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Generating finite Coxeter groups with elements of the
same order

Sarah Hart, Veronica Kelsey and Peter Rowley

Abstract

Supposing G is a group and k a natural number, dk(G) is defined to be the
minimal number of elements of G of order k which generate G (setting dk(G) = 0
if G has no such generating sets). This paper investigates dk(G) when G is a finite
Coxeter group either of type Bn or Dn, or of exceptional type. Together with
Garzoni [3] and Yu [10], this determines dk(G) for all finite irreducible Coxeter
groups G when 2 ≤ k ≤ rank(G) (rank(G) + 1 when G is of type An).

1 Introduction

There is a substantial and varied literature devoted to the question of which groups can
be generated by two elements. That the symmetric group of degree n can be generated
by an n-cycle and a transposition is already documented in Jordan’s Traité [6] (though
probably known earlier to Cauchy). At the beginning of the 20th century, Miller [8] showed
that, except for some small cases, the alternating group of degree n can be generated by
an element of order two and an element of order three, and he later obtained similar
results for symmetric groups in [9]. A common feature of many of the familiar generating
sets for the symmetric group of degree n is that either the number of generators, or the
order of the elements, grows as n does. This led Lanier [7] to investigate ways in which
symmetric groups and alternating groups can be generated by elements which all have
the same order. For a group G and a positive integer k, let dk(G) denote the smallest
number of elements of G of order k which generate G, with the convention that dk(G) = 0
if there are no such generating sets. Also, we denote the symmetric group (respectively
the alternating group) of degree n, by Sym(n) (respectively Alt(n)). In [7], Lanier proved
that for 3 ≤ k ≤ n, dk(Sym(n)) ≤ 3 if k is even, and dk(Alt(n)) ≤ 3 if k is odd. Further,
he showed that if 3 ≤ k ≤ n − 2, with k even, then dk(Alt(n)) ≤ 4. Earlier results on
generating Sym(n) and Alt(n) using k-cycles were obtained by Annin and Maglione [1].

Recently, Garzoni [3] extended the results of Lanier to show that, for 3 ≤ k ≤ n, with
specified exceptions, dk(Sym(n)) = dk(Alt(n)) = 2 when k is even, and dk(Alt(n)) = 2
when k is odd. We will state the main results from [3] in Section 2 in more detail, as they
have a bearing on our main theorem. As is well known, Sym(n) is the Coxeter group of
type An−1, and so this raises the question finding dk(G) for the other finite irreducible
Coxeter groups. In fact, the case when k = 2 has already been settled by Yu in [10]. Our
main result, which we now state, answers this question for Coxeter groups of types Bn

and Dn, and 3 ≤ k ≤ n.

Theorem 1.1. Suppose 3 ≤ k ≤ n and G is a Coxeter group of type either Bn or Dn.
Then the following hold.
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(i) Suppose k is odd. If n = 2k − 1 and k is prime, or if n = 4 and k = 3, then
dk(G) = 0 and dk(G

′) = 3. In all other cases, dk(G) = 0 and dk(G
′) = 2.

(ii) If k is even, then dk(G) = 2.

In the rest of this section, we outline the structure of this paper. In Section 2, we
begin by setting up the notation that we will use. Elements of groups of types Bn and
Dn can be thought of as signed permutations in a way that will be explained in Section
2, where we also give some basic information about these groups that we will need. The
proof in [3] that dk(Sym(n)) = 2 for even k, and that dk(Alt(n)) = 2 for odd k, is split
into several subcases depending on k and n, defining a pair a and b of order k in each
case that generate Sym(n) or Alt(n). The definitions of these a and b are given at the
end of Section 2. The reason for giving this detailed description is that, in many cases,
it is possible, by a careful addition of signs to the appropriate a and b, to find signed
permutations x and y of order k that generate groups of type Bn and Dn (or their derived
subgroups). There is, however, a significant minority of cases in which this is not possible.
For example, suppose that k divides n. Then, usually, the given a and b are products
of k-cycles. Adding an odd number of minus signs to a k-cycle results in an element of
order 2k, so we cannot do this. But if we add an even number of minus signs to each
cycle, then the resulting elements x and y will themselves contain an even number of
minus signs, meaning that we cannot generate the whole of a group of type Bn in this
way. Therefore, we are forced to use different elements, which requires us additionally
to show, for the elements we use, that the underlying pair of permutations in Sym(n) do
still generate Sym(n) (or Alt(n), as appropriate). In particular, it is not possible to use
the elements given in [3] in the following cases (where we write n = tk+ j with t ≥ 1 and
0 ≤ j < k):

(i) k even, t even, k > 4, j = 1;

(ii) k even, t even, j odd, j /∈ {1, k − 1};

(iii) n ≥ 2k, k even, t odd, j 6= k − 1;

(iv) n ≥ 2k, k ≡ 2 mod 4, j = 2;

(v) n = 2k − 1; and

(vi) n = k.

When k is odd, dk(G) = dk(G) = 0. This is because G′ has index 4 in G, and index 2 in
G+, and so every element of odd order in G is contained in G′. The proof of Theorem
1.1 is split into two sections. Section 3 deals with the case n ≥ 2k, and Section 4 with
the case n < 2k. For completeness, in Section 5, we determine dk(G) when 3 ≤ k ≤ n
and G is an irreducible exceptional finite Coxeter group.

Acknowledgement This work was done during the authors’ visit to the Mathematis-
ches Forschungsinstitut Oberwolfach in February 2020, as part of the Research in Pairs
programme. They would like to express their thanks to the Institute for providing such
a stimulating environment.
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2 Background and basic results

Let n ∈ N with n ≥ 3. We use W (Bn) and W (Dn) to denote, respectively, the Cox-
eter groups of type Bn and Dn. In our proof of Theorem 1.1 we shall view W (Bn)
as the group of signed permutations of the set Ω = {1, 2, . . . , n}. That is, setting
Ω̃ = {1, 2, . . . , n,−1,−2, . . . ,−n}, the group W (Bn) is the subgroup of Sym(Ω̃) con-
sisting of those permutations σ of Ω̃ for which (−α)σ = −ασ for all α ∈ Ω. Thus we may
describe an element of W (Bn) by giving it as a permutation of Ω, equipped with a plus

or minus sign above each element of Ω. So, for example, σ = (
−
1,

+

2,
−
3) ∈ W (Bn) is the

permutation 1σ = −2, 2σ = 3, 3σ = −1, (−1)σ = 2, (−2)σ = −3 and (−3)σ = 1. We note
here that we will write our permutations on the right (of elements of Ω) and so multiply

permutations from left to right. For a permutation τ of Sym(n), we will write
+
τ to mean

the signed permutation obtained by adding a plus sign above each number. For example,

if τ = (1, 2, 3), then
+
τ = (

+

1,
+

2,
+

3).

For σ ∈ W (Bn) we may express σ as a product of pairwise disjoint signed cycles. A
signed cycle is said to be positive if there are an even number of minus signs above the
elements of the cycle and negative if there are an odd number of minus signs. For exam-

ple (
+

1,
+

3,
−
2) is a negative 3-cycle and (

−
4,
−
5) is a positive 2-cycle. Now, W (Bn) contains

a subgroup of index 2 which consists of all those signed permutations of Ω with an even
number of minus signs. This subgroup is isomorphic to W (Dn), and we will use this

version of W (Dn) in our later calculations. Thus, for example, (
−
1,

+

2,
−
3)(
−
4,
−
5) ∈ W (D5).

For an element σ ∈ W (Bn), σ̂ is the permutation of Sym(Ω) = Sym(n) obtained by re-

moving all the signs from σ. As an example, if σ = (
−
1,

+

2,
−
3)(
−
4,
−
5), then σ̂ = (1, 2, 3)(4, 5).

We remark that if σ (when expressed in disjoint signed cycle form) contains the cycle

(
ε1
a1, . . . ,

εm
am), where ai ∈ Ω and εi ∈ {+,−}, then σ−1 contains the cycle (

εm
a1,

εm−1
am , . . . ,

ε1
a2).

Now put G = W (Bn) and let G+ be all the signed permutations in G with an even
number of minus signs. So G+ = W (Dn). We briefly discuss some of the structural
features of G and G+. Letting N denote the subgroup of G consisting of all σ for which σ̂
is the identity permutation of Ω, we have that N is a normal elementary abelian subgroup
of G of order 2n. Also let N+ be the set of elements in N with an even number of minus
signs. Then N+ has order 2n−1 and is a normal subgroup of both G and G+. We have
that G/N ∼= Sym(n) ∼= G+/N+. Also G′, the derived subgroup of G, has index 4 in G,
with G′ ≤ G+, G′ ∩N = N+ and G′/N+ ∼= Alt(n). Note that (G+)′ = G′. Let z be the
element of N sending α to −α for all α ∈ Ω. Then Z(G) = 〈z〉. Note that Z(G+) = 〈z〉
when n is even and Z(G+) = 1 when n is odd. For details on the above, see [4].

Lemma 2.1. (i) Suppose that H ≤ G (respectively H ≤ G′) and H ∩N 6⊆ Z(G)∪N+

(respectively H ∩N 6≤ Z(G)). Set Ḡ = G/N (respectively Ḡ′ = G′/N+). If H̄ = Ḡ
(respectively H̄ = Ḡ′), then H = G (respectively H = G′).

(ii) Suppose that H ≤ G+ with H ∩N+ 6≤ Z(G+), and set Ḡ+ = G+/N+. If H̄ = Ḡ+,
then H = G+.

