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Theoretical analysis and simulation methods for Hawkes

processes and their diffusion approximation

Julien Chevallier∗, Anna Melnykova†, Irene Tubikanec‡

Abstract

Oscillatory systems of interacting Hawkes processes with Erlang memory kernels were
introduced in Ditlevsen and Löcherbach (2017). They are piecewise deterministic Markov
processes (PDMP) and can be approximated by a stochastic diffusion. First, a strong error
bound between the PDMP and the diffusion is proved. Second, moment bounds for the
resulting diffusion are derived. Third, approximation schemes for the diffusion, based on the
numerical splitting approach, are proposed. These schemes are proved to converge with mean-
square order 1 and to preserve the properties of the diffusion, in particular the hypoellipticity,
the ergodicity and the moment bounds. Finally, the PDMP and the diffusion are compared
through numerical experiments, where the PDMP is simulated with an adapted thinning
procedure.

Keywords: Piecewise deterministic Markov processes, Hawkes processes, stochastic differential
equations, diffusion processes, neuronal models, numerical splitting schemes

Subject classification: 60H35, 65C20, 65C30, 60G55, 60J25

Introduction

Fast and accurate simulation of a biological neuronal network is one of the most extensively studied
problems in computational neuroscience. The general goal is to understand how information
is processed and transmitted in the brain. One of the widely used approaches is to assume
that the spike occurrences in a network are described by a point process. Poisson processes, as
“memory less” Markovian processes, can neither take into account a refractory period between
two consecutive spikes nor the interaction between neurons, and are thus no proper candidates.
Therefore, it is common to model the neuronal activity with Hawkes processes, which are self-
exciting point processes with a memory (Chevallier et al., 2015, Chornoboy et al., 1988, Johnson,
1996, Pernice et al., 2011, Reynaud-Bouret et al., 2014). The price to pay for using Hawkes
processes to model spiking activity is that their investigation is more difficult, since the Markovian
theory cannot be directly applied.

However, for a certain type of memory kernels, so-called Erlang kernels, the dynamics of the
point process can be described by a piece-wise deterministic Markov process (PDMP), whose
dimension is determined by the “memory length” of the underlying Hawkes process (Ditlevsen
and Löcherbach, 2017). This PDMP, also called “Markovian cascade of successive memory terms”
in the literature, is a convenient framework to study the long-time behaviour of the particle system.
In particular, it is proved that it is positive Harris recurrent and converges to its unique invariant
measure exponentially fast in Wasserstein distance (Duarte et al., 2019, Theorems 1 and 2).
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This Markovian cascade and its associated point process can be simulated thanks to the thin-
ning procedure (Ogata, 1981), which is a common way to simulate general point processes even
without any Markovian assumption. The only requirement in order to apply this method is to
provide an upper-bound for the spiking rate of the neurons, which is highly related to the model
under consideration (Dassios et al., 2013, Duarte et al., 2019). This procedure yields an exact
simulation algorithm but is costly to compute, especially when the number of neurons is large.
This results from the fact that the computation time scales linearly with the number of neurons.

In the brain, neurons are clustered in populations with similar behaviours (excitatory, in-
hibitory, etc). When the network size grows, but the proportion of neurons in each population
remains constant, the Markovian cascade can be approximated by a stochastic differential equa-
tion (SDE) of the same dimension. In other words, the diffusion approximation theory allows to
replace the stochastic term, described by jumps in the PDMP, by a multi-dimensional Brownian
motion. Passing from a Hawkes process to a diffusion process substantially simplifies the analysis
of the system behaviour. In particular, the simulation of the diffusion process is much less compu-
tationally expensive than that of the Markovian cascade, especially when the number of neurons
is large. This results from the fact that the computational time for the SDE does not depend on
the number of neurons. However, the SDE cannot be solved explicitly, and thus the construction
of a reliable approximation scheme is required.

Note that the main difficulty does not lie in the construction of convergent numerical schemes.
For example, standard methods such as the Euler-Maruyama or Milstein schemes converge in
the mean-square sense when the time discretization step tends to zero. In practice, however, the
solution is approximated with a strictly positive time step. As a consequence, even if the discrete
solution is known to converge to the continuous process as the time step tends to zero, it does
not imply that both processes share the same properties for a fixed discretization step. Thus, the
approximation scheme should not be used to study the behaviour of the original model without
further analysis of its qualitative properties. Constructing approximation schemes, which are not
only convergent, but also preserve the properties of the model, constitutes the main difficulty.

In our case, the first challenge is that the diffusion term of the SDE is highly degenerate and that
frequently applied numerical schemes, such as the Euler-Maruyama method, do not preserve the
“propagation of noise property” (formally known as hypoellipticity). Second, standard integrators
may also fail in preserving second moment properties (see Mattingly et al. (2002)), especially when
the equation describes oscillatory dynamics, which is the case here. For example, Higham and
Strømenn Melbø (2004) prove that the Euler-Maruyama method does not preserve the second
moment of linear stochastic oscillators. It is expected that this and similar negative results also
extend to higher-dimensional and non-linear stochastic oscillators, see, e.g., Ableidinger et al.
(2017). Even if higher-order Taylor approximation schemes may solve the problem of degenerate
noise structure, they got two major drawbacks. They highly depend on the dimension of the
system (which is determined by a parameter in our model) and they commonly fail in preserving
ergodic properties.

To overcome these problems, we construct numerical schemes based on the so-called splitting
approach. This approach was first developed for ordinary differential equations (ODEs). We refer
to Blanes et al. (2009) and Mclachlan and Quispel (2002) for an exhaustive discussion. For an
extension to SDEs, see, e.g., Ableidinger and Buckwar (2016), Ableidinger et al. (2017), Bréhier
and Goudenège (2019), Leimkuhler and Matthews (2015), Leimkuhler et al. (2016), Milstein and
Tretyakov (2004), Misawa (2001), Petersen (1998), Shardlow (2003). The main idea of the nu-
merical splitting approach is to decompose the system into explicitly solvable subequations and
to find a proper composition of the derived explicit solutions. Such methods usually preserve the
properties of the underlying model through the explicitly solved subparts.

The main contributions of this work can be divided into three steps. First, a strong error
bound between the Markovian cascade and the stochastic diffusion is proved. This complements
the results presented in Ditlevsen and Löcherbach (2017), Löcherbach (2019). Second, moment
bounds of order one and two for the stochastic diffusion are derived. Third, simulation algorithms
for the diffusion and the PDMP are provided. For the diffusion, two splitting schemes, based
on the Lie-Trotter and the Strang approach (Mclachlan and Quispel (2002), Strang (1968)), are
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proposed. They are proved to converge with order one in the mean-square sense. Moreover, they
are proved to preserve the ergodic property of the continuous process and to accurately reconstruct
the moment bounds obtained in the second step. The simulation method for the PDMP is exact
and based on the thinning procedure. In order to apply this method, an explicit upper-bound
and a sharper one, involving the numerical computation of polynomial roots, are obtained. Their
performances, with respect to the parameters of the model, are discussed.

This paper is organized as follows. In Section 1, the finite particle system, the corresponding
piece-wise deterministic Markov process and the main notations are introduced. Section 2 is
devoted to the stochastic diffusion and to its properties. Section 3 presents the approximation
schemes for the stochastic diffusion. Section 4 describes the simulation algorithm for the PDMP.
Finally, Section 5 provides a numerical study, illustrating the theoretical results.

1 Model and notations

The system considered in this paper consists of several populations of neurons, each of them
representing a different functional group of neurons (layers in the visual cortex, pools of excitatory
and inhibitory neurons in a network, etc.). This system is described by a multivariate counting
process, which counts the spike occurrences. In a certain setting, it can be approximated by a
stochastic diffusion in the large population limit (Ditlevsen and Löcherbach, 2017). The resulting
diffusion is the subject of study in Section 2.

1.1 Finite particle system

Let us consider a network, consisting of K large populations of neurons, where the number of
neurons in the k-th population is denoted by Nk and the total number of neurons in the network
is N = N1 + · · · + NK . Let Zk,nt represent the number of spikes of the n-th neuron belonging
to the k-th population during the time interval [0, t]. The sequence of counting processes, given

by {(Zk,nt )t≥0, 1 ≤ k ≤ K, 1 ≤ n ≤ Nk}, is characterized by the intensity processes (λk,n(t))t≥0,
which are formally defined through the relation

P(Zk,nt has a jump in (t, t+ dt]|Ft) = λk,n(t)dt,

where Ft contains the information about the processes (Zk,nt )t≥0 up to time t. The mean-field
framework considered here corresponds to intensities λk,n(t) given by

λk,n(t) = fk

 K∑
l=1

1

Nl

∑
1≤m≤Nl

∫
(0,t)

hkl(t− s)dZl,ms

 , (1)

where {hkl : R+ → R} is a family of synaptic weight functions (also called memory kernels), which
model the influence of population l on population k. The function fk : R → R+ is the spiking
rate function of population k. The expression “mean-field framework” refers to the fact that the
intensity λk,n(t) depends on the whole system only through the “mean-field” behaviour of each
population, namely 1

Nl

∑
1≤m≤Nl dZ

l,m
s . Furthermore, as N →∞ we assume that Nk/N → pk > 0

for all k.
Throughout the paper we assume that the functions fk satisfy the following conditions:

(A) The spiking rate functions fk are positive, Lipschitz-continuous, non-decreasing and such
that 0 < fk ≤ fmax

k for k = 1, . . . ,K.

In this paper, Erlang-type memory kernels and a cyclic feedback system of interactions are
considered. This means that for each k, population k is only influenced by population k+1, where
we identify K + 1 with 1. In this case, all the memory kernels are null except the ones given by

hkk+1(t) = cke
−νkt t

ηk

ηk!
, (2)
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where ck = ±1. This constant determines whether the population has an inhibitory (ck = −1) or
excitatory (ck = +1) effect. The parameter ηk ≥ 1 is an integer number, determining the memory
order for the interaction function from population k + 1 to population k.

The parameters ηk and νk determine, intuitively, the typical delay of interaction and its time
width. The delay of the influence of the population k + 1 on population k attains its maximum
ηk+1/νk+1 units back in time, and its mean is (ηk+1 + 1)/νk+1. The larger is this ratio, the more
“old” events are important. When the ratio is fixed (equal to τ), but both ηk and νk tend to
infinity, then hkk+1 tends to a Dirac mass in τ . This means that only one specific moment in time
is important. The interested reader is referred to Ditlevsen and Löcherbach (2017) and Löcherbach
(2019) for more details.

In this paper we are interested in the processes {(X̄k,1
t )t≥0, 1 ≤ k ≤ K}, which are the

arguments of the function fk in Equation (1) and are defined by

X̄k,1
t =

1

Nk+1

∑
1≤m≤Nk+1

∫
(0,t)

hkk+1(t− s)dZk+1,m
s . (3)

When the memory kernels are given in form (2), the processes defined in (3) can be obtained as

marginals of the process (X̄t)t≥0 = {(X̄k,j
t )t≥0, 1 ≤ k ≤ K, 1 ≤ j ≤ ηk + 1} which solves the

following system of dimension κ =
∑K
k=1(ηk + 1):

dX̄k,j
t =

[
−νkX̄k,j

t + X̄k,j+1
t

]
dt, for j = 1, . . . , ηk,

dX̄k,ηk+1
t = −νkX̄k,ηk+1

t dt+ ckdZ̄
k+1
t ,

X̄0 = x0 ∈ Rκ,
(4)

where Z̄k+1
t = 1

Nk+1

∑Nk+1

n=1 Zk+1,n
t , each Zk+1,n

t jumping at rate f(X̄k+1,1
t− ), see Ditlevsen and

Löcherbach (2017) for more insight. This type of equation is called a Markovian cascade in the
literature.

The process (X̄t)t≥0 summarizes and averages the influence of the past events. This process,

along with the firing rate functions fk, determine the dynamics of (Zk,nt )t≥0, described by its
intensity (1).

