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Note to the Reader

This is the second volume of the July 2020 edition of “Hopf Algebras
in Combinatorics”, an introduction to combinatorial Hopf algebras with
particular focus on symmetric and quasisymmetric functions.

This text surveys some of the most fundamental Hopf algebras appear-
ing in combinatorics. After introducing coalgebras, bialgebras and Hopf
algebras in general, we study the Hopf algebra of symmetric functions ; we
prove Zelevinsky’s axiomatic characterization of it as a “PSH” (positive
self-adjoint Hopf algebra) and its application to the representation theory
of symmetric and (briefly) finite general linear groups. We then continue
with the quasisymmetric and the noncommutative symmetric functions,
some Hopf algebras formed from graphs, posets and matroids, and the
Malvenuto–Reutenauer Hopf algebra of permutations. Among other results,
we survey the Littlewood–Richardson rule and other symmetric function
identities, Zelevinsky’s structure theorem for PSHs, the antipode formula
for P-partition enumerators, the Aguiar–Bergeron–Sottile universal prop-
erty of QSym, the theory of Lyndon words, the Gessel–Reutenauer bijec-
tion, and Hazewinkel’s polynomial freeness of QSym.

The text is written with a graduate student reader in mind (and origi-
nates from a one-semester graduate class held by the second author at the
University of Minnesota). It assumes a good familiarity with multilinear
algebra and – for the representation-theoretical applications – basic group
representation theory; otherwise it is meant to be rather self-contained.

The text has been edited over 9 years; it is still likely to be rough at
some edges, but has proven useful at least to its authors. It may still grow
(note the strategic gap in the numbering between Chapters 8 and 11) and
improve. The authors will appreciate any comments and corrections sent
to darijgrinberg@gmail.com and reiner@math.umn.edu.

This version of the text is essentially the version posted on the arXiv as
arXiv:1409.8356v7; it differs only in some minor editorial changes (spac-
ing, display of formulas, and the occasional trivial rewording of a sentence)
and in the page numbering. The numbering of results and equations is
identical between this and the arXiv version.

For printing reasons, this version of the text is split into two volumes.
Volume 1 covers general Hopf algebra theory and the symmetric functions
(including their PSH-characterization and representation-theoretical appli-
cations), while Volume 2 (this one) covers the “larger” combinatorial Hopf
algebras (and includes the bibliography, the index and a short section con-
taining hints to the exercises from Chapter 1.

Parts of this text have been written during stays at the Mathematis-
ches Forschungsinstitut Oberwolfach (2019 and 2020)1 and at the Institut

1This research was supported through the programme “Oberwolfach Leibniz Fel-
lows” by the Mathematisches Forschungsinstitut Oberwolfach in 2019 and 2020.

darijgrinberg@gmail.com
reiner@math.umn.edu
http://www.arxiv.org/abs/1409.8356v7
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Mittag–Leffler Djursholm (Spring 2020, supported by the Swedish Research
Council under grant no. 2016-06596); DG thanks both for their hospitality.

Darij Grinberg
July 27, 2020

Victor Reiner
July 27, 2020
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5. Quasisymmetric functions and P -partitions

We discuss here our next important example of a Hopf algebra arising in
combinatorics: the quasisymmetric functions of Gessel [79], with roots in
work of Stanley [203] on P -partitions. Other treatments of quasisymmetric
functions can be found in [206, Section 7.19] and [187, Chapter 8] (with fo-
cus on their enumerative applications rather than on their Hopf structure)
and in [153, Chapter 6] (with a focus on their representation-theoretical
meaning). Quasisymmetric functions have found applications in combina-
torial enumeration ([187, Chapter 8], [206, Section 7.19]), topology ([12])
and algebraic geometry ([158], [163]).

5.1. Definitions, and Hopf structure. The definitions of quasisymmet-
ric functions require a totally ordered variable set. Usually we will use a
variable set denoted x = (x1, x2, . . .) with the usual ordering x1 < x2 < · · · .
However, it is good to have some flexibility in changing the ordering, which
is why we make the following definition.

Definition 5.1.1. Given any totally ordered set I, create a totally ordered
variable set {xi}i∈I , and then let R({xi}i∈I) denote the power series of
bounded degree in {xi}i∈I having coefficients in k.

The ring of quasisymmetric functions QSym({xi}i∈I) over the alphabet
{xi}i∈I will be the k-submodule consisting of the elements f in R({xi}i∈I)
that have the same coefficient on the monomials xα1

i1
· · · xα`i` and xα1

j1
· · ·xα`j`

whenever both i1 < · · · < i` and j1 < · · · < j` in the total order on I. We
write QSymk({xi}i∈I) instead of QSym({xi}i∈I) to stress the choice of base
ring k.

It immediately follows from this definition that QSym({xi}i∈I) is a free
k-submodule of R({xi}i∈I), having as k-basis elements the monomial qua-
sisymmetric functions

Mα({xi}i∈I) :=
∑

i1<···<i` in I

xα1
i1
· · ·xα`i`

for all compositions251 α satisfying `(α) ≤ |I|. When I is infinite, this
means that the Mα for all compositions α form a basis of QSym({xi}i∈I).

Note that QSym({xi}i∈I) =
⊕

n≥0 QSymn({xi}i∈I) is a graded k-module
of finite type, where QSymn({xi}i∈I) is the k-submodule of quasisymmetric
functions which are homogeneous of degree n. Letting Comp denote the
set of all compositions α, and Compn the compositions α of n (that is,
compositions whose parts sum to n), the subset {Mα}α∈Compn; `(α)≤|I| gives
a k-basis for QSymn({xi}i∈I).

251Recall that compositions were defined in Definition 4.3.1, along with related con-
cepts such as length and size.
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Example 5.1.2. Taking the variable set x = (x1 < x2 < · · · ) to define
QSym(x), for n = 0, 1, 2, 3, one has these basis elements in QSymn(x):

M() = M∅ = 1,

M(1) = x1 + x2 + x3 + · · · = m(1) = s(1) = e1 = h1 = p1,

M(2) = x2
1 + x2

2 + x2
3 + · · · = m(2) = p2,

M(1,1) = x1x2 + x1x3 + x2x3 + · · · = m(1,1) = e2,

M(3) = x3
1 + x3

2 + x3
3 + · · · = m(3) = p3,

M(2,1) = x2
1x2 + x2

1x3 + x2
2x3 + · · · ,

M(1,2) = x1x
2
2 + x1x

2
3 + x2x

2
3 + · · · ,

M(1,1,1) = x1x2x3 + x1x2x4 + x1x3x4 + · · · = m(1,1,1) = e3.

It is not obvious that QSym(x) is a subalgebra of R(x), but we will show
this momentarily. For example,

M(a)M(b,c)

= (xa1 + xa2 + xa3 + · · · )(xb1xc2 + xb1x
c
3 + xb2x

c
3 + · · · )

= xa+b
1 xc2 + · · ·+ xb1x

a+c
3 + · · ·+ xa1x

b
2x

c
3 + · · ·+ xb1x

a
2x

c
3 + · · ·+ xb1x

c
2x

a
3 + · · ·

= M(a+b,c) +M(b,a+c) +M(a,b,c) +M(b,a,c) +M(b,c,a).

Proposition 5.1.3. For any infinite totally ordered set I, one has that
QSym({xi}i∈I) is a k-subalgebra of R({xi}i∈I), with multiplication in the
{Mα}-basis as follows: Fix three disjoint chain posets (i1 < · · · < i`),
(j1 < · · · < jm) and (k1 < k2 < · · · ). Now, if α = (α1, . . . , α`) and
β = (β1, . . . , βm) are two compositions, then

(5.1.1) MαMβ =
∑
f

Mwt(f)

in which the sum is over all p ∈ N and all maps f from the disjoint union
of two chains to a chain

(5.1.2) (i1 < · · · < i`) t (j1 < · · · < jm)
f−→ (k1 < · · · < kp)

which are both surjective and strictly order-preserving (that is, if x and
y are two elements in the domain satisfying x < y, then f(x) < f(y)),
and where the composition wt(f) := (wt1(f), . . . ,wtp(f)) is defined by
wts(f) :=

∑
iu∈f−1(ks)

αu +
∑

jv∈f−1(ks)
βv.

Example 5.1.4. For this example, set α = (2, 1) and β = (3, 4, 2). Let
us compute MαMβ using (5.1.1). Indeed, the length of α is ` = 2, and
the length of β is m = 3, so the sum on the right hand side of (5.1.1)
is a sum over all p ∈ N and all surjective strictly order-preserving maps
f from the disjoint union (i1 < i2) t (j1 < j2 < j3) of two chains to the
chain (k1 < k2 < · · · < kp). Such maps can exist only when p ≤ 5 (due
to having to be surjective) and only for p ≥ 3 (since, being strictly order-
preserving, they have to be injective when restricted to (j1 < j2 < j3)).
Hence, enumerating them is a finite problem. The reader can check that
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the value obtained fo MαMβ is

M(2,1,3,4,2) +M(2,3,1,4,2) +M(2,3,4,1,2) +M(2,3,4,2,1) +M(3,2,1,4,2)

+M(3,2,4,1,2) +M(3,2,4,2,1) +M(3,4,2,1,2) +M(3,4,2,2,1) +M(3,4,2,2,1)

+M(2,3,4,3) +M(2,3,5,2) +M(2,4,4,2) +M(3,2,4,3) +M(3,2,5,2) +M(3,4,2,3)

+M(3,4,4,1) +M(3,6,1,2) +M(3,6,2,1) +M(5,1,4,2) +M(5,4,1,2) +M(5,4,2,1)

+M(5,4,3) +M(5,5,2) +M(3,6,3).

Here, we have listed the addends corresponding to p = 5 on the first two
rows, the addends corresponding to p = 4 on the next two rows, and those
corresponding to p = 3 on the fifth row. The reader might notice that the
first two rows (i.e., the addends with p = 5) are basically a list of shuffles
of α and β: In general, the maps (5.1.2) for p = `+m are in bijection with
the elements of Sh`,m

252, and the corresponding compositions wt(f) are
the shuffles of α and β. Therefore the name “overlapping shuffle product”.

Proof of Proposition 5.1.3. It clearly suffices to prove the formula (5.1.1).
Let α = (α1, . . . , α`) and β = (β1, . . . , βm) be two compositions. Fix three
disjoint chain posets (i1 < · · · < i`), (j1 < · · · < jm) and (k1 < k2 < · · · ).

Thus, multiplying Mα =
∑

u1<···<u` x
α1
u1
· · ·xα`u` with

Mβ =
∑

v1<···<vm x
β1
v1
· · ·xβmvm , we obtain

MαMβ =
∑

u1<···<u`

∑
v1<···<vm

(
xα1
u1
· · ·xα`u`

) (
xβ1
v1
· · ·xβmvm

)
=

∑
γ=(γ1,...,γp)∈Comp

∑
w1<···<wp in I

Nγ
w1,...,wp

xγ1
w1
· · ·xγpwp ,(5.1.3)

where Nγ
w1,...,wp

is the number of all pairs

((u1 < · · · < u`) , (v1 < · · · < vm)) ∈ I` × Im(5.1.4)

of two strictly increasing tuples satisfying(
xα1
u1
· · ·xα`u`

) (
xβ1
v1
· · ·xβmvm

)
= xγ1

w1
· · · xγpwp .(5.1.5)

253 Thus, we need to show that Nγ
w1,...,wp

(for a given γ = (γ1, . . . , γp) ∈
Comp and a given (w1 < · · · < wp) ∈ Ip) is also the number of all surjective
strictly order-preserving maps

(i1 < · · · < i`) t (j1 < · · · < jm)
f−→ (k1 < · · · < kp) satisfying wt(f) = γ

(5.1.6)

(because then, (5.1.3) will simplify to (5.1.1)).
In order to show this, it suffices to construct a bijection from the set of

all pairs (5.1.4) satisfying (5.1.5) to the set of all surjective strictly order-
preserving maps (5.1.6). This bijection is easy to construct: Given a pair

252The bijection takes a map f to the inverse of the permutation σ ∈ Sp which
sends every x ∈ {1, 2, . . . , `} to the index y satisfying f (ix) = ky, and sends every
x ∈ {`+ 1, `+ 2, . . . , `+m} to the index y satisfying f (jx−`) = ky.

253In the second equality in (5.1.3), we have used the fact that each monomial can be
uniquely written in the form xγ1w1

· · ·xγpwp for some composition γ = (γ1, . . . , γp) ∈ Comp

and some strictly increasing tuple (w1 < · · · < wp) ∈ Ip.



188 DARIJ GRINBERG AND VICTOR REINER

(5.1.4) satisfying (5.1.5), the bijection sends it to the map (5.1.6) deter-
mined by:

ig
f7→ kh, where h is chosen such that ug = wh;

jg
f7→ kh, where h is chosen such that vg = wh.

Proving that this bijection is well-defined and bijective is straightforward254.
�

The multiplication rule (5.1.1) shows that the k-algebra QSym({xi}i∈I)
does not depend much on I, as long as I is infinite. More precisely, all such
k-algebras are mutually isomorphic. We can use this to define a k-algebra
of quasisymmetric functions without any reference to I:

Definition 5.1.5. Let QSym be the k-algebra defined as having k-basis
{Mα}α∈Comp and with multiplication defined k-linearly by (5.1.1). This is
called the k-algebra of quasisymmetric functions . We write QSymk instead
of QSym to stress the choice of base ring k.

The k-algebra QSym is graded, and its n-th graded component QSymn

has k-basis {Mα}α∈Compn .
For every infinite totally ordered set I, the k-algebra QSym is isomor-

phic to the k-algebra QSym({xi}i∈I). The isomorphism sends Mα 7−→
Mα({xi}i∈I).

In particular, we obtain the isomorphism QSym ∼= QSym (x) for x be-
ing the infinite chain (x1 < x2 < x3 < · · · ). We will identify QSym with
QSym (x) along this isomorphism. This allows us to regard quasisymmet-
ric functions either as power series in a specific set of variables (“alphabet”),
or as formal linear combinations of Mα’s, whatever is more convenient.

For any infinite alphabet {xi}i∈I and any f ∈ QSym, we denote by

f
(
{xi}i∈I

)
the image of f under the algebra isomorphism

QSym→ QSym
(
{xi}i∈I

)
defined in Definition 5.1.5.

The comultiplication of QSym will extend the one that we defined for
Λ, but we need to take care about the order of the variables this time.
We consider the linear order from (2.3.2) on two sets of variables (x,y) =
(x1 < x2 < · · · < y1 < y2 < · · · ), and we embed the k-algebra QSym(x)⊗
QSym(y) into the k-algebraR(x,y) by identifying every f⊗g ∈ QSym(x)⊗
QSym(y) with fg ∈ R(x,y) (this embedding is indeed injective255). It can
then be seen that

QSym(x,y) ⊂ QSym(x)⊗QSym(y)

254The inverse of this bijection sends each map (5.1.6) to the pair (5.1.4) determined
by

ug = wh, where h is chosen such that f (ig) = kh;

vg = wh, where h is chosen such that f (jg) = kh.

255This is because it sends the basis elements Mβ(x)⊗Mγ(y) of the former k-algebra
to the linearly independent power series Mβ(x)Mγ(y).
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(where the right hand side is viewed as k-subalgebra of R(x,y) via said

embedding)256, so that one can define QSym
∆−→ QSym⊗QSym as the

composite of the maps in the bottom row here:
(5.1.7)

R(x,y) = R(x,y)
∪ ∪

QSym ∼= QSym(x,y) ↪→ QSym(x)⊗QSym(y) ∼= QSym⊗QSym,
f 7−→ f(x,y).

(Recall that f(x,y) = f(x1, x2, . . . , y1, y2, . . .) is formally defined as the
image of f under the algebra isomorphism QSym → QSym(x,y) defined
in Definition 5.1.5.)

Example 5.1.6. For example,

∆M(a,b,c) = M(a,b,c)(x1, x2, . . . , y1, y2, . . .)