Proof. (i) We begin by recalling that the only non-trivial proper normal subgroups of
G contained in N are Z(G) and N+. Suppose that H̄ = Ḡ. Then G = HN . Since
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H ∩N is normal in H and N is abelian, H ∩N is a normal subgroup of G. Because
H ∩ N 6⊆ Z(G) ∪ N+ by assumption, H ∩ N = N , whence H = G. A similar
argument applies when H ≤ G′.

(ii) The proof is similar to part (i).

In order to write down permutations in an efficient way, we introduce the following
arrow notation.

Definition 2.2. Let α, β ∈ Ω and r ∈ N, where β = α + rs. Then

(. . . , α↗r β, . . . ) = (. . . , α↗r α + rs, . . . )

describes the permutation

(. . . , α, α + r, α + 2r, . . . , α + rs, . . . ).

When r = 1, we omit the subscript r. We analogously have the notations ↘r and ↘.

As an example of the arrow notation we have (1, 2 ↗2 6, 7) = (1, 2, 4, 6, 7) and
(1, 7↘ 3) = (1, 7, 6, 5, 4, 3). Later, we shall encounter such cycles as (1, 2, k+3↗ 2k−1),
which we take to mean (1, 2) if k = 3, whereas, for example, it is (1, 2, 8, 9) if k = 5. In
other words α↗ β is null if α > β.

Following [3], we now define, for k ≥ 3, elements a, b of Sym(n) that generate
Alt(n) when k is odd, and Sym(n) when k is even, except in some small exceptional
cases. Specifically, the elements given do not generate these groups when (n, k) is one of
(6, 3), (6, 4), (7, 3), (8, 3). Throughout, we require that 3 ≤ k ≤ n and we write n = tk+j,
where 0 ≤ j < k and t ≥ 1. We begin by listing, in Definition 2.3, the different a and
b that are used in Theorem 2.5. Then, in Definition 2.4, we will explain which of these
different a and b are selected for each value of k and n. We note that the context in which
each choice of a and b are used ensures that they are indeed elements of Sym(n), that
they each have order k, and that the expressions given are in disjoint cycle form. For
example, the element a1 given in Definition 2.3 contains the transposition (tk+1, tk+2),
but this is not an issue because, as will be seen in Definition 2.4, it is only chosen for the
element a in a case when k is even and j > 1.

Definition 2.3. Suppose k is a positive integer with 3 ≤ k ≤ n. We write n = tk + j,
where 0 ≤ j < k and t ≥ 1, and define the following permutations a0, . . ., a4 of Sym(n).
Note that a2 is only required when k is even.

a0 = (1↗ k)(k+1↗ 2k) · · · ((t− 1)k+1↗ tk);

a1 = (1↗ k)(k+1↗ 2k) · · · ((t− 1)k+1↗ tk)(tk+1, tk+2);

a2 = (1↗ k) · · · ((t−2)k+1↗ (t−1)k)((t−1)k+1↗ (t−1)k+ k
2
)((t−1)k+ k

2
+1↗ tk);

a3 = (1, 2, 3, 4)(5, 6, 7, 8) · · · (4t−7, 4t−6, 4t−5, 4t−4)(4t−3, 4t−2)(4t−1, 4t);

a4 = (1↗ k).
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Next, we define permutations b0, . . ., b7 of Sym(n). Note that b4 is only used when k is
even.

b0 = (k ↗ 2k−1) · · · ((t− 1)k ↗ tk−1)(tk ↗ n);

b1 = (k−2, k−1)(k ↗ 2k−1) · · · ((t− 1)k ↗ tk−1)(tk ↗ n);

b2 = (k, k + 2, k + 1, k + 3↗ 2k − 1)(2k ↗ 3k − 1) · · · ((t− 1)k ↗ tk − 1)·
· (tk ↗ n, 1↗ k−j− 1);

b3 = (k−2, k−1)(k, k + 2, k + 1, k + 3↗ 2k−1)(2k ↗ 3k−1) · · · ((t−1)k ↗ tk−1)·
· (tk ↗ n, 1↗ k−j−1);

b4 = (k, k+2, k+1, k+3↗ 2k−1)(2k ↗ 3k−1) · · · ((t−1)k ↗ tk−1)·
· (tk ↗ n, 1↗ k

2
−j−1)(k

2
−j ↗ k−j−1);

b5 = (1, 2)(4, 5, 6, 7)(8, 9, 10, 11) · · · (4t−4, 4t−3, 4t−2, 4t−1)(n−1, n);

b6 = (1↗ k−j, k+1↗ n);

b7 = (1, 3↗ n, 2).

For each of the possible configurations of n, k, t and j, we next assign the relevant a
and b from the list given in Definition 2.3.

Definition 2.4. Suppose k is a positive integer with 3 ≤ k ≤ n. We write n = tk + j,
where 0 ≤ j < k, and t ≥ 1. If n ≥ 2k, then a and b are as shown in Table 1. If
k < n < 2k, then set a = a4 and b = b6. Finally, if n = k, then set a = a4 and b = b7.

a b

j = k − 1 k odd a0 b0

k even t odd a0 b0

t even a1 b1

j 6= k − 1 k odd a0 b2

k even t odd a0 b2

t even j /∈ {0, 1} a1 b3

j = 0 a2 b4

j = 1, k 6= 4 a2 b4

j = 1, k = 4 a3 b5

Table 1: Choice of a and b when n ≥ 2k

We note that, in all cases, it is quick to check that a and b each have order k.

Theorem 2.5 (see [3]). Let k be a positive integer with 3 ≤ k ≤ n.

(i) Suppose k is odd. If k = 3 and n ∈ {6, 7, 8}, then d3(Alt(n)) = 2. In all other cases,
if a and b are as given in Definition 2.4, then 〈a, b〉 = Alt(n). Hence, dk(Alt(n)) = 2
(unless n = k = 3 in which case d3(Alt(3)) = 1).

(ii) Suppose k is even. If k = 4 and n = 6, then d4(Sym(n)) = 2. In all other cases, if a
and b are as given in Definition 2.4, then 〈a, b〉 = Sym(n). Hence, dk(Sym(n)) = 2.

We remark that Garzoni [3] additionally proves that dk(Alt(n)) = 2 whenever k is
even and 4 ≤ k ≤ n.
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3 The case n ≥ 2k

In this section, and in Section 4, G = W (Bn) and G+ = W (Dn) where n ≥ 3, and
3 ≤ k ≤ n. Also, we write n = kt+ j where 0 ≤ j < k. We first examine the case k = 3.

Lemma 3.1. Suppose k = 3 and n ≥ 6. Then d3(G
′) = 2 and d3(G) = d3(G

+) = 0.

Proof. When 6 ≤ n ≤ 11, it can easily be checked using Magma [2] that G′ can be
generated by two elements of order 3. Hence, we now assume that n ≥ 12, so we have
n = 3t + j for some t ≥ 4 and 0 ≤ j < 3. Suppose first that n = 3t, and define x and y
as follows.

x = (
+

1,
+

2,
+

3)(
+

4,
+

5,
+

6) · · · (
+

3t−5,
+

3t−4,
+

3t−3)(
−

3t−2,
+

3t−1,
−
3t);

y = (
+

3,
+

5,
+

4)(
+

6,
+

7,
+

8) · · · (
+

3t−3,
+

3t−2,
+

3t−1)(
+

3t,
+

1,
+

2).

Note that x, y ∈ G′. Let a = x̂, b = ŷ. Then a = a0 and b = b2, following the notation of
Definition 2.3. Hence 〈a, b〉 = Alt(n), by Theorem 2.5. That is, writing H = 〈x, y〉, we
have H̄ = Ḡ′ ∼= Alt(n). We now use Lemma 2.1 to show that H = G′. Calculation gives

x−1 = (
+

1,
+

3,
+

2)(
+

4,
+

6,
+

5) · · · (
+

3t−5,
+

3t−3,
+

3t−4)(
−

3t−2,
+

3t,
−

3t−1) and

x−1y = (
+

1,
+

5,
+

3,
+

3t↘3
+

6,
+

4 ↗3
+

3t−5,
−

3t−2)(
−

3t−1).

Thus, x−1y consists of one negative cycle of length 2t + 1, one negative 1-cycle, and
t − 2 fixed points. Since t ≥ 4, this means there are at least two fixed points. Hence
(x−1y)2t+1 ∈ H ∩N+ \ Z(G). Therefore, by Lemma 2.1, we have 〈x, y〉 = G′.

Next, suppose n = 3t+ 1. We keep the same x as for the case n = 3t, but now choose

y = (
+

3,
+

5,
+

4)(
+

6,
+

7,
+

8) · · · (
+

3t−3,
+

3t−2,
+

3t−1)(
+

3t,
+

3t+1,
+

1).

As in the case n = 3t, we have x̂ = a0 and ŷ = b2. Thus, by Theorem 2.5, H̄ = 〈x̂, ŷ〉 = Ḡ′.
Now,

x−1y = (
+

1,
+

5,
+

3,
+

2,
+

3t↘3
+

6,
+

4 ↗3
+

3t−5,
−

3t−2,
+

3t+1)(
−

3t−1).

This time we have a negative cycle of length 2t + 3, a negative 1-cycle, and t − 3 fixed
points. Therefore, since t > 3, we see that (x−1y)2t+3 ∈ H ∩N+ \Z(G), and hence again
H = G′.