From a modelling point of view, the process (X̄k,1
t )t≥0 can be roughly regarded as the voltage

membrane potential of any neuron in population k. Then, the probability of a neuron to emit
a spike is given as a function of its membrane potential. To summarize, the processes, with
coordinates (k, 1), defined by (3), describe the membrane potential in each population, whereas
the other coordinates represent higher levels of memory for the process.

Note that the model presented so far starts with empty memory. The right-hand side of (1)
is equal to fk(0) at time t = 0 or equivalently x0 = 0. However, one could easily generalize this
to any initial condition x0 in Rκ as it is done in the rest of the paper. Moreover, the interested
reader is referred to Duarte et al. (2019), where a more general model is studied numerically and
theoretically for K = 1 population.

1.2 Notations

Now we focus on the case of two interacting populations of neurons (K = 2), consisting of N1 and
N2 neurons, respectively. Taking K = 2 allows for an investigation of the interactions between the
populations of different sizes while avoiding heavy notations. Throughout the paper the following
notation is used: On×m denotes a n×m-dimensional zero matrix and 0n denotes a n-dimensional
zero vector. Then, it is convenient to rewrite system (4) in the matrix-vector form

dX̄t = AX̄tdt+ Γ dZ̄t, X̄0 = x0 ∈ Rκ, (5)
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with

• A ∈ Rκ×κ defined as

A =

(
Aν1

O(η1+1)×(η2+1)

O(η2+1)×(η1+1) Aν2

)
, (6)

where Aνk is a (ηk + 1) × (ηk + 1) tri-diagonal matrix with lower-diagonal equal to 0ηk ,
diagonal equal to (−νk, . . . ,−νk) and upper-diagonal equal to (1, . . . , 1),

• Γ ∈ Rκ×2 having zero coefficients everywhere, except for Γη1+1,2 = c1 and Γκ,1 = c2,

• and Z̄t =
(
Z̄1
t , Z̄

2
t

)T
.

Throughout the paper the following convention is made. The coordinates of a generic vector x in
Rκ are either denoted as (xi)i=1,...,κ or (xk,j)k=1,2; j=1,...,ηk+1 with the relation i = j if k = 1 and
i = η1 + 1 + j if k = 2. The second notation is usually preferred since each population is easily
identified by the index k. For some generic function g : Rκ → Rκ, the upper indexes are used
as follows: (g(x))

k,j
. Moreover, it is sometimes more natural to consider some generic Rκ-valued

process xt population-wise. Thus, it is split into two components x1
t = (x1,1

t , . . . , x1,η1+1
t ) ∈ Rη1+1

and x2
t = (x2,1

t , . . . , x2,η2+1
t ) ∈ Rη2+1, such that xt = (x1

t , x
2
t )
T ∈ Rκ.

2 The limiting stochastic diffusion

In Ditlevsen and Löcherbach (2017) it is proved that the limit behaviour of (5) can be approximated
by the diffusion process X = (X1, X2)T ∈ Rκ, which is obtained as the the unique strong solution
of the SDE

dXt = (AXt +B(Xt))dt+
1√
N
σ(Xt)dWt, X0 = x0, (7)

where W = (W 1,W 2)T is a 2-dimensional Brownian motion, and x0 ∈ Rκ is a deterministic initial
condition. The non-linear part of the drift term B : Rκ → Rκ is given by

B(X) = (B1(X2), B2(X1))T , (8)

where B1 : Rη2+1 → Rη1+1 and B2 : Rη1+1 → Rη2+1 read as B1(X2) = (0, . . . , 0, c1f2(X2,1)) and
B2(X1) = (0, . . . , 0, c2f1(X1,1)). The diffusion component σ : Rκ → Rκ×2 is given by

σ(X) =

(
σ1(X2)
σ2(X1)

)
, (9)

where σ1 : Rη2+1 → R(η1+1)×2 and σ2 : Rη1+1 → R(η2+1)×2 read as

σ1(X2) =

0 0
...

...

0 c1√
p2

√
f2(X2,1)

 , σ2(X1) =

 0 0
...

...
c2√
p1

√
f1(X1,1) 0

 .

In other words, the jump term Γ dZ̄, determining the dynamics of the Markovian cascade given
in (5), is replaced by the sum of a non-linear drift and a diffusion term.

As N goes to infinity, the diffusion term in (7) vanishes and the SDE transforms into an ODE
of the form

dUt = (AUt +B(Ut))dt, U0 = x0. (10)

The focus of this paper lies in the theoretical and numerical relations between the PDMP and its
stochastic diffusion approximation. Thus, we do not address the properties of ODE (10) in this
work and refer to Ditlevsen and Löcherbach (2017) for related qualitative features and convergence
results.

The rest of this section is organized as follows. First, we investigate how accurately the
stochastic diffusion approximates the dynamics of the point process, proving a strong error bound
between PDMP (5) and SDE (7). Then, we study the properties of SDE (7), focusing on moment
bounds.
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2.1 Strong error bound between the limiting diffusion and the piece-
wise deterministic Markov process

Any error bound of the diffusion approximation is determined by two facts, namely the approxi-
mation of a compensated Poisson process by a Brownian motion and the approximation of Nk by
pkN . We get rid of the second approximation by considering SDE (7) with pk = Nk/N and denote
the solution of this equation by Y . By choosing a different notation we stress the fact that, on the
contrary to X, it depends on the exact number of neurons Nk and not on its proportion, obtained
in the mean-field limit. The same convention is used in Ditlevsen and Löcherbach (2017), where
the following weak error bound is proved.

Theorem 1 (Ditlevsen and Löcherbach (2017)). Grant assumption (A) and suppose that all
spiking functions fk belong to the space C5

b of bounded functions having bounded derivatives up
to order 5. Then there exists a constant C depending only on f1, f2 and the bounds on their
derivatives such that for all ϕ ∈ C4

b (Rκ,R) and ∀x0 ∈ Rκ,

sup
x∈Rk

∣∣Eϕ(X̄t)− Eϕ(Yt)
∣∣ ≤ Ct‖ϕ‖4,∞

N2
. (11)

In the following, we strengthen the above result, allowing for a comparison of trajectories of
the PDMP and the diffusion.

Theorem 2 (Strong error bound). Grant assumption (A) and let || · ||∞ denote the sup norm
on Rκ. For all N > 0, a solution X̄ of (5) and a solution Y of (7) (with pk = Nk/N) can be
constructed on the same probability space such that there exists a constant C > 0 such that, for
all T > 0,

sup
t≤T
‖X̄t − Yt‖∞ ≤ ΘNe

CT log(N)

N
(12)

almost surely, where ΘN is a random variable with exponential moments whose distribution does
not depend on N . In particular,

E
[
sup
t≤T
‖X̄t − Yt‖∞

]
≤ CeCT log(N)

N
. (13)

The proof of Theorem 2 is mainly inspired by Kurtz (1978) and relies on two main ingredients,
a strong coupling between the standard Poisson process and the Brownian motion and a sharp
result on the modulus of continuity for the Brownian motion. All the material is postponed to
Appendix A.1.

When comparing (11) and (13), one notices that there is an exchange between the expectation
sign and the absolute value. There are two prices to pay for such an exchange. First, a slower
convergence rate with respect to N . Second, a faster divergence rate with respect to t (the
exponential term is coming from a Grönwall type argument). In the following remark we precise
the bound on the error which is caused by using directly the parameter pk instead of Nk/N .

Remark 1. Let Y denote a solution of (7) (with parameter pk equal to Nk/N) and X denote a
solution of (7) with fixed values pk. Following the proof of Theorem 2, one can show that

sup
t≤T
‖Xt − Yt‖ ≤ ΘNe

CT

(
log(N)

N
+ max

k

{
1√
pkN

(
1−

√
pkN/Nk

)})
so that the strong error bound stated in the theorem also holds for the non-modified SDE if√
pkN/Nk − 1 is of order N−1/2 or of faster order.

Fortunately, for any fixed N , setting N1 = bp1Nc and N2 = dp2Ne ensures that
√
pkN/Nk−1

is of order N−1 < N−1/2, which grants that Theorem 2 holds for SDE (7).

Since SDE (7) transforms into ODE (10) as N goes to infinity, the strong error bound can be
used to prove the convergence of the PDMP to the solution of the ODE. However, this is beyond
the scope of this paper.

6



2.2 Properties of the stochastic diffusion

The solution process (Xt)t≥0 of SDE (7) is positive Harris recurrent with invariant measure π which
is of full support (see Löcherbach (2019)). It means that the trajectories visit all sets in the support
of the invariant measure infinitely often almost surely. More precisely, for any initial condition
x0 and measurable set A such that π(A) > 0, lim supt→+∞ 1A(Xt) = 1 almost surely. Besides,
by following the arguments in Mattingly et al. (2002), the technical results proved in Löcherbach
(2019) can be used to prove the geometric ergodicity of (Xt)t≥0 as stated in Proposition 1 below.

In order to state the geometric ergodicity of (Xt)t≥0, let us first specify the Lyapunov function
G : Rκ → R introduced in Ditlevsen and Löcherbach (2017):

G(x) =

K∑
k=1

ηk+1∑
j=1

j

νj−1
k

J(xk,j), (14)

where J is some smooth approximation of the absolute value. In particular, J(x) = |x| for all
|x| ≥ 1 and max{|J ′(x)|, |J ′′(x)|} ≤ Jc for all x, for some finite constant Jc.

Proposition 1 (Geometric ergodicity). Grant assumption (A). Then the solution of SDE (7)
has a unique invariant measure π on Rκ. For all initial conditions x0 and all m ≥ 1, there exist
C = C(m) > 0 and λ = λ(m) > 0 such that, for all measurable functions g : Rκ → R such that
|g| ≤ Gm,

∀t ≥ 0, |Eg(Xt)− π(g)| ≤ CG(x0)me−λt.

Proof. The proof closely follows that of Theorem 3.2 in Mattingly et al. (2002) and is based on
Lyapunov and minorization conditions (the latter is implied by the existence of a smooth transition
density and the irreducibility of the space).

(i) First, we use the fact that G is a Lyapunov function for X (Ditlevsen and Löcherbach,
2017, Proposition 5), i.e., ∃α, β > 0, s.t.

AXG(x) ≤ −αG(x) + β,

where AXG(x) is the infinitesimal generator of (7).
(ii) Then, we note that, from any initial condition x0, for any time T > 0 and any open set O,

the probability that XT belongs to O is positive. It is ensured by the controllability of system (7)
(see Theorem 4 in Löcherbach (2019)).

(iii) Finally, we note that the process (Xt)t≥0 possesses a smooth transition density. Its exis-
tence is ensured by verifying the Hörmander condition, which is done in Proposition 7 of Ditlevsen
and Löcherbach (2017).

The rest of the proof follows as in the proof of (Mattingly et al., 2002, Theorem 3.2.): apply
(Mattingly et al., 2002, Theorem 2.5.) to some discrete-time sampling of the process and conclude
by interpolation.

Also note that the rank of the diffusion matrix σσT is smaller than the dimension of system
(7). This means that the system is not elliptic. However, the specific cascade structure of the
drift ensures that the noise is propagated through the whole system via the drift term, such that
the diffusion is hypoelliptic in the sense of stochastic calculus of variations (Delarue and Menozzi,
2010, Malliavin and Thalmaier, 2006). We also note that SDE (7) is semi-linear, with a linear
term given by matrix (6). Thus, its solution can be written in the form of a convolution equation
(see, among others, Mao (2007, Section 3)).

Proposition 2. The unique solution of (7) satisfies

Xt = eAtx0 +

∫ t

0

eA(t−s)B(Xs)ds+
1√
N

∫ t

0

eA(t−s)σ(Xs)dWs. (15)
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Proof. Consider the process Yt = e−AtXt. By Itô’s formula one obtains

d
(
e−AtXt

)
=

(
−Ae−AtXt + e−At (AXt +B(Xt))

)
dt+

e−At√
N
σ(Xt)dWt

= e−AtB(Xt)dt+
e−At√
N
σ(Xt)dWt.

