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Determinacy versus
indeterminacy

Chr ist ian Berg

Can a continuous function on an interval be uniquely
determined if we know all the integrals of the function
against the natural powers of the variable? Following
Weierstrass and Stieltjes, we show that the answer is
yes if the interval is finite, and no if the interval is
infinite.

1 A quest ion about integrals

Let I be a closed interval on the real line R, say I = [0, 1], I = [0,∞[ or even
I = R and suppose that f : I → R is a continuous function. The question we
shall address is the following:

Assume that we know that∫
I

f(x)xn dx = 0, n = 0, 1, . . . (1)

is true. Is it then true that f ≡ 0, that is, f(x) = 0 for all x ∈ I?

Let me immediately reveal that the answer is yes if I is a finite interval like
I = [0, 1], but if the interval is infinite, like I = [0,∞[ or I = R, then the answer
is no.

This will follow from results of two great 19th century mathematicians: Karl
Weierstrass (1815–1897) for the answer yes and Thomas J. Stieltjes (1856–1894)
for the answer no.
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Let us first notice that the condition (1) is equivalent to the following:∫
I

f(x)p(x) dx = 0, p ∈ R[x], (2)

where R[x] denotes the set of all polynomials in the variable x with real
coefficients. This can be seen as follows:

On the one hand, if (2) holds, it holds in particular for the polynomials
p(x) = xn, n = 0, 1, . . ., and therefore (1) holds. On the other hand, if (1) holds
and p(x) = anx

n + · · ·+ a1x+ a0 is an arbitrary real polynomial of degree n,
then also (2) holds for this polynomial p because∫

I

f(x)p(x) dx = an

∫
I

f(x)xn dx+ · · ·+ a1

∫
I

f(x)x dx+ a0

∫
I

f(x) dx = 0.

Let us also remark that if the answer is yes for one finite interval, say
I = [a, b],−∞ < a < b <∞, then the answer is yes for I = [0, 1] and vice versa:
Note that the substitution x = (b− a)t+ a in the integral (2) yields∫ b

a

f(x)p(x) dx = (b− a)
∫ 1

0
f((b− a)t+ a)p((b− a)t+ a) dt.

From the above substitution we can see that if f is a continuous function on
[a, b], then g(t) = f((b − a)t + a) is a continuous function on [0, 1]. And for
every continuous function g on [0, 1] we have that f(x) = g((x − a)/(b − a))
is a continuous function on [a, b]. This is because x = (b− a)t+ a maps [0, 1]
one-to-one onto [a, b]. Similarly q(t) = p((b− a)t+ a) is a real polynomial in t
if and only if p(x) is a real polynomial in x.

In 1885, Weierstrass proved what is now called the

Weierstrass approximation theorem for [a, b]. Let f be a continuous func-
tion on [a, b], where −∞ < a < b < ∞. Given ε > 0, there exists a real
polynomial p(x) such that

|f(x)− p(x)| ≤ ε for all x ∈ [a, b]. (3)
For an illustration of this statement, see Figure 1. Using Weierstrass’s

theorem we can show

Theorem 1.1. The answer is yes if I is a finite interval.

Proof. As discussed, it is enough to prove the result for I = [0, 1]. Let f be a
continuous function on [0, 1] that satisfies (1). We will show that∫ 1

0
|f(x)|2 dx = 0, (4)

and from this we will conclude that f ≡ 0.
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Figure 1: Given a continuous function f(x) and a distance ε, we can find a
polynomial p(x) lying within that distance from the function f(x).

To see that (4) holds, we choose an arbitrary ε > 0, and from Weierstrass’s
theorem we have a polynomial p(x) such that (3) holds. We then get∫ 1

0
f(x)2 dx =

∫ 1

0
f(x)(f(x)− p(x)) dx+

∫ 1

0
f(x)p(x) dx

=
∫ 1

0
f(x)(f(x)− p(x)) dx,

where for the last equality we used the assumptions (2). From this we get
(remember that f(x)2 is never negative)

0 ≤
∫ 1

0
f(x)2 dx =

∣∣∣∣ ∫ 1

0
f(x)(f(x)− p(x)) dx

∣∣∣∣
≤
∫ 1

0
|f(x)| |f(x)− p(x)| dx ≤ ε

∫ 1

0
|f(x)| dx,

and since
∫ 1

0 |f(x)| dx is independent of ε > 0, we get∫ 1

0
|f(x)|2 dx =

∫ 1

0
f(x)2 dx = 0

as claimed in (4).
Now let us proceed to show that f ≡ 0. If there is some x0 ∈ [0, 1] for which

f(x0) 6= 0 then |f(x0)| = c > 0. Since f is continuous, |f(x)| > c/2 for all x
in some small interval around x0, which will contribute a nonzero amount to∫ 1