Finally, when n = 3t+ 2, we set

x = (
+

1,
+

2,
+

3)(
−
4,

+

5,
−
6)(

+

7,
+

8,
+

9) · · · (
+

3t−2,
+

3t−1,
+

3t) and

y = (
+

3,
+

4,
+

5) · · · (
+

3t−3,
+

3t−2,
+

3t−1)(
+

3t,
+

3t+1,
+

3t+2).

Here, because we are in the ‘j = k− 1’ case of Table 1, the required elements to generate
Alt(n) are a0 and b0. Since x̂ = a0 and ŷ = b0, Theorem 2.5 implies that H̄ = 〈x̂, ŷ〉 = Ḡ′.
Now,

x−1 = (
+

1,
+

3,
+

2)(
−
4,

+

6,
−
5) · · · (

+

3t−5,
+

3t−3,
+

3t−4)(
+

3t−2,
+

3t,
+

3t−1) and

x−1y = (
+

1,
−
4,

+

7 ↗3,
+

3t+1,
+

3t+2,
+

3t↘3
+

3,
+

2)(
−
5).
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In this case, x−1y has a negative (2t+ 3)-cycle, a negative 1-cycle, and t− 2 fixed points.
Thus, (x−1y)2t+3 consists of 2t+4 negative 1-cycles and t−2 fixed points. Therefore, since
t > 3, we have (x−1y)2t+3 ∈ H ∩ N+ \ Z(G), and hence again H = G′, thus completing
the proof of Lemma 3.1.

Lemma 3.2. Suppose k > 3 and n ≥ 2k, with j = k − 1. If k is odd, then dk(G) =
dk(G

+) = 0, but dk(G
′) = 2. If k is even and t is odd, then dk(G) = dk(G

+) = 2.

Proof. We set

x = (
+

1 ↗
+

k)(
−

k+1,
+

k+2↗
+

2k−1,
−
2k)(

+

2k+1↗
+

3k) · · · (
+

(t− 1)k+1↗
+

tk) and

y = (
+

k ↗
+

2k − 1) · · · (
+

tk ↗ +
n).

Now x̂ = a0 and ŷ = b0, as in Table 1. Writing H = 〈x, y〉, we therefore have that
H̄ = Alt(n) when k is odd, and H̄ = Sym(n) when k is even and t is odd by Theorem 2.5.
We note also that x, y ∈ G+. Now

x−1 = (
+

k ↘
+

1)(
+

2k ↘
+

k+3,
−

k+2,
−

k+1)(
+

3k ↘
+

2k+1) · · · (
+

tk ↘
+

(t− 1)k+1) and

x−1y = (
+

1,
−

k+1,
+

2k+1↗k
+

tk+1,
+

tk+2↗ +
n,

+

tk ↘k
+

k,
+

k−1↘
+

2)(
−

k+2).

Observe that x−1y has a negative cycle of length 2t + 2k − 3, a negative 1-cycle, and
at least one fixed point, namely k + 3. Thus, h = (x−1y)2(t+k)−3 has 2(t + k − 1) nega-
tive 1-cycles and n − 2(t + k − 1) fixed points. This means that h ∈ (H ∩ N+) \ Z(G).
Therefore, by Lemma 2.1, H = G′ when k is odd, and H = G+ when k is even and t is odd.

It remains to show that, when k is even and t is odd, we have dk(G) = 2. Let

xe = x(
−

tk + 1) and set He = 〈xe, y〉. Then x̂e = x̂ = a0, so H̄e = 〈x̂e, ŷ〉 = Sym(n). We

have x−1e = x−1(
−

tk + 1), and thus

x−1e y = (
+

1,
−

k+1,
+

2k+1↗k
+

(t−1)k+1,
−

tk+1,
+

tk+2↗ +
n,

+

tk ↘k
+

k,
+

k−1↘
+

2)(
−

k+2).

This time, x−1e y has a positive cycle of length 2(t + k) − 3, a negative 1-cycle, and a
number of fixed points (possibly zero). Therefore h = (x−1e y)2(t+k)−3 consists of exactly
one negative 1-cycle and n−1 fixed points. Hence h ∈ (He∩N)\(N+∪Z(G)). Therefore,
by Lemma 2.1, He = G.

Lemma 3.3. Suppose k is even and n ≥ 2k. If t is even and j = k − 1, then
dk(G) = dk(G

+) = 2.

Proof. Let a1 and b1 be as in Table 1. Then 〈a1, b1〉 = Sym(n), by Theorem 2.5. Let

x =
+
a1, y = (

−
1)

+

b1, and ye = (
−

k−2)(
−

k−1)
+

b1, setting H = 〈x, y〉 and He = 〈x, ye〉. Note
that x, ye ∈ G+, whereas y ∈ G \G+. For example,

x = (
+

1 ↗
+

k)(
+

k + 1↗
+

2k) . . . (
+

(t− 1)k + 1↗
+

tk)(
+

tk + 1,
+

tk + 2) and

y = (
−
1)(

+

k − 2,
+

k − 1)(
+

k ↗
+

2k − 1)(
+

2k ↗
+

3k − 1) . . . (
+

tk ↗ +
n),
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so that

xy−1 = (
+

1 ↗
+

k − 3,
+

k − 1↗k
+

tk − 1,
+
n↘

+

tk + 2,
+

tk ↘k
+

2k,
−
k).

Therefore, xy−1 is a negative cycle of length 2(t+ k)− 5. The number of fixed points is

n− (2(t+ k)− 5) = kt+ (k − 1)− 2t− 2k + 5 = (k − 2)(t− 1) + 2 ≥ 4.

Hence (xy−1) ∈ (H ∩N) \ (N+ ∪ Z(G)). Therefore H = G. On the other hand,

xy−1e = (
+

1 ↗
+

k − 4,
−

k − 3,
+

k − 1↗k
+

tk − 1,
+
n↘

+

tk + 2,
+

tk ↘k
+

k)(
−

k − 2),

an element consisting of a negative cycle of length 2(t+ k)− 5, one negative 1-cycle, and
at least three fixed points. Consequently, (xy−1e )(2(t+k)−5) ∈ (He ∩N+) \Z(G). Therefore
He = G+. Thus dk(G

+) = 2.

Lemma 3.4. Suppose k = 4, t is even, j = 1 and n ≥ 2k. Then d4(G) = d4(G
+) = 2.

Proof. We have n = 4t+ 1 for some even t. From Definition 2.4 and Theorem 2.5, if we
have elements x, y of G such that x̂ = a3 and ŷ = b5, and setting H = 〈x, y〉 as usual,
then H̄ = Sym(n). With this in mind, let

x = (
+

1,
+

2,
+

3,
+

4)(
+

5,
+

6,
+

7,
+

8) · · · (
+

4t−7,
+

4t−6,
+

4t−5,
+

4t−4)(
+

4t−3,
+

4t−2)(
+

4t−1,
+

4t) and

y = (
ε

1,
−
2)(

+

4,
+

5,
+

6,
+

7)(
+

8,
+

9,
+

10,
+

11) · · · (
+

4t−4,
+

4t−3,
+

4t−2,
+

4t−1)(
+

4t,
+

4t+1),

where ε ∈ {+,−}. Then H̄ = Sym(n). Moreover,

x−1 = (
+

4,
+

3,
+

2,
+

1)(
+

8,
+

7,
+

6,
+

5) · · · (
+

4t−4,
+

4t−5,
+

4t−6,
+

4t−7)(
+

4t−3,
+

4t−2)(
+

4t−1,
+

4t) and

x−1y = (
+

1 ↗4
+

4t−3,
+

4t−1,
+

4t+1,
+

4t↘4
+

4,
−
3)(

ε

2).

If ε = +, then (x−1y)2t+3 consists of 2t+ 3 negative 1-cycles (an odd number) and 2t− 2
fixed points. Hence (x−1y)2t+3 ∈ (H∩N)\(N+∪Z(G)). Therefore, by Lemma 2.1, H = G.
On the other hand, if ε = −, then x and y are elements of G+, and (x−1y)2t+3 consists
of 2t + 4 negative 1-cycles and 2t− 3 fixed points. Thus (x−1y)2t+3 ∈ H ∩N+ \ Z(G+),
which implies that H = G+.

Lemma 3.5. Suppose k and t are even, with k > 4, and let n = kt + 1, with n ≥ 2k.
Then the elements a and b given by

a = (1↗ k) · · · ((t−2)k+1↗ (t−1)k)((t−1)k+1↗ (t−1)k+ k
2
)((t−1)k+ k

2
+1↗ tk),

b = (k, k+2, k+1, k+3↗ 2k−1)(2k ↗ 3k−1) · · · ((t−1)k ↗ tk−1)·
· (tk, n, 2↗ k

2
−1)(k

2
↗ k−1)

generate Sym(n).

Proof. Let H = 〈a, b〉. Clearly, H is a transitive group. We claim that H is a primitive
group. Assume, by way of a contradiction, that H preserves a non-trivial block system B
of Ω. Let ∆ ∈ B be the block containing n. Then ∆a = ∆, because n is a fixed point of a.
For any other point λ ∈ ∆, λ〈a〉 is therefore contained in ∆. If λ is in the first cycle of a,
then 2 ∈ ∆. Hence ∆b = ∆ since nb = 2. Thus, ∆H = ∆, contradicting the transitivity
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of H. If λ is in the last cycle of a, then ∆ contains tk. Hence ∆b = ∆, because (tk)b = n.
Thus ∆H = ∆, again contradicting the transitivity of H. Therefore, λ must be in a cycle
of a other than the first and last cycle, meaning that ∆ contains ik + 1 and ik + 2 for
some i with 2 ≤ i ≤ t−1. Since (ik+1)b = ik+2 it follows that ∆b = ∆. Thus ∆H = ∆,
another contradiction. Hence, ∆ ⊆ Ω\supp(a), which means that |∆| = 1, contradicting
the fact that ∆ is a non-trivial block. Therefore, H is primitive.