= xa1x
b
2x

c
3 + xa1x

b
2x

c
4 + · · ·

+ xa1x
b
2 · yc1 + xa1x

b
2 · yc2 + · · ·

+ xa1 · yb1yc2 + xa1 · yb1yc3 + · · ·
+ ya1y

b
2y
c
3 + ya1y

b
2y
c
4 + · · ·

= M(a,b,c)(x) +M(a,b)(x)M(c)(y) +M(a)(x)M(b,c)(y) +M(a,b,c)(y)

= M(a,b,c) ⊗ 1 +M(a,b) ⊗M(c) +M(a) ⊗M(b,c) + 1⊗M(a,b,c).

Defining the concatenation β · γ of two compositions β = (β1, . . . , βr), γ =
(γ1, . . . , γs) to be the composition (β1, . . . , βr, γ1, . . . , γs), one has the fol-
lowing description of the coproduct in the {Mα} basis.

Proposition 5.1.7. For a composition α = (α1, . . . , α`), one has

∆Mα =
∑̀
k=0

M(α1,...,αk) ⊗M(αk+1,...,α`) =
∑
(β,γ):
β·γ=α

Mβ ⊗Mγ.

Proof. We work with the infinite totally ordered set I = {1 < 2 < 3 < · · · }.
The definition of ∆ yields

(5.1.8) ∆Mα = Mα(x,y) =
∑

p1<p2<···<p` in (x,y)

pα1
1 p

α2
2 · · · p

α`
` ,

where the sum runs over strictly increasing `-tuples (p1 < p2 < · · · < p`) of
variables in the variable set (x,y). But every such `-tuple (p1 < p2 < · · · < p`)
can be expressed uniquely in the form

(
xi1 , . . . , xik , yj1 , . . . , yj`−k

)
for some

k ∈ {0, 1, . . . , `} and some subscripts i1 < · · · < ik and j1 < · · · <
j`−k in I. The corresponding monomial pα1

1 p
α2
2 · · · p

α`
` then rewrites as

xα1
i1
· · ·xαkik · y

αk+1

j1
· · · yα`j`−k . Thus, the sum on the right hand side of (5.1.8)

256This is not completely obvious, but can be easily checked by verifying that
Mα(x,y) =

∑
(β,γ):
β·γ=α

Mβ(x) ⊗ Mγ(y) for every composition α (see the proof of Propo-

sition 5.1.7 for why this holds).
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rewrites as∑̀
k=0

∑
i1<···<ik

∑
j1<···<j`−k

xα1
i1
· · ·xαkik · y

αk+1

j1
· · · yα`j`−k

=
∑̀
k=0

( ∑
i1<···<ik

xα1
i1
· · ·xαkik

)
︸ ︷︷ ︸

=M(α1,...,αk)(x)

·

 ∑
j1<···<j`−k

y
αk+1

j1
· · · yα`j`−k


︸ ︷︷ ︸

=M(αk+1,...,α`)
(y)

=
∑̀
k=0

M(α1,...,αk)(x)M(αk+1,...,α`)(y).

Thus, (5.1.8) becomes

∆Mα =
∑

p1<p2<···<p` in (x,y)

pα1
1 p

α2
2 · · · p

α`
` =

∑̀
k=0

M(α1,...,αk)(x)M(αk+1,...,α`)(y)

=
∑̀
k=0

M(α1,...,αk) ⊗M(αk+1,...,α`) =
∑
(β,γ):
β·γ=α

Mβ ⊗Mγ.

�

Proposition 5.1.8. The quasisymmetric functions QSym form a con-
nected graded Hopf algebra of finite type, which is commutative, and con-
tains the symmetric functions Λ as a Hopf subalgebra.

Proof. To prove coassociativity of ∆, we need to be slightly careful. It
seems reasonable to argue by (∆⊗ id) ◦∆f = f(x,y, z) = (id⊗∆) ◦∆f as
in the case of Λ, but this would now require further justification, as terms
like f(x,y) and f(x,y, z) are no longer directly defined as evaluations of
f on some sequences (but rather are defined as images of f under certain
homomorphisms). However, it is very easy to see that ∆ is coassociative by
checking (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ on the {Mα} basis: Proposition 5.1.7
yields

((∆⊗ id) ◦∆)Mα =
∑̀
k=0

∆(M(α1,...,αk))⊗M(αk+1,...,α`)

=
∑̀
k=0

(
k∑
i=0

M(α1,...,αi) ⊗M(αi+1,...,αk)

)
⊗M(αk+1,...,α`)

=
∑̀
k=0

k∑
i=0

M(α1,...,αi) ⊗M(αi+1,...,αk) ⊗M(αk+1,...,α`)

and the same expression for ((id⊗∆) ◦∆)Mα.
The coproduct ∆ of QSym is an algebra morphism because it is defined

as a composite of algebra morphisms in the bottom row of (5.1.7). To prove
that the restriction of ∆ to the subring Λ of QSym is the comultiplication
of Λ, it thus is enough to check that it sends the elementary symmetric
function en to

∑n
i=0 ei ⊗ en−i for every n ∈ N. This again follows from

Proposition 5.1.7, since en = M(1,1,...,1) (with n times 1).
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The counit is as usual for a connected graded coalgebra, and just as in
the case of Λ, sends a quasisymmetric function f(x) to its constant term
f(0, 0, . . .). This is an evaluation, and hence an algebra morphism. Hence
QSym forms a bialgebra, and as it is graded and connected, also a Hopf
algebra by Proposition 1.4.16. It is clearly of finite type and contains Λ as
a Hopf subalgebra. �

We will identify the antipode in QSym shortly, but we first deal with
another slightly subtle issue. In addition to the counit evaluation ε(f) =
f(0, 0, . . .), starting in Section 7.1, we will want to specialize elements in
QSym(x) by making other variable substitutions, in which all but a finite
list of variables are set to zero. We justify this here.

Proposition 5.1.9. Fix a totally ordered set I, a commutative k-algebra
A, a finite list of variables xi1 , . . . , xim , say with i1 < · · · < im in I, and an
ordered list of elements (a1, . . . , am) ∈ Am.

Then there is a well-defined evaluation homomorphism

QSym({xi}i∈I) −→ A,
f 7−→ [f ] xi1=a1,...,xim=am

xj=0 for j 6∈{i1,...,im}
.

Furthermore, this homomorphism depends only upon the list (a1, . . . , am),
as it coincides with the following:

QSym({xi}i∈I) ∼= QSym(x1, x2, . . .) −→ A,
f(x1, x2, . . .) 7−→ f(a1, . . . , am, 0, 0 . . .).

(This latter statement is stated for the case when I is infinite; otherwise,
read “x1, x2, . . . , x|I|” for “x1, x2, . . .”, and interpret (a1, . . . , am, 0, 0 . . .) as
an |I|-tuple.)

Proof. One already can make sense of evaluating xi1 = a1, . . . , xim = am
and xj = 0 for j 6∈ {i1, . . . , im} in the ambient ring R({xi}i∈I) containing
QSym({xi}i∈I), since a power series f of bounded degree will have finitely
many monomials that only involve the variables xi1 , . . . , xim . The last
assertion follows from quasisymmetry of f , and is perhaps checked most
easily when f = Mα({xi}i∈I) for some α. �

The antipode in QSym has a reasonably simple expression in the {Mα}
basis, but requiring a definition.

Definition 5.1.10. For α, β in Compn, say that α refines β or β coarsens
α if, informally, one can obtain β from α by combining some of its ad-
jacent parts. Alternatively, this can be defined as follows: One has a
bijection Compn → 2[n−1] where [n − 1] := {1, 2, . . . , n − 1} which sends
α = (α1, . . . , α`) having length `(α) = ` to its subset of partial sums

D(α) := {α1, α1 + α2, . . . , α1 + · · ·+ α`−1} ,

and this sends the refinement ordering to the inclusion ordering on the
Boolean algebra 2[n−1] (to be more precise: a composition α ∈ Compn
refines a composition β ∈ Compn if and only if D(α) ⊃ D(β)).

There is also a bijection sending every composition α to its ribbon dia-
gram Rib (α): the skew diagram λ/µ having rows of sizes α1, . . . , α` read
from bottom to top with exactly one column of overlap between adjacent
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rows. These bijections and the refinement partial order are illustrated here
for n = 4:

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

(1, 1, 1, 1)

(1, 1, 2) (1, 2, 1) (2, 1, 1)

(1, 3) (2, 2) (3, 1)

(4)

�
�
�
�

��
�
�

�
��
�

�
�
��

���
�

��
��

�
���

����

(where we have drawn each ribbon diagram with its boxes spaced out).
Given α = (α1, . . . , α`), its reverse composition is

rev(α) = (α`, α`−1, . . . , α2, α1).

Note that α 7→ rev(α) is a poset automorphism of Compn for the refinement
ordering.

Theorem 5.1.11. For any composition α in Comp,

S(Mα) = (−1)`(α)
∑

γ∈Comp:
γ coarsens rev(α)

Mγ.

For example,

S(M(a,b,c)) = −
(
M(c,b,a) +M(b+c,a) +M(c,a+b) +M(a+b+c)

)
.

Proof. We give Ehrenborg’s proof257 [64, Prop. 3.4] via induction on ` =
`(α). One has easy base cases when `(α) = 0, where S(M∅) = S(1) =
1 = (−1)0Mrev(∅), and when `(α) = 1, where M(n) is primitive by Proposi-
tion 5.1.7, so Proposition 1.4.17 shows S(M(n)) = −M(n) = (−1)1Mrev((n)).

257A different proof was given by Malvenuto and Reutenauer [146, Cor. 2.3], and is
sketched in Remark 5.4.4 below.
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For the inductive step, apply the inductive definition of S from the proof
of Proposition 1.4.16:

S(M(α1,...,α`)) = −
`−1∑
i=0

S(M(α1,...,αi))M(αi+1,...,α`)

=
`−1∑
i=0

∑
β coarsening

(αi,αi−1,...,α1)

(−1)i+1MβM(αi+1,...,α`).

The idea will be to cancel terms of opposite sign that appear in the ex-
pansions of the products MβM(αi+1,...,α`). Note that each composition β
appearing above has first part β1 of the form αi + αi−1 + · · ·+ αh for some
h ≤ i (unless β = ∅), and hence each term Mγ in the expansion of the
product MβM(αi+1,...,α`) has γ1 (that is, the first entry of γ) a sum that can
take one of these three forms:

• αi + αi−1 + · · ·+ αh,
• αi+1 + (αi + αi−1 + · · ·+ αh),
• αi+1.

Say that the type of γ is i in the first case, and i + 1 in the second two
cases258; in other words, the type is the largest subscript k on a part αk
which was combined in the sum γ1. It is not hard to see that a given
γ for which the type k is strictly smaller than ` arises from exactly two
pairs (β, γ), (β′, γ), having opposite signs (−1)k and (−1)k+1 in the above
sum259. For example, if α = (α1, . . . , α8), then the composition γ = (α6 +
α5 + α4, α3, α7, α8 + α2 + α1) of type 6 can arise from either of

β = (α6 + α5 + α4, α3, α2 + α1) with i = 6 and sign (−1)7,

β′ = (α5 + α4, α3, α2 + α1) with i = 5 and sign (−1)6.

Similarly, γ = (α6, α5 + α4, α3, α7, α8 + α2 + α1) can arise from either of

β = (α6, α5 + α4, α3, α2 + α1) with i = 6 and sign (−1)7,

β′ = (α5 + α4, α3, α2 + α1) with i = 5 and sign (−1)6.

Thus one can cancel almost all the terms, excepting those with γ of type
` among the terms Mγ in the expansion of the last (i = ` − 1) summand
MβM(α`). A bit of thought shows that these are the γ coarsening rev(α),
and all have sign (−1)`. �

5.2. The fundamental basis and P -partitions. There is a second im-
portant basis for QSym which arose originally in Stanley’s P -partition the-
ory [203].260

258We imagine that we label the terms obtained by expanding MβM(αi+1,...,α`) by
distinct labels, so that each term knows how exactly it was created (i.e., which i, which
β and which map f as in (5.1.2) gave rise to it). Strictly speaking, it is these triples
(i, β, f) that we should be assigning types to, not terms.

259Strictly speaking, this means that we have an involution on the set of our (i, β, f)
triples having type smaller than `, and this involution switches the sign of (−1)iMwt(f).

260See [80] for a history of P -partitions; our notations, however, strongly differ from
those in [80].
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Definition 5.2.1. A labelled poset will here mean a partially ordered set
P whose underlying set is some finite subset of the integers. A P -partition

is a function P
f→ {1, 2, . . .} with the following two properties:

• If i ∈ P and j ∈ P satisfy i <P j and i <Z j, then f(i) ≤ f(j).
• If i ∈ P and j ∈ P satisfy i <P j and i >Z j, then f(i) < f(j).

Denote by A(P ) the set of all P -partitions f , and let FP (x) :=
∑

f∈A(P ) xf
where xf :=

∏
i∈P xf(i). This FP (x) is an element of k [[x]] := k [[x1, x2, . . .]].

Example 5.2.2. Depicted is a labelled poset P , along with the rela-
tions among the four values f = (f(1), f(2), f(3), f(4)) that define its
P -partitions f :

2

4 1

3

f(2)

f(4) f(1)

≤

f(3)

≤
<

Remark 5.2.3. Stanley’s treatment of P -partitions in [206, §3.15 and §7.19]
uses a language different from ours. First, Stanley works not with labelled
posets P , but with pairs (P, ω) of a poset P and a bijective labelling ω :
P → [n]. Thus, the relation <Z is not given on P a priori, but has to be
pulled back from [n] using ω (and it depends on ω, whence Stanley speaks
of “(P, ω)-partitions”). Furthermore, what we call “P -partition” is called a
“reverse P -partition” in [206]. Finally, Stanley uses the notations FP and
FP,ω for something different from what we denote by FP , whereas what we
call FP is dubbed KP,ω in [206, §7.19].

The so-called fundamental quasisymmetric functions are an important
special case of the FP (x). We shall first define them directly and then see
how they are obtained as P -partition enumerators FP (x) for some special
labelled posets P .

Definition 5.2.4. Let n ∈ N and α ∈ Compn. We define the fundamental
quasisymmetric function Lα = Lα(x) ∈ QSym by

(5.2.1) Lα :=
∑

β∈Compn:
β refines α

Mβ.

Example 5.2.5. The extreme cases for α in Compn give quasisymmetric
functions Lα which are symmetric:

L(1n) = M(1n) = en,

L(n) =
∑

α∈Compn

Mα = hn.

Before studying the Lα in earnest, we recall a basic fact about finite sets,
which is sometimes known as the “principle of inclusion and exclusion”
(although it is more general than the formula for the size of a union of sets
that commonly goes by this name):
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Lemma 5.2.6. Let G be a finite set. Let V be a k-module. For each
subset A of G, we let fA and gA be two elements of V .

(a) If

every A ⊂ G satisfies gA =
∑
B⊂A

fB,

then

every A ⊂ G satisfies fA =
∑
B⊂A

(−1)|A\B| gB.

(b) If

every A ⊂ G satisfies gA =
∑

B⊂G; B⊃A

fB,

then

every A ⊂ G satisfies fA =
∑

B⊂G; B⊃A

(−1)|B\A| gB.

Proof. This can be proven by elementary arguments (easy exercise). Al-
ternatively, Lemma 5.2.6 can be viewed as a particular case of the Möbius
inversion principle (see, e.g., [206, Propositions 3.7.1 and 3.7.2]) applied to
the Boolean lattice 2G (whose Möbius function is very simple: see [206, Ex-
ample 3.8.3]). (This is spelled out in [138, Example 4.52], for example.) �

Lemma 5.2.6 can be translated into the language of compositions:

Lemma 5.2.7. Let n ∈ N. Let V be a k-module. For each α ∈ Compn,
we let fα and gα be two elements of V .

(a) If

every α ∈ Compn satisfies gα =
∑

β coarsens α

fβ,

then

every α ∈ Compn satisfies fα =
∑

β coarsens α

(−1)`(α)−`(β) gβ.

(b) If

every α ∈ Compn satisfies gα =
∑

β refines α

fβ,

then

every α ∈ Compn satisfies fα =
∑

β refines α

(−1)`(β)−`(α) gβ.