Integrating both parts yields

e−AtXt = x0 +

∫ t

0

e−AsB(Xs)ds+
1√
N

∫ t

0

e−Asσ(Xs)dWs.

Multiplying the expression by eAt gives the result.

Note that from this form, it is straightforward to see that the diffusion term is of full rank.
Intuitively, this ensures the hypoellipticity. Further, systems of type (15) are called stochastic
Volterra equations (Jaber et al., 2019).

Now we focus on first and second moment bounds. The following results are needed, in par-
ticular, to ensure the accuracy of the approximation scheme in Section 3. In the following remark
we provide some purely computational results in order to ease the further analysis.

Remark 2. Due to the block-structure of the matrix A introduced in (6), its matrix exponential
eAt can be computed as

eAt =

(
eAν1 t O(η1+1)×(η2+1)

O(η2+1)×(η1+1) eAν2 t

)
,

where eAνk t, k = 1, 2, is a (ηk + 1)× (ηk + 1) upper-triangular matrix given by

eAνk t = e−νkt



1 t t2

2 . . . tηk
ηk!

0 1 t . . . tηk−1

(ηk−1)!

...
. . .

. . .
. . .

...
...

...
. . .

. . .
...

0 0 0 . . . 1


. (16)

In further computations we will often use the vectors eAtXs. The elements of eAtXs are given by
the formula (

eAtXs

)k,j
= e−νkt

ηk+1∑
m=j

tm−j

(m− j)!
Xk,m
s . (17)

Theorem 3 (First moment bounds of the diffusion process). Grant assumption (A).
The following bounds hold for the components of E[Xt]:

Ik,jmin ≤ E[Xk,j
t ] ≤ Ik,jmax,

where

Ik,jmin =
(
eAtx0

)k,j
+

[
1− e−tνk

ηk+1−j∑
l=0

(tνk)l

l!

]
min

{
0,

ckf
max
k+1

ν
(ηk+2−j)
k

}
,

Ik,jmax =
(
eAtx0

)k,j
+

[
1− e−tνk

ηk+1−j∑
l=0

(tνk)l

l!

]
max

{
0,

ckf
max
k+1

ν
(ηk+2−j)
k

}
.
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Proof of Theorem 3. From Proposition 2 and Remark 2, it follows that the convolution-based
representation of the k-th population is given by

Xk
t = (eAtx0)k +

∫ t

0

eAνk (t−s)Bk(Xk+1
s )ds+

1√
N

∫ t

0

eAνk (t−s)σk(Xk+1
s )dWs.

Consequently, the j-th components are given by

Xk,j
t =

(
eAtx0

)k,j︸ ︷︷ ︸
:=T1(t)

+

∫ t

0

ckfk+1(Xk+1,1
s )

e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jds︸ ︷︷ ︸

:=T2(t)

+
1√
N

∫ t

0

ck√
pk+1

√
fk+1(Xk+1,1

s )
e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jdW k+1

s︸ ︷︷ ︸
:=T3(t)

.

Note that, E[T1(t)] = T1(t) and E[T3(t)] = 0. It remains to consider T2(t). The fact that the
intensity function is bounded by 0 < fk+1 ≤ fmax

k+1 implies that

min{0, ck}
fmax
k+1

(ηk + 1− j)!
Ik,j ≤ E[T 2(t)] ≤ max{0, ck}

fmax
k+1

(ηk + 1− j)!
Ik,j ,

where

Ik,j =

∫ t

0

e−νk(t−s)(t− s)ηk+1−jds.

Now, let us consider the integral Ik,j :∫ t

0

e−νk(t−s)(t− s)ηk+1−jds = tηk+1−j
∫ t

0

e−νkt
t−s
t

(
t− s
t

)ηk+1−j

ds.

Setting z = t−s
t yields

tηk+2−j
∫ 1

0

e−νktzzηk+1−jdz =
(ηk + 1− j)!
ν

(ηk+2−j)
k

[
1− e−νkt

ηk+1−j∑
l=0

(νkt)
l

l!

]
.

This gives the result.

Remark 3. Recalling (17) and using the fact that lim
t→∞

e−νkt
∑ηk+1−j
l=0

(tνk)l

l! = 0, it follows from

Theorem 3 that

min

{
0,

ckf
max
k+1

ν
(ηk+2−j)
k

}
≤ lim
t→∞

E[Xk,j
t ] ≤ max

{
0,

ckf
max
k+1

ν
(ηk+2−j)
k

}
.

The derived moment bounds give some intuition on how the system behaves in the long run.
Remarkably, depending on whether ck is positive or negative, the trajectories of (Xk

t )t≥0 are on
average bounded by 0 from below or above, respectively. This is in agreement with the fact that
the sign of ck defines whether the corresponding neural population is excitatory (ck = +1) or
inhibitory (ck = −1). Moreover, we may immediately see the effect of increasing the memory
order ηk, depending on the constant νk. When νk = 1, the bounds for all j components are
determined entirely by ck and the bounds of the intensity functions. When νk < 1 and ηk → ∞,
then the first components, presenting the current state of the process, tend to infinity. Similarly,
for νk > 1, the trajectories are attracted to 0. Finally, note that the first moment bounds do not
depend on the number of neurons in the system.
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Theorem 4 (Second moment bounds of the diffusion process). Grant assumption (A).

The following bounds hold for E[(Xk,j
t )2]:

E[(Xk,j
t )2] ≤

((
eAtx0

)k,j)2

+ 2
(
eAtx0

)k,j
max

{
0,

ckf
max
k+1

(ηk + 1− j)!
Ik,j1 (t)

}

+ fmax
k+1

(
ck

(ηk + 1− j)!

)2
√fmax

k+1 I
k,j
1 (t) +

√
Ik,j2 (t)

N · pk+1

2

,

where Ik,ju (t), u = 1, 2, are defined as

Ik,ju (t) :=

∫ t

0

e−uνk(t−s)(t− s)u(ηk+1−j)ds

=
(u(ηk + 1− j))!
(uνk)u(ηk+1−j)+1

1− e−utνk
u(ηk+1−j)∑

l=0

(utνk)l

l!

 .
The proof of Theorem 4 is similar to the one of Theorem 3 and is postponed to Appendix A.2.

Remark 4. Theorem 4 gives the following asymptotic bounds:

lim
t→∞

E[(Xk,j
t )2] ≤ fmax

k+1

(
ck

(ηk + 1− j)!

)2
√fmax

k+1C
k,j
1 +

√
Ck,j2

N · pk+1

2

,

where

Ck,ju := lim
t→∞

Ik,ju (t) =
(u(ηk + 1− j))!
(uνk)u(ηk+1−j)+1

.

Note that for N → ∞, the bound obtained in Theorem 4 equals the square of the bound for
the first moment, derived in Theorem 3. This is in agreement with the fact that the stochastic
system (7) transforms into an ODE as N increases (Ditlevsen and Löcherbach, 2017). In other
words, its diffusion coefficient tends to 0 as N tends to infinity.

0 10 20 30 40 50

−
20

−
15

−
10

−
5

0

t

X
t1,

j

paths bounds

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0

t

(X
t1,

j )2

paths bounds

Figure 1: First (left panel) and second (right panel) moment bounds with respective trajectories
of the inhibitory population k = 1. The rate function f2 is given in Section 5. The parameters
are η1 = 3, ν1 = 2, N = 20 and p2 = 1/2.

In Figure 1, the first and second moment bounds, derived in Theorem 3 and Theorem 4,
respectively, are illustrated. In the left panel, we plot 4 sample trajectories (solid lines) of an
inhibitory population and their lower first moment bounds (dashed lines). The main variable X1,1
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and its lower moment bound are depicted in black. The remaining 3 trajectories are auxiliary
variables. They (and their corresponding bounds) are depicted in different shades of grey. We see
that the trajectories can exceed the theoretical bounds, especially when the effect of noise is large.
On average, the trajectories stay within the bounds. In the right panel, we plot the square of the
first 3 components of X1 (and their second moment bounds), omitting the 4-th one in order to
stay within an easily interpretative scale. We conclude that the bounds are rather precise for the
parameter setting under consideration.

3 Numerical splitting schemes for the stochastic diffusion

The solution of system (7) cannot be written in an explicit form, and thus a numerical approx-
imation is required. Let [0, T ] with T > 0 be the time interval of interest and consider the
discretization (ti)i=0,...,imax given by ti = i∆, where ∆ = T/imax. In the following, X̃ti denotes a
numerical realisation of the diffusion process, evaluated at the discrete time points.

We derive and investigate two numerical schemes based on the splitting approach. The goal
of this method is to divide the equation into explicitly solvable subequations and to compose the
obtained explicit solutions in a proper way. Usually, the choice of the subsystems is not unique.
Here, because of the specific structure of SDE (7), we split it into the subsystems

dX
[1]
t = AX

[1]
t dt,

dX
[2]
t = B(X

[2]
t )dt+

1√
N
σ(X

[2]
t )dWt.

Both subsystems are explicitly solvable. The first one is a linear ODE whose flow is given by

ψ
[1]
t : x 7→ eAtx. For the second one, recall that B and σ are given by (8) and (9), respectively.

It is easy to see that all components of X [2], except for two (X [2],1,η1+1 and X [2],2,η2+1) have null
derivative. Moreover, the drift and diffusion coefficients of X [2],1,η1+1 only depend on X [2],2,1 and
vice versa. Hence, the respective explicit (stochastic) flows are given by

ψ
[1]
t (x) := eAtx,

ψ
[2]
t (x) := x+ tB(x) +

√
t√
N
σ(x)ξ,

where ξ = (ξ1, ξ2)T is a 2-dimensional standard normal vector. Then, the Lie-Trotter and the
Strang compositions of flows (Mclachlan and Quispel, 2002, Strang, 1968) are given as follows

X̃LT
ti+1

=
(
ψ

[1]
∆ ◦ ψ

[2]
∆

)(
X̃LT
ti

)
= eA∆

(
X̃LT
ti + ∆B(X̃LT

ti ) +

√
∆√
N
σ(X̃LT

ti )ξi

)
, (18)

X̃ST
ti+1

=
(
ψ

[1]
∆
2

◦ ψ[2]
∆ ◦ ψ

[1]
∆
2

)(
X̃ST
ti

)
(19)

= eA∆X̃ST
ti + ∆eA

∆
2 B(eA

∆
2 X̃ST

ti ) +

√
∆√
N
eA

∆
2 σ(eA

∆
2 X̃ST

ti )ξi,

respectively, with X̃LT
0 = X̃ST

0 = x0 and (ξi)i=1,...,imax
i.i.d. The two splitting schemes (18) and

(19) define numerical solutions of SDE (7). Note that by setting σ(x) ≡ 0, both schemes can be
used for simulating ODE (10).

For the sake of simplicity, we focus on the Lie-Trotter splitting (18) in the subsequent analysis,
since its representation is more intuitive. Thus, throughout Section 3 we set X̃ ≡ X̃LT . However,
similar results can be obtained also for the more evolved Strang approach (19).
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Remark 5. Note that thanks to the matrix exponential entering the diffusion terms in (18) and
(19), the noise propagates through all components of the system at each time step. In other words,
the conditional variance matrix Σ is of full rank and is given by

Σ
[
X̃ti+1

|X̃ti

]
:=

∆

N
eA∆σ(X̃ti)σ

T (X̃ti)
(
eA∆

)T
.

This can be regarded as a discrete analogue of the hypoellipticity of the continuous process, a
property that the approximation methods based on the Itô-Taylor expansion of the infinitesimal
generator of (7) (see Kloeden et al. (2003)) do not preserve.

3.1 Strong convergence in the mean-square sense

Now we focus on the convergence in the mean-square sense and show that the numerical solutions
obtained via the splitting approach converge to the process as the time step ∆→ 0 with order 1.
The frequently applied Euler-Maruyama scheme usually converges with mean-square order 1/2 if
the noise is multiplicative (Kloeden et al., 2003, Milstein and Tretyakov, 2004), as it is the case
for system (7). In the following result, thanks to the specific structure of the noise component,
we show that the Euler-Maruyama scheme coincides with the Milstein scheme, which is known to
converge with mean-square order 1. This result is then used to establish the convergence order of
the splitting scheme.