Observe that a−1b is the product of a (t+ 5)-cycle and a (t+ 1)-cycle. Specifically,

a−1b = (1, k+2, k+3, k+1↗k (t−1)k+1, (t−1)k+ k
2
+1, n, 2)(k

2
, tk ↘k k).

Therefore (a−1b)t+5 is a (t + 1)-cycle, hence, by [5], Alt(n) ≤ H. Finally, because a ∈
Sym(n)\Alt(n), we find H = Sym(n).

Lemma 3.6. Suppose k and t are even with n ≥ 2k. If k ≥ 6 and j = 1, or if k ≥ 4 and
j = 0, then dk(G) = dk(G

+) = 2.

Proof. Suppose first that k ≥ 4 and j = 0. Let

x = (
+

1 ↗
+

k) · · · (
+

(t− 2)k+1↗
+

(t− 1)k)(
+

(t− 1)k+1↗
+

(t− 1)k+ k
2
)(

+

(t−1)k+ k
2
+1↗

+

tk),

y = (
+

k,
+

k+2,
+

k+1,
+

k+3↗
+

2k−1)(
+

2k ↗
+

3k−1) · · · (
+

(t−1)k ↗
+

n−1)·

· (
−
tk,

+

1 ↗
+

k
2
−1)(

+
k
2
↗

+

k−2,
ε

k−1),

where ε ∈ {+,−}, and set H = 〈x, y〉. Then x̂ = a2, ŷ = b4, and so H̄ = Sym(n) by
Theorem 2.5. When either t > 2 or k > 4, we have

x−1 = (
+

k ↘
+

1) · · · (
+

(t− 1)k ↘
+

(t− 2)k+1)(
+

(t− 1)k+ k
2
↘

+

(t− 1)k+1)·

· (
+

tk ↘
+

(t−1)k+ k
2
+1) and

x−1y = (
+

1,
+

k+2,
+

k+3,
+

k+1↗k
+

(t−1)k+1,
−

(t−1)k+ k
2
+1)(

+
k
2
,
+
n↘k

+

2k,
ε

k).

Thus, since t+3 and t+1 are odd, and hence coprime, we see that (x−1y)(t+3)(t+1) consists
of t+3 negative 1-cycles and t(k−1)−3 fixed points when ε = +, and of 2(t+2) negative
1-cycles and 2t− 3 fixed points when ε = −. Meanwhile, if k = 4 and t = 2, we have

x−1 = (
+

4,
+

3,
+

2,
+

1)(
+

5,
+

6)(
+

7,
+

8),

y = (
+

4,
+

6,
+

5,
+

7)(
−
8,

+

1)(
+

2,
ε

3) and

x−1y = (
+

1,
+

6,
−
7)(

+

2,
+

8,
ε

4).

Hence, (x−1y)3 consists of three negative 1-cycles and five fixed points when ε = +, and
of six negative 1-cycles and two fixed points when ε = −. Therefore, when ε = + we
have (H ∩N) 6⊆ N+ ∪ Z(G), meaning H = G. On the other hand, when ε = − we have
H ≤ G+ and H ∩N+ 6≤ Z(G+), meaning H = G+. Thus dk(G) = dk(G

+) = 2.

Next, we consider the case k ≥ 6 and j = 1. We use the same x as the case j = 0,
but this time replace y with ye, where

ye = (
+

k,
+

k+2,
+

k+1,
+

k+3↗
+

2k−1)(
+

2k ↗
+

3k−1) · · · (
+

(t−1)k ↗
+

tk−1)·

· (
−
tk,

+
n,

+

2 ↗
+

k
2
−1)(

+
k
2
↗

+

k−2,
ε

k−1),
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and let H = 〈x, ye〉. Since x̂ = a and ŷe = b, where a and b are the elements given in
Lemma 3.5, we see that H̄ = Sym(n). Moreover,

x−1ye = (
+

1,
+

k+2,
+

k+3,
+

k+1↗k
+

(t−1)k+1,
−

(t−1)k+ k
2
+1,

+
n,

+

2)(
+
k
2
,
+

tk ↘k
+

2k,
ε

k).

When ε = +, we see that x−1ye has a negative (t+ 5)-cycle and a positive (t+ 1)-cycle.
Thus, (x−1ye)

(t+5)(t+1) ∈ (H ∩ N) \ (N+ ∪ Z(G)), meaning that, once more, H = G. If
ε = −, then H ≤ G+, and (x−1ye)

(t+5)(t+1) ∈ (H ∩N+) \ Z(G), which implies H = G+.
Thus, dk(G) = dk(G

+) = 2.

Lemma 3.7. Suppose n ≥ 2k, that k ≡ 2 mod 4, and that j = 2. Then the following
elements a and b generate Sym(n).

a = (1, 2)(k
2
↗ k−1)(k+1↗ 2k) · · · ((t−1)k+1↗ tk)(tk+1, tk+2)

b = (k−2, k−1)(k ↗ 2k−1) · · · ((t−1)k ↗ tk−1)(tk, tk+1, tk+2, 1↗ k−3)

Proof. Let H = 〈a, b〉. Since k
2
≤ k − 3 it follows that H is a transitive group. We

now show that H is primitive. Assume, by way of a contradiction, that H preserves a
non-trivial block system B, and let ∆ be the block containing k. Then ∆a = ∆. For any
λ ∈ ∆, λ〈a〉 ⊆ ∆. Note that each cycle (other than fixed points) of a contains at least
one point µ with the property that µa = µb. Therefore, if λ is not a fixed point of a, then
there is some µ in λ〈a〉 such that µb is also contained in λ〈a〉. Therefore ∆b = ∆ and so
∆H = ∆, contradicting the transitivity of H. Hence, ∆ ⊆ Ω\supp(a) = {3, . . . , k

2
− 1, k}

and so |∆| ≤ k
2
− 2. If k = 6, this implies |∆| = 1, contradicting the fact that ∆ is a non-

trivial block. So assume that k > 6. If λ ∈ {3, . . . , k
2
− 2}, then ∆b contains λb = λ + 1,

which is fixed by a, meaning that (∆b)a = ∆b. But k + 1 = kb ∈ ∆b. Hence ∆b contains
(k + 1)〈a〉 = {k + 1, . . . , 2k}. Thus |∆b| ≥ k + 1, contradicting the fact that |∆| ≤ k

2
− 2.

Therefore, ∆ = {k, k
2
− 1} and so ∆b−1

= {2k − 1, k
2
− 2} and (∆b−1

)a = {2k, k
2
− 2},

another contradiction. Consequently, H is a primitive group.
Consider

a−1b = (1, 3↗ k
2
, k−2, tk ↘k k, k+1↗k tk+1)

which is a single cycle of length 2t+ k
2
. Hence a−1b fixes kt+2−2t− k

2
= (k−2)(t− 1

2
)+1

points. Since t ≥ 2 and k ≥ 6 the cycle a−1b fixes at least seven points. Thus, by [5],
Alt(n) ≤ H. Finally, as a ∈ Sym(n)\Alt(n), we conclude that H = Sym(n).

Lemma 3.8. Suppose n ≥ 2k, that k and t are even, and that j /∈ {0, 1, k − 1}. Then
dk(G) = dk(G

+) = 2.

Proof. Suppose n ≥ 2k, k and t are even, and j /∈ {0, 1, k − 1}. Then the appropriate
elements in Table 1 that generate Sym(n) are a1 and b3. We have that

+

a−11

+

b3 = (
+

1,
+

k+2,
+

k+3,
+

k+1↗k
+

tk+1,
+

tk+3↗ +
n)(

+

tk ↘k
+

k,
+

k−2↘
+

k−j).

Note that if j = 2, this reduces to
+

a−11

+

b3 = (
+

1,
+

k+2,
+

k+3,
+

k+1 ↗k
+

tk+1)(
+

tk ↘k
+

k,
+

k−2).

Let x1 =
+
a1(
−
k)(
−
1) and y1 =

+

b3. Both x1 and y1 are then elements of G+, and

x−11 y1 = (
−
k)(
−
1)

+

a−11

+

b3

= (
−
1,

+

k+2,
+

k+3,
+

k+1↗k
+

tk+1,
+

tk+3↗ +
n)(

+

tk ↘k
+

2k,
−
k,

+

k−2↘
+

k−j).
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Thus x−11 y1 is a product of a negative (t + j + 1)-cycle and a negative (t + j − 1)-cycle.
Hence h1 = (x−11 y1)

(t+j+1)(t+j−1) consists of 2(t + j) negative 1-cycles and n − 2(t + j)
fixed points. Now n = tk + j, and we also know that k ≥ 4 and t ≥ 2. So

n− 2(t+ j) = (k − 2)t− j ≥ 2k − 4− j ≥ k − j > 0.

Therefore, h1 ∈ N+ \ Z(G), and so 〈x1, y1〉 = G+, whence dk(G
+) = 2.