Proof. Set [n− 1] = {1, 2, . . . , n− 1}. Recall (from Definition 5.1.10) that
there is a bijection D : Compn → 2[n−1] that sends each α ∈ Compn to
D (α) ⊂ [n− 1]. This bijection D has the properties that:

• a composition β refines a composition α if and only ifD (β) ⊃ D (α);
• a composition β coarsens a composition α if and only if D (β) ⊂
D (α);
• any composition α ∈ Compn satisfies |D (α)| = ` (α) − 1 (unless
n = 0), and thus
• any compositions α and β in Compn satisfy |D (α)| − |D (β)| =
` (α)− ` (β).
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This creates a dictionary between compositions in Compn and subsets of
[n− 1]. Now, apply Lemma 5.2.6 to G = [n− 1], fA = fD−1(A) and gA =
gD−1(A), and translate using the dictionary. �

Now, we can see the following about the fundamental quasisymmetric
functions:

Proposition 5.2.8. The family {Lα}α∈Comp is a k-basis for QSym, and
each n ∈ N and α ∈ Compn satisfy

(5.2.2) Mα =
∑

β∈Compn:
β refines α

(−1)`(β)−`(α)Lβ.

Proof. Fix n ∈ N. Recall the equality (5.2.1). Thus, Lemma 5.2.7(b)
(applied to V = QSym, fα = Mα and gα = Lα) yields (5.2.2).

Recall that the family (Mα)α∈Compn
is a basis of the k-module QSymn.

The equality (5.2.1) shows that the family (Lα)α∈Compn
expands invertibly

triangularly261 with respect to the family (Mα)α∈Compn
(where Compn is

equipped with the refinement order).262 Thus, Corollary 11.1.19(e) (applied
to QSymn, Compn, (Mα)α∈Compn

and (Lα)α∈Compn
instead of M , S, (es)s∈S

and (fs)s∈S) shows that the family (Lα)α∈Compn
is a basis of the k-module

QSymn. Combining this fact for all n ∈ N, we conclude that the family
(Lα)α∈Comp is a basis of the k-module QSym. This completes the proof of
Proposition 5.2.8. �

Proposition 5.2.9. Let n ∈ N. Let α be a composition of n. Let I be an
infinite totally ordered set. Then,

Lα
(
{xi}i∈I

)
=

∑
i1≤i2≤···≤in in I;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin ,

where Lα
(
{xi}i∈I

)
is defined as the image of Lα under the isomorphism

QSym → QSym
(
{xi}i∈I

)
obtained in Definition 5.1.5. In particular, for

the standard (totally ordered) variable set x = (x1 < x2 < · · · ), we obtain

(5.2.3) Lα = Lα (x) =
∑

(1≤)i1≤i2≤···≤in;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin .

Proof. Every composition β = (β1, . . . , β`) of n satisfies

Mβ ({xi}i∈I) =
∑

k1<···<k` in I

xβ1

k1
· · ·xβ`k`

=
∑

i1≤i2≤···≤in in I;
ij<ij+1 if and only if j∈D(β)

xi1xi2 · · ·xin .(5.2.4)

261See Section 11.1 for a definition of this concept.
262In fact, it expands unitriangularly with respect to the latter family.
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Applying the ring homomorphism QSym→ QSym
(
{xi}i∈I

)
to (5.2.1), we

obtain

Lα
(
{xi}i∈I

)
=

∑
β∈Compn:
β refines α

Mβ

(
{xi}i∈I

)
(5.2.4)

=
∑

β∈Compn:
β refines α

∑
i1≤i2≤···≤in in I;

ij<ij+1 if and only if j∈D(β)

xi1xi2 · · ·xin

=
∑

β∈Compn:
D(α)⊂D(β)

∑
i1≤i2≤···≤in in I;

ij<ij+1 if and only if j∈D(β)

xi1xi2 · · ·xin

=
∑

Z⊂[n−1]:
D(α)⊂Z

∑
i1≤i2≤···≤in in I;

ij<ij+1 if and only if j∈Z

xi1xi2 · · ·xin

=
∑

i1≤i2≤···≤in in I;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin . �

Proposition 5.2.10. Assume that the labelled poset P is a total or linear
order w = (w1 < · · · < wn) (that is, P = {w1, w2, . . . , wn} as sets, and the
order <P is given by w1 <P w2 <P · · · <P wn). Let Des(w) be the descent
set of w, defined by

Des(w) := {i : wi >Z wi+1} ⊂ {1, 2, . . . , n− 1}.

Let α ∈ Compn be the unique composition in Compn having partial sums
D(α) = Des(w). Then, the generating function Fw(x) equals the funda-
mental quasisymmetric function Lα. In particular, Fw(x) depends only
upon the descent set Des(w).

E.g., total order w = 35142 has Des(w) = {2, 4} and composition α =
(2, 2, 1), so

F35142(x) =
∑

f(3)≤f(5)<f(1)≤f(4)<f(2)

xf(3)xf(5)xf(1)xf(4)xf(2)

=
∑

i1≤i2<i3≤i4<i5

xi1xi2xi3xi4xi5

= L(2,2,1) = M(2,2,1) +M(2,1,1,1) +M(1,1,2,1) +M(1,1,1,1,1).

Proof of Proposition 5.2.10. Write Fw(x) as a sum of monomials
xf(w1) · · ·xf(wn) over all w-partitions f . These w-partitions are exactly the
maps f : w → {1, 2, 3, . . .} satisfying f(w1) ≤ · · · ≤ f(wn) and having
strict inequalities f(wi) < f(wi+1) whenever i is in Des(w) (because if two
elements wa and wb of w satisfy wa <w wb and wa >Z wb, then they must
satisfy a < b and i ∈ Des(w) for some i ∈ {a, a+ 1, . . . , b− 1}; thus, the
conditions “f(w1) ≤ · · · ≤ f(wn)” and “f(wi) < f(wi+1) whenever i is
in Des(w)” ensure that f (wa) < f (wb) in this case). Therefore, they are
in bijection with the weakly increasing sequences (i1 ≤ i2 ≤ · · · ≤ in) of
positive integers having strict inequalities ij < ij+1 whenever i ∈ Des(w)
(namely, the bijection sends any w-partition f to the sequence
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(f (w1) ≤ f (w2) ≤ · · · ≤ f (wn))). Hence,

Fw(x) =
∑

f∈A(w)

xf =
∑

(1≤)i1≤i2≤···≤in;
ij<ij+1 if j∈Des(w)

xi1xi2 · · ·xin

=
∑

(1≤)i1≤i2≤···≤in;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin (since Des(w) = D(α)) .

Comparing this with (5.2.3), we conclude that Fw(x) = Lα. �

The next proposition ([206, Cor. 7.19.5], [140, Cor. 3.3.24]) is an alge-
braic shadow of Stanley’s main lemma [206, Thm. 7.19.4] in P -partition
theory. It expands any FP (x) in the {Lα} basis, as a sum over the set L(P )
of all linear extensions w of P 263. E.g., the poset P from Example 5.2.2
has L(P ) = {3124, 3142, 3412}.

Theorem 5.2.11. For any labelled poset P ,

FP (x) =
∑

w∈L(P )

Fw(x).

Proof. We give Gessel’s proof [79, Thm. 1], via induction on the number of
pairs i, j which are incomparable in P . When this quantity is 0, then P is
itself a linear order w, so that L(P ) = {w} and there is nothing to prove.

In the inductive step, let i, j be incomparable elements. Consider the
two posets Pi<j and Pj<i which are obtained from P by adding in an order
relation between i and j, and then taking the transitive closure; it is not
hard to see that these transitive closures cannot contain a cycle, so that
these really do define two posets. The result then follows by induction
applied to Pi<j, Pj<i, once one notices that L(P ) = L(Pi<j) t L(Pj<i)
since every linear extension w of P either has i before j or vice-versa, and
A(P ) = A(Pi<j) t A(Pj<i) since, assuming that i <Z j without loss of
generality, every f in A(P ) either satisfies f(i) ≤ f(j) or f(i) > f(j). �

Example 5.2.12. To illustrate the induction in the above proof, consider
the poset P from Example 5.2.2, having L(P ) = {3124, 3142, 3412}. Then

263Let us explain what we mean by linear extensions and how we represent them.
If P is a finite poset, then a linear extension of P denotes a total order w on the set P

having the property that every two elements i and j of P satisfying i <P j satisfy i <w j.
(In other words, it is a linear order on the ground set P which extends P as a poset;
therefore the name.) We identify such a total order w with the list (p1,p2, . . . ,pn)
containing all elements of P in w-increasing order (that is, p1 <w p2 <w · · · <w pn).

(Stanley, in [206, §3.5], defines linear extensions in a slightly different way: For him,
a linear extension of a finite poset P is an order-preserving bijection from P to the
subposet {1, 2, . . . , |P|} of Z. But this is equivalent to our definition, since a bijection
like this can be used to transport the order relation of {1, 2, . . . , |P|} back to P, thus
resulting in a total order on P which is a linear extension of P in our sense.)
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choosing as incomparable pair (i, j) = (1, 4), one has

4 2

Pi<j = 1

3

f(4) f(2)

f(1)

≤

≤

f(3)

<

,

thus L(Pi<j) = {3124, 3142}

and

2

Pj<i = 1

4

3

f(2)

f(1)

≤

f(4)

<

f(3)

≤

, thus L(Pj<i) = {3412}.

Exercise 5.2.13. Give an alternative proof for Theorem 5.2.11.
[Hint: For every f : P → {1, 2, 3, . . .}, we can define a binary relation
≺f on the set P by letting i ≺f j hold if and only if

(f (i) < f (j) or (f (i) = f (j) and i <Z j)) .

Show that this binary relation ≺f is (the smaller relation of) a total order.
When f is a P -partition, then endowing the set P with this total order
yields a linear extension of P . Use this to show that the set A (P ) is the
union of its disjoint subsets A (w) with w ∈ L (P ).]

Various other properties of the quasisymmetric functions FP (x) are stud-
ied, e.g., in [152].

We next wish to describe the structure maps for the Hopf algebra QSym
in the basis {Lα} of fundamental quasisymmetric functions. For this pur-
pose, two more definitions are useful.

Definition 5.2.14. Given two nonempty compositions α = (α1, . . . , α`)
and β = (β1, . . . , βm), their near-concatenation is

α� β := (α1, . . . , α`−1, α` + β1, β2, . . . , βm).

For example, the figure below depicts for α = (1, 3, 3) (black squares) and
β = (4, 2) (white squares) the concatenation and near-concatenation as
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ribbons:264

Rib (α · β) =

� �
� � � �

� � �
� � �
�

Rib (α� β) =

� �
� � � � � � �

� � �
�

Lastly, given α in Compn, let ω(α) be the unique composition in Compn
whose partial sums D(ω(α)) form the complementary set within [n − 1]
to the partial sums D(rev(α)); alternatively, one can check this means
that the ribbon for ω(α) is obtained from that of α by conjugation or
transposing, that is, if Rib (α) = λ/µ then Rib (ω(α)) = λt/µt. E.g. if
α = (4, 2, 2) so that n = 8, then rev(α) = (2, 2, 4) has D(rev(α)) = {2, 4} ⊂
[7], complementary to the set {1, 3, 5, 6, 7} which are the partial sums for
ω(α) = (1, 2, 2, 1, 1, 1), and the ribbon diagrams of α and ω(α) are

Rib (α) =
� �

� �
� � � �

and Rib (ω(α)) =

�
�
�

� �
� �
�

Proposition 5.2.15. The structure maps for the Hopf algebra QSym in
the basis {Lα} of fundamental quasisymmetric functions are as follows:

∆Lα =
∑
(β,γ):

β·γ=α or β�γ=α

Lβ ⊗ Lγ,(5.2.5)

LαLβ =
∑

w∈wα�wβ

Lγ(w),(5.2.6)

S(Lα) = (−1)|α|Lω(α).(5.2.7)

Here we are making use of the following notations in (5.2.6) (recall also
Definition 1.6.2):

• A labelled linear order will mean a labelled poset P whose order
<P is a total order. We will identify any labelled linear order P
with the word (over the alphabet Z) obtained by writing down the
elements of P in increasing order (with respect to the total order
<P ). This way, every word (over the alphabet Z) which has no two
equal letters becomes identified with a labelled linear order.
• wα is any labelled linear order with underlying set {1, 2, . . . , |α|}

such that Des (wα) = D (α).
• wβ is any labelled linear order with underlying set
{|α|+ 1, |α|+ 2, . . . , |α|+ |β|} such that Des (wβ) = D (β).
• γ(w) is the unique composition of |α|+ |β| with D(γ(w)) = Des(w).

264The ribbons are drawn with their boxes spaced out in order to facilitate counting.
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(The right hand side of (5.2.6) is to be read as a sum over all w, for a fixed
choice of wα and wβ.)

At first glance the formula (5.2.5) for ∆Lα might seem more complicated
than the formula of Proposition 5.1.7 for ∆Mα. However, it is equally
simple when viewed in terms of ribbon diagrams: it cuts the ribbon diagram
Rib (α) into two smaller ribbons Rib (β) and Rib (γ), in all |α|+ 1 possible
ways, via horizontal cuts (β · γ = α) or vertical cuts (β � γ = α). For
example,

∆L(3,2) = 1⊗ L(3,2) +L(1) ⊗ L(2,2) +L(2) ⊗ L(1,2) +L(3) ⊗ L(2)

� �
� � �

� �
� |� �

� �
� � |�

� �
� � �

+L(3,1) ⊗ L(1) +L(3,2) ⊗ 1.
� |�

� � �
� �

� � �

Example 5.2.16. To multiply L(1,1)L(2), one could pick wα = 21 and
wβ = 34, and then

L(1,1)L(2) =
∑

w∈21� 34

Lγ(w)

= Lγ(2134) + Lγ(2314) + Lγ(3214) + Lγ(2341) + Lγ(3241) + Lγ(3421)

= L(1,3) + L(2,2) + L(1,1,2) + L(3,1) + L(1,2,1) + L(2,1,1).

Before we prove Proposition 5.2.15, we state a simple lemma:

Lemma 5.2.17. Let Q and R be two labelled posets whose underlying
sets are disjoint. Let QtR be the disjoint union of these posets Q and R;
this is again a labelled poset. Then,

FQ (x)FR (x) = FQtR (x) .

Proof. We identify the underlying set of Q t R with Q ∪ R (since the
sets Q and R are already disjoint). If f : Q t R → {1, 2, 3, . . .} is a
Q t R-partition, then its restrictions f |Q and f |R are a Q-partition and
an R-partition, respectively. Conversely, any pair of a Q-partition and
an R-partition can be combined to form a Q t R-partition. Thus, there
is a bijective correspondence between the addends in the expanded sum
FQ (x)FR (x) and the addends in FQtR (x). �

Proof of Proposition 5.2.15. To prove formula (5.2.5) for α in Compn, note
that

∆Lα = Lα(x,y)

=
n∑
k=0

∑
1≤i1≤···≤ik,

1≤ik+1≤···≤in:
ir<ir+1 for r∈D(α)\{k}

xi1 · · · xik · yik+1
· · · yin(5.2.8)

by Proposition 5.2.9 (where we identify QSym⊗QSym with a k-subalgebra

of R (x,y) by means of the embedding QSym⊗QSym
∼=→ QSym (x) ⊗

QSym (y) ↪→ R (x,y) as in the definition of the comultiplication on QSym).
One then realizes that the inner sums corresponding to values of k that lie
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(resp. do not lie) in D(α)∪ {0, n} correspond to the terms Lβ(x)Lγ(y) for
pairs (β, γ) in which β · γ = α (resp. β � γ = α).

For formula (5.2.6), let P be the labelled poset which is the disjoint union
of linear orders wα, wβ. Then

LαLβ = Fwα(x)Fwβ(x) = FP (x) =
∑

w∈L(P )

Fw(x) =
∑

w∈wα�wβ

Lγ(w)

where the first equality used Proposition 5.2.10, the second equality comes
from Lemma 5.2.17, the third equality from Theorem 5.2.11, and the fourth
from the equality L(P ) = wα � wβ.