Theorem 5 (Mean-square convergence of the splitting scheme). Grant assumption (A).
Let X̃ti denote the numerical method defined by (18) at time point ti and starting from x0.
Then X̃ti is mean-square convergent with order 1, i.e., there exists a constant C > 0 such that(

E
[∥∥∥Xti − X̃ti

∥∥∥2
]) 1

2

≤ C∆,

for all time points ti, i = 1, . . . , imax, where ‖ · ‖ denotes the Euclidean norm.

Proof of Theorem 5. Let us denote by X̃EM a numerical solution of SDE (7) obtained via the
Euler-Maruyama method, that is

X̃EM
ti+1

= X̃EM
ti + ∆

(
AX̃EM

ti +B(X̃EM
ti )

)
+

√
∆√
N
σ(X̃EM

ti )ξi. (20)

First, we show that the Euler-Maruyama method, when applied to system (7), coincides with the
Milstein scheme, which is known to converge with mean-square order 1. To do so, we denote the
vector x by x = (x1, . . . , xκ), where κ = η1 + η2 + 2. Further, we recall that the j-th component,
j = 1, . . . , κ, of the Milstein scheme only differs from the j-th component of the Euler-Maruyama
scheme (20) by the following additional term

2∑
m1,m2=1

κ∑
l=1

σl,m1
∂σj,m2

∂xl
I(m1,m2),

where σj,m denotes the value of the element at the j-th row and the m-th column of the diffusion
matrix σ at time ti and

I(m1,m2) :=

∫ ti+1

ti

∫ s2

ti

dWm1
s1 dWm2

s2 .

Now note that the term ∂σj,m2/∂xl is only different from 0 for j = η1 + 1, m2 = 1, l = η1 + 2 and
for j = η1 + η2 + 2, m1 = 2, l = 1. However, σl,m1 equals 0 for those values of l. Thus, the above
double sum equals 0 and the Euler-Maruyama method coincides with the Milstein scheme. This
implies that

‖Xti − X̃EM
ti ‖L2 ≤ C∆, (21)
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where ‖·‖L2 :=
(
E[‖ · ‖2]

)1/2
denotes the L2-norm and C is some generic constant. For the second

part, we provide a proof similar to the one presented in Milstein and Tretyakov (2003). Applying
the triangle inequality yields that

‖Xti − X̃ti‖L2 ≤ ‖Xti − X̃EM
ti ‖L2 + ‖X̃EM

ti − X̃ti‖L2 .

Given Xti := x, let us denote with X̃EM
ti+1

(x, ti) and X̃ti+1
(x, ti) the one-step approximation of

the Euler-Maruyama and splitting scheme, respectively. For instance, X̃EM
ti+1

(x, ti) is given by

Equation (20) where X̃EM
ti is replaced by x. By the definition of the matrix exponential, i.e.,

eA∆ := I + ∆A+ ∆2

2 A
2 +O(∆3), and by recalling (18), we obtain that

X̃EM
ti+1

(x, ti)− X̃ti+1(x, ti) = x+ ∆Ax+ ∆B(x) +

√
∆√
N
σ(x)ξi − eA∆

(
x+ ∆B(x) +

√
∆√
N
σ(x)ξi

)

= x+ ∆Ax+ ∆B(x) +

√
∆√
N
σ(x)ξi − x−∆B(x)−

√
∆√
N
σ(x)ξi

−∆Ax−∆2AB(x)− ∆
3
2

√
N
σ(x)ξi +O(∆3)

= −∆2AB(x)− ∆
3
2

√
N
σ(x)ξi +O(∆3).

Consequently, we get that∥∥∥E [X̃EM
ti+1

(x, ti)− X̃ti+1(x, ti)
]∥∥∥ = O(∆2),

∥∥∥X̃EM
ti+1

(x, ti)− X̃ti+1(x, ti)
∥∥∥
L2

= O(∆
3
2 ).

Let us mention that the two bounds above do not depend on x because B and σ are uniformly
bounded. Recalling (21), the result follows from the fundamental theorem on the mean-square
order of convergence, see Theorem 1.1. in Milstein and Tretyakov (2004).

Theorem 5 states that as ∆ → 0, the approximated solution (X̃ti)i=0,...,imax converges to the
true process (Xt)t≥0 in the mean-square sense. In practice, however, fixed time steps ∆ > 0 are
required. Thus, there is not yet any guarantee that the constructed numerical solutions share the
same properties as the true solution of (7). For these reasons, in addition, we study the ability of
(X̃ti)i=0,...,imax to preserve the properties of SDE (7).

Note also that, different to ODE systems (Hairer et al., 2006), for stochastic equations the
theoretical order of convergence usually cannot be increased by using the Strang composition
instead of the Lie-Trotter approach. In practice, however, the Strang splitting often performs
better than the Lie-Trotter method, see, e.g., Ableidinger et al. (2017), Buckwar et al. (2020),
Tubikanec et al. (2020). This is also confirmed by our numerical experiments in Section 5.

3.2 Moment bounds of the approximated process

We are now interested in studying the qualitative properties of the splitting schemes for fixed
time steps ∆ > 0. We start by illustrating that the constructed splitting schemes preserve the
convolution-based structure of the model derived in Proposition 2. Using the one-step approxi-
mation (18) and performing back iteration yields

X̃ti = eAtix0 + ∆

i∑
l=1

eAtlB(X̃ti−l) +

√
∆√
N

i∑
l=1

eAtlσ(X̃ti−l)ξi−l. (22)

Note that the first term on the right side of (15) is preserved exactly. Moreover, the sums in (22)
correspond to approximations of the integrals in (15) using the left point rectangle rule. Expression
(22) allows to derive moment bounds for the numerical process in a similar fashion as presented
for the continuous process in the previous section.
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Theorem 6 (First moment bounds of the approximated process). Grant assumption (A).
The following bounds hold for the components of E[X̃ti ]:

Ĩk,jmin ≤ E[X̃k,j
ti ] ≤ Ĩk,jmax,

where

Ĩk,jmin =
(
eAtix0

)k,j
+ ∆

i∑
l=0

e−νktltηk+1−j
l min

{
0,

ckf
max
k+1

(ηk + 1− j)!

}

Ĩk,jmax =
(
eAtix0

)k,j
+ ∆

i∑
l=0

e−νktltηk+1−j
l max

{
0,

ckf
max
k+1

(ηk + 1− j)!

}
.

Proof of Theorem 6. From Remark 2 and (22), it follows that

X̃k
ti = (eAtix0)k + ∆

i∑
l=1

eAνk tlBk(X̃k+1
ti−l

) +

√
∆√
N

i∑
l=1

eAνk tlσk(X̃k+1
ti−l

)ξi−l.

Consequently, the j-th components are given by

X̃k,j
ti = (eAtix0)k,j︸ ︷︷ ︸

=T1(ti)

+
1

(ηk + 1− j)!
∆

i∑
l=1

ckfk+1(X̃k+1,1
ti−l

)e−νktltηk+1−j
l︸ ︷︷ ︸

:=T̃2(t)

+
1

(ηk + 1− j)!

√
∆√
N

i∑
l=1

ck√
pk+1

√
fk+1(X̃k+1,1

ti−l
)e−νktltηk+1−j

l ξk+1
i−l︸ ︷︷ ︸

:=T̃3(ti)

.

Note that, E[T1(ti)] = T1(ti), and E[T̃3(t)] = 0. The fact that the intensity function is bounded
by 0 < fk+1 ≤ fmax

k+1 implies the result.

Note that the bounds obtained in Theorem 6 equal those derived in Theorem 3, up to replacing
the integrals (calculated in the proof of Theorem 3) by left Riemann sums. The accuracy of this
approximation depends on the step size ∆. Under reasonably small choices of ∆, the bounds are
preserved accurately for all ti. This is illustrated in the left panel of Figure 2, where we plot the
first moment bound of the process (main variable of an excitatory population) and the one of the
approximated process, derived in Theorem 3 and Theorem 6, respectively. Different choices of νk
are compared and for the bound of the approximated process ∆ = 0.1 is used.

The following Corollary gives an intuition of the long-time behaviour of the bounds.

Corollary 1. (i) The following bounds hold for the components of E[X̃ti ] as i→∞ (and ∆ fixed):

∆κk,j+1Li−κk,j
(
e−νk∆

)
min

{
0,
fmaxk+1 ck

κk,j !

}
≤ lim
i→∞

E[X̃k,j
ti ]

≤ ∆κk,j+1Li−κk,j
(
e−νk∆

)
max

{
0,
fmaxk+1 ck

κk,j !

}
,

where κk,j := ηk + 1− j and Li−κk,j
(
e−νk∆

)
is a polylogarithm function, which can be written as

Li−κk,j
(
e−νk∆

)
= (−1)

κk,j+1
κk,j∑
l=0

l! S(κk,j + 1, l + 1)

(
−1

1− e−νk∆

)l+1

,

where S(κk,j + 1, l+ 1) denotes the Stirling numbers of second kind (Rennie and Dobson (1969)).
(ii) The following bounds hold for the components of E[X̃ti ] as i→∞ and ∆→ 0:

min

{
0,
ckf

max
k+1

νκ
k,j+1

k

}
≤ lim

∆→0
lim
i→∞

E[X̃k,j
ti ] ≤ max

{
0,
ckf

max
k+1

νκ
k,j+1

k

}
.
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Proof. (i) The zero bound is trivial. Considering

lim
i→∞

i∑
l=0

e−νktltκ
k,j

l = lim
i→∞

i∑
l=0

e−νkl∆(l∆)κ
k,j

= lim
i→∞

∆κk,j
i∑
l=0

e−νkl∆lκ
k,j

= ∆κk,jLi−κk,j
(
e−νk∆

)
gives the result. The explicit form of the function is given in Wood (1992).

(ii) Let us rewrite once again the expression included in the limit:

(−1)
κk,j+1

lim
∆→0

(νk∆)κ
k,j+1

νκ
k,j+1

k κk,j !

κk,j∑
m=0

m! S(κk,j + 1,m+ 1)

(
−1

1− e−νk∆

)m+1

= lim
∆→0

[
S(κk,j + 1, κk,j + 1)κk,j !

νκ
k,j+1

k κk,j !

(
νk∆

1− e−νk∆

)κk,j+1

− ∆
S(κk,j + 1, κk,j)(κk,j − 1)!

νκ
k,j

k κk,j !

(
νk∆

1− e−νk∆

)κk,j
+O(∆2)

]
.

Note that lim∆→0

(
νk∆

1−e−νk∆

)
= 1. This implies that in the limit 1/νκ

k,j+1
k is the only remaining

term, since the rest converges to 0 as ∆→ 0. This gives the result.

In the first part of Corollary 1, the sums in Theorem 6 are calculated explicitly as i → ∞.
This limit is described by polylogarithm functions. The zero bounds derived in Remark 3, i.e.,
the upper bounds for the inhibitory population (ck = −1) and the lower bounds for the excitatory
population (ck = +1) are preserved exactly by the splitting scheme for all times ti and for all
choices of ∆ > 0. Moreover, the lower bounds for the inhibitory population and the upper bounds
for the excitatory population are preserved accurately as i → ∞, provided that ∆ is reasonably
small. Indeed, as i → ∞ and ∆ → 0 (second part of Corollary 1), the bounds coincide with the
ones obtained in Remark 3.
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Figure 2: First (left panel) and second (right panel) moment bounds of the excitatory population
k = 2 for different values of ν2. The moment bounds for the diffusion are in solid lines and the
moment bounds for the splitting scheme are in dashed lines. The bound of the rate function is
fixed to fmax

1 = 1. The parameters are η2 = 3, N = 100, p1 = 1/2 and the time step ∆ = 0.1 is
used.
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Theorem 7 (Second moment bounds of the approximated process). Grant assumption (A).
Each component of E[(X̃k

t )2] is bounded by

E[(X̃k,j
t )2] ≤

((
eAt x0

)k,j)2

+ 2
(
eAtx0

)k,j
max

{
0,

ckf
max
k+1

(ηk + 1− j)!
Ĩk,j1 (t)

}

+ fmax
k+1

(
ck

(ηk + 1− j)!