To show that dk(G) = 2 requires some more work. If j is even and j > 2, then let

x2 =
+
a1(
−
n). Then, x−12 y1 = (

−
n)

+

a−11

+

b3. On the other hand, if j = 2 and k ≡ 0 mod 4,

then set x2 =
+
a1(

−
tk+2). Then x−12 y1 = (

−
tk+1)

+

a−11

+

b3. In both cases, x−12 y1 consists of
one negative cycle of length t+ j+ 1 and one positive cycle of length t+ j− 1. Therefore
h1 = (x−11 y1)

(t+j+1)(t+j−1) is contained in H∩N \(N+∪Z(G)), which means 〈x1, y1〉 = G.

It remains to deal with the cases where j = 2 and k ≡ 2 mod 4, and where j is

odd. Suppose first that j = 2 and k ≡ 2 mod 4. Let x =
+
a and y =

+

b, where a and

b are as give in Lemma 3.7, so that 〈a, b〉 = Sym(n). Let x =
+
a(
−
k) and y =

+

b. Then

x−1y = (
−
k)

+

a−11

+

b, so that

x−1y = (
+

1,
+

3 ↗
+
k
2
,

+

k−2,
+

tk ↘k
+

2k,
−
k,

+

k+1↗k
+

tk+1).

Therefore x−1y is a negative cycle of length 2t + k
2
, which is odd. Hence (x−1y)2t+

k
2 ∈

N \ (N+ ∪ Z(G)). Therefore 〈x, y〉 = G.

Finally, we suppose k is even, t is even and j is odd. Since j /∈ {0, 1, k − 1}, this
implies k ≥ 6 and j ≥ 3. Choose x and y to be

x = (
+

1 ↗
+

k)(
+

k+1↗
+

2k) · · · (
+

(t−1)k+1↗
+

tk)(
+

tk + 1,
+

tk + 2) and

y = (
+

k,
+

k + 2,
+

k + 1,
+

k + 3↗
+

2k−1)(
+

2k ↗
+

3k−1) · · · (
+

(t−1)k ↗
+

tk−1)

· (
+

tk ↗ +
n,

+

2 ↗
+

k − j − 1)(
−

k − j).

We first verify that a = x̂ and b = ŷ generate Sym(n). We claim that H̄ = 〈a, b〉 is a
primitive group. Clearly H̄ is transitive. Suppose, by way of a contradiction, that H̄
preserves a non-trivial block system B of Ω. Let ∆ ∈ B be the block containing n. Hence
∆a = ∆, since a fixes n. For λ ∈ ∆, λ〈a〉 ⊆ ∆. Note that each cycle (other than fixed
points) of a contains at least one point µ with the property that µa = µb. Therefore, if
λ ∈ supp(a), then there is some µ in λ〈a〉 such that µb is also contained in λ〈a〉. Thus ∆
contains both µ and µb. Hence ∆b = ∆ and ∆H = ∆, contradicting the transitivity of
H. Therefore ∆ ⊆ Ω\supp(a) = {tk + 3, . . . , n}. Consequently, |∆| ≤ j − 2 < k and
∆ contains a point tk + i with 3 ≤ i < j. Thus ∆b contains 2 and tk + i + 1. Since
tk+ i+1 /∈ supp(a) it follows that ∆b is left invariant by a and so 2〈a〉∪{tk+ i+1} ⊆ ∆b.
Therefore |∆b| ≥ k + 1, contradicting the bound on block size. Hence H̄ is primitive.

By direct calculation

x−1y = (
+

1,
+

k+2,
+

k+3,
+

k+1↗k
+

tk+1,
+

tk+3↗ +
n,

+

2)(
+

k−j,
+

tk ↘k
+

k,
+

k−1↘
+

k− j+ 2,
−

k−j+1),
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which is a product of a (t + j + 2) and (t + j)-cycle. Thus (a−1b)t+j+2 is a (t + j)-
cycle which fixes at least 3 points. Hence by Theorem 1.3 of [5], Alt(n) ≤ H̄. Since
a ∈ Sym(n)\Alt(n) it follows that H̄ = Sym(n).

Moreover, x−1y consists of one negative cycle of length (t+ j) and one positive cycle
of length (t + j + 2). Hence (x−1y)(t+j)(t+j+2) consists of t + j negative 1-cycles and at
least t+ j + 2 fixed points and so (x−1y)(t+j)(t+j+2) ∈ (H ∩N) \ (N+ ∪ Z(G)). Thus, by
Lemma 2.1, H = 〈x, y〉 = G.

Lemma 3.9. Suppose n ≥ 2k, and that k is even and t is odd, with j 6= k − 1.

(i) If j is odd, then the following elements a and b generate Sym(n).

a = (1↗ k)(k+1↗ 2k) · · · ((t−1)k+1↗ tk);

b = (k, k+2, k+1, k+3↗ 2k−1)(2k ↗ 3k−1) · · · ((t−1)k ↗ tk−1)·
· (tk ↗ n, 2↗ k−j).

(ii) If j = 0 and k ≡ 2 mod 4, then the following elements c and d generate Sym(n).

c = (1↗ k)(k+1↗ 2k) · · · ((t− 1)k+1↗ tk);

d = (1, 2)(k
2
↗ k−1)(k ↗ 2k−1) · · · ((t−1)k ↗ tk−1).

Proof. (i) Suppose j is odd, let a and b be as in the statement of the lemma, and write
H = 〈a, b〉. ClearlyH is transitive. We claim thatH is a primitive group. Assume, by way
of a contradiction, that H preserves some non-trivial block system B of Ω. Let ∆ ∈ B be
the block containing n. The point n is fixed by a, and so ∆a = ∆. Suppose ∆ contains a
point λ ∈ supp(a). Then λ〈a〉 ⊆ ∆. If λ is in the first cycle of a then ∆ contains 2, which is
nb, hence ∆b = ∆. Thus ∆H = ∆, contradicting the transitivity ofH. If λ is in the (i+1)st

cycle of a for 1 ≤ i ≤ t−1, then ∆ contains ik+1 and ik+2. Since (ik+1)b = ik+2 when
i > 1, and (k + 1)b

−1
= k + 2, it follows that ∆b = ∆ and so ∆H = ∆, contradicting the

transitivity of H. If ∆ contains n−1 then ∆b−1
= ∆, again contradicting the transitivity

of H. Consequently, ∆ ⊆ Ω\(supp(a)∪{n−1}) = {tk+1↗ n−2, n}. Hence ∆ contains
a point tk + i for 1 ≤ i < j − 1. Consider ∆b containing {n, tk + i}b = {2, tk + i + 1}.
Since tk+ i+ 1 is fixed by a it follows that (∆b)a = ∆b. Hence 2〈a〉 = {1, 2, . . . , k} ⊆ ∆b.
In particular, 2, 3 ∈ ∆b. When k− j < 3, 3b = 3 and otherwise 2b = 3. Hence (∆b)b = ∆b

and so ∆H = ∆ contradicting the transitivity of H. Therefore H is a primitive group.
By direct computation

a−1b = (1, k+2, k+3, k+1↗k (t−1)k+1, tk+1↗ n, 2)(tk ↘k k, k−1↘ k−j+1).

is a product of a (t+ j+3)-cycle and a (t+ j−1)-cycle. Hence (a−1b)t+j+3 is a (t+ j−1)-
cycle. Thus by Theorem 1.3 of [5], Alt(n) ≤ H. Since a ∈ Sym(n)\Alt(n) it follows that
H = Sym(n) as required.

(ii) Let H = 〈c, d〉. Clearly H is a transitive group, and we now show it is a primitive
group. Assume, by way of a contradiction, that H preserves a non trivial block system B
of Ω. Let ∆ ∈ B be a block containing n = kt. The point n is fixed by d and so ∆d = ∆.
Hence for a point λ ∈ ∆, λ〈d〉 ⊆ ∆. Every cycle of d contains a point µ with µd = µc.
Thus, if λ ∈ supp(d), then λ〈d〉 contains two points µ, µc. Hence ∆c = ∆ and ∆H = ∆,
contradicting the transitivity of H. Therefore ∆ ⊆ Ω\supp(d). When k = 6 it follows
that ∆ ⊆ {n}, hence H is primitive. And when k > 6 it follows that ∆ ⊆ {3, . . . , k

2
−1, n}.
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Suppose λ ∈ ∆ \ {3, n}. Then ∆c−1
contains tk − 1 and λc

−1 ∈ {3, . . . , k
2
− 2}. Since

λc
−1

/∈ supp(d), ∆c−1
is left invariant by d, hence contains (tk − 1)〈d〉. In particular,

tk − 2, tk − 1 ∈ ∆c−1
. Since (tk − 2)c = tk − 1 it follows that (∆c−1

)c = ∆c−1
and

∆c−1H = ∆c−1
, contradicting the transitivity of H. Therefore ∆ = {3, n} and the block

size is two. Consider ∆c−1
= {2, tk − 1}. However 2d

2
= 2 and (tk − 1)d

2 6= tk − 1,
contradicting the deduced block size. Hence H is a primitive group.

Note that c−1d is a (2t+ k
2
− 2)-cycle. Specifically,

c−1d = (1↗k (t−1)k+1, tk ↘k k, k
2
↘ 3).

Hence c−1d has tk− (2t+ k
2
− 2) = (t− 1

2
)(k− 2) + 1 fixed points. Since t ≥ 1 and k ≥ 6,

there are at least 3 fixed points. And so, by Theorem 1.3 of [5], H contains Alt(n). Since
c ∈ Sym(n)\Alt(n) it follows, that H = Sym(n).

