )g(X). Also, in the previous
section we saw that for degree three rational functions h(x) = x2+d

x3+ax2+bx+c
∈ Fq(x) the curve Ch splits

into three components, which form a cyclic subgroup of order three in PGL(2, q). The aim of this
section is to collect several results that will establish such a relationship for a more general rational
function.
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Proposition 5.1. Let K be any field and H = {σi(t) = ait+bi
cit+di

: i = 1, . . . , n} a finite subgroup of
Aut(K(t)) ∼= PGL(2, K). Then the polynomial

G(X, Y ) =
n∏
i=1

(
(ciY + di)X − (aiY + bi)

)
has the following properties.

i) G(X, Y ) = (X−Y )H(X, Y ), where H(X, Y ) is symmetric. In particular, G(X, Y ) = −G(Y,X).

ii) There exists a degree-n polynomial f(t) ∈ K[t], coprime with g(t) :=
n∏
i=1

(cit+ di), such that

G(X, Y ) := f(X)g(Y )− f(Y )g(X). (6)

Moreover, the number of linear factors of G(X, Y ) is a divisor of deg g(t). In particular, if G(X, Y )
has a nonlinear factor then n

2
≤ deg g(t) ≤ n− 1, and the number of linear factors is upper bounded

by n
2
.

Lemma 5.2. Let K be any field. Let u(t)
v(t)

and f(t)
g(t)

be rational functions in K(t), with gcd(u(t), v(t)) =

gcd(f(t), g(t)) = 1. Then u(t)
v(t)
∈ K

(
f(t)
g(t)

)
if and only if there exist homogeneous polynomials T1, T2 ∈

K[X, Y ] of the same degree such that

u(t) = T1(f(t), g(t)) and v(t) = T2(f(t), g(t)).

Lemma 5.3. Let K be any field. If T1, T2 ∈ K[X, Y ] are homogeneous polynomials of the same
degree, then

T1(X, Y )T2(Z,W )− T1(Z,W )T2(X, Y )

XW − Y Z
is a homogeneous polynomial in K[X, Y, Z,W ].

Proposition 5.4. Let K be any field. For any subgroup H ≤ Aut(K(t)), let f(t) and g(t) be the
polynomials given by Proposition 5.1. Then

i) Gal
(
K(t)/K

(
f(t)
g(t)

))
= H, and

ii) A rational function u(t)
v(t)
∈ K(t) is H-invariant if and only if

u(X)v(Y )− u(Y )v(X) =
(
f(X)g(Y )− f(Y )g(X)

)
h(X, Y )

for some h(X, Y ) ∈ K[X, Y ], homogeneous in the variables f(X), g(Y ), f(Y ) and g(X).
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Lemma 5.5. Let H be a subgroup of Aut(Fq(t)) of order n such that the polynomial g(t) in Propo-
sition 5.1 is constant. That is, all elements in the group H are linear. Then H is isomorphic
to semidirect product of an elementary abelian p-group of order pm,m ≥ 0, with a cyclic group of
order N, with N |(q − 1). Moreover, for N > 2, if H = {ait + bi : i = 1, . . . , n = Npm} and

F (X) =
n∏
i=1

(aiX + bi), then up to a linear change of variables, there exists a p-linearized polynomial

f(X) ∈ Fq[X] of degree pm, and an integer N , divisor of pm − 1, such that F (X) = f(X)N .

Corollary 5.6. Let H be as in Lemma 5.5. If a rational function u(t)
v(t)
∈ Fq(t) is H-invariant, then

up to a linear change of variables, we have

u(X)v(Y )− u(Y )v(X) =
(
f(X)N − f(Y )N

)
h(f(X)N , f(Y )N)

for some h(X, Y ) ∈ K[X, Y ].

Using the previous results, we arrive at the following theorem, which gives the general setting in
which Example 2.1 falls.

Theorem 5.7. Let G(X, Y ) = f(Y )g(X)−f(X)g(Y ). The factors of degree d ≤ 2 of type gi(X, Y ) =
aiXY + biX + ciY + di, where aidi − bici 6= 0, (removing repetition, if any) are associated to the
elements σi(t) := −bit−di

ait+ci
∈ Aut(Fq(x)) ∼= PGL(2, q) and have the induced group structure.

Corollary 5.8. Let G(X, Y ) = f(Y )g(X) − f(X)g(Y ). If the group of factors of degree d ≤ 2 of
G(X, Y ) has order N , then there exists polynomials f1 and f2 such that

i) G(X, Y ) = f(Y )g(X)− f(X)g(Y ) =
(
f1(Y )g1(X)− f1(X)g1(Y )

)∏
fi(X, Y ),

ii) max{deg f1, deg f2} = N.

In particular, if the group is cyclic of order N 6= 0 mod p, (N > 2), then a linear change of variables
gives f1(Y )g1(X)− f1(X)g1(Y ) = XN − Y N .

6 Minimal and almost minimal value set rational functions

Finally, we present our main result on minimal values set rational functions. Also, Theorem 6.2
partially extends these results to rational functions having values sets of size “close” to the minimum.

Theorem 6.1. Let h(x) = f(x)/g(x) be a non constante rational function, where f(x) and g(x)
are coprime polynomials over Fq. Without loss of generality we can suppose that deg(g) = d and
deg(f) = d− s, 0 < s ≤ d. Consider the curve Ch defined by G(X, Y ) = 0 as in (3). Then

i) If a line ` is a component of Ch, then ` : X − αY − β = 0, with αs = 1.

ii) No curves of equation Y = αrX
r + αr−1X

r−1 + · · · + α0 or X = αrY
r + αr−1Y

r−1 + · · · + α0,
r > 1, αr 6= 0, are components of Ch.
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iii) If s is comprime with p all the lines which are components of Ch are

`i : X = αiY + β(αi − 1)/(α− 1), i = 1, . . . , N, (7)

for some α, β ∈ Fq, αs = 1 of order N | s.

iv) If N is the number of lines contained in Ch, then Ch is equivalent to

(XN − Y N)
∏

fi(X, Y ) = 0

with deg(fi) > 1.

v) Suppose that there exist N linear components of Ch of type (7). Then any other component of
Ch with ideal part different from X iY j has degree at least N .

vi) Ch can contain at most d components.

vii) If Ch contains d components, then they are s lines and d− s conics.

Finally, we analyze the case in which the rational function is close to be a m.v.s.r.f..

Theorem 6.2. Let h(x) = f(x)/g(x) be a rational function, where f(x) and g(x) are coprime
polynomials over Fq, deg(g) = d and deg(f) = d − s, 0 < s ≤ d. If δ :=

√
q − (d − s)(d − s + 1) is

positive, and

#Vh <

⌈
q + 1

d

⌉
+

δ2 + 1

(d− 1)d2
− 1.

then

i) Ch contains d absolutely irreducible Fq-rational components.

ii) Ch contains s lines of type X = αiY + βi and d− s conics of type XY + γiX + δiY + εi = 0.

iii) The extension Fq(x) | Fq(h(x)) is Galois of degree d.

Corollary 6.3. Suppose δ :=
√
q − (d − s)(d − s + 1) > 0. Then there exists no rational function

h(x) of degree d over Fq for which⌈
q + 1

d

⌉
+ 2 ≤ #Vh <

⌈
q + 1

d

⌉
+

δ2 + 1

(d− 1)d2
− 1.

Proof. By Theorem 6.2, the extension Fq(x) | Fq(h(x)) is Galois of degree d. Now, Table 2 shows
that in all these cases the difference between #Vh and

⌈
q+1
d

⌉
is at most 1.
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