)2
√fmax

k+1 Ĩ
k,j
1 (t) +

√
Ĩk,j2 (t)

N · pk+1

2

,

where Ĩk,ju (t), u = 1, 2, are defined as

Ĩk,ju (t) := ∆

i∑
l=0

e−uνktlt
u(ηk+1−j)
l .

Proof of Theorem 7. The proof repeats the proof of Theorem 4, up to replacing integrals Ik,ju (t)
by sums Ĩk,ju (t).

Similar to before, the second moment bounds obtained for the splitting scheme equal those
derived for the true process in Theorem 4, except that the integrals are replaced by corresponding
Riemann sums. Using the same arguments as in the proof of Corollary 1, we conclude that also the
second moment bounds are preserved accurately by the splitting scheme for reasonable choices of
the time step ∆. A comparison of the theoretical and discrete second moment bounds is provided
in the right panel of Figure 2.

3.3 Geometric ergodicity of the approximated process

Finally, our aim is to prove that the splitting scheme preserves the ergodic property of the under-
lying process in the spirit of Mattingly et al. (2002), Ableidinger et al. (2017), providing a discrete
analogue of Proposition 1. The main step is to establish a discrete Lyapunov condition for the
approximated solution (X̃ti)i=0,...,imax

. It is granted by the following lemma.

Lemma 1 (Lyapunov condition for the approximated process). Grant assumption (A).
The functional G̃, given by

G̃(x) =

2∑
k=1

ηk+1∑
j=1

j

νj−1
k

∣∣xk,j∣∣ ,
is a Lyapunov function for X̃, i.e., there exist constants α ∈ [0, 1) and β ≥ 0, such that

E
[
G̃(X̃ti+1

)|X̃ti

]
≤ αG̃(X̃ti) + β.

Proof. We bound the approximated solution obtained via (18) from above by a sum of three terms,
thanks to the triangle inequality:

G̃(X̃ti+1) = G̃

(
eA∆X̃ti + ∆eA∆B(X̃ti) +

√
∆√
N
eA∆σ(X̃ti)ξi

)

≤ G̃
(
eA∆X̃ti

)
︸ ︷︷ ︸

T1

+ ∆G̃
(
eA∆B(X̃ti)

)
︸ ︷︷ ︸

T2

+

√
∆√
N
G̃
(
eA∆σ(X̃ti)ξi

)
︸ ︷︷ ︸

T3

.

Note that the term T2, as well as the expectation of T3 is bounded by a constant depending on
fmax
k , so that E[T2|X̃ti ] +E[T3|X̃ti ] ≤ β, and β > 0 since we consider the absolute value. Further,

using the formulas (16)-(17), we can expand T1 as follows.
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G̃
(
eA∆X̃ti

)
=

2∑
k=1

e−νk∆

ηk+1∑
j=1

j

νj−1
k

∣∣∣∣∣∣
ηk+1∑
m=j

∆m−j

(m− j)!
X̃k,m
ti

∣∣∣∣∣∣
≤

2∑
k=1

e−νk∆

ηk+1∑
j=1

j

νj−1
k

ηk+1∑
m=j

∆m−j

(m− j)!

∣∣∣X̃k,m
ti

∣∣∣
=

2∑
k=1

e−νk∆

ηk+1∑
j=1

j

νj−1
k

∣∣∣X̃k,j
ti

∣∣∣+ ∆

ηk+1∑
j=2

j − 1

νj−2
k

∣∣∣X̃k,j
ti

∣∣∣+ · · ·+ ∆ηk

ηk!

∣∣∣X̃k,ηk+1
ti

∣∣∣


=

2∑
k=1

e−νk∆

ηk+1∑
j=1

j

νj−1
k

∣∣∣X̃k,j
ti

∣∣∣+ ∆νk

ηk+1∑
j=2

j − 1

νj−1
k

∣∣∣X̃k,j
ti

∣∣∣+ · · ·+ (νk∆)ηk

ηk!

1

νηkk

∣∣∣X̃k,ηk+1
ti

∣∣∣
 .

Note that, since νk > 0, for all m ≥ 1 it holds that

ηk+1∑
j=m

(j −m+ 1)

νjk

∣∣∣X̃k,j
ti

∣∣∣ ≤ ηk+1∑
j=1

j

νjk

∣∣∣X̃k,j
ti

∣∣∣ = G̃
(
X̃k
ti

)
.

Thus, we have

G̃
(
eA∆X̃ti

)
≤

2∑
k=1

e−νk∆

ηk∑
j=0

(νk∆)j

j!

 G̃
(
X̃k
ti

)
.

Denote α = maxk

(
e−νk∆

∑ηk
j=0

(νk∆)j

j!

)
. Since ηk is finite, we get α < 1, which implies the

result.

Note that the statement of Lemma 1 holds without any assumption on the time step ∆. Also,
the Lyapunov function is the same as for the continuous process up to smoothing the absolute
value (see (14)). Having established a discrete Lyapunov condition, the ergodicity is conditioned
on two further technical steps. First, the transition probability of two (or more) consecutive steps,
given by the recursive relation (18), must have a smooth transition density. This fact is granted
by the hypoellipticity of the scheme (see Remark 5).

Second, the irreducibility condition must hold. It means that any point y ∈ Rκ can be reached
from any starting point x ∈ Rκ in a fixed number of steps. In other words, we need a discrete-time
analogue of Theorem 4 in Löcherbach (2019), granting the controllability of SDE (7). It is the
following Lemma, which is proved in Appendix A.3.

Lemma 2 (Irreducibility condition). Grant assumption (A). Denote η∗ = maxk{ηk}. Then, for
all x, y ∈ Rκ there exists some sequence of 2-dimensional vectors (ξi)i=1,...,η∗+1 such that

y = (ψ∆[ξη∗+1] ◦ · · · ◦ ψ∆[ξ1])︸ ︷︷ ︸
η∗+1

(x),

where ψ∆ denotes one step of the scheme defined by (18), where the notation [·] is introduced to
stress the dependency on the vectors (ξi)i=1,...,η∗+1.

Lemmas 1 and 2, combined with the hypoellipticity of the scheme gives the following result,
which is analogous to Theorem 7.3 in Mattingly et al. (2002).

Theorem 8 (Geometric ergodicity). Grant Assumption (A). Then the process (X̃ti)i=0,...,imax

has a unique invariant measure π∆ on Rκ. For all initial conditions x0 and all m ≥ 1, there exist
C̃ = C(m,∆) > 0 and λ̃ = λ̃(m,∆) > 0 such that, for all measurable functions g : Rκ → R such
that |g| ≤ G̃m,

∀i = 0, . . . , imax,
∣∣∣Eg(X̃ti)− π∆(g)

∣∣∣ ≤ C̃G̃(x0)me−λ̃ti .
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4 Thinning procedure for the simulation of the PDMP

In this section we explain the simulation method for the multidimensional point process charac-
terized by the intensities (1). This part is motivated by the fact that, on the contrary to the
diffusion, the simulation of the PDMP can be exact. By that, we mean that the result of the
simulation is a realization of (X̄t)t≥0. In comparison, the result of the simulation of the diffusion

(Xt)t≥0 is in fact the discrete time process (X̃ti)i=0,...,imax
. This allows us to compare the PDMP

(5) with the stochastic diffusion defined through (7), which we treat via the property-preserving
splitting scheme, introduced in the previous section.

We choose the thinning procedure which dates back to Lewis and Shedler (1979) and Ogata
(1981). It is based on the rejection principle and relies on the following fact. In order to simulate
a point process Z according to the stochastic intensity λt, it is sufficient to simulate some (dom-
inating) point process Z̃ with (dominating) predictable piece-wise constant intensity λ̃ such that
λt ≤ λ̃t. During the simulation of Z̃, each new simulated spiking time T̃ for Z̃ is kept as a point
of Z with probability λT̃ /λ̃T̃ (independently from every other point). Otherwise, T̃ is discarded.

The efficiency of the thinning procedure is highly related to the sharpness of the upper-bound λ̃.
The sharper the bound, the less rejections are made and the more efficient is the procedure.

Note that the case ηk = 0 corresponds to the exponential kernel. The simulation of Hawkes
processes with an exponential kernel is widely studied and there exist several implemented pack-
ages, e.g., for the software R. Moreover, apart from the thinning procedure, other exact simulation
algorithms are available, see, in particular, Dassios et al. (2013). To the best of our knowledge,
the only reference for the case when ηk ≥ 1 is Duarte et al. (2019). The aim of the current sec-
tion is to generalize the algorithm presented in the above mentioned work to the case of multiple
populations and to provide a more efficient upper bound λ̃. In particular, our approach allows for
an efficient handling of rapidly increasing intensity functions.

4.1 Choice of an upper bound for the intensity

If Z̄t = 0, i.e., in absence of any spike, it follows from (5) that X̄ evolves as a linear ODE with
matrix A so that X̄t = eAtx0. In particular, for all neurons n = 1, . . . , Nk, it follows that

λk,nt = fk((eAtx0)k,1). (23)

One possible choice for the dominating intensity λ̃ in the thinning procedure is to provide an
upper-bound of (23) which holds for all t ≥ 0. A straightforward candidate for such a bound is
provided in the following lemma.

Lemma 3. For any x ∈ Rκ, let Φk(x) = supt≥0(eAtx)k,1. Then,

Φk(x) ≤ Φ̃k(x) = max
j=1,...,ηk+1

{
0,
xk,j

νj−1
k

}
.

Proof. The explicit expression of (eAtx)k,1 is given in (17), that is:

(eAtx)k,1 = e−νkt
(
xk,1 + txk,2 + · · ·+ tηk

ηk!
xk,ηk+1

)
.

Setting yj = xk,j/(νk)j−1, one gets

(eAtx)k,1 = e−νkt
(
y1 + tνky2 + · · ·+ (tνk)ηk

ηk!
yηk+1

)
≤ max

k
{0, yk}e−νktg(t).

The result follows from the fact that g(t) = 1 + tνk + · · ·+ (tνk)ηk/ηk! ≤ eνkt.
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Remark 6. Another possible choice of a uniform bound, similar to the one given in Lemma 3, is
provided in Duarte et al. (2019). Their method, adapted to our case, gives

Φk(x) ≤ emax

{
1,

(
ηk
eνk

)ηk}
max
j
{xk,j},

which is larger, and thus less efficient than the bound proposed in Lemma 3.

Since the functions fk are non-decreasing, the upper-bound of (eAtx)k,1 given in Lemma 3
provides the bound f̃k(x) = fk(Φ̃k(x)) on the intensity. However, there is no guarantee that this
bound is sharp. In most practical cases (especially when the functions fk are increasing fast), the
procedure rejects a vast majority of the simulated points. Hence, a more efficient approach, based
on the computation of the critical points of the function (eAtx)k,1, is proposed. Further, instead
of considering a bound for any t > 0 we choose a fixed time step ∆̃ > 0 (such that one spike is

likely to occur in the interval [0, ∆̃]) and compute Φ∆̃
k (x) = sup0≤t≤∆̃(eAtx)k,1 instead of Φk(x).

This choice has no impact on the precision of the simulation. It only influences the sharpness of
the bound used in the method and thus its computational efficiency.

Lemma 4. For any x ∈ Rκ, it holds that

Φ∆̃
k (x) = max

0<tc<∆̃
{xk,1, (eAtcx)k,1, (eA∆̃x)k,1},

where the maximum is taken over the critical points tc of t 7→ (eAtx)k,1, that are the solutions of
the equation

(−νkxk,1 + xk,2) + · · ·+ (−νkxk,ηk + xk,ηk+1)
(tc)

ηk−1

(ηk − 1)!
+ (−νkxk,ηk+1)

(tc)
ηk

(ηk)!
= 0.