Lemma 3.10. Suppose n ≥ 2k and j 6= k − 1. If k is odd, then dk(G
′) = 2. If k is even

and t is odd, then dk(G) = 2 = dk(G
+).

Proof. The case k = 3 was covered by Lemma 3.1. Suppose from now on that k > 3,
2k ≤ n, and that either k is odd, or that k is even and t is odd. Let

x = (
+

1 ↗
+

k−2,
−

k−1,
−
k)(

+

k+1↗
+

2k) · · · (
+

(t− 1)k+1↗
+

tk) and

y = (
+

k,
+

k + 2,
+

k + 1,
+

k + 3↗
+

2k − 1)(
+

2k ↗
+

3k − 1) · · · (
+

(t− 1)k ↗
+

tk − 1)·

· (
+

tk ↗ +
n,

+

1 ↗
+

k−j−1).

Then x̂ = a0 and ŷ = b0. Therefore, by Theorem 2.5, we have that 〈x̂, ŷ〉 is Alt(n) when
k is odd, and Sym(n) when k is even and t is odd. Let H = 〈x, y〉. Then H ≤ G+. We
have

x−1 = (
−
1,
−
k,

+

k−1↘
+

2)(
+

2k ↘
+

k+1) · · · (
+

tk ↘
+

(t− 1)k+1) and

x−1y = (
−
1,

+

k+2,
+

k+3,
+

k+1↗k
+

(t−1)k+1,
+

tk+1↗ +
n)(

+

tk ↘k
+

2k,
−
k,

+

k−1↘
+

k−j).

Thus x−1y consists of one negative cycle of length t+ j + 2, one negative cycle of length
t+ j, and t(k − 2)− j − 2 fixed points. In particular, 2k − 1 is fixed. Let m be the least
common multiple of t+ j and t+ j+ 2, and set h = (x−11 y)m. If m is odd, then h consists
of 2(t + j + 1) negative 1-cycles, with the remaining cycles being fixed points. If m is
even, then exactly one of t + j and t + j + 2 is divisible by 4, and h therefore contains
either t + j or t + j + 2 negative 1-cycles, with the remaining cycles being fixed points.
Thus h ∈ (H ∩N+) \ Z(G), which implies, when k is odd, that H = G′, and, when k is
even and t is odd, that H = G+. Therefore dk(G

′) = 2 when k is odd, and dk(G
+) = 2

when k is even and t is odd.

Suppose for the rest of the proof that k is even and t is odd. It remains to show that
dk(G) = 2 in this case. If j is even and j > 0, then write

xe = (
+

1 ↗
+

k)(
+

k+1↗
+

2k) · · · (
+

(t− 1)k+1↗
+

tk)(
−
n)

and set He = 〈xe, y〉. Since x̂e = x̂, it follows from Theorem 2.5 that H̄e = Sym(n). Now

x−1e y = (
+

1,
+

k+2,
+

k+3,
+

k+1↗k
+

(t−1)k+1,
+

tk+1↗
+

n−1,
−
n)(

+

tk ↘k
+

k,
+

k−1↘
+

k−j).
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Thus x−1e y consists of one negative cycle of length t + j + 2 and one positive cycle of
length t + j. Since t is odd, and j is even, x−1e y(t+j+2)(t+j) ∈ (He ∩ N) \ (N+ ∪ Z(G)).
Hence He = G.

Next, if k is even, t is odd and j is odd, then set

ye = (
+

k,
+

k + 2,
+

k + 1,
+

k + 3↗
+

2k − 1)(
+

2k ↗
+

3k − 1) · · · (
+

(t− 1)k ↗
+

tk − 1)·

· (
+

tk ↗ +
n,

+

2 ↗
+

k−j).

Write K = 〈xe, ye〉 This time, x̂e = a and ŷe = b, where a and b are the elements defined
in Lemma 3.9(i), and so K̄ = Sym(n). We have

x−1e ye = (
+

1,
+

k+2,
+

k+3,
+

k+1↗k
+

(t−1)k+1,
+

tk+1↗
+

n−1,
−
n,

+

2)(
+

tk ↘k
+

k,
+

k−1↘
+

k−j+1).

In this case x−1e ye consists of one negative cycle of length t+ j + 3 and one positive cycle
of length t+ j − 1. Hence, since t is odd and j is odd, we see that (x−1e ye)

(t+j+3)(t+j−1) ∈
(K ∩N) \ (N+ ∪ Z(G)). Therefore K = G.

Finally, suppose k is even, t is odd and j = 0. That is, n = tk. We must split this last
case further, and consider first the case when k ≡ 2 mod 4. Redefine x and y as follows.

x = (
+

1 ↗
+

k)(
+

k+1↗
+

2k) · · · (
+

(t− 1)k+1↗
+

tk)

y = (
+

1,
+

2)(
+
k
2
↗

+

k−1)(
+

k ↗
+

2k−1) · · · (
+

(t−1)k ↗
+

tk−1)(
−
tk)

Since x̂ = c and ŷ = d, where c and d are the elements described in Lemma 3.9(ii), we
have H̄ = 〈c, d〉 = Sym(n). Moreover

x−1y = (
+

1 ↗k
+

(t−2)k+1,
−

(t−1)k+1,
+

tk ↘k
+

k,
+
k
2
↘

+

3).

Thus x−1y is a (2t+ k
2
−2)-cycle, which, since k

2
is odd, is a cycle of odd length. Therefore

(x−1y)(2t+
k
2
−2) ∈ (H ∩N) \ (N+ ∪ Z(G)), and so H = G.

The last subcase to consider is when k is even, t is odd, j = 0 and k ≡ 0 mod 4.
In this case we apply Lemma 3.6, with k replaced by k

2
and t replaced by 2t. Note that

(
−
1)(

+

k ↘
+

1)(
−
k) = (

+

k ↘
+

1). Let u = x(
−
1) and v = (

−
k)y, where x and y are the elements

used in Lemma 3.6 for the case j = 0, setting ε = +. That is,

u = (
+

1 ↗
+

k−1,
−
k) · · · (

+

(t− 2)k+1↗
+

(t− 1)k)(
+

(t− 1)k+1↗
+

(t− 1)k+ k
2
)(

+

(t−1)k+ k
2
+1↗

+

tk) and

v = (
−
k,

+

k+2,
+

k+1,
+

k+3↗
+

2k−1)(
+

2k ↗
+

3k−1) · · · (
+

(t−1)k ↗
+

n−1)(
−
tk,

+

1 ↗
+

k
2
−1)(

+
k
2
↗

+

k−1).

Then u and v both contain a negative (k
2
)-cycle, and so have order k. Since û = x̂ and

v̂ = ŷ, we have 〈û, v̂〉 = Sym(n). Moreover u−1v = (
−
1)x−1(

−
k)y = x−1y, which from the

proof of Lemma 3.6 is an element of N \ (N+∪Z(G)). Hence 〈u, v〉 = G, as required.
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4 The case n < 2k

The work when n < 2k splits into three parts: n = 2k − 1, k < n < 2k − 1, and n = k.
We begin with n = 2k − 1.

Lemma 4.1. Suppose n = 2k−1, with k odd, and suppose that x and y are signed k-cycles
of G such that x and y have order k and that Alt(n) = 〈x̂, ŷ〉. Then 〈x, y〉 ∼= Alt(n).

Proof. If |supp(x̂) ∩ supp(ŷ)| > 1, then there is at least one point fixed by both x and
y, contradicting the fact that 〈x̂, ŷ〉 = Alt(n). Therefore, |supp(x̂) ∩ supp(ŷ)| = 1. Since
Sym(n) acts transitively on the set of pairs of k-cycles in Sym(n) intersecting in one
point, we may assume without loss of generality that we have x̂ = (1, 2, · · · , k) and
ŷ = (1, k + 1, k + 2, · · · , n). This pair of k-cycles do indeed generate Alt(n), as observed
in [3]. We may now write

x = (
ε1
1 ,

ε2
2 , · · · ,

εk
k ) and

y = (
ν1
1 ,

νk+1

k + 1, · · · , νnn)

where, because x and y have order k, ε1ε2 · · · εk = 1 and ν1νk+1 · · · νn = 1. Then the
〈x, y〉-orbit of 1 is

Π = {1, ε12, ε1ε23, . . . , (ε1 . . . εk−1)k, ν1(k + 1), ν1νk+1(k + 2), . . . , (ν1νk+1νk+2 · · · νn−1)n}.

Hence 〈x, y〉 = Alt(Π) ∼= Alt(n).

Lemma 4.2. Suppose n = 2k − 1, with k odd and k ≥ 3. If k is composite, then the
following elements a and b of order k generate Alt(n), where p is any prime factor of k.

a = (1↗ k)(k + 1, k + 2, k + 4↗ k + p+ 1),

b = (1, k + 1↗ n).

Proof. Let a and b be the elements given. Then a has cycle type k1 · p1 · 1k−p−1 and b has
cycle type k1 · 1k−1. Since p | k, it follows that both a and b have order k.