To prove formula (5.2.7), compute using Theorem 5.1.11 that

S(Lα) =
∑

β refining α

S(Mβ) =
∑
(β,γ):

β refines α,
γ coarsens rev(β)

(−1)`(β)Mγ =
∑
γ

Mγ

∑
β

(−1)`(β)

in which the last inner sum is over β for which

D(β) ⊃ D(α) ∪D(rev(γ)).

The alternating signs make such inner sums vanish unless they have only
the single term where D(β) = [n − 1] (that is, β = (1n)). This happens
exactly when D(rev(γ)) ∪D(α) = [n− 1] or equivalently, when D(rev(γ))
contains the complement of D(α), that is, when D(γ) contains the comple-
ment of D(rev(α)), that is, when γ refines ω(α). Thus

S(Lα) =
∑

γ∈Compn:
γ refines ω(α)

Mγ · (−1)n = (−1)|α|Lω(α). �

The antipode formula (5.2.7) for Lα leads to a general interpretation for
the antipode of QSym acting on P -partition enumerators FP (x).

Definition 5.2.18. Given a labelled poset P on {1, 2, . . . , n}, let the oppo-
site or dual labelled poset P opp be the labelled poset on {1, 2, . . . , n} that
has i <P opp j if and only if j <P i.

For example,

P = 2

4 1

3

P opp = 3

4 1

2

The following observation is straightforward.

Proposition 5.2.19. When P is a linear order corresponding to some
permutation w = (w1, . . . , wn) in Sn, then wopp = ww0 where w0 ∈ Sn

is the permutation that swaps i ↔ n + 1 − i (this is the so-called longest
permutation, thus named due to it having the highest “Coxeter length”
among all permutations in Sn). Furthermore, in this situation one has
Fw(x) = Lα, that is, Des(w) = D(α) if and only if Des(wopp) = D(ω(α)),
that is Fwopp(x) = Lω(α). Thus,

S(Fw(x)) = (−1)nFwopp(x).
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For example, given the compositions considered earlier:

α = (4, 2, 2) =
� �

� �
� � � �

and ω(α) = (1, 2, 2, 1, 1, 1) =

�
�
�

� �
� �
�

if one picks w = 1235 · 47 · 68 (with descent positions marked by dots)
having Des(w) = {4, 6} = D(α), then wopp = ww0 = 8 · 67 · 45 · 3 · 2 · 1 has
Des(wopp) = {1, 3, 5, 6, 7} = D(ω(α)).

Corollary 5.2.20. For any labelled poset P on {1, 2, . . . , n}, one has

S (FP (x)) = (−1)nFP opp(x).

Proof. Since S is linear, one can apply Theorem 5.2.11 and Proposition 5.2.19,
obtaining

S (FP (x)) =
∑

w∈L(P )

S(Fw(x)) =
∑

w∈L(P )

(−1)nFwopp(x) = (−1)nFP opp(x),

as L(P opp) = {wopp : w ∈ L(P )}. �

Remark 5.2.21. Malvenuto and Reutenauer, in [147, Theorem 3.1], prove
an even more general antipode formula, which encompasses our Corol-
lary 5.2.20, Proposition 5.2.19, Theorem 5.1.11 and (5.2.7). See [85, Theo-
rem 4.2] for a restatement and a self-contained proof of this theorem (and
[85, Theorem 4.7] for an even further generalization).

We remark on a special case of Corollary 5.2.20 to which we alluded
earlier, related to skew Schur functions.

Corollary 5.2.22. In Λ, the action of ω and the antipode S on skew Schur
functions sλ/µ are as follows:

ω(sλ/µ) = sλt/µt ,(5.2.9)

S(sλ/µ) = (−1)|λ/µ|sλt/µt .(5.2.10)

Proof. Given a skew shape λ/µ, one can always create a labelled poset P
which is its skew Ferrers poset , together with one of many column-strict
labellings , in such a way that FP (x) = sλ/µ(x). An example is shown here
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for λ/µ = (4, 4, 2)/(1, 1, 0):

λ/µ =
� � �
� � �

� �
P = 5

8 4 2

7 3 1

6

f(5)

f(8)

<

f(4)
≤

f(2)

f(7)
≤

<

f(3)
≤

<

f(1)
≤

f(6)
≤

<

The general definition is as follows: Let P be the set of all boxes of the
skew diagram λ/µ. Label these boxes by the numbers 1, 2, . . . , n (where
n = |λ/µ|) row by row from bottom to top (reading every row from left to
right), and then define an order relation <P on P by requiring that every
box be smaller (in P ) than its right neighbor and smaller (in P ) than its
lower neighbor. It is not hard to see that in this situation, FP opp(x) =∑

T xcont(T ) as T ranges over all reverse semistandard tableaux or column-
strict plane partitions of λt/µt:

λt/µt =

�
� � �
� �
� �

P opp = 6

7 3 1

8 4 2

5

f(6)

f(7)

<

f(3)
≤

f(1)

f(8)

<

f(4)

<

≤
f(2)

<

≤

f(5)

<

≤

But this means that FP opp(x) = sλt/µt(x), since the fact that skew Schur
functions lie in Λ implies that they can be defined either as generating
functions for column-strict tableaux or reverse semistandard tableaux; see
Remark 2.2.5 above, or [206, Prop. 7.10.4].

Thus we have

FP (x) = sλ/µ(x),

FP opp(x) = sλt/µt(x).

Corollary 1.4.27 tells us that the antipode for QSym must specialize to the
antipode for Λ (see also Remark 5.4.11 below), so (5.2.10) is a special case
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of Corollary 5.2.20. Then (5.2.9) follows from the relation (2.4.11) that
S(f) = (−1)nω(f) for f in Λn. �

Remark 5.2.23. Before leaving P -partitions temporarily, we mention two
open questions about them.

The first is a conjecture of Stanley from his thesis [203]. As mentioned in
the proof of Corollary 5.2.22, each skew Schur function sλ/µ(x) is a special
instance of P -partition enumerator FP (x).

Conjecture 5.2.24. A labelled poset P has FP (x) symmetric, and not
just quasisymmetric, if and only if P is a column-strict labelling of some
skew Ferrers poset λ/µ.

A somewhat weaker result in this direction was proven by Malvenuto in
her thesis [145, Thm. 6.4], showing that if a labelled poset P has the
stronger property that its set of linear extensions L(P ) is a union of plactic
or Knuth equivalence classes, then P must be a column-strict labelling of
a skew Ferrers poset.

The next question is due to P. McNamara, and is suggested by the ob-
vious factorizations of P -partition enumerators FP1tP2(x) = FP1(x)FP2(x)
(Lemma 5.2.17).

Question 5.2.25. If k is a field, does a connected labelled poset P always
have FP (x) irreducible within the ring QSym?

The phrasing of this question requires further comment. It is assumed
here that x = (x1, x2, . . .) is infinite; for example when P is a 2-element
chain labelled “against the grain” (i.e., the bigger element of the chain has
the smaller label), then FP (x) = e2(x) is irreducible, but its specialization
to two variables x = (x1, x2) is e2(x1, x2) = x1x2, which is reducible. If one
wishes to work in finitely many variables x = (x1, . . . , xm) one can perhaps
assume that m is at least |P |+ 1.

When working in QSym = QSym(x) in infinitely many variables, it is
perhaps not so clear where factorizations occur. For example, if f lies in
QSym and factors f = g ·h with g, h in R(x), does this imply that g, h also
lie in QSym? The answer is “Yes” (for k = Z), but this is not obvious, and
was proven by P. Pylyavskyy in [175, Chap. 11].

One also might wonder whether QSymZ is a unique factorization domain,
but this follows from the result of M. Hazewinkel ([89] and [93, Thm. 6.7.5],
and Theorem 6.4.3 further below) who proved a conjecture of Ditters that
QSymZ is a polynomial algebra; earlier Malvenuto and Reutenauer [146,
Cor. 2.2] had shown that QSymQ is a polynomial algebra. In fact, one can
find polynomial generators {Pα} for QSymQ as a subset of the dual basis
to the Q-basis {ξα} for NSymQ which comes from taking products ξα :=
ξα1 · · · ξα` of the elements {ξn} defined in Remark 5.4.4 below. Specifically,
one takes those Pα for which the composition α is a Lyndon composition; see
the First proof of Proposition 6.4.4 for a mild variation on this construction.

Hazewinkel’s proof [93, Thm. 6.7.5] of the polynomiality of QSymZ also
shows that QSym is a polynomial ring over Λ (see Corollary 6.5.33); in
particular, this yields that QSym is a free Λ-module.265

265The latter statement has an analogue in finitely many indeterminates, proven by
Lauve and Mason in [125, Corollary 13]: The quasisymmetric functions QSym

(
{xi}i∈I

)
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An affirmative answer to Question 5.2.25 is known at least in the spe-
cial case where P is a connected column-strict labelling of a skew Ferrers
diagram, that is, when FP (x) = sλ/µ(x) for some connected skew diagram
λ/µ; see [13].

5.3. Standardization of n-tuples and the fundamental basis. An-
other equivalent description of the fundamental quasisymmetric functions
Lα (Lemma 5.3.6 below) relies on the concept of words and of their stan-
dardizations. We shall study words in detail in Chapter 6; at this point,
we merely introduce the few notions that we will need:

Definition 5.3.1. We fix a totally ordered set A, which we call the alpha-
bet .

We recall that a word over A is just a (finite) tuple of elements of A.
A word (w1, w2, . . . , wn) can be written as w1w2 · · ·wn when this incurs no
ambiguity.

If w ∈ An is a word and i ∈ {1, 2, . . . , n}, then the i-th letter of w means
the i-th entry of the n-tuple w. This i-th letter will be denoted by wi.

Our next definition relies on a simple fact about permutations and words:266

Proposition 5.3.2. Let w = (w1, w2, . . . , wn) ∈ An be any word. Then,
there exists a unique permutation σ ∈ Sn such that for every two elements
a and b of {1, 2, . . . , n} satisfying a < b, we have

(σ (a) < σ (b) if and only if wa ≤ wb) .

Definition 5.3.3. Let w ∈ An be any word. The unique permutation
σ ∈ Sn defined in Proposition 5.3.2 is called the standardization of w, and
is denoted by stdw.

Example 5.3.4. If A is the alphabet {1 < 2 < 3 < · · · }, then std (41211424)
is the permutation which is written (in one-line notation) as 61423758.

A simple method to compute the standardization of a word w ∈ An is
the following: Replace all occurrences of the smallest letter appearing in w
by the numbers 1, 2, . . . ,m1 (where m1 is the number of these occurrences);
then replace all occurrences of the second-smallest letter appearing in w by
the numbers m1 + 1,m1 + 2, . . . ,m1 +m2 (where m2 is the number of these
occurrences), and so on, until all letters are replaced by numbers.267 The
result is the standardization of w, in one-line notation.

Another method to compute the standardization stdw of a word w =
(w1, w2, . . . , wn) ∈ An is based on sorting. Namely, consider the total order
on the set A× Z given by

(a, i) ≤ (b, j) if and only if (either a < b or (a = b and i ≤ j)) .

(In other words, two pairs in A × Z are compared by first comparing
their first entries, and then, in the case of a tie, using the second en-
tries as tiebreakers.) Now, in order to compute stdw, we sort the n-tuple

are free as a Λ
(
{xi}i∈I

)
-module for any totally ordered set I, infinite or not. In the case

of finite I, this cannot be derived by Hazewinkel’s arguments, as the ring QSym
(
{xi}i∈I

)
is not in general a polynomial ring (e.g., when k = Q and I = {1, 2}, this ring is not

even a UFD, as witnessed by
(
x2

1x2

)
·
(
x1x

2
2

)
= (x1x2)

3
).

266See Exercise 5.3.7 below for a proof of Proposition 5.3.2.
267Here, a number is not considered to be a letter; thus, a number that replaces a

letter will always be left in peace afterwards.
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((w1, 1) , (w2, 2) , . . . , (wn, n)) ∈ (A× Z)n into increasing order (with re-
spect to the total order just described), thus obtaining a new n-tuple of
the form

((
wτ(1), τ (1)

)
,
(
wτ(2), τ (2)

)
, . . . ,

(
wτ(n), τ (n)

))
for some τ ∈ Sn;

the standardization stdw is then τ−1.

Definition 5.3.5. Let n ∈ N. Let σ ∈ Sn. Define a subset Desσ of
{1, 2, . . . , n− 1} by

Desσ = {i ∈ {1, 2, . . . , n− 1} | σ (i) > σ (i+ 1)} .

(This is a particular case of the definition of Desw in Exercise 2.9.11, if we
identify σ with the n-tuple (σ (1) , σ (2) , . . . , σ (n)). It is also a particular
case of the definition of Desw in Proposition 5.2.10, if we identify σ with
the total order (σ (1) < σ (2) < · · · < σ (n)) on the set {1, 2, . . . , n}.)

There is a unique composition α of n satisfying D (α) = Desσ (where
D (α) is defined as in Definition 5.1.10). This composition will be denoted
by γ (σ).

The following lemma (equivalent to [182, Lemma 9.39]) yields another
description of the fundamental quasisymmetric functions:

Lemma 5.3.6. Let A denote the totally ordered set {1 < 2 < 3 < · · · } of
positive integers. For each word w = (w1, w2, . . . , wn) ∈ An, we define a
monomial xw in k [[x]] by xw = xw1xw2 · · · xwn .

Let n ∈ N and σ ∈ Sn. Then,

Lγ(σ) =
∑
w∈An;

stdw=σ−1

xw.

Exercise 5.3.7. Prove Proposition 5.3.2 and Lemma 5.3.6.

5.4. The Hopf algebra NSym dual to QSym. We introduce here the
(graded) dual Hopf algebra to QSym. This is well-defined, as QSym is
connected graded of finite type.

Definition 5.4.1. Let NSym := QSymo, with dual pairing

NSym⊗QSym
(·,·)−→ k.

Let {Hα} be the k-basis of NSym dual to the k-basis {Mα} of QSym, so
that

(Hα,Mβ) = δα,β.

When the base ring k is not clear from the context, we write NSymk in
lieu of NSym.

The Hopf algebra NSym is known as the Hopf algebra of noncommutative
symmetric functions . Its study goes back to [77].

Theorem 5.4.2. Letting Hn := H(n) for n = 0, 1, 2, . . ., with H0 = 1, one
has that

(5.4.1) NSym ∼= k〈H1, H2, . . .〉,
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the free associative (but not commutative) algebra on generators {H1, H2, . . .}
with coproduct determined by268

(5.4.2) ∆Hn =
∑
i+j=n

Hi ⊗Hj.

Proof. Since Proposition 5.1.7 asserts that ∆Mα =
∑

(β,γ):β·γ=αMβ ⊗Mγ,

and since {Hα} are dual to {Mα}, one concludes that for any compositions
β, γ, one has

HβHγ = Hβ·γ.

Iterating this gives

(5.4.3) Hα = H(α1,...,α`) = Hα1 · · ·Hα` .

Since the Hα are a k-basis for NSym, this shows NSym ∼= k〈H1, H2, . . .〉.
Note that Hn = H(n) is dual to M(n), so to understand ∆Hn, one should

understand how M(n) can appear as a term in the product MαMβ. By
(5.1.1) this occurs only if α = (i), β = (j) where i+ j = n, where

M(i)M(j) = M(i+j) +M(i,j) +M(j,i)

(where the M(i,j) and M(j,i) addends have to be disregarded if one of i and
j is 0). By duality, this implies the formula (5.4.2). �

Corollary 5.4.3. The algebra homomorphism defined by

NSym
π−→ Λ,

Hn 7−→ hn

is a Hopf algebra surjection, and adjoint to the inclusion Λ
i
↪→ QSym (with

respect to the dual pairing NSym⊗QSym
(·,·)−→ k).

Proof. As an algebra morphism, π may be identified with the surjection
T (V ) → Sym(V ) from the tensor algebra on a graded free k-module V
with basis {H1, H2, . . .} to the symmetric algebra on V , since

NSym ∼= k〈H1, H2, . . .〉,
Λ ∼= k[h1, h2, . . .].