Proof. The result follows from the computation of the time derivative of (eAtx)k,1.
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Figure 3: Intensity and intensity bounds for the second population (excitatory) t ∈ [20, 100]. Red
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The critical points in Lemma 4 are given by polynomial roots, which can be accurately com-
puted numerically. In most practical cases, the computational cost of the polynomial roots is
compensated by the efficiency gained in the rejection method. Finally, let us define the upper-
bound intensity function by

f̃ ∆̃
k (x) = fk(Φ∆̃

k (x)).

Note that when the population is inhibitory (ck = −1), the naive upper-bound f̃k is constant with
respect to time because all the coordinates of X̄1 are always negative and the bound given by
Lemma 3 is 0. Thus, f̃k ≡ fk(0). Of course, such a bound is not sharp in general. However, it is

interesting to see how the two upper-bounds f̃k and f̃ ∆̃
k behave for a particular realisation of the

intensity process for excitatory populations. Figure 3 gives a comparison of the paths of f̃2 and

f̃ ∆̃
2 for the excitatory population (with ∆̃ ≡ 1). We observe that both bounds are rather precise

when the potential X̄2
t (and, respectively, the intensity process) is decreasing. On these intervals

the differences between the three trajectories are negligible. However, the accuracy of f̃2 drops
drastically on the intervals where the intensity grows. In general, the higher is the amplitude of the
oscillations, the less performing is the naive bound. This is particularly visible when illustrated on
systems with high memory order (ηk = 3 or 6). For ηk = 1 both bounds perform good, however,

f̃ ∆̃
k is clearly closer to the true process. The influence of the bound (f̃2 or f̃ ∆̃

2 ) on the execution
time is discussed in Section 5.

4.2 Simulation algorithm

Now let us detail the recursive procedure, which is summarized in Algorithm 1. We choose a
discrete time step ∆̃, a stopping time tmax and fix the initial values t0 = 0 and X̄0 = x0 ∈ Rκ. Let
us assume that the procedure’s current step is i with current time ti and potential value X̄i. Let
us explain how ti+1 and X̄i+1 are obtained. One simulates two independent exponential variables

τ1 and τ2 with respective parameters Nkf̃
∆̃
k (x) (one for each population). They represent the

waiting times to the next spikes of the dominant process Z̃ for each respective population. Then,
two cases may occur.

1. If min{τ1, τ2} > ∆̃, no spike occurs in the interval [ti, ti + ∆̃]. We update ti+1 = ti + ∆̃ and

X̄i+1 = eA∆̃X̄i.

2. If τ = min{τ1, τ2} ≤ ∆̃, then the dominating point process Z̃ emits a spike at time t∗ = ti+τ .
Let us denote by k∗ the population with the smallest waiting time, that is τ = τk∗ . It remains
to decide whether t∗ is also a spiking time for the process Z. If not, this point is discarded.
We draw a uniform variable U on [0, 1] and define the threshold R:

R :=
fk∗
(
eAτ X̄i

)
f̃ ∆̃
k∗(X̄i)

, R ∈ [0, 1] by the definition of f̃ ∆̃
k (x).

• If U ≥ R, then t∗ is discarded, i.e., no spike occurs in the interval [ti, t
∗]. We update

ti+1 = t∗ and X̄i+1 = eAτ X̄i.

• If U < R, then t∗ is kept, i.e., we add t∗ to the list of one neuron of population k∗

chosen uniformly at random. We update ti+1 = t∗ and X̄i+1 = eAτ X̄i + Γ1(k∗), where
1(k∗) = (1k∗=1,1k∗=2)T .

Finally, the execution is stopped once ti ≥ tmax, i.e., once the time horizon of interest is reached.
As output the algorithm returns a list of the spiking times of each neuron and the values of the
processes X̄ and λ at the spiking times. On this stage it is clear why it is important to have a
sharp upper bound. The closer the threshold R is to 1, the less points are rejected.

Algorithm 1 is most efficient when every iteration of the while loop enters condition (2). Of
course, that ideal case does not occur in practice. When lowering the value of ∆̃, the number of
loops satisfying condition (3) decreases because the dominating intensity λ̃ is getting smaller. On
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the other hand, the number of loops fulfilling condition (1) increases because the exponentially
distributed times have greater chances of being larger than ∆̃. The calibration of ∆̃ is a difficult
problem which is not addressed here. In practice, it is observed that the execution time is not very
sensitive to the value of ∆̃. The main bottleneck of the thinning algorithm is the sharpness of the
intensity bound. When the intensity functions are exponential, the computational time is more
than halved with the bound of Lemma 4 compared to the bound of Lemma 3. This is illustrated
in the right panel of Figure 8.

Algorithm 1: Simulation of model (1) with K = 2 populations.

Input: intensity functions f1 and f2; integers N1, N2, η1 and η2; real numbers c1, c2, ν1,
ν2, ∆̃ and tmax; real vector x0 ∈ Rκ.

Output: point processes (Zk,n)k=1,2;n=1,...,Nk , Markovian cascade process X̄ and intensity
processes (λk)k=1,2.

Initialization: t← 0, x← x0;
while t < tmax do

λ̃k ← f̃ ∆̃
k (x) for k = 1, 2;

draw τk ∼ E(Nkλ̃k) for k = 1, 2;
τ ← mink τk and k∗ ← arg mink τk;

if τ > ∆̃ then

(1) t← t+ ∆̃ and x← eA∆̃x;
else

t← t+ τ , x← eAτx, λk∗ ← fk∗(x);
draw U ∼ U([0, 1]);

if U < λk∗/λ̃k∗ then

(2) draw n ∼ U({1, . . . , Nk∗}) and add t to the list Zk
∗,n;

x← x+ Γ1(k∗);

add x to the list X̄ and λk = fk(x) to the list λk for k = 1, 2;

else
(3) do nothing;

5 Numerical experiments

A simulation study, illustrating the theoretical results discussed in the previous sections, is now
provided. It consists in two steps. First, we study the performance of the proposed splitting
schemes. More precisely, we compare the Lie-Trotter (18) and Strang (19) splitting schemes with
the Euler-Maruyama approximation. We report sample paths, empirical densities and comment
also on the first and second moments. This step follows the numerical study in Ableidinger et al.
(2017), and shows that the Strang splitting performs best. Second, we compare the diffusion
process (simulated with the property-preserving Strang splitting scheme) to the PDMP, varying
the number of neurons N . In particular, when comparing the long-time behaviour of the processes
(see Figure 9), we show that the diffusion approximation is less and less accurate as t→ +∞. It
confirms the results obtained in Theorems 1 and 2.

Following the work of Ditlevsen and Löcherbach (2017), throughout this section we use the
following intensity functions

f1(x) =

{
10ex if x < log(20)

400
1+400e−2x if x ≥ log(20)

, f2(x) =

{
ex if x < log(20)

40
1+400e−2x if x ≥ log(20)

. (24)

Further, we fix the parameters c1 = −1, c2 = 1 and consider N1 = N2. Unless stated differently,
throughout this section the initial condition is fixed to x0 = 0κ. The parameter pk is then defined
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as Nk/N . The fact that c1c2 < 0 ensures that the population shows an oscillatory behaviour, for
certain parameters νk and ηk (see Ditlevsen and Löcherbach (2017) for further details).

5.1 Comparison of the Euler-Maruyama method and the splitting schemes

In this section we are interested in comparing the performance of the splitting schemes with that
of the frequently applied Euler-Maruyama method (EM), for varying time steps ∆. The parameter
values ν1 = ν2 = 1, η1 = 3, η2 = 2, N1 = N2 = 50 are used and the dimension of the system
is thus κ = 7. Except for the density and mean-square convergence plots, we consider the time
interval [0, 100]. Unless stated otherwise, we plot the variables Xk,1

t for k = 1, 2 in black and the
remaining η1 + η2 auxiliary memory variables in grey.

5.1.1 Illustration of the mean-square convergence order

We start our study by comparing the convergence rates of the EM method and the Lie-Trotter
(18) and Strang (19) splitting schemes. The root mean-square error, approximating the left side
of the equation in Theorem 5, is defined as

RMSE(∆) :=

(
1

M

M∑
l=1

‖X(l)
t∗ − X̃

(l)
t∗ ‖2

)1/2

,

where X
(l)
t∗ and X̃

(l)
t∗ denote the values at a fixed time t∗ of the l-th simulated trajectory of the

true process and its numerical approximation, respectively. The integer M is the total number of

simulated differences. The value of the true process X
(l)
t∗ is obtained from the EM scheme, using

the small time step ∆ = 10−4. The number of simulations is fixed to M = 103 and t∗ = 1.
We report the RMSE in Figure 4, where the x-axis corresponds to the logarithm (base 10)

of the time step ∆ and the y-axis corresponds to the logarithm (base 10) of the RMSE. The
theoretical rate of convergence obtained in Theorem 5 (all considered schemes converge with order
1) is confirmed empirically. While the Lie-Trotter splitting and the EM scheme show a similar
RMSE for varying ∆, the RMSE obtained for the Strang splitting method is significantly smaller
for all ∆ under consideration, implying a higher efficiency of that scheme. We stress, however,
that from the fact that the rate of convergence is the same, it does not follow that they share the
same qualitative properties when the step size ∆ is fixed.

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

●

●

●

●

●

EM
LT
ST
Order 1

log(∆)

lo
g(

R
M

S
E

(∆
))

Figure 4: Mean-square order of convergence. The reference solution is obtained with the Euler-
Maruyama method and the small time step ∆ = 10−4. The numerical solutions are calculated for
∆ = 10−3, 10−2, 10−1, 100. The log is with base 10, t∗ = 1 and M = 103.
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5.1.2 Illustration of the qualitative properties of the splitting schemes

Now we illustrate how the proposed splitting schemes preserve the structure (e.g., the moments
and the underlying invariant distribution) of the process, even for large values of ∆, while the EM
method may fail in doing so. We start with studying sample trajectories (see Figure 5). All three
methods yield a comparable performance when ∆ = 0.01. For ∆ = 0.5, the EM scheme preserves
the oscillations, but does not preserve the amplitude. The behaviour of the inhibitory population
is less accurately approximated than the excitatory one. This problem aggravates as ∆ increases
further to 0.7. An interesting observation is that, for time steps ∆ not “small enough”, the Euler-
Maruyama scheme may not preserve the mean of the process (see also Figure 7). Indeed, it has
been observed that the Euler-Maruyama method preserves the first, but not the second moments
(see, e.g., Ableidinger et al. (2017), Higham and Strømenn Melbø (2004)). In other words, the
amplitude of the oscillations grows, but the mean is unchanged. In our case, however, since the
trajectories are bounded by 0 from below or above (depending on the sign of ck), the increased
amplitude introduces also a bias in the first moment. Thus, the Euler-Maruyama approximation
of system (7) does neither preserve the first nor the second moments. In contrast, the Lie-Trotter
and Strang splitting schemes show a comparably good performance. However, the Lie-Trotter
splitting is less accurate in reproducing the delay between the current state of the process (black
line) and the memory variables (grey lines) in the beginning of the interval, where the amplitude
of the oscillations is large (see also Figure 7).
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Figure 5: Sample trajectories of the system, simulated with the Euler-Maruyama scheme (top),
the Lie-Trotter (middle) and the Strang (bottom) splitting scheme for varying ∆.

The difference between the schemes becomes clearer as we look at the phase portrait of the
system (Figure 6). We observe again that both splitting schemes yield satisfactory approxima-
tions (for all ∆ under consideration), the Strang approach slighly outperforming the Lie-Trotter
method. In contrast, the phase portrait obtained with the EM approximation fails to reproduce
the behaviour of the process for ∆ = 0.5 or 0.7.
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Figure 6: Phase portrait of the main variables, simulated with the Euler-Maruyama scheme
(top), the Lie-Trotter (middle) and the Strang (bottom) splitting scheme for varying ∆ and
x0 = (0, 0,−3.5,−4, 0, 1.3, 1.1).