0 |f(x)|2 dx and this will contradict (4).
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Theorem 1.2 (Stieltjes [8]). The answer is no if I is an infinite interval.
Proof. We will prove the theorem by giving explicit examples of functions that
satisfy (1), yet are not everywhere zero. We will cover all possible forms of
infinite intervals. Let us first assume that I = [0,∞[. Define the continuous
function f on ]0,∞[ by

f(x) = exp
(
− 1

2(log x)2
)

sin(2π log x), x > 0. (5)

Since the sine function is bounded (between 1 and −1), and log x tends to −∞
as x → 0, it follows that limx→0 f(x) = 0. Thus, defining f(0) = 0 we now
have that f is continuous on [0,∞[. Since exp(− 1

2 (log x)2) is never zero and
sin(2π log x) is zero only when log x = k

2 for some integer k, there are infinitely
many points x ∈ [0,∞[ where f(x) 6= 0.

Nevertheless, we can follow Stieltjes in showing that f is a function that
satisfies (1). Making the substitution u = log x in the integral, we get∫

I

f(x)xn dx =
∫ ∞
−∞

exp
(
− 1

2u
2 + u(n+ 1)

)
sin(2πu) du

= exp
(1

2(n+ 1)2
)∫ ∞
−∞

exp
(
− 1

2(u− (n+ 1))2
)

sin(2πu) du

= exp
(1

2(n+ 1)2
)∫ ∞
−∞

exp
(
− 1

2v
2
)

sin(2π(v + n+ 1)) dv,

where for the last equality we made the substitution v = u− (n+ 1). Using the
periodicity of the sine function, we finally get∫

I

f(x)xn dx = exp
(1

2(n+ 1)2
)∫ ∞
−∞

exp
(
− 1

2v
2
)

sin(2πv) dv = 0,

because the integral of an odd function is 0.
The function f(x − a) will provide the result for infinite intervals of the

form [a,∞[. Similarly, the function f(a − x) will take care of the infinite
interval ]−∞, a].

Finally, we claim that the function |x|f(x2) is an example for I = R. We
shall show that ∫ ∞

−∞
|x|f(x2)xn dx = 0, n = 0, 1, . . . .

This is certainly true when n is odd, because the integral of an odd function is
zero. When n is even, say n = 2k, we get∫ ∞

−∞
|x|f(x2)x2k dx = 2

∫ ∞
0

xf(x2)x2k dx =
∫ ∞

0
f(t)tk dt = 0,

where we have used the substitution t = x2.
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2 The Stone–Weierstrass Theorem

There exist many proofs of Weierstrass’s theorem. In the case of I = [0, 1]
we mention the method due to S. Bernstein (1880–1968). The nth Bernstein
polynomial of a continuous function f on [0, 1] is defined as

Bn(f)(x) =
n∑
k=0

f

(
k

n

)(
k

n

)
xk(1− x)n−k, (6)

and Bernstein proved that given ε > 0, there exists an integer N0 such that
|f(x)−Bn(f)(x)| ≤ ε for all x ∈ [0, 1] and all n ≥ N0.

This is, indeed, a remarkable work. Not only did Bernstein prove Weier-
strass’s theorem, he also provided an explicit formula for the polynomials we
can use to approximate f . For one example demonstrating the usefulness of
Weierstrass’s theorem and Bernstein’s proof, think of modern computers. With
all of their power and utility, in their core, they can perform only the simplest
arithmetic operations: addition, subtraction, multiplication and a few more.
Yet everyday use of computers requires the evaluation of complicated functions;
for example, drawing a character in a video game relative to the position of
the player, performing a sophisticated search in a large database, analyzing
the frequencies of recorded sound, and so on. Polynomials are easy for com-
puters: they are a combination of addition, multiplication and exponentiation.
Bernstein’s proof gives an explicit polynomial we can use to approximate any
continuous function within any error margin. 1

A far-reaching and important generalization of Weierstrass’s theorem was
obtained by Marshall Stone (1903–1989) in 1937. He replaced the finite interval
[a, b] by a compact Hausdorff space X, a concept from topology generalizing
closed and bounded subsets of the k-dimensional space Rk. Topology is one of
the really important new subjects of 20th century mathematics, see [6].

Stone–Weierstrass theorem. Let X be a compact Hausdorff space and let
A be a subset of the set C(X) of continuous real-valued functions on X with
the following properties:

(i) A is an algebra, that is, if f, g ∈ A and λ ∈ R, then λf, f + g, and f · g ∈ A.
(ii) The constant functions belong to A and A separates the points of X, that

is, to any x1, x2 ∈ X, x1 6= x2, there exists p ∈ A such that p(x1) 6= p(x2).

Then for any function f ∈ C(X) and ε > 0 there exists p ∈ A such that

|f(x)− p(x)| ≤ ε for all x ∈ X.

1 These days, some real-world applications use polynomials that are more efficient than the
original Bernstein polynomials.