As (5.4.2) and Proposition 2.3.6(iii) assert that

∆Hn =
∑
i+j=n

Hi ⊗Hj,

∆hn =
∑
i+j=n

hi ⊗ hj,

this map π is also a bialgebra morphism, and hence a Hopf morphism by
Corollary 1.4.27.

268The abbreviated summation indexing
∑
i+j=n ti,j used here is intended to mean∑

(i,j)∈N2;
i+j=n

ti,j .
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To check π is adjoint to i, let λ(α) denote the partition which is the
weakly decreasing rearrangement of the composition α, and note that the
bases {Hα} of NSym and {mλ} of Λ satisfy

(π(Hα),mλ) = (hλ(α),mλ) =

{
1 if λ(α) = λ
0 otherwise

}
=

Hα,
∑

β:λ(β)=λ

Mβ


= (Hα, i(mλ)). �

Remark 5.4.4. For those who prefer generating functions to sign-reversing
involutions, we sketch here Malvenuto and Reutenauer’s elegant proof [146,
Cor. 2.3] of the antipode formula (Theorem 5.1.11). One needs to know
that when Q is a subring of k, and A is a k-algebra (possibly noncommu-
tative), in the ring of power series A[[t]] where t commutes with all of A,
one still has familiar facts, such as

a(t) = log b(t) if and only if b(t) = exp a(t)

and whenever a(t), b(t) commute in A[[t]], one has

exp (a(t) + b(t)) = exp a(t) exp b(t),(5.4.4)

log (a(t)b(t)) = log a(t) + log b(t).(5.4.5)

Start by assuming WLOG that k = Z (as NSymk = NSymZ⊗Zk in the gen-
eral case). Now, define in NSymQ = NSym⊗ZQ the elements {ξ1, ξ2, . . .}
via generating functions in NSymQ[[t]]:

(5.4.6)

H̃(t) :=
∑
n≥0

Hnt
n,

ξ(t) :=
∑
n≥1

ξnt
n = log H̃(t).

One first checks that this makes each ξn primitive, via a computation in the
ring (NSymQ⊗NSymQ)[[t]] (into which we “embed” the ring (NSymQ[[t]])⊗Q[[t]]

(NSymQ[[t]]) via the canonical ring homomorphism from the latter into the
former 269):

∆ξ(t) = ∆

(
log
∑
n≥0

Hnt
n

)
= log

∑
n≥0

∆(Hn)tn = log
∑
n≥0

(∑
i+j=n

Hi ⊗Hj

)
tn

= log

((∑
i≥0

Hit
i

)
⊗

(∑
j≥0

Hjt
j

))

= log

((∑
i≥0

Hit
i ⊗ 1

)(
1⊗

∑
j≥0

Hjt
j

))
(5.4.5)

= log H̃(t)⊗ 1 + 1⊗ log H̃(t) = ξ(t)⊗ 1 + 1⊗ ξ(t).

269This ring homomorphism might fail to be injective, whence the “embed” stands in
quotation marks. This does not need to worry us, since we will not draw any conclusions
in (NSymQ[[t]])⊗Q[[t]] (NSymQ[[t]]) from our computation.

We are also somewhat cavalier with the notation ∆: we use it both for the comul-
tiplication ∆ : NSymQ → NSymQ⊗NSymQ of the Hopf algebra NSymQ and for the

continuous k-algebra homomorphism NSymQ [[t]]→
(
NSymQ⊗NSymQ

)
[[t]] it induces.
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Comparing coefficients in this equality yields ∆(ξn) = ξn ⊗ 1 + 1 ⊗ ξn.
Thus S(ξn) = −ξn, by Proposition 1.4.17. This allows one to determine
S(Hn) and S(Hα), after one first inverts the relation (5.4.6) to get that

H̃(t) = exp ξ(t), and hence

S(H̃(t)) = S(exp ξ(t)) = expS(ξ(t)) = exp (−ξ(t)) (5.4.4)
= (exp ξ(t))−1

= H̃(t)−1 =
(
1 +H1t+H2t

2 + · · ·
)−1

.

Upon expanding the right side, and comparing coefficients of tn, this gives

S(Hn) =
∑

β∈Compn

(−1)`(β)Hβ

and hence

S(Hα) = S(Hα`) · · ·S(Hα2)S(Hα1) =
∑
γ:

γ refines rev(α)

(−1)`(γ)Hγ

=
∑
γ:

rev(γ) refines α

(−1)`(γ)Hγ

(because if µ and ν are two compositions, then µ refines ν if and only if
rev(µ) refines rev(ν)). As SNSym, SQSym are adjoint, and {Hα}, {Mα} are
dual bases, this is equivalent to saying that

S(Mα) = (−1)`(α)
∑
γ:

rev(α) refines γ

Mγ for all α ∈ Comp.

But this is precisely the claim of Theorem 5.1.11. Thus, Theorem 5.1.11 is
proven once again.

Let us say a bit more about the elements ξn defined in (5.4.6) above. The
elements nξn are noncommutative analogues of the power sum symmetric
functions pn (and, indeed, are lifts of the latter to NSym, as Exercise 5.4.5
below shows). They are called the noncommutative power sums of the
second kind in [77]270, and their products form a basis of NSym. They
are furthermore useful in studying the so-called Eulerian idempotent of a
cocommutative Hopf algebra, as shown in Exercise 5.4.6 below.

Exercise 5.4.5. Assume that Q is a subring of k. Define a sequence of
elements ξ1, ξ2, ξ3, . . . of NSym = NSymk by (5.4.6).

(a) For every n ≥ 1, show that ξn is a primitive homogeneous element
of NSym of degree n.

(b) For every n ≥ 1, show that π (nξn) is the n-th power sum symmetric
function pn ∈ Λ.

(c) For every n ≥ 1, show that

(5.4.7) ξn =
∑

α∈Compn

(−1)`(α)−1 1

` (α)
Hα.

(d) For every composition α, define an element ξα of NSym by ξα =
ξα1ξα2 · · · ξα` , where α is written in the form α = (α1, α2, . . . , α`)

270See Exercise 5.4.12 for the ones of the first kind.
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with ` = ` (α). Show that

(5.4.8) Hn =
∑

α∈Compn

1

` (α)!
ξα

for every n ∈ N.
Use this to prove that (ξα)α∈Compn

is a k-basis of NSymn for every
n ∈ N.

Exercise 5.4.6. Assume that Q is a subring of k. Let A be a cocom-
mutative connected graded k-bialgebra. Let A =

⊕
n≥0An be the decom-

position of A into homogeneous components. If f is any k-linear map
A → A annihilating A0, then f is locally ?-nilpotent271, and so the sum
log? (f + uε) :=

∑
n≥1 (−1)n−1 1

n
f ?n is a well-defined endomorphism of A

272. Let e denote the endomorphism log? (idA) of A (obtained by setting
f = idA−uε : A → A). Show that e is a projection from A to the k-
submodule p of all primitive elements of A (and thus, in particular, is
idempotent).

Hint: For every n ≥ 0, let πn : A → A be the projection onto the
n-th homogeneous component An. Since NSym is the free k-algebra with
generators H1, H2, H3, . . ., we can define a k-algebra homomorphism W :
NSym→ (EndA, ?) by sending Hn to πn. Show that:

(a) The map e : A→ A is graded. For every n ≥ 0, we will denote the
map πn ◦ e = e ◦ πn : A→ A by en.

(b) We have W (ξn) = en for all n ≥ 1, where ξn is defined as in
Exercise 5.4.5.

(c) If w is an element of NSym, and if we write ∆ (w) =
∑

(w) w1 ⊗ w2

using the Sweedler notation, then

∆ ◦ (W (w)) =

∑
(w)

W (w1)⊗W (w2)

 ◦∆.

(d) We have en (A) ⊂ p for every n ≥ 0.
(e) We have e (A) ⊂ p.
(f) The map e fixes any element of p.

Remark 5.4.7. The endomorphism e of Exercise 5.4.6 is known as the Euler-
ian idempotent of A, and can be contrasted with the Dynkin idempotent of
Remark 1.5.15. It has been studied in [166], [169], [31] and [60], and relates
to the Hochschild cohomology of commutative algebras [134, §4.5.2].

271See the proof of Proposition 1.4.24 for what this means.
272This definition of log? (f + uε) is actually a particular case of Definition 1.7.17.

This can be seen as follows:
We have f (A0) = 0. Thus, Proposition 1.7.11(h) (applied to C = A) yields f ∈

n (A,A) (where n (A,A) is defined as in Section 1.7), so that (f + uε) − uε = f ∈
n (A,A). Therefore, Definition 1.7.17 defines a map log? (f + uε) ∈ n (A,A). This

map is identical to the map log? (f + uε) :=
∑
n≥1 (−1)

n−1 1
nf

?n we have just defined,

because Proposition 1.7.18(f) (applied to C = A) shows that the map log? (f + uε)
defined using Definition 1.7.17 satisfies

log? (f + uε) =
∑
n≥1

(−1)
n−1

n
f?n =

∑
n≥1

(−1)
n−1 1

n
f?n.
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Exercise 5.4.8. Assume that Q is a subring of k. Let A, An and e be as
in Exercise 5.4.6.

(a) Show that e?n ◦ e?m = n!δn,me
?n for all n ∈ N and m ∈ N.

(b) Show that e?n ◦ id?mA = id?mA ◦e?n = mne?n for all n ∈ N and m ∈ N.

We next explore the basis for NSym dual to the {Lα} in QSym.

Definition 5.4.9. Define the noncommutative ribbon functions {Rα}α∈Comp

to be the k-basis of NSym dual to the fundamental basis {Lα}α∈Comp of
QSym, so that

(Rα, Lβ) = δα,β for all α, β ∈ Comp.

Theorem 5.4.10. (a) One has that

Hα =
∑

β coarsens α

Rβ;(5.4.9)

Rα =
∑

β coarsens α

(−1)`(β)−`(α)Hβ.(5.4.10)

(b) The surjection NSym
π−→ Λ sends Rα 7−→ sRib(α), the skew Schur

function associated to the ribbon Rib (α).
(c) Furthermore,

RαRβ = Rα·β +Rα�β if α and β are nonempty;(5.4.11)

S(Rα) = (−1)|α|Rω(α).(5.4.12)

Finally, R∅ is the multiplicative identity of NSym.

Proof. (a) For (5.4.9), note that

Hα =
∑
β

(Hα, Lβ)Rβ =
∑
β

Hα,
∑
γ:

γ refines β

Mγ

Rβ =
∑
β:

β coarsens α

Rβ.

The equality (5.4.10) follows from (5.4.9) by Lemma 5.2.7(a).
(b) Write α as (α1, . . . , α`). To show that π(Rα) = sRib(α), we instead

examine π(Hα):

π(Hα) = π(Hα1 · · ·Hα`) = hα1 · · ·hα` = s(α1) · · · s(α`) = s(α1)⊕···⊕(α`)

where (α1)⊕· · ·⊕(α`) is some skew shape which is a horizontal strip having
rows of lengths α1, . . . , α` from bottom to top. We claim

s(α1)⊕···⊕(α`) =
∑
β:

β coarsens α

sRib(β),

because column-strict tableaux T of shape (α1)⊕· · ·⊕(α`) biject to column-
strict tableaux T ′ of some ribbon Rib (β) with β coarsening α, as follows:
Let ai, bi denote the leftmost, rightmost entries of the i-th row from the
bottom in T , of length αi, and

• if bi ≤ ai+1, merge parts αi, αi+1 in β, and concatenate the rows of
length αi, αi+1 in T ′, or
• if bi > ai+1, do not merge parts αi, αi+1 in β, and let these two rows

overlap in one column in T ′.
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E.g., if α = (3, 3, 2, 3, 2), then the tableau

T =

3 4
4 4 5

4 4
2 2 3

1 1 3

of shape (α1)⊕ · · · ⊕ (α`) maps to the tableau

T ′ =
3 4

2 2 3 4 4 4 4 5
1 1 3

of shape Rib (β) for β = (3, 8, 2).
The reverse bijection breaks the rows of T ′ into the rows of T of lengths

dictated by the parts of α. Having shown π(Hα) =
∑

β:β coarsens α sRib(β),

we can now apply Lemma 5.2.7(a) to obtain

sRib(α) =
∑

β:β coarsens α

(−1)`(α)−`(β) π (Hβ) = π (Rα) (by (5.4.10)) ;

thus, π(Rα) = sRib(α) is proven.
(c) Finally, (5.4.11) and (5.4.12) follow from (5.2.5) and (5.2.7) by dual-

ity. �

Remark 5.4.11. Since the maps

NSym

π "" ""

QSym

Λ
- 


i

<<

are Hopf morphisms, they must respect the antipodes SΛ, SQSym, SNSym, but
it is interesting to compare them explicitly using the fundamental basis for
QSym and the ribbon basis for NSym.

On one hand (5.2.7) shows that SQSym(Lα) = (−1)|α|Lω(α) extends the
map SΛ since L(1n) = en and L(n) = hn, as observed in Example 5.2.5, and
ω((n)) = (1n).

On the other hand, (5.4.12) shows that SNSym(Rα) = (−1)|α|Rω(α) lifts
the map SΛ to SNSym: Theorem 5.4.10(b) showed that Rα lifts the skew
Schur function sRib(α), while (2.4.15) asserted that S(sλ/µ) = (−1)|λ/µ|sλt/µt ,
and a ribbon Rib (α) = λ/µ has Rib (ω(α)) = λt/µt.

Exercise 5.4.12. (a) Show that any integers n and i with 0 ≤ i < n
satisfy

R(1i,n−i) =
i∑

j=0

(−1)i−j R(1j)Hn−j.

(Here, as usual, 1i stands for the number 1 repeated i times.)
(b) Show that any integers n and i with 0 ≤ i < n satisfy

(−1)iR(1i,n−i) =
i∑

j=0

S (Hj)Hn−j.
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(c) For every positive integer n, define an element Ψn of NSym by

Ψn =
n−1∑
i=0

(−1)iR(1i,n−i).

Show that Ψn = (S ? E) (Hn), where the map E : NSym → NSym
is defined as in Exercise 1.5.14 (for A = NSym). Conclude that Ψn

is primitive.
(d) Prove that

n−1∑
k=0

HkΨn−k = nHn

for every n ∈ N.

(e) Define two power series ψ (t) and H̃ (t) in NSym [[t]] by

ψ (t) =
∑
n≥1

Ψnt
n−1;

H̃ (t) =
∑
n≥0

Hnt
n.

Show that273 d

dt
H̃ (t) = H̃ (t) · ψ (t).

(The functions Ψn are called noncommutative power sums of the
first kind ; they are studied in [77]. The power sums of the second
kind are the nξn in Remark 5.4.4.)

(f) Show that π (Ψn) equals the power sum symmetric function pn for
every positive integer n.

(g) Show that every positive integer n satisfies

pn =
n−1∑
i=0

(−1)i s(n−i,1i) in Λ.

(h) For every nonempty composition α, define a positive integer lp (α)
by lp (α) = α`, where α is written in the form α = (α1, α2, . . . , α`)
with ` = ` (α). (Thus, lp (α) is the last part of α.)

Show that every positive integer n satisfies

(5.4.13) Ψn =
∑

α∈Compn

(−1)`(α)−1 lp (α)Hα.

(i) Assume that Q is a subring of k.
For every composition α, define an element Ψα of NSym by Ψα =

Ψα1Ψα2 · · ·Ψα` , where α is written in the form α = (α1, α2, . . . , α`)
with ` = ` (α).

For every composition α, define πu (α) to be the positive integer
α1 (α1 + α2) · · · (α1 + α2 + · · ·+ α`), where α is written in the form
α = (α1, α2, . . . , α`) with ` = ` (α).

Show that

(5.4.14) Hn =
∑

α∈Compn

1

πu (α)
Ψα

273The derivative d
dtQ (t) of a power series Q (t) ∈ R [[t]] over a noncommutative ring

R is defined just as in the case of R commutative: by setting d
dtQ (t) =

∑
i≥1 iqit

i−1,

where Q (t) is written in the form Q (t) =
∑
i≥0 qit

i.
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for every n ∈ N.
Use this to prove that (Ψα)α∈Compn

is a k-basis of NSymn for
every n ∈ N.