Similar conclusions can be drawn from Figure 7, where we visualize the marginal densities
of the process. Each visualized density is estimated with a standard kernel density estimator,
based on a simulated long-time trajectory (T = 105) of each variable of the process. We observe
again that the EM method may not preserve the mean of the process (red dashed vertical lines).
Moreover, the EM scheme may even suggest a transition from a unimodal to a bimodal density
as ∆ increases.

5.2 Comparison of the PDMP and the diffusion

Now we are interested in comparing the PDMP process X̄, simulated with the thinning algorithm
detailed in Section 4, with the diffusion X, simulated with the property-preserving Strang splitting
scheme introduced in Section 3. We simulate the trajectories of the diffusion process with the
Strang splitting scheme, since it has shown the best performance in the previous section.

5.2.1 Execution time

As a first step we are interested in the execution time. We compare the numerical cost of the
simulation of the process X̄ with two different intensity bounds (based on Lemmas 3 and 4) to
the simulation of the diffusion X with the Strang splitting scheme.

We set tmax = 100 and vary the total number of neurons, taking N = 20, 50, 100, 150, 200
and N1 = N2. In the case of the diffusion simulation, the parameter N does not influence the
computational cost. Thus, we report the execution time for the diffusion simulation only for
N = 200, taking ∆ = 0.1 and report it as a reference value. The time step ∆̃ for the thinning
procedure is defined in an adaptive way within the while loop of Algorithm 1. In each step we
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use the last computed value of the intensities λk and set ∆̃ equal to (N1λ1 +N2λ2)−1. This choice
takes into account the scaling with respect to the number of neurons and the dynamics of the
intensities. For instance, X̄2,1 roughly belongs to [0, 2] (see Figure 9) such that the intensity of
population roughly belongs to [1, 7] (with the intensity functions defined in (24)).
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Figure 7: Empirical density of the system, simulated with the Euler-Maruyama schemes (top),
the Lie-Trotter (middle) and the Strang (bottom) splitting scheme for varying ∆ and T = 105.
The red dashed vertical lines denote the mean of the main variables.

In Figure 8, two different sets of intensity functions, linear ones and exponential ones, are
studied. The mean execution time (over 100 realizations) in seconds required to simulate the
process on interval [0, tmax], using the bounds f̃(x) and f̃∆(x) are plotted.

Note that there is almost no difference in the performance of the algorithm with different
bounds in the linear case (left panel of Figure 8). That means that the bound obtained in Lemma
3 is sharp enough. Note also that since fmax

k = 10, there occur only a few spikes and the process is
simulated very fast. However, in the case of an exponential intensity (right panel of Figure 8), the
execution time drastically increases. The process is simulated at least twice faster with the local
bound. The main reason is that the local bound f̃∆

k (x) rejects around 2% of points, while the

f̃k(x) rejects around 90%. In general, we can conclude that the execution time depends linearly on
the number of neurons for both the local and the general bound. Disregarding the bound chosen,
both algorithms cannot compete with the time required for simulating the diffusion. For ∆ = 0.1
and T = 100 the average running time with the exponential firing rate function is equal to 0.598s
(with standard deviation 0.12s). For the linear one it is 0.597s (with standard deviation 0.15s).
Thus, the execution time for the diffusion approximation does not depend on the firing rates.
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Finally, a summary of the performances of both frameworks (diffusion and PDMP), with
respect to the parameters of the model, is given below.

• In both cases, the execution time increases as the dimension of the system grows, i.e., as ηk
increases.

• For the diffusion, the execution time depends, in a linear manner, on the step size ∆.

• For the PDMP, the execution time mainly depends, in a linear manner, on the number N of
neurons. To be precise, it also depends on the temporal mean value of the intensities of the
two populations, which in turn depends, in a complex non-linear manner, on the parameters
νk, ηk and fk.

• Unless N very small, the simulation of the diffusion requires much less computational cost
than that of the PDMP.

50 100 150 200

0
1

2
3

4

Linear intensity

N

s

f
~∆(x)
f
~

(x)
X
~

50 100 150 200

0
10

0
20

0
30

0
40

0

Exponential intensity

N

s

f
~∆(x)
f
~

(x)
X
~

Figure 8: Mean execution time for the PDMP (solid line) and diffusion (dashed line) simulation
for tmax = 100 over 100 realizations. Right panel: f1(x) = f2(x) = min{1 + x1[x>0], 10}. Left
panel: f1 and f2 are given by Equation (24). The rest of the parameters are given in the beginning
of Section 5.

5.2.2 Qualitative properties

It remains to determine if the stochastic diffusion can really catch the behaviour of the underlying
PDMP. To get an intuitive idea of how different processes behave when the number of neurons
changes we look at some sample trajectories. We take one realisation of the PDMP and the
diffusion process on a time interval of length T = 300 and plot them on Figure 9, cutting the
initial part in order to observe the process in its oscillatory regime. For simplicity, we focus
only on the second (excitatory) population. The trajectories in the top panel are simulated with
N2 = 10, those in the middle panel with N2 = 50 and those in the bottom panel with N2 = 100.

Let us mention that Figure 9 is not an illustration of Theorem 2. Indeed, the trajectories are
not coupled in such a way that (12) is satisfied. Up to our knowledge, there is no such result in
the literature and the coupling involved in the proof of Theorem 2 is not explicit. However, the
figure illustrates the fact that the fluctuations of both trajectories vanish as N goes to infinity and
that both converge to the solution of the ODE (10).
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As a final step, we are interested in the long-time behaviour of the processes. We simulate both
processes (X̄ and X) on a long-time interval, taking T = 105 and report the respective marginal
empirical densities in Figure 10. The densities of the PDMP are plotted with solid lines and
those of the diffusion with dashed lines. Even for small N , the difference between the densities
is negligible and their means are almost overlapping. As the number of neurons N increases, we
observe that the empirical densities converge to some compactly supported distribution. Note
that the mean-field limit is given by the ODE (10) as illustrated in Figure 9. Thus we expect that
the support of the limit distribution is given by the amplitude of the solution of the ODE.

Conclusions

This work is thought to complement the papers by Ditlevsen and Löcherbach (2017) and Duarte
et al. (2019). First, we bridge the gap between the piece-wise deterministic Markov process (5)
and the solution of SDE (7) by proving a strong error bound on the distance between the two.
Second, moment bounds of the diffusion process are derived.

Further, since SDE (7) cannot be solved explicitly, two approximation schemes, based on the
Lie-Trotter and the Strang splitting approaches, are proposed. They are proved to converge with
mean-square order 1 and to preserve the properties of the model. In particular, the advantage of
the proposed approximation methods is that they make a full use of the matrix exponential eAt,
which describes the flow of the Markovian cascade (5). Thanks to this we are able to propagate
the noise through all components of the system, thus preserving its hypoellipticity. Moreover,
we show that the splitting schemes accurately reproduce the derived first and second moment
bounds and that they preserve the ergodicity of the continuous process, even for large values of
the discretization step ∆.

These properties are particularly important when embedding the numerical scheme, for in-
stance, into a statistical inference procedure. For example, maximum likelihood estimation tech-
niques require the existence of a non-degenerate covariance matrix of the discretized process. For
simulation-based inference methods (see Buckwar et al. (2020)), the performance of the Euler-
Maruyama method may be acceptable for “small enough” time steps. However, the use of smaller
time steps drastically increases the computational cost, making the inference based on the Euler-
Maruyama method computationally infeasible. Moreover, even for arbitrary small time steps there
is no guarantee that the Euler-Maruyama scheme preserves the model properties.

In addition, an exact simulation procedure of the Markovian cascade is proposed. A sharp
upper bound, in order to get an efficient procedure, is provided and its performance is compared
to the one given in Duarte et al. (2019). When the number of neurons increases, the computational
cost required for the PDMP simulation rises rapidly and cannot compete with the simulation of
the diffusion via the splitting scheme.

The Markovian cascade and the diffusion process show a similar behaviour. In particular, they
possess matching empirical densities. Thus, we conclude that the diffusion process describes the
behaviour of the original neuronal model at a very good precision and at negligible computational
cost, compared to the PDMP.

Acknowledgments
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Ditlevsen, S. and Löcherbach, E. (2017). Multi-class oscillating systems of interacting neurons.
SPA, 127:1840–1869.
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A Proofs

A.1 Proof of Theorem 2

The proof of Theorem 2 is mainly based on two lemmas which are stated before the proof. The
first lemma concerns the coupling between a Poisson process and a Brownian motion. Its proof
can be found in Ethier and Kurtz (2009, Section 5.5) (the exponential moments can be deduced
from the proof of Corollary 5.5.5).

Lemma 5. A standard Poisson process (Πt)t≥0 and a standard one-dimensional Brownian motion
(Bt)t≥0 can be constructed on the same probability space such that

sup
t≥0

|Πt − t−Bt|
log(2 ∨ t)

≤ Ξ <∞

almost surely, where Ξ is a random variable having exponential moments.

The second lemma concerns the modulus of continuity for the Brownian motion. It is stated
in Kurtz (1978) without a proof. Hence, for the sake of completeness, we provide a proof which is
an adaptation of the arguments presented in the appendix of Fischer and Nappo (2009).

Lemma 6. Let B be a standard Brownian motion and T a positive time. Then,

M := sup
t,s≤T

|Bt −Bs|√
|t− s|(1 + log(T/|t− s|))

,

is a finite random variable such that M2 has finite exponential moments.

Proof. Thanks to the scaling properties of Brownian motion, it is sufficient to prove the statement
for T = 1. According to Fischer and Nappo (2009), let c > 1 and define two increasing functions
Ψ and µ by

Ψ(x) = ex
2/2 − 1 and µ(x) =

√
cx,

for all x ≥ 0. Let now ξ be the random variable defined by

ξ =

∫ 1

0

∫ 1

0

Ψ

(
|Bt −Bs|
µ(|t− s|)

)
dtds.

The Garsia–Rodemich–Rumsey inequality (Stroock and Varadhan, 2007, Theorem 2.1.3.) implies
that

|Bt −Bs| ≤ 8

∫ |t−s|
0

Ψ−1

(
4ξ

x2

)
µ′(x)dx,

with Ψ−1(y) =
√

2 log(1 + y) and µ′(x) = (
√
c/2)x−1/2. Yet, for 0 < x < 1,

Ψ−1

(
4ξ

x2

)
=
√

2
√

log(4ξ + x2) + 2 log(1/x) ≤
√

2
√

log(4ξ + 1) + 2
√

log(1/x).

Combining the last two equations, one gets for all h,

sup
|t−s|≤h

|Bt −Bs| ≤ 4
√

2c
√

log(4ξ + 1)

∫ h

0

dx√
x

+ 8
√
c

∫ h

0

√
log(1/x)

dx√
x
. (25)
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The second term can be bounded thanks to∫ h

0

√
log(1/x)

dx√
x

=

∫ h

0

(√
log(1/x)− 1√

log(1/x)

)
+

1√
log(1/x)

dx√
x

≤ 2
√
h log(1/h) + 4

√
h,

using (when h > e−1) the fact that∫ h

e−1

1√
x log(1/x)

dx =

∫ h

e−1

2
√
x

1

x
√

log(1/x)
dx ≤ 2

√
h(1−

√
log(1/h)).

Going back to Equation (25), for some constant C which does not depend on c, one has that

sup
|t−s|≤h

|Bt −Bs| ≤ C
√
c
(√

log(4ξ + 1) + 1
)√

h(1 + log(1/h)).

Note that the random variable M defined in the statement of the lemma satisfies

M = sup
0<h<1

sup|t−s|≤h |Bt −Bs|√
h(1 + log(1/h))

≤ C
√
c
(√

log(4ξ + 1) + 1
)
,

so that
E
[
eαM

2
]
≤ E

[
e2αcC2(log(4ξ+1)+1)

]
≤ e2αcC2

E
[
(4ξ + 1)2αcC2

]
.

To conclude, we refer to the control of the moments of ξ given in the appendix of Fischer and
Nappo (2009). It states in particular that E[(4ξ + 1)2αcC2

] is finite as soon as 2αcC2 < c which is
granted if we take α small enough.