5



The set A = R[x] of real polynomials has the properties (i) and (ii) as subset
of C([a, b]), which makes Weierstrass’s theorem true as a special case.

3 Moment problems

Stieltjes finished an important memoir [8] a few months before his premature
death in 1894. In this work he defined and solved what is known as the Stieltjes
moment problem:

Given a sequence of real numbers s0, s1, . . ., find necessary and
sufficient conditions such that (sn) are the moments of a positive
measure µ on the interval [0,∞[, that is,

sn =
∫ ∞

0
xn dµ(x), n = 0, 1, . . . . (7)

Simply put, a measure assigns “length” or “weight” to subsets of [0,∞[; so
it is usually non-negative. A familiar example would be assigning to a segment
[a, b] ∈ R its length b − a. Another example would be that of a probability
measure which assigns to each set the probability of a sample to be within that
set (“weight” of the set). This is usually achieved by integrating an appropriate
probability density function over the set.

Now it can be seen that the moment problem takes a very similar form to
that of (1); only replacing the requirement of the integral being equal to zero
with the integral being equal to a sequence of prescribed values. A measure can
have a continuous density like e−x, and in this case (7) translates to

sn =
∫ ∞

0
xne−x dx = n!, n = 0, 1, . . . ,

so the sequence (n!) = 1, 1, 2, 6, 24, . . . is an example of a Stieltjes moment
sequence. If the measure is so-called discrete, that is, with weights ck > 0 in
the points 0 ≤ x1 < x2 < · · · , then the moments are

sn =
∞∑
k=1

ckx
n
k , n = 0, 1, . . . .

As an example, if xk = k, ck = exp(−k), k = 1, 2, . . ., 2 then

sn =
∞∑
k=1

kn exp(−k) = (−1)nf (n)(1), where f(x) = (exp(x)− 1)−1, x > 0,

2 Recall that exp(x) = ex, where e is the base of the natural logarithm.
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because

f(x) = exp(−x)
1− exp(−x) =

∞∑
k=1

exp(−kx), x > 0.

There are more types of measures than the above examples show, but we
will not discuss this further.

Stieltjes also realized that some moment sequences (sn) are determinate but
others are indeterminate. By this he meant that in the determinate case, there
is exactly one measure satisfying (7), and in the indeterminate case there can
be more than one solution and then automatically infinitely many measures µ
satisfying (7).

If the measure µ has the density

d(x) = exp
(
− 1

2(log x)2
)
,

the moments are

sn =
∫ ∞

0
d(x)xn dx =

√
2π exp

(1
2(n+ 1)2

)
, n = 0, 1, . . . .

To see this, make the substitution u = log x, use the trick from the proof of
Theorem 1.2 and finally use the Gaussian integral

√
2π =

∫ ∞
−∞

exp
(
− 1

2u
2
)
du.

This means that d(x)/
√

2πe is a probability density function over the interval
[0,∞[, called a log-normal density.

Stieltjes’ result about the function (5) means that

sn =
∫ ∞

0
d(x)(1 + c sin(2π log x))xn dx =

√
2π exp

(1
2(n+ 1)2

)
for all c ∈ R. For the infinitely many values of c ∈ [−1, 1], the expression

dc(x) = d(x)(1 + c sin(2π log x))

is non-negative for x ≥ 0, and therefore defines a positive measure.
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Stieltjes had frequent correspondence with his thesis advisor and mentor
Charles Hermite (1822–1901), see [2], which contains the following remark in a
letter from Stieltjes to Hermite dated January 30, 1892:

L’existence de ces fonctions f(x) qui, sans être nulles, sont telles que∫ ∞
0

f(x)xn dx = 0, n = 0, 1, . . . ,

me paraît très remarquable.
The existence of these functions f(x) that, without being zero, are
such that ∫ ∞

0
f(x)xn dx = 0, n = 0, 1, . . . ,

appears very remarkable to me.

Hermite Stieltjes

Moment sequences play an important role in probability theory and statistics,
where quantities like mean, variance, skewness and kurtosis can be expressed in
terms of the moment sequence (sn). For a probability distribution (a positive
measure) µ with moments (7) we have s0 = 1, s1 is called the mean and s2− s2

1
is called the variance. Most of the classical probability distributions like
the exponential, normal and Poisson distribution have determinate moment
sequences, and they are thus uniquely determined by their moments. Probability
distributions with indeterminate moment sequences were considered a bit exotic,
when they were discovered by Stieltjes. During the last 25 years a number of
new indeterminate moment sequences have been discovered. One knows that
the sequence (n!)c, n = 0, 1, . . . is determinate for 0 < c ≤ 2 but indeterminate
for c > 2, cf. [3]. The moment problem is treated in a wonderful book by
Akhiezer [1] from 1965 and in a very recent monograph [7]. There is renewed
interest in indeterminate moment problems, see [4], and in multidimensional
moment problems related to algebraic geometry, see [5].
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