(j) Assume that Q is a subring of k. Let V be the free k-module with
basis (bn)n∈{1,2,3,...}. Define a k-module homomorphism f : V →
NSym by requiring that f (bn) = Ψn for every n ∈ {1, 2, 3, . . .}.
Let F be the k-algebra homomorphism T (V )→ NSym induced by
this f (using the universal property of the tensor algebra T (V )).
Show that F is a Hopf algebra isomorphism (where the Hopf algebra
structure on T (V ) is as in Example 1.4.18).

(k) Assume that Q is a subring of k. Let V be as in Exercise 5.4.12(j).
Show that QSym is isomorphic to the shuffle algebra Sh (V ) (defined
as in Proposition 1.6.7) as Hopf algebras.

(l) Solve parts (a) and (b) of Exercise 2.9.14 again using the ribbon
basis functions Rα.

One might wonder whether the Frobenius endomorphisms of Λ (defined
in Exercise 2.9.9) and the Verschiebung endomorphisms of Λ (defined in
Exercise 2.9.10) generalize to analogous operators on either QSym or NSym.
The next two exercises (whose claims mostly come from [90, §13]) answer
this question: The Frobenius endomorphisms extend to QSym, and the
Verschiebung ones lift to NSym.

Exercise 5.4.13. For every n ∈ {1, 2, 3, . . .}, define a map Fn : QSym →
QSym by setting

Fn (a) = a (xn1 , x
n
2 , x

n
3 , . . .) for every a ∈ QSym .

(So what Fn does to a quasi-symmetric function is replacing all variables
x1, x2, x3, . . . by their n-th powers.)

(a) Show that Fn : QSym → QSym is a k-algebra homomorphism for
every n ∈ {1, 2, 3, . . .}.

(b) Show that Fn ◦ Fm = Fnm for any two positive integers n and m.
(c) Show that F1 = id.
(d) Prove that Fn

(
M(β1,β2,...,βs)

)
= M(nβ1,nβ2,...,nβs) for every

n ∈ {1, 2, 3, . . .} and (β1, β2, . . . , βs) ∈ Comp.
(e) Prove that Fn : QSym → QSym is a Hopf algebra homomorphism

for every n ∈ {1, 2, 3, . . .}.
(f) Consider the maps fn : Λ→ Λ defined in Exercise 2.9.9. Show that

Fn |Λ= fn for every n ∈ {1, 2, 3, . . .}.
(g) Assume that k = Z. Prove that fp (a) ≡ ap mod pQSym for every

a ∈ QSym and every prime number p.
(h) Give a new solution to Exercise 2.9.9(d).

Exercise 5.4.14. For every n ∈ {1, 2, 3, . . .}, define a k-algebra homomor-
phism Vn : NSym→ NSym by

Vn (Hm) =

{
Hm/n, if n | m;

0, if n - m
for every positive integer m

274.

274This is well-defined, since NSym is (isomorphic to) the free associative algebra
with generators H1, H2, H3, . . . (according to (5.4.1)).
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(a) Show that any positive integers n and m satisfy

Vn (Ψm) =

{
nΨm/n, if n | m;

0, if n - m
,

where the elements Ψm and Ψm/n of NSym are as defined in Exer-
cise 5.4.12(c).

(b) Show that if Q is a subring of k, then any positive integers n and
m satisfy

Vn (ξm) =

{
ξm/n, if n | m;

0, if n - m
,

where the elements ξm and ξm/n of NSym are as defined in Exer-
cise 5.4.5.

(c) Prove that Vn ◦Vm = Vnm for any two positive integers n and m.
(d) Prove that V1 = id.
(e) Prove that Vn : NSym → NSym is a Hopf algebra homomorphism

for every n ∈ {1, 2, 3, . . .}.
Now, consider also the maps Fn : QSym → QSym defined in Exer-

cise 2.9.9. Fix a positive integer n.

(f) Prove that the maps Fn : QSym→ QSym and Vn : NSym→ NSym

are adjoint with respect to the dual pairing NSym⊗QSym
(·,·)−→ k.

(g) Consider the maps vn : Λ → Λ defined in Exercise 2.9.10. Show
that the surjection π : NSym→ Λ satisfies vn ◦π = π ◦Vn for every
n ∈ {1, 2, 3, . . .}.

(h) Give a new solution to Exercise 2.9.10(f).
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6. Polynomial generators for QSym and Lyndon words

In this chapter, we shall construct an algebraically independent generat-
ing set for QSym as a k-algebra, thus showing that QSym is a polynomial
ring over k. This has been done by Malvenuto [145, Cor. 4.19] when k
is a field of characteristic 0, and by Hazewinkel [89] in the general case.
We will begin by introducing the notion of Lyndon words (Section 6.1), on
which both of these constructions rely; we will then (Section 6.2) elucidate
the connection of Lyndon words with shuffles, and afterwards (Section 6.3)
apply it to prove Radford’s theorem stating that the shuffle algebra of a
free k-module over a commutative Q-algebra is a polynomial algebra (The-
orem 6.3.4). The shuffle algebra is not yet QSym, but Radford’s theorem
on the shuffle algebra serves as a natural stepping stone for the study of
the more complicated algebra QSym. We will prove – in two ways – that
QSym is a polynomial algebra when Q is a subring of k in Section 6.4, and
then we will finally prove the general case in Section 6.5. In Section 6.6,
we will explore a different aspect of the combinatorics of words: the notion
of necklaces (which are in bijection with Lyndon words, as Exercise 6.1.34
will show) and the Gessel-Reutenauer bijection, which help us define and
understand the Gessel-Reutenauer symmetric functions. This will rely on
Section 6.1, but not on any of the other sections of Chapter 6.

Strictly speaking, this whole Chapter 6 is a digression, as it involves al-
most no coalgebraic or Hopf-algebraic structures, and its results will not
be used in further chapters (which means it can be skipped if so desired).
However, it sheds additional light on both quasisymmetric and symmetric
functions, and serves as an excuse to study Lyndon words, which are a com-
binatorial object of independent interest (and are involved in the study of
free algebras and Hopf algebras, apart from QSym – see [177] and [182]275).

We will take a scenic route to the proof of Hazewinkel’s theorem. A
reader only interested in the proof proper can restrict themselves to reading
only the following:

• from Section 6.1, everything up to Corollary 6.1.6, then from Defini-
tion 6.1.13 up to Proposition 6.1.18, then from Definition 6.1.25 up
to Lemma 6.1.28, and finally Theorem 6.1.30. (Proposition 6.1.19
and Theorem 6.1.20 are also relevant if one wants to use a different
definition of Lyndon words, as they prove the equivalence of most
such definitions.)
• from Section 6.2, everything except for Exercise 6.2.25.
• from Section 6.3, Definition 6.3.1, Lemma 6.3.7, and Lemma 6.3.10.
• from Section 6.4, Definition 6.4.1, Theorem 6.4.3, then from Propo-

sition 6.4.5 up to Definition 6.4.9, and Lemma 6.4.11.
• all of Section 6.5.

Likewise, Section 6.6 can be read immediately after Section 6.1.

6.1. Lyndon words. Lyndon words have been independently defined by
Shirshov [202], Lyndon [141], Radford [177, §2] and de Bruijn/Klarner [29]
(though using different and sometimes incompatible notations). They have

275They also are involved in indexing basis elements of combinatorial Hopf algebras
other than QSym. See Bergeron/Zabrocki [18].
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since been surfacing in various places in noncommutative algebra (partic-
ularly the study of free Lie algebras); expositions of their theory can be
found in [139, §5], [182, §5.1] and [124, §1] (in German). We will follow our
own approach to the properties of Lyndon words that we need.

Definition 6.1.1. We fix a totally ordered set A, which we call the alpha-
bet . Throughout Section 6.1 and Section 6.2, we will understand “word”
to mean a word over A.

We recall that a word is just a (finite) tuple of elements of A. In other
words, a word is an element of the set

⊔
n≥0 A

n. We denote this set by A∗.
The empty word is the unique tuple with 0 elements. It is denoted by ∅.

If w ∈ An is a word and i ∈ {1, 2, . . . , n}, then the i-th letter of w means
the i-th entry of the n-tuple w. This i-th letter will be denoted by wi.

The length ` (w) of a word w ∈
⊔
n≥0 A

n is defined to be the n ∈ N
satisfying w ∈ An. Thus, w =

(
w1, w2, . . . , w`(w)

)
for every word w.

Given two words u and v, we say that u is longer than v (or, equivalently,
v is shorter than u) if and only if ` (u) > ` (v).

The concatenation of two words u and v is defined to be the word(
u1, u2, . . . , u`(u), v1, v2, . . . , v`(v)

)
. This concatenation is denoted by uv or

u · v. The set A∗ of all words is a monoid with respect to concatenation,
with neutral element ∅. It is precisely the free monoid on generators A. If
u is a word and i ∈ N, we will understand ui to mean the i-th power of u
in this monoid (that is, the word uu · · ·u︸ ︷︷ ︸

i times

).

The elements of A are called letters , and will be identified with elements
of A1 ⊂

⊔
n≥0 A

n = A∗. This identification equates every letter u ∈ A with

the one-letter word (u) ∈ A1. Thus, every word (u1, u2, . . . , un) ∈ A∗ equals
the concatenation u1u2 · · ·un of letters, hence allowing us to use u1u2 · · ·un
as a brief notation for the word (u1, u2, . . . , un).

If w is a word, then:

• a prefix of w means a word of the form (w1, w2, . . . , wi) for some
i ∈ {0, 1, . . . , ` (w)};
• a suffix of w means a word of the form

(
wi+1, wi+2, . . . , w`(w)

)
for

some i ∈ {0, 1, . . . , ` (w)};
• a proper suffix of w means a word of the form

(
wi+1, wi+2, . . . , w`(w)

)
for some i ∈ {1, 2, . . . , ` (w)}.

In other words,

• a prefix of w ∈ A∗ is a word u ∈ A∗ such that there exists a v ∈ A∗

satisfying w = uv;
• a suffix of w ∈ A∗ is a word v ∈ A∗ such that there exists a u ∈ A∗

satisfying w = uv;
• a proper suffix of w ∈ A∗ is a word v ∈ A∗ such that there exists a

nonempty u ∈ A∗ satisfying w = uv.

Clearly, any proper suffix of w ∈ A∗ is a suffix of w. Moreover, if w ∈ A∗

is any word, then a proper suffix of w is the same thing as a suffix of w
distinct from w.
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We define a relation ≤ on the set A∗ as follows: For two words u ∈ A∗

and v ∈ A∗, we set u ≤ v to hold if and only if

either there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}}
such that (ui < vi, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj) ,

or the word u is a prefix of v.

This order relation (taken as the smaller-or-equal relation) makes A∗ into a
poset (by Proposition 6.1.2(a) below), and we will always be regarding A∗

as endowed with this poset structure (thus, notations such as <, ≤, > and
≥ will be referring to this poset structure). This poset is actually totally
ordered (see Proposition 6.1.2(a)).

Here are some examples of words compared by the relation ≤:

113 ≤ 114, 113 ≤ 132, 19 ≤ 195, 41 ≤ 412,

41 ≤ 421, 539 ≤ 54, ∅ ≤ 21, ∅ ≤ ∅

(where A is the alphabet {1 < 2 < 3 < · · · }).
Notice that if u and v are two words of the same length (i.e., we have

u, v ∈ An for one and the same n), then u ≤ v holds if and only if u
is lexicographically smaller-or-equal to v. In other words, the relation ≤
is an extension of the lexicographic order on every An to A∗. This is the
reason why this relation≤ is usually called the lexicographic order on A∗. In
particular, we will be using this name.276 However, unlike the lexicographic
order on An, it does not always respect concatenation from the right: It can
happen that u, v, w ∈ A∗ satisfy u ≤ v but not uw ≤ vw. (For example,
u = 1, v = 13 and w = 4, again with A = {1 < 2 < 3 < · · · }.) We will see
in Proposition 6.1.2 that this is rather an exception than the rule and the
relation ≤ still behaves mostly predictably with respect to concatenation.

Some basic properties of the order relation ≤ just defined are collected
in the following proposition:

Proposition 6.1.2. (a) The order relation ≤ is (the smaller-or-equal
relation of) a total order on the set A∗.

(b) If a, c, d ∈ A∗ satisfy c ≤ d, then ac ≤ ad.
(c) If a, c, d ∈ A∗ satisfy ac ≤ ad, then c ≤ d.
(d) If a, b, c, d ∈ A∗ satisfy a ≤ c, then either we have ab ≤ cd or the

word a is a prefix of c.
(e) If a, b, c, d ∈ A∗ satisfy ab ≤ cd, then either we have a ≤ c or the

word c is a prefix of a.
(f) If a, b, c, d ∈ A∗ satisfy ab ≤ cd and ` (a) ≤ ` (c), then a ≤ c.
(g) If a, b, c ∈ A∗ satisfy a ≤ b ≤ ac, then a is a prefix of b.
(h) If a ∈ A∗ is a prefix of b ∈ A∗, then a ≤ b.
(i) If a and b are two prefixes of c ∈ A∗, then either a is a prefix of b,

or b is a prefix of a.
(j) If a, b, c ∈ A∗ are such that a ≤ b and ` (a) ≥ ` (b), then ac ≤ bc.
(k) If a ∈ A∗ and b ∈ A∗ are such that b is nonempty, then a < ab.

Exercise 6.1.3. Prove Proposition 6.1.2.

276The relation ≤ is also known as the dictionary order , due to the fact that it is the
order in which words appear in a dictionary.
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[Hint: No part of Proposition 6.1.2 requires more than straightforward
case analysis. However, the proof of (a) can be simplified by identifying
the order relation ≤ on A∗ as a restriction of the lexicographic order on the
set B∞, where B is a suitable extension of the alphabet A. What is this
extension, and how to embed A∗ into B∞ ?]

Proposition 6.1.2 provides a set of tools for working with the lexico-
graphic order without having to refer to its definition; we shall use it ex-
tensively. Proposition 6.1.2(h) (and its equivalent form stating that a ≤ ac
for every a ∈ A∗ and c ∈ A∗) and Proposition 6.1.2(k) will often be used
without explicit mention.

Before we define Lyndon words, let us show two more facts about words
which will be used later. First, when do words commute?

Proposition 6.1.4. Let u, v ∈ A∗ satisfy uv = vu. Then, there exist a
t ∈ A∗ and two nonnegative integers n and m such that u = tn and v = tm.

Proof. We prove this by strong induction on ` (u)+` (v). We assume WLOG
that ` (u) and ` (v) are positive (because otherwise, one of u and v is the
empty word, and everything is trivial). It is easy to see that either u is
a prefix of v, or v is a prefix of u 277. We assume WLOG that u is a
prefix of v (since our situation is symmetric). Thus, we can write v in the
form v = uw for some w ∈ A∗. Consider this w. Clearly, ` (u) + ` (w) =

`

(
uw︸︷︷︸
=v

)
= ` (v) < ` (u) + ` (v) (since ` (v) is positive). Since v = uw, the

equality uv = vu becomes uuw = uwu. Cancelling u from this equality, we
obtain uw = wu. Now, we can apply Proposition 6.1.4 to w instead of v
(by the induction assumption, since ` (u)+` (w) < ` (u)+` (v)), and obtain
that there exist a t ∈ A∗ and two nonnegative integers n and m such that
u = tn and w = tm. Consider this t and these n and m. Of course, u = tn

and v = u︸︷︷︸
=tn

w︸︷︷︸
=tm

= tntm = tn+m. So the induction step is complete, and

Proposition 6.1.4 is proven. �

Proposition 6.1.5. Let u, v, w ∈ A∗ be nonempty words satisfying uv ≥
vu, vw ≥ wv and wu ≥ uw. Then, there exist a t ∈ A∗ and three nonneg-
ative integers n, m and p such that u = tn, v = tm and w = tp.