Clearly, H is transitive. We claim that H = 〈a, b〉 is also primitive. Suppose for a
contradiction that H preserves a non-trivial block system B of Ω. Let ∆ ∈ B be a block
containing k+3. Then ∆a = ∆ since k+3 is fixed by a. Suppose ∆ contains λ ∈ supp(a).
Then λ〈a〉 ⊆ ∆. If λ ∈ {1, 2, . . . , k}, then {1, 2, . . . , k} ⊆ ∆ and so |∆| ≥ k + 1 > n

2
, a

contradiction to the fact that |∆| divides n. If λ ∈ {k + 1, k + 2, k + 4, . . . , k + p + 1},
then {k + 1, k + 2, k + 4, . . . , k + p + 1} ⊆ ∆. In particular, k + 1, k + 2 ∈ ∆. Since
(k+ 1)b = k+ 2 it follows that ∆b = ∆. Hence ∆H = ∆, contradicting the transitivity of
H. Hence, it follows that ∆ ⊆ supp(b). Therefore |∆| divides |supp(b)| = k and, since ∆
is a block, |∆| divides n = 2k − 1. Thus we reach a contradiction, because k and 2k − 1
are coprime.

Hence H is a primitive group of Sym(n) containing b, a cycle of length k. Since k is
composite, k ≥ 9, and hence b has at least eight fixed points. Hence, by Theorem 1.3 of
[5], H contains Alt(n) and therefore H = Alt(n).

Lemma 4.3. Suppose n = 2k− 1, with k odd and k ≥ 3. If k is prime, then dk(G
′) = 3,

whereas if k is not prime, then dk(G
′) = 2.
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Proof. By Lemma 4.1, G′ cannot be generated by two k-cycles. If k is prime, then these
are the only kinds of elements of order k, and therefore we cannot generate G′ with two
elements of order k. However, we can choose 3 elements of order k to generate G′. Choose
x, y and z as follows.

x =(
+

1 ↗
+

k);

y =(
+

1,
+

k + 1↗ +
n);

z =(
−
1,

+

3 ↗
+

k,
−

k + 1).

Write H = 〈x, y, z〉. By Theorem 2.5, 〈x̂, ŷ〉 = Alt(n). Since x−1z = (
+

1,
−

k + 1)(
−
2,

+

3) it

follows that (x−1z)2 = (
−
1)(
−
2)(
−
3)(

−
k+1) ∈ (H ∩Ne)\Z(G). Now, Lemma 2.1 implies that

H = G′.

Suppose from now on that k is composite and let p be a prime divisor of k. Let x and
y be the following elements of G, with H = 〈x, y〉.

x = (
+

1 ↗
+

k)(
+

k + 1,
−

k + 2,
+

k + 4↗
+

k + p,
−

k + p+ 1);

y = (
+

1,
+

k + 1↗ +
n).

By Lemma 4.2 we have that H̄ = 〈a, b〉 ∼= Alt(n). Hence, to show that H = G′, it suffices,
by Lemma 2.1, to find a non-trivial element of H ∩N+. By direct computation we find

x−1y = (
+

1,
+

k ↘
+

2,
−

k + 1,
+

k + p+ 2↗ +
n)(

+

k + 3,
−

k + 4).

We see that x−1y consists of a negative (2k − p− 1)-cycle, a negative 2-cycle, and some
fixed points. Let h = (x−1y)2k−p−1. Then h ∈ N+, and h contains least 2k−p−1 negative
1-cycles. Hence h is a non-identity element of H ∩ N+. Therefore, by Lemma 2.1, we
have that H = G′.

Lemma 4.4. Suppose n = 2k− 1 with k even and k ≥ 8. Then the following elements a
and b generate Sym(n).

a = (1↗ k
2
)(k

2
+ 1↗ k)(k + 1, k + 2);

b = (1, k+1↗ n)(2, k)(k
2
, k
2
+1).

Proof. Let H = 〈a, b〉. Since 1〈a〉 = {1, 2, . . . , k
2
} and 1〈b〉 = {1, k + 1, k + 2, . . . , n} it

follows that {1, 2, . . . , k
2
, k + 1, k + 2, . . . , n} ⊆ 1H . Also, (k

2
)b = k

2
+ 1 and so

{1, 2, . . . , k
2

+ 1, k + 1, k + 2, . . . , n} ⊆ 1H .

Finally, since (k
2

+ 1)〈a〉 = {k
2

+ 1, k
2

+ 2, . . . , k}, it follows that Ω ⊆ 1H . Thus H is
transitive.

We claim that H is a primitive group. Assume, by way of a contradiction, that H
preserves a non-trivial block system B of Ω. Let ∆ be the block of B which contains n.
Then ∆a = ∆, because n is fixed by a. Let λ ∈ ∆ \ {n}, and observe that λ〈a〉 ⊆ ∆. If
λ ∈ {1, 2, . . . , k

2
}, then ∆ contains k

2
, and if λ ∈ {k

2
+1, k

2
+2, . . . , k}, then ∆ contains k

2
+1.
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Since k
2

and k
2

+1 are fixed by b2 it follows that ∆b2 = ∆. Hence nb
2

= k+1 is contained in
∆, forcing (k+1)a = k+2 ∈ ∆. Therefore ∆b = ∆, because (k+1)b = k+2. Consequently,
∆H = ∆, contradicting the transitivity of H. Therefore, λ > k. If λ ∈ {k + 1, k + 2},
then, since ∆〈a〉 = ∆, we have {k + 1, k + 2} ⊆ ∆. But (k + 1)b = k + 2 and so ∆b = ∆,
meaning that ∆H = ∆, another contradiction. Hence, ∆ ⊆ Ω\supp(a) = {k + 3, . . . , n}.
Therefore, ∆ is a subset of the first cycle of b. Thus, |∆| divides k. But, since ∆ is a
block, |∆| divides n = 2k− 1, a contradiction since k and 2k− 1 are coprime. Therefore,
H is a primitive group. The element

a−1b = (1, k
2
+1, 2, k+1, k+3↗ n)(3, k, k−1↘ k

2
+ 2, k

2
↘ 4)

is a product of a (k+ 1)-cycle and a (k− 3)-cycle, and so (a−1b)k+1 is a single cycle fixing
at least k + 1 > 3 points. Thus, by Theorem 1.3 of [5], H contains Alt(n). Finally, as
a ∈ Sym(n)\Alt(n), H = Sym(n).

Lemma 4.5. Suppose n = 2k − 1. If k is even, then dk(G) = 2.

Proof. Let k be even, and let n = 2k − 1. A calculation in Magma verifies that when
k = 4 or k = 6, we have dk(G) = dk(G

+) = 2. Assume from now on that k ≥ 8. Let

x = (
+

1 ↗
+

k
2
−1,

−
k
2
)(

+
k
2

+ 1↗
+

k−2,
ε

k−1,
+

k)(
+

k + 1,
+

k + 2) and

y = (
+

1,
+

k+1↗ +
n)(

+

2,
+

k)(
+
k
2
,

+
k
2
+1),

where ε ∈ {+,−}. Write H = 〈x, y〉. Since x̂ = a and ŷ = b, where a and b are as given
in Lemma 4.4, we have H̄ = Sym(n). Now

x−1 = (
−
1,

+
k
2
↘

+

2)(
ε

k,
+

k−1↘
+

k
2
+1)(

+

k + 1,
+

k + 2) and

x−1y = (
−
1,

+
k
2
+1,

+

2,
+

k+1,
+

k+3↗ +
n)(

+

3,
ε

k,
+

k−1↘
+

k
2

+ 2,
+
k
2
↘

+

4).

Then x−1y contains a (k + 1)-cycle, a (k − 3)-cycle, and one fixed point. Let
h = (x−1y)(k+1)(k−3). If ε = +, then h ∈ N \ (N+ ∪ Z(G)) and hence, by Lemma
2.1, H = G. If ε = −, then H ≤ G+, and h ∈ N+ \ Z(G), which implies that H = G+,
and the proof is complete.

Lemma 4.6. Suppose 3 ≤ k < n < 2k − 1.

(i) If k = 3, then n = 4 and d3(G
′) = 3.

(ii) If k is odd and k > 3, then dk(G
′) = 2.

(iii) If k is even, then dk(G) = dk(G
+) = 2.

Proof. Suppose 3 ≤ k < n < 2k − 1. Then n = k + j where 0 < j < k − 1. The relevant
elements from Definition 2.4 in this situation are

a4 = (1↗ k);

b6 = (1↗ k−j, k + 1↗ n).

In each case we will define elements x, y of G such that x̂ = a4 and ŷ = b6. Writing
〈x, y〉 = H, Theorem 2.5 will then imply that, unless (n, k) = (6, 4), we have H̄ = Sym(n)
when k is even, and H̄ = Alt(n) when k is odd.
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(i) If k = 3, then n = 4. A quick Magma calculation verifies that no two elements of
order 3 in G generate G′. In fact, the biggest subgroup of G generated by two elements
of order 3 has index 16 — it is Alt(4) × Z(G). However, G′ can be generated by three
elements of order 3. Therefore d3(G

′) = 3.

(ii) Suppose k is odd, with k > 3. Let

x = (
−
1,

+

2 ↗
+

k−1,
−
k) and

y = (
+

1 ↗
+

k−j,
+

k+1↗ +
n).

Since x̂ = a4 and ŷ = b6, we have H̄ = Alt(n). Now,

x−1y = (
−
1,

+

k ↘
+

3,
−
2)(

+

1 ↗
+

k−j,
+

k+1↗ +
n) = (

−
1,

+

k ↘
+

k−j+1,
+

k+ 1↗ +
n)(
−
2).