Before going through the proof of the Theorem, let us give some alternative representation of
Equation (5) and some sketch of the proof. Thanks to the time change property of point processes
(see Brémaud (1981, Section II.6.) for instance), there exists two independent standard (i.e.,
with rate equal to one) Poisson processes Π1 and Π2 such that Z̄kt = N−1

k Πk
Λ̄kt

where Λ̄kt is the

integrated intensity of Z̄kt , that is

Λ̄kt = Nk

∫ t

0

fk(X̄k+1,1
s )ds.

This time-change property is an analogous martingale property to the time-change property for
diffusions. Then, the integrated form of (5) is given by

X̄t = x0 +

∫ t

0

AX̄sds+ c Z̄t =

∫ t

0

AX̄sds+ c

(
N−1

1 Π1
Λ̄1
t

N−1
2 Π2

Λ̄2
t

)
. (26)

In a similar way, the SDE can be written with respect to two time-changed Brownian motions
and the general idea of the proof is then to couple the standard Poisson processes Πk with the
Brownian motions.

Proof of Theorem 2. It is more convenient to first prescribe the Brownian motions and then couple
them with Poisson processes. That is exactly how we proceed below. Let Y be the solution of
(7) with respect to some two dimensional Brownian motion W = (W 1,W 2)T . Thanks to the
time change property of the Brownian motion (see Ethier and Kurtz (2009, Theorem 2.12.) for
instance), let Bk be the Brownian motion defined by

Bkt =

∫ τk(t)

0

√
Nkfk(Y k,1s )dW k

s ,
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where τk(t) is the stopping time satisfying

t = Nk

∫ τk(t)

0

fk(Y k,1s )ds.

Then, Y can be written as follows

Yt = x0 +

∫ t

0

AYsds+

∫ t

0

Γ

(
f2(Y 2,1

s )
f1(Y 1,1

s )

)
ds+ Γ

(
N−1

1 B1
Λ1
t

N−1
2 B2

Λ2
t

)
, (27)

where

Λkt = Nk

∫ t

0

fk(Y k,1s )ds.

We are now in the position to use the coupling with Poisson processes. Let Πk be the Poisson
process given by Lemma 5 with associated random variable Ξk. Now, let X̄ be defined as in (26).
Then,

X̄t = x0 +

∫ t

0

AX̄sds+

∫ t

0

Γ

(
f2(X̄2,1

s )
f1(X̄1,1

s )

)
ds+ Γ

(
N−1

1 B1
Λ̄1
t

+R1
t

N−1
2 B2

Λ̄2
t

+R2
t

)
, (28)

where

Rkt =
1

Nk

(
Πk

Λ̄kt
− Λ̄kt −BkΛ̄kt

)
.

Thanks to Lemma 5,

|Rkt | ≤
1

Nk
Ξk log(2 ∨ Λ̄kt ) ≤ Ξk

(
logNk
Nk

+
log t

Nk
+

1

Nk

)
≤ C Ξk

(
logN

N
+

log t

N
+

1

N

)
, (29)

for some constant C, where we used that Λ̄kt ≤ Nktf
max
k and N/Nk is bounded for N and Nk

large enough.
Let us denote GN (t) = sups≤tN‖X̄s − Ys‖ where ‖ · ‖ denotes the sup norm on Rκ here and

below. Combining (27) and (28) as well as using the Lipschitz continuity of fk (with respect to
constant Lk) give

‖X̄t − Yt‖ ≤
∫ t

0

‖A(X̄s − Ys)‖ds+ max{|c1|L2, |c2|L1}
∫ t

0

‖X̄s − Ys‖ds

+ max
k

{
|ck−1|

(
N−1
k

∣∣∣BkΛ̄kt −BkΛkt ∣∣∣+ |Rkt |
)}

.

Then, since the operator norm ||A|| corresponding to the sup norm is finite, Grönwall’s lemma
yields

GN (T ) ≤ C1 max
k

{
sup
t≤T

∣∣∣BkΛ̄kt −BkΛkt ∣∣∣+N |Rkt |
}
eC2T (30)

for two deterministic constants C1 and C2 which do neither depend on N nor on T . Hence, it only
remains to estimate the Brownian increments. This can be done via the modulus of continuity of
Brownian motion. Indeed, for t ≤ T , Λ̄kt and Λkt are bounded by NTfmaxk so Lemma 6 gives∣∣∣BkΛ̄kt −BkΛkt ∣∣∣ ≤Mk

√∣∣Λ̄kt − Λkt
∣∣ (1 + log(Nfmaxk T/|Λ̄kt − Λkt |)),

where Mk is some random variable defined in the lemma. For all a > 0, the function x 7→√
x(1 + log(a/x)) is increasing for 0 < x ≤ a and Lipschitz continuity of fk gives

|Λ̄kt − Λkt | = N

∣∣∣∣∫ t

0

fk(X̄k,1
s )− fk(Y k,1s )ds

∣∣∣∣ ≤ C ∫ t

0

GN (s)ds ≤ CTGN (T )
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so that ∣∣∣BkΛ̄kt −BkΛkt ∣∣∣ ≤Mk

√
CTGN (T )(1 + log(Nfmaxk /CGN (T ))).

On the event where GN (T ) < 1, (12) holds. If GN (T ) ≥ 1 then the equation above implies∣∣∣BkΛ̄kt −BkΛkt ∣∣∣ ≤Mk

√
CTGN (T )(1 + log(Nfmaxk /C))

and so coming back to (30) one has

GN (T ) ≤ C1

(
M
√
CT (1 + log(Nfmax/C))

√
GN (T ) + N max

k
sup
t≤T
|Rkt |

)
eC2T ,

with fmax = max{fmax1 , fmax2 } and M = max{M1,M2}. The inequality above is of order 2 with
respect to x =

√
GN (T ). Yet, the positive values of x such that p(x) = x2 + bx+ c is negative are

such that x2 ≤ b2 − c. Hence,

GN (T ) ≤ C
(
M2T (1 + log(Nfmax/C)) +N max

k
sup
t≤T
|Rkt |

)
e2C2T .

Finally, (12) follows from the control of |Rkt | given by (29).

A.2 Proof of Theorem 4

Recall that the components of the process Xk are given by

Xk,j
t =

(
eAtX0

)k,j
+

∫ t

0

ckfk+1(Xk+1,1
s )

e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jds

+
1√
N

∫ t

0

ck√
pk+1

√
fk+1(Xk+1,1

s )
e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jdW k+1

s .

Squaring the above expression yields

(Xk,j
t )2 = T1(t) + T2(t) + T3(t) + T4(t) + T5(t) + T6(t),

where

T1 =
(
(eAtx0)k,j

)2
,

T2 =

(∫ t

0

ckfk+1(Xk+1,1
s )

e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jds

)2

,

T3 =

(
1√
N

∫ t

0

ck√
pk+1

√
fk+1(Xk+1,1

s )
e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jdW k+1

s

)2

,

T4 = 2(eAtx0)k,j
∫ t

0

ckfk+1(Xk+1,1
s )

e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jds,

T5 = 2

∫ t

0

ckfk+1(Xk+1,1
s )

e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jds

· 1√
N

∫ t

0

ck√
pk+1

√
fk+1(Xk+1,1

s )
e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jdW k+1

s ,

T6 = 2(eAtx0)k,j
1√
N

∫ t

0

ck√
pk+1

√
fk+1(Xk+1,1

s )
e−νk(t−s)

(ηk + 1− j)!
(t− s)ηk+1−jdW k+1

s .
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First, we note that E[T6(t)] = 0 and that E[T1(t)] = T1(t). Since the intensity function is bounded
by 0 < fk+1 ≤ fmax

k+1 , we have that

E[T4(t)] ≤ max

{
0,

ckf
max
k+1

(ηk + 1− j)!

}
2(eAtx0)k,j

∫ t

0

e−νk(t−s)(t− s)ηk+1−jds.

Further, applying Itô’s isometry gives

E[T3(t)] =
c2k

Npk+1((ηk + 1− j)!)2

∫ t

0

E[fk+1(Xk+1,1
s )]e−2νk(t−s)(t− s)2(ηk+1−j)ds.

Using again the fact that fk+1 < fmax
k+1 results in

E[T3(t)] ≤ 1

N

c2k
pk+1

fmax
k+1

((ηk + 1− j)!)2

∫ t

0

e−2νk(t−s)(t− s)2(ηk+1−j)ds.

Moreover, since fk+1 is bounded, also (T2(t))2 is bounded, and thus it follows from the proof of
Theorem 3 that

E[T2(t)] ≤
(

ckf
max
k+1

(ηk + 1− j)!

)2(∫ t

0

e−νk(t−s)(t− s)(ηk+1−j)ds

)2

.

Applying the Cauchy-Schwarz inequality gives that

E[T6(t)] ≤ 2 (E[T2(t)]E[T3(t)])
1/2

.

Combining the above results and using that∫ t

0

e−2νk(t−s)(t− s)2(ηk+1−j)ds =
(2(ηk + 1− j))!
(2νk)2(ηk+1−j)+1

1− e−2νkt

2(ηk+1−j)∑
l=0

(2νkt)
l

l!


proves the statement.

A.3 Proof of Lemma 2

In order to rely on a linear control problem, we decouple the two populations and treat the
non-linear interactions in a second step as it is done in Löcherbach (2019) for the continuous-time
framework. Let us rewrite the numerical scheme (18) as given by the one-step mapping ψ∆ defined
by

ψ∆[ξ](x) = eA∆

(
x+ ∆B(x) +

√
∆√
N
σ(x)ξ

)
=

(
ψ∆[ξ](x)1

ψ∆[ξ](x)2

)
,

where

ψ∆[ξ](x)k = eAνk∆xk +

(
∆ckfk+1(xk+1,1) +

√
∆√
N

ck√
pk+1

√
fk+1(xk+1,1)ξk+1

)
bk,

with bk = eAνk∆(0, . . . , 0, 1)T =
(

∆ηk

ηk! ,
∆ηk−1

(ηk−1)! , . . . , 1
)T
∈ Rηk+1. Now let us study the following

discrete dynamical systems: xk(0) = xk and for all t ∈ N,

xk(t+ 1) = eAνk∆xk(t) + bku
k(t+ 1), (31)

where (uk(t))t∈N∗ is a sequence of real numbers that will be specified below. This system is
controllable as soon as bk, e

Aνk∆bk, . . . , e
ηkAνk∆bk are linearly independent (see Theorem 6.D1 in

Chen (1998)). For all j = 0, . . . , ηk, we have

ejAνk∆bk =

(
((j + 1)∆)ηk

ηk!
,

((j + 1)∆)ηk−1

(ηk − 1)!
, . . . , 1

)T
.
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Yet, {1, X, . . . ,Xηk/ηk!} is a basis of the vector space of polynomials with degree at most ηk which
ensures linear independence. The controllability of the system means that for all xk, yk ∈ Rηk+1,
there exists some sequence of real numbers (uk(t))t=1,...,η∗+1 such that xk(η∗ + 1) = yk where xk

is inductively defined by (31). In the following, we use the notation x(t) = (x1(t), x2(t))T .
Now, let x and y be as in the statement of Lemma 2 and denote x = (x1, x2)T and y = (y1, y2)T .

According to the first step of the proof, let (uk(t))t=1,...,η∗+1 be such that xk(η∗ + 1) = yk and
define, for all t = 1, . . . , η∗ + 1,

ξk(t) =
uk(t)−∆ck+1fk(xk,1(t))
√

∆√
N

ck√
pk+1

√
fk(xk,1(t))

,

in such a way that

uk(t) = ∆ck+1fk(xk,1(t)) +

√
∆√
N

ck√
pk+1

√
fk(xk,1(t))ξk(t).

Substituting uk(t+ 1) in (25) and denoting ξt = ξ(t), yields xk(t+ 1) = ψ∆[ξt+1](x(t))k and thus

y = x(η̄ + 1) = (ψ∆[ξη̄+1] ◦ · · · ◦ ψ∆[ξ1])︸ ︷︷ ︸
η∗+1

(x),

which proves the result.
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