Proof. We prove this by strong induction on ` (u) + ` (v) + ` (w). Clearly,
` (u), ` (v) and ` (w) are positive (since u, v and w are nonempty). We
assume WLOG that ` (u) = min {` (u) , ` (v) , ` (w)} (because there is a
cyclic symmetry in our situation). Thus, ` (u) ≤ ` (v) and ` (u) ≤ ` (w).
But vu ≤ uv. Hence, Proposition 6.1.2(e) (applied to a = v, b = u, c = u
and d = v) yields that either we have v ≤ u or the word u is a prefix of v.
But Proposition 6.1.2(f) (applied to a = u, b = w, c = w and d = u) yields
u ≤ w (since uw ≤ wu and ` (u) ≤ ` (w)). Furthermore, wv ≤ vw. Hence,
Proposition 6.1.2(e) (applied to a = w, b = v, c = v and d = w) yields that
either we have w ≤ v or the word v is a prefix of w.

277Proof. The word u is a prefix of uv. But the word v is also a prefix of uv (since
uv = vu). Hence, Proposition 6.1.2(i) (applied to a = u, b = v and c = uv) yields that
either u is a prefix of v, or v is a prefix of u, qed.
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From what we have found so far, it is easy to see that u is a prefix of v
278. In other words, there exists a v′ ∈ A∗ such that v = uv′. Consider this
v′.

If the word v′ is empty, then the statement of Proposition 6.1.5 can be
easily deduced from Proposition 6.1.4279. Thus, we assume WLOG that
this is not the case. Hence, v′ is nonempty.

Using v = uv′, we can rewrite uv ≥ vu as uuv′ ≥ uv′u. That is, uv′u ≤
uuv′, so that v′u ≤ uv′ (by Proposition 6.1.2(c), applied to a = u, c =
v′u and d = uv′). That is, uv′ ≥ v′u. But ` (uw) = ` (u) + ` (w) =
` (w) + ` (u) = ` (wu) ≥ ` (wu). Hence, Proposition 6.1.2(i) (applied to
a = uw, b = wu and c = v′) yields uwv′ ≤ wuv′ (since uw ≤ wu).
Now, uv′︸︷︷︸

=v

w = vw ≥ w v︸︷︷︸
=uv′

= wuv′ ≥ uwv′ (since uwv′ ≤ wuv′), so

that uwv′ ≤ uv′w. Hence, wv′ ≤ v′w (by Proposition 6.1.2(c), applied to
a = u, c = wv′ and d = v′w), so that v′w ≥ wv′. Now, we can apply
Proposition 6.1.5 to v′ instead of v (by the induction hypothesis, because
` (u) + ` (v′)︸ ︷︷ ︸

=`(uv′)=`(v)
(since uv′=v)

+` (w) = ` (v) + ` (w) < ` (u) + ` (v) + ` (w)). As a result, we

see that there exist a t ∈ A∗ and three nonnegative integers n, m and p
such that u = tn, v′ = tm and w = tp. Clearly, this t and these n,m, p
satisfy v = u︸︷︷︸

=tn

v′︸︷︷︸
=tm

= tntm = tn+m, and so the statement of Proposition

6.1.5 is satisfied. The induction step is thus complete. �

Corollary 6.1.6. Let u, v, w ∈ A∗ be words satisfying uv ≥ vu and vw ≥
wv. Assume that v is nonempty. Then, uw ≥ wu.

Proof. Assume the contrary. Thus, uw < wu, so that wu ≥ uw.
If u or w is empty, then everything is obvious. We thus WLOG assume

that u and w are nonempty. Thus, Proposition 6.1.5 shows that there exist
a t ∈ A∗ and three nonnegative integers n, m and p such that u = tn, v = tm

and w = tp. But this yields wu = tptn = tp+n = tn+p = tn︸︷︷︸
=u

tp︸︷︷︸
=w

= uw,

contradicting uw < wu. This contradiction finishes the proof. �

Exercise 6.1.7. Find an alternative proof of Corollary 6.1.6 which does
not use Proposition 6.1.5.

The above results have a curious consequence, which we are not going
to use:

278Proof. Assume the contrary. Then, u is not a prefix of v. Hence, we must have
v ≤ u (since either we have v ≤ u or the word u is a prefix of v), and in fact v < u
(because v = u would contradict to u not being a prefix of v). Thus, v < u ≤ w. But
recall that either we have w ≤ v or the word v is a prefix of w. Thus, v must be a prefix
of w (because v < w rules out w ≤ v). In other words, there exists a q ∈ A∗ such that
w = vq. Consider this q. We have v < u ≤ w = vq. Thus, Proposition 6.1.2(g) (applied
to a = v, b = u and c = q) yields that v is a prefix of u. In light of ` (u) ≤ ` (v), this
is only possible if v = u, but this contradicts v < u. This contradiction completes this
proof.

279Proof. Assume that the word v′ is empty. Then, v = uv′ becomes v = u. There-
fore, vw ≥ wv becomes uw ≥ wu. Combined with wu ≥ uw, this yields uw = wu.
Hence, Proposition 6.1.4 (applied to w instead of v) yields that there exist a t ∈ A∗ and
two nonnegative integers n and m such that u = tn and w = tm. Clearly, v = u = tn as
well, and so the statement of Proposition 6.1.5 is true.
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Corollary 6.1.8. We can define a preorder on the set A∗ \ {∅} of all
nonempty words by defining a nonempty word u to be greater-or-equal to
a nonempty word v (with respect to this preorder) if and only if uv ≥ vu.
Two nonempty words u, v are equivalent with respect to the equivalence
relation induced by this preorder if and only if there exist a t ∈ A∗ and two
nonnegative integers n and m such that u = tn and v = tm.

Proof. The alleged preorder is transitive (by Corollary 6.1.6) and reflex-
ive (obviously), and hence is really a preorder. The claim in the second
sentence follows from Proposition 6.1.4. �

As another consequence of Proposition 6.1.5, we obtain a classical prop-
erty of words [139, Proposition 1.3.1]:

Exercise 6.1.9. Let u and v be words and n and m be positive integers
such that un = vm. Prove that there exists a word t and positive integers
i and j such that u = ti and v = tj.

Here is another application of Corollary 6.1.6:

Exercise 6.1.10. Let n and m be positive integers. Let u ∈ A∗ and v ∈ A∗

be two words. Prove that uv ≥ vu holds if and only if unvm ≥ vmun holds.

Exercise 6.1.11. Let n and m be positive integers. Let u ∈ A∗ and v ∈ A∗

be two words satisfying n` (u) = m` (v). Prove that uv ≥ vu holds if and
only if un ≥ vm holds.

We can also generalize Propositions 6.1.4 and 6.1.5:

Exercise 6.1.12. Let u1, u2, . . . , uk be nonempty words such that every
i ∈ {1, 2, . . . , k} satisfies uiui+1 ≥ ui+1ui, where uk+1 means u1. Show
that there exist a word t and nonnegative integers n1, n2, . . . , nk such that
u1 = tn1 , u2 = tn2 , . . ., uk = tnk .

Now, we define the notion of a Lyndon word. There are several definitions
in literature, some of which will be proven equivalent in Theorem 6.1.20.

Definition 6.1.13. A word w ∈ A∗ is said to be Lyndon if it is nonempty
and satisfies the following property: Every nonempty proper suffix v of w
satisfies v > w.

For example, the word 113 is Lyndon (because its nonempty proper
suffixes are 13 and 3, and these are both > 113), and the word 242427
is Lyndon (its nonempty proper suffixes are 42427, 2427, 427, 27 and 7,
and again these are each > 242427). The words 2424 and 35346 are not
Lyndon (the word 2424 has a nonempty proper suffix 24 ≤ 2424, and the
word 35346 has a nonempty proper suffix 346 ≤ 35346). Every word of
length 1 is Lyndon (since it has no nonempty proper suffixes). A word
w = (w1, w2) with two letters is Lyndon if and only if w1 < w2. A word
w = (w1, w2, w3) of length 3 is Lyndon if and only if w1 < w3 and w1 ≤ w2.
A four-letter word w = (w1, w2, w3, w4) is Lyndon if and only if w1 < w4,
w1 ≤ w3, w1 ≤ w2 and (if w1 = w3 then w2 < w4). (These rules only get
more complicated as the words grow longer.)

We will show several properties of Lyndon words now. We begin with
trivialities which will make some arguments a bit shorter:
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Proposition 6.1.14. Let w be a Lyndon word. Let u and v be words such
that w = uv.

(a) If v is nonempty, then v ≥ w.
(b) If v is nonempty, then v > u.
(c) If u and v are nonempty, then vu > uv.
(d) We have vu ≥ uv.

Proof. (a) Assume that v is nonempty. Clearly, v is a suffix of w (since
w = uv). If v is a proper suffix of w, then the definition of a Lyndon word
yields that v > w (since w is a Lyndon word); otherwise, v must be w itself.
In either case, we have v ≥ w. Hence, Proposition 6.1.14(a) is proven.

(b) Assume that v is nonempty. From Proposition 6.1.14(a), we obtain
v ≥ w = uv > u (since v is nonempty). This proves Proposition 6.1.14(b).

(c) Assume that u and v are nonempty. Since u is nonempty, we have
vu > v ≥ w (by Proposition 6.1.14(a)). Since w = uv, this becomes
vu > uv. This proves Proposition 6.1.14(c).

(d) We need to prove that vu ≥ uv. If either u or v is empty, vu and uv
are obviously equal, and thus vu ≥ uv is true in this case. Hence, we can
WLOG assume that u and v are nonempty. Assume this. Then, vu ≥ uv
follows from Proposition 6.1.14(c). This proves Proposition 6.1.14(d). �

Corollary 6.1.15. Let w be a Lyndon word. Let v be a nonempty suffix
of w. Then, v ≥ w.

Proof. Since v is a nonempty suffix of w, there exists u ∈ A∗ such that
w = uv. Thus, v ≥ w follows from Proposition 6.1.14(a). �

Our next proposition is [93, Lemma 6.5.4]; its part (a) is also [182,
(5.1.2)]:

Proposition 6.1.16. Let u and v be two Lyndon words such that u < v.
Then:

(a) The word uv is Lyndon.
(b) We have uv < v.

Proof. (b) The word u is Lyndon and thus nonempty. Hence, uv 6= v 280.
If uv ≤ v∅, then Proposition 6.1.16(b) easily follows281. Hence, for the rest
of this proof, we can WLOG assume that we don’t have uv ≤ v∅. Assume
this.

We have u < v. Hence, Proposition 6.1.2(d) (applied to a = u, b = v,
c = v and d = ∅) yields that either we have uv ≤ v∅ or the word u is
a prefix of v. Since we don’t have uv ≤ v∅, we thus see that the word u
is a prefix of v. In other words, there exists a t ∈ A∗ satisfying v = ut.
Consider this t. Then, t is nonempty (else we would have v = u t︸︷︷︸

=∅

= u

in contradiction to u < v).
Now, v = ut. Hence, t is a proper suffix of v (proper because u is

nonempty). Thus, t is a nonempty proper suffix of v. Since every nonempty

280Proof. Assume the contrary. Then, uv = v. Thus, uv = v = ∅v. Cancelling v
from this equation, we obtain u = ∅. That is, u is empty. This contradicts the fact that
u is nonempty. This contradiction proves that our assumption was wrong, qed.

281Proof. Assume that uv ≤ v∅. Thus, uv ≤ v∅ = v. Since uv 6= v, this becomes
uv < v, so that Proposition 6.1.16(b) is proven.
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proper suffix of v is > v (because v is Lyndon), this shows that t > v.
Hence, v ≤ t. Thus, Proposition 6.1.2(b) (applied to a = u, c = v and
d = t) yields uv ≤ ut = v. Combined with uv 6= v, this yields uv < v.
Hence, Proposition 6.1.16(b) is proven.

(a) The word v is nonempty (since it is Lyndon). Hence, uv is nonempty.
It thus remains to check that every nonempty proper suffix p of uv satisfies
p > uv.

So let p be a nonempty proper suffix of uv. We must show that p > uv.
Since p is a nonempty proper suffix of uv, we must be in one of the following
two cases (depending on whether this suffix begins before the suffix v of uv
begins or afterwards):

Case 1: The word p is a nonempty suffix of v. (Note that p = v is
allowed.)

Case 2: The word p has the form qv where q is a nonempty proper suffix
of u.

Let us first handle Case 1. In this case, p is a nonempty suffix of v. Since
v is Lyndon, this yields that p ≥ v (by Corollary 6.1.15, applied to v and p
instead of w and v). But Proposition 6.1.16(b) yields uv < v, thus v > uv.
Hence, p ≥ v > uv. We thus have proven p > uv in Case 1.

Let us now consider Case 2. In this case, p has the form qv where q is
a nonempty proper suffix of u. Consider this q. Clearly, q > u (since u is
Lyndon and since q is a nonempty proper suffix of u), so that u ≤ q. Thus,
Proposition 6.1.2(d) (applied to a = u, b = v, c = q and d = v) yields
that either we have uv ≤ qv or the word u is a prefix of q. Since u being
a prefix of q is impossible (in fact, q is a proper suffix of u, thus shorter
than u), we thus must have uv ≤ qv. Since uv 6= qv (because otherwise we
would have uv = qv, thus u = q (because we can cancel v from the equality
uv = qv), contradicting q > u), this can be strengthened to uv < qv = p.
Thus, p > uv is proven in Case 2 as well.

Now that p > uv is shown to hold in both cases, we conclude that p > uv
always holds.

Now, let us forget that we fixed p. We have thus shown that every
nonempty proper suffix p of uv satisfies p > uv. Since uv is nonempty, this
yields that uv is Lyndon (by the definition of a Lyndon word). Thus, the
proof of Proposition 6.1.16(a) is complete. �

Proposition 6.1.16(b), combined with Corollary 6.1.6, leads to a technical
result which we will find good use for later:

Corollary 6.1.17. Let u and v be two Lyndon words such that u < v. Let
z be a word such that zv ≥ vz and uz ≥ zu. Then, z is the empty word.

Proof. Assume the contrary. Then, z is nonempty. Thus, Corollary 6.1.6
(applied to z and v instead of v and w) yields uv ≥ vu. But Proposition
6.1.16(b) yields uv < v ≤ vu, contradicting uv ≥ vu. This contradiction
completes our proof. �

We notice that the preorder of Corollary 6.1.8 becomes particularly sim-
ple on Lyndon words:

Proposition 6.1.18. Let u and v be two Lyndon words. Then, u ≥ v if
and only if uv ≥ vu.
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Proof. We distinguish between three cases:
Case 1: We have u < v.
Case 2: We have u = v.
Case 3: We have u > v.
Let us consider Case 1. In this case, we have u < v. Thus,

uv < v (by Proposition 6.1.16(b))

≤ vu.

Hence, we have neither u ≥ v nor uv ≥ vu (because we have u < v and
uv < vu). Thus, Proposition 6.1.18 is proven in Case 1.

In Case 2, we have u = v. Therefore, in Case 2, both inequalities u ≥ v
and uv ≥ vu hold (and actually are equalities). Thus, Proposition 6.1.18
is proven in Case 2 as well.

Let us finally consider Case 3. In this case, we have u > v. In other
words, v < u. Thus, Proposition 6.1.16(b) (applied to v and u instead of
u and v) yields vu < u ≤ uv. Hence, we have both u ≥ v and uv ≥ vu
(because we have v < u and vu < uv). Thus, Proposition 6.1.18 is proven
in Case 3.

Proposition 6.1.18 is now proven in all three possible cases. �

Proposition 6.1.19. Let w be a nonempty word. Let v be the (lexico-
graphically) smallest nonempty suffix of w. Then:

(a) The word v is a Lyndon word.
(b) Assume that w is not a Lyndon word. Then there exists a nonempty

u ∈ A∗ such that w = uv, u ≥ v and uv ≥ vu.

Proof. (a) Every nonempty proper suffix of v is ≥ v (since every nonempty
proper suffix of v is a nonempty suffix of w, but v is the smallest such suffix)
and therefore > v (since a proper suffix of v cannot be = v). Combined
with the fact that v is nonempty, this yields that v is Lyndon. Proposition
6.1.19(a) is proven.