Therefore, x−1y consists of one negative cycle of length 2j + 1, along with one negative
1-cycle and k− j − 2 fixed points. Consequently, (x−1y)2j+1 consists of negative 1-cycles
along with at least one fixed point, as long as j < k− 2. Hence, when j < k− 2, we have
that (x−1y)2j+1 ∈ (H ∩N+) \Z(G). Therefore, when j < k− 2, Lemma 2.1 implies that
H = G′.

It remains to deal with j = k − 2. We can keep the same x and y, so that

x = (
−
1,

+

2 ↗
+

k−1,
−
k), y = (

+

1,
+

2,
+

k+1↗ +
n),

and H̄ = Alt(n). We have

[x, y] = x−1xy = (
−
1,

+

k ↘
+

3,
−
2)(
−
2,

+

k+1,
+

3 ↗
+

k−1,
−
k) = (

+

1,
−
2)(
−
3,

+

k+1).

Therefore, since k > 3, we see that [x, y]2 ∈ H ∩N+ \ Z(G). Hence, H = G′.

(iii) Suppose k is even. A quick check in Magma confirms that if n = 6 and k = 4,
then d4(G) = d4(G

+) = 2. Assume then that (n, k) 6= (6, 4). To generate G+, the same
x, y used in the case k odd have the property that 〈x̂, ŷ〉 = Sym(n), but since x and y
are both contained in G+, and (H ∩N+) 6≤ Z(G), we have that H = G+ by Lemma 2.1.
Thus, dk(G

+) = 2. It only remains to prove that dk(G) = 2 in this case. To that end, set

x = (
+

1 ↗
+

k)(
−
n) and

y = (
+

1 ↗
+

k−j,
+

k+1↗ +
n).

Then x̂ = a4 and ŷ = b6. Hence, H̄ = Sym(n). Now x−1 = (
+

k ↘
+

1)(
−
n). Hence

x−1y = (
+

1,
+

k ↘
+

k−j+1,
+

k+1↗
+

n−1,
−
n).

So, x−1y consists of one negative (2j+ 1)-cycle and (k−1)− j fixed points. As j < k−1,
this means (x−1y)2j+1 consists of 2j + 1 negative 1-cycles, along with at least one fixed
point. Thus, (x−1y)2j+1 ∈ (H ∩N) \ (N+ ∪ Z(G)). Hence, by Lemma 2.1, H = G.

When n = k, if we were to choose x and y to be k-cycles, then they would have to
be positive k-cycles, or else the orders of x and y would be 2k, but then 〈x, y〉 ≤ G+.
Therefore, in order to generate all of G when k is even, we must use elements other than
k-cycles.
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Lemma 4.7. If n = k and k ≡ 2 mod 4, then dk(G) = 2.

Proof. Let x = (
−
2 ↗2

−
n) and y = (

+

1,
+

2,
+

4,
+

3,
+

5 ↗ +
n), with H = 〈x, y〉. Write a = x̂

and b = ŷ, so that H̄ = 〈a, b〉. We begin by showing that H̄ = Sym(n). This is easy
to check for n = 6, so we assume n ≥ 10. We claim first that H̄ is primitive. If not,
then H̄ preserves a non-trivial block system B of Ω. Let ∆ ∈ B be the block containing
1. Then ∆a = ∆. Thus, if λ ∈ ∆, then λ〈a〉 ⊆ ∆. If λ were even, this would imply
that |∆| ≥ n

2
+ 1, a contradiction. Hence, ∆ contains only odd numbers. If λ = 3, then

∆b3 = ∆ since 1b
3

= 3. Hence 3b
3 ∈ ∆. But 3b

3
= 10, contradicting the fact that ∆

contains only odd numbers. Hence, ∆ contains 1 and at least one odd number λ with
λ > 3. Now consider the block ∆b2 , which contains 1b

2
= 4 along with λb

2
. Since λb

2
is

odd, it follows that ∆b2 is left invariant by a. Hence, 4〈a〉 ∪ λb2 ⊆ ∆b2 . But this forces
|∆b2 | ≥ n

2
+ 1, a contradiction.

Thus, H̄ is primitive group. The fact that H̄ contains a (which is a cycle that fixes
at least 3 points) now implies, by [5], that Alt(n) ≤ H̄. As b ∈ Sym(n)\Alt(n) it follows
that H̄ = Sym(n). Now, the element x

n
2 of H is a product of n

2
negative 1-cycles, an odd

number. Thus, x
n
2 ∈ (H ∩N) \ (N+ ∪ Z(G)). Hence 〈x, y〉 = G.

Lemma 4.8. Suppose n = k ≥ 3. If k is odd, then dk(G
′) = 2. If k is even, then

dk(G) = dk(G
+) = 2.

Proof. Suppose n = k. Let

x = (
+

1 ↗
+

n−2,
−

n−1,
−
n),

y = (
+

1,
+

3 ↗ +
n,

+

2),

and write H = 〈x, y〉. Since x̂ = a4 and ŷ = b7, we have, by Theorem 2.5, that H̄ = Alt(n)
when k is odd, and H̄ = Sym(n) when k is even. We also note that 〈x, y〉 ≤ G+. If k > 3,
then

x−1y = (
−
1,
−
n,

+

n− 1↘
+

2)(
+

1,
+

3 ↗ +
n,

+

2) = (
−
1,

+

2,
+

3)(
−
n),

so that (x−1y)3 ∈ (H ∩ N+) \ Z(G). If k = 3, then xy = (
+

1,
−
2,
−
3)(

+

1,
+

3,
+

2) = (
−
2)(
−
3), and

xy ∈ (H ∩ N+) \ Z(G). Therefore Lemma 2.1 implies that H = G′ when k is odd, and
that H = G+ when k is even, as required.

Next we suppose that k is even. It remains to show that dk(G) = 2. When k ≡ 2
mod 4, this is just Lemma 4.7. So, suppose k ≡ 0 mod 4, and write k = 4m. Assume
k ≥ 12. Let

x = (
+

1 ↗
+

m−2,
−

m−1,
+
m↗

+

2m)(
+

2m+1↗
+

3m)(
+

3m+1↗ +
n),

y = (
+

2m,
+

2m+2,
+

2m+1,
+

2m+3↗
+

n−2,
−

n−1)(
+
n,

+

1 ↗
+

m−1)(
+
m↗

+

2m−2,
−

2m−1),

and set H = 〈x, y〉. Since x and y both contain a negative k
2
-cycle, each of these elements

has order k. However, x̂ and ŷ are elements of order 2m. Thus, since 2m > 2, we may use
Definitions 2.3 and 2.4 to find an appropriate a and b of order 2m that generate Sym(n).
The relevant elements from Table 1 are then a2 and b4 (where we are using 2m instead
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of k). One can check that indeed x̂ = a2 and ŷ = b4. Therefore H̄ = Sym(n). Now

x−1 = (
+

2m↘
+

m+1,
−
m,

+

m−1↘
+

1)(
+

3m↘
+

2m+1)(
+
n↘

+

3m+1), so

x−1y = (
+

1,
+

2m+2,
+

2m+3,
+

2m+1,
+

3m+1)(
−
m,
−
n,

−
2m).

Therefore (x−1y)15 ∈ (H ∩N) \ (N+ ∪Z(G)). Hence, H = G whenever k ≥ 12. We have
checked using Magma that dk(G) = 2 when n = k ∈ {4, 8}. Therefore, whenever k ≡ 0
mod 4, we have dk(G) = 2.

Proof of Theorem 1.1 The case k = 3 is resolved by Lemma 3.1. So we now assume
that k > 3. For the case n ≥ 2k we have the subdivision j = k − 1 and j 6= k − 1. The
former case is dealt with in Lemmas 3.2 and 3.3. Lemma 3.2 examines the subcase k
odd, or k even and t odd, while Lemma 3.3 considers the situation of k and t both being
even. For the subdivision j 6= k − 1, the case when either k is odd, or k is even and t is
odd, is covered by Lemma 3.10. Then the remaining case of k and t both being even is
analysed in Lemmas 3.4, 3.6 and 3.8. This deals with the case n ≥ 2k. Moving onto the
case where n < 2k, we use Lemmas 4.3, 4.7 and 4.8 to settle the cases n = 2k − 1 and
n = k. Finally, the case when n < 2k with 3 < k < 2k − 1 is dealt with in Lemma 4.6,
so completing the proof of the theorem.
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5 Exceptional Groups

Obviously, I2(m) cannot be generated with two elements of order k with k ≥ 3. That
leaves E6, E7, E8, F4, H3 and H4, the results for which are shown in Table 2.

G dk(G) values of k

E6
2 4, 6, 8, 10, 12

0 3, 5, 9

E ′6

3 3

2 4, 5, 6, 9, 12

0 8, 10

E7
2 4, 6, 8, 10, 12, 14, 18, 30

0 3, 5, 7, 9, 15

E ′7
2 3, 4, 5, 6, 7, 8, 9, 10, 12, 15

0 14, 18, 30

E8
2 4, 6, 8, 10, 12, 14, 18, 20, 24, 30

0 3, 5, 7, 9, 15

E ′8 2 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30

F4

3 4

2 6

0 3, 8, 12

F ′4
2 3, 6, 12

0 4, 8

H3 2 6, 10

0 3, 5

H ′3 2 3, 5

0 6, 10

H4
2 4, 6, 10

0 3, 5, 12, 15, 20, 30

H ′4

6 4

3 3, 6

2 5, 10, 12, 15, 20, 30

Table 2: Values of dk(G) and dk(G
′) for Exceptional Groups
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