(b) Assume that w is not a Lyndon word. Then, w 6= v (since v is
Lyndon (by Proposition 6.1.19(a)) while w is not). Now, v is a suffix of w.
Thus, there exists an u ∈ A∗ such that w = uv. Consider this u. Clearly,
u is nonempty (since uv = w 6= v). Assume (for the sake of contradiction)
that u < v. Let v′ be the (lexicographically) smallest nonempty suffix of
u. Then, v′ is a Lyndon word (by Proposition 6.1.19(a), applied to u and
v′ instead of w and v) and satisfies v′ ≤ u (since u is a nonempty suffix
of u, whereas v′ is the smallest such suffix). Thus, v′ and v are Lyndon
words such that v′ ≤ u < v. Proposition 6.1.16(a) (applied to v′ instead of
u) now yields that the word v′v is Lyndon. Hence, every nonempty proper
suffix of v′v is > v′v. Since v is a nonempty proper suffix of v′v, this yields
that v > v′v.

But v′ is a nonempty suffix of u, so that v′v is a nonempty suffix of
uv = w. Since v is the smallest such suffix, this yields that v′v ≥ v. This
contradicts v > v′v. Our assumption (that u < v) therefore falls. We
conclude that u ≥ v.

It remains to prove that uv ≥ vu. Assume the contrary. Then, uv < vu.
Thus, there exists at least one suffix t of u such that tv < vt (namely,
t = u). Let p be the minimum-length such suffix. Then, pv < vp. Thus,
p is nonempty.
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Since p is a suffix of u, it is clear that pv is a suffix of uv = w. So we
know that pv is a nonempty suffix of w. Since v is the smallest such suffix,
this yields that v ≤ pv < vp. Thus, Proposition 6.1.2(g) (applied to a = v,
b = pv and c = p) yields that v is a prefix of pv. In other words, there
exists a q ∈ A∗ such that pv = vq. Consider this q. This q is nonempty
(because otherwise we would have pv = v q︸︷︷︸

=∅

= v, contradicting the fact

that p is nonempty). From vq = pv < vp, we obtain q ≤ p (by Proposition
6.1.2(c), applied to a = v, c = q and d = p).

We know that q is a suffix of pv (since vq = pv), whereas pv is a suffix
of w. Thus, q is a suffix of w. So q is a nonempty suffix of w. Since v
is the smallest such suffix, this yields that v ≤ q. We now have v ≤ q ≤
p ≤ pv < vp. Hence, v is a prefix of p (by Proposition 6.1.2(g), applied to
a = v, b = p and c = p). In other words, there exists an r ∈ A∗ such that
p = vr. Consider this r. Clearly, r is a suffix of p, while p is a suffix of u;
therefore, r is a suffix of u. Also, pv < vp rewrites as vrv < vvr (because
p = vr). Thus, Proposition 6.1.2(c) (applied to a = v, c = rv and d = vr)
yields rv ≤ vr. Since rv 6= vr (because otherwise, we would have rv = vr,
thus v rv︸︷︷︸

=vr

= vvr, contradicting vrv < vvr), this becomes rv < vr.

Now, r is a suffix of u such that rv < vr. Since p is the minimum-
length such suffix, this yields ` (r) ≥ ` (p). But this contradicts the fact

that `

 p︸︷︷︸
=vr

 = ` (vr) = ` (v)︸︷︷︸
>0

+` (r) > ` (r). This contradiction proves

our assumption wrong; thus, we have shown that uv ≥ vu. Proposition
6.1.19(b) is proven. �

Theorem 6.1.20. Let w be a nonempty word. The following four asser-
tions are equivalent:

• Assertion A: The word w is Lyndon.
• Assertion B: Any nonempty words u and v satisfying w = uv satisfy
v > w.
• Assertion C: Any nonempty words u and v satisfying w = uv satisfy
v > u.
• Assertion D: Any nonempty words u and v satisfying w = uv

satisfy vu > uv.

Proof. Proof of the implication A =⇒ B: If Assertion A holds, then As-
sertion B clearly holds (in fact, whenever u and v are nonempty words
satisfying w = uv, then v is a nonempty proper suffix of w, and therefore
> w by the definition of a Lyndon word).

Proof of the implication A =⇒ C: This implication follows from Propo-
sition 6.1.14(b).

Proof of the implication A =⇒ D: This implication follows from Propo-
sition 6.1.14(c).

Proof of the implication B =⇒ A: Assume that Assertion B holds. If
v is a nonempty proper suffix of w, then there exists an u ∈ A∗ satisfying
w = uv. This u is nonempty because v is a proper suffix, and thus Assertion
B yields v > w. Hence, every nonempty proper suffix v of w satisfies v > w.
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By the definition of a Lyndon word, this yields that w is Lyndon, so that
Assertion A holds.

Proof of the implication C =⇒ A: Assume that Assertion C holds. If w
was not Lyndon, then Proposition 6.1.19(b) would yield nonempty words
u and v such that w = uv and u ≥ v; this would contradict Assertion C.
Thus, w is Lyndon, and Assertion A holds.

Proof of the implication D =⇒ A: Assume that Assertion D holds. If w
was not Lyndon, then Proposition 6.1.19(b) would yield nonempty words
u and v such that w = uv and uv ≥ vu; this would contradict Assertion
D. Thus, w is Lyndon, and Assertion A holds.

Now we have proven enough implications to conclude the equivalence of
all four assertions. �

Theorem 6.1.20 connects our definition of Lyndon words with some of
the definitions appearing in literature. For example, Lothaire [139, §5.1],
Shirshov [202] and de Bruijn/Klarner [29, §4] define Lyndon words using
Assertion D (note, however, that Shirshov takes < instead of > and calls
Lyndon words “regular words”; also, de Bruijn/Klarner call Lyndon words
“normal words”). Chen-Fox-Lyndon [38, §1], Reutenauer [182] and Rad-
ford [177] use our definition (but Chen-Fox-Lyndon call the Lyndon words
“standard sequences”, and Radford calls them “primes” and uses < instead
of >).

Theorem 6.1.20 appears (with different notations) in Zhou-Lu [229, Propo-
sition 1.4]. The equivalence D ⇐⇒ A of our Theorem 6.1.20 is equivalent
to [139, Proposition 5.12] and to [38, A′′ = A′′′].

The following exercise provides a different (laborious) approach to The-
orem 6.1.20:

Exercise 6.1.21. (a) Prove that if u ∈ A∗ and v ∈ A∗ are two words
satisfying uv < vu, then there exists a nonempty suffix s of u sat-
isfying sv < v.

(b) Give a new proof of Theorem 6.1.20 (avoiding the use of Proposition
6.1.19).

[Hint: For (a), perform strong induction on ` (u) + ` (v), assume the
contrary, and distinguish between the case when u ≤ v and the case when
v is a prefix of u. For (b), use part (a) in proving the implication D =⇒ B,
and factor v as v = umv′ with m maximal in the proof of the implication
C =⇒ B.]

The following two exercises are taken from [91]282.

Exercise 6.1.22. Let w be a nonempty word. Prove that w is Lyndon
if and only if every nonempty word t and every positive integer n satisfy
(if w ≤ tn, then w ≤ t).

Exercise 6.1.23. Let w1, w2, . . ., wn be n Lyndon words, where n is a
positive integer. Assume that w1 ≤ w2 ≤ · · · ≤ wn and w1 < wn. Show
that w1w2 · · ·wn is a Lyndon word.

The following exercise is a generalization (albeit not in an obvious way)
of Exercise 6.1.23:

282Exercise 6.1.22 is more or less [91, Lemma 4.3] with a converse added; Exercise
6.1.23 is [91, Lemma 4.2].
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Exercise 6.1.24. Let w1, w2, . . ., wn be n Lyndon words, where n is a
positive integer. Assume that wiwi+1 · · ·wn ≥ w1w2 · · ·wn for every i ∈
{1, 2, . . . , n}. Show that w1w2 · · ·wn is a Lyndon word.

We are now ready to meet one of the most important features of Lyndon
words: a bijection between all words and multisets of Lyndon words283;
it is clear that such a bijection is vital for constructing polynomial gener-
ating sets of commutative algebras with bases indexed by words, such as
QSym or shuffle algebras. This bijection is given by the Chen-Fox-Lyndon
factorization:

Definition 6.1.25. Let w be a word. A Chen-Fox-Lyndon factorization
(in short, CFL factorization) of w means a tuple (a1, a2, . . . , ak) of Lyndon
words satisfying w = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak.

Example 6.1.26. The tuple (23, 2, 14, 13323, 13, 12, 12, 1) is a CFL fac-
torization of the word 23214133231312121 over the alphabet {1, 2, 3, . . .}
(ordered by 1 < 2 < 3 < · · · ), since 23, 2, 14, 13323, 13, 12, 12 and 1 are
Lyndon words satisfying 23214133231312121 = 23 ·2 ·14 ·13323 ·13 ·12 ·12 ·1
and 23 ≥ 2 ≥ 14 ≥ 13323 ≥ 13 ≥ 12 ≥ 12 ≥ 1.

The bijection is given by the following Chen-Fox-Lyndon theorem ([93,
Theorem 6.5.5], [139, Thm. 5.1.5], [177, part of Thm. 2.1.4]):

Theorem 6.1.27. Let w be a word. Then, there exists a unique CFL
factorization of w.

Before we prove this, we need to state and prove a lemma (which is [139,
Proposition 5.1.6]):

Lemma 6.1.28. Let (a1, a2, . . . , ak) be a CFL factorization of a nonempty
word w. Let p be a nonempty suffix of w. Then, p ≥ ak.

Proof. We will prove Lemma 6.1.28 by induction over the (obviously) pos-
itive integer k.

Induction base: Assume that k = 1. Thus, (a1, a2, . . . , ak) = (a1) is a tu-
ple of Lyndon words satisfying w = a1a2 · · · ak. We have w = a1a2 · · · ak =
a1 (since k = 1), so that w is a Lyndon word (since a1 is a Lyndon word).
Thus, Corollary 6.1.15 (applied to v = p) yields p ≥ w = a1 = ak (since
1 = k). Thus, Lemma 6.1.28 is proven in the case k = 1. The induction
base is complete.

Induction step: Let K be a positive integer. Assume (as the induction
hypothesis) that Lemma 6.1.28 is proven for k = K. We now need to show
that Lemma 6.1.28 holds for k = K + 1.

So let (a1, a2, . . . , aK+1) be a CFL factorization of a nonempty word w.
Let p be a nonempty suffix of w. We need to prove that p ≥ aK+1.

By the definition of a CFL factorization, (a1, a2, . . . , aK+1) is a tuple of
Lyndon words satisfying w = a1a2 · · · aK+1 and a1 ≥ a2 ≥ · · · ≥ aK+1. Let
w′ = a2a3 · · · aK+1; then, w = a1a2 · · · aK+1 = a1 (a2a3 · · · aK+1)︸ ︷︷ ︸

=w′

= a1w
′.

Hence, every nonempty suffix of w is either a nonempty suffix of w′, or has
the form qw′ for a nonempty suffix q of a1. Since p is a nonempty suffix of
w, we thus must be in one of the following two cases:

283And it is not even the only such bijection: we will see another in Subsection 6.6.1.
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Case 1: The word p is a nonempty suffix of w′.
Case 2: The word p has the form qw′ for a nonempty suffix q of a1.
Let us first consider Case 1. In this case, p is a nonempty suffix of w′. The

K-tuple (a2, a3, . . . , aK+1) of Lyndon words satisfies w′ = a2a3 · · · aK+1 and
a2 ≥ a3 ≥ · · · ≥ aK+1; therefore, (a2, a3, . . . , aK+1) is a CFL factorization
of w′. We can thus apply Lemma 6.1.28 to K, w′ and (a2, a3, . . . , aK+1)
instead of k, w and (a1, a2, . . . , ak) (because we assumed that Lemma 6.1.28
is proven for k = K). As a result, we obtain that p ≥ aK+1. Thus, p ≥ aK+1

is proven in Case 1.
Let us now consider Case 2. In this case, p has the form qw′ for a

nonempty suffix q of a1. Consider this q. Since a1 is a Lyndon word, we
have q ≥ a1 (by Corollary 6.1.15, applied to a1 and q instead of w and v).
Thus, q ≥ a1 ≥ a2 ≥ · · · ≥ aK+1, so that p = qw′ ≥ q ≥ aK+1. Thus,
p ≥ aK+1 is proven in Case 2.

We have now proven p ≥ aK+1 in all cases. This proves that Lemma
6.1.28 holds for k = K + 1. The induction step is thus finished, and with
it the proof of Lemma 6.1.28. �

Proof of Theorem 6.1.27. Let us first prove that there exists a CFL factor-
ization of w.

Indeed, there clearly exists a tuple (a1, a2, . . . , ak) of Lyndon words sat-
isfying w = a1a2 · · · ak 284. Fix such a tuple with minimum k. We claim
that a1 ≥ a2 ≥ · · · ≥ ak.

Indeed, if some i ∈ {1, 2, . . . , k − 1} would satisfy ai < ai+1, then the
word aiai+1 would be Lyndon (by Proposition 6.1.16(a), applied to u = ai
and v = ai+1), whence (a1, a2, . . . , ai−1, aiai+1, ai+2, ai+3, . . . , ak) would also
be a tuple of Lyndon words satisfying w = a1a2 · · · ai−1 (aiai+1) ai+2ai+3 · · · ak
but having length k− 1 < k, contradicting the fact that k is the minimum
length of such a tuple. Hence, no i ∈ {1, 2, . . . , k − 1} can satisfy ai < ai+1.
In other words, every i ∈ {1, 2, . . . , k − 1} satisfies ai ≥ ai+1. In other
words, a1 ≥ a2 ≥ · · · ≥ ak. Thus, (a1, a2, . . . , ak) is a CFL factorization of
w, so we have shown that such a CFL factorization exists.

It remains to show that there exists at most one CFL factorization of w.
We shall prove this by induction over ` (w). Thus, we fix a word w and
assume that

for every word v with ` (v) < ` (w) ,

there exists at most one CFL factorization of v.(6.1.1)

We now have to prove that there exists at most one CFL factorization of
w.

Indeed, let (a1, a2, . . . , ak) and (b1, b2, . . . , bm) be two CFL factorizations
of w. We need to prove that (a1, a2, . . . , ak) = (b1, b2, . . . , bm). If w is empty,
then this is obvious, so we WLOG assume that it is not; thus, k > 0 and
m > 0.

Since (b1, b2, . . . , bm) is a CFL factorization of w, we have w = b1b2 · · · bm,
and thus bm is a nonempty suffix of w. Thus, Lemma 6.1.28 (applied
to p = bm) yields bm ≥ ak. The same argument (but with the roles of

284For instance, the tuple
(
w1, w2, . . . , w`(w)

)
of one-letter words is a valid example

(recall that one-letter words are always Lyndon).
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(a1, a2, . . . , ak) and (b1, b2, . . . , bm) switched) shows that ak ≥ bm. Com-
bined with bm ≥ ak, this yields ak = bm. Now let v = a1a2 · · · ak−1. Then,
(a1, a2, . . . , ak−1) is a CFL factorization of v (since a1 ≥ a2 ≥ · · · ≥ ak−1).

Since (a1, a2, . . . , ak) is a CFL factorization of w, we have w = a1a2 · · · ak =
a1a2 · · · ak−1︸ ︷︷ ︸

=v

ak︸︷︷︸
=bm

= vbm, so that

vbm = w = b1b2 · · · bm = b1b2 · · · bm−1bm.

Cancelling bm yields v = b1b2 · · · bm−1. Thus, (b1, b2, . . . , bm−1) is a CFL
factorization of v (since b1 ≥ b2 ≥ · · · ≥ bm−1). Since ` (v) < ` (w) (because
v = a1a2 · · · ak−1 is shorter than w = a1a2 · · · ak), we can apply (6.1.1) to
obtain that there exists at most one CFL factorization of v. But we already
know two such CFL factorizations: (a1, a2, . . . , ak−1) and (b1, b2, . . . , bm−1).
Thus, (a1, a2, . . . , ak−1) = (b1, b2, . . . , bm−1), which, combined with ak = bm,
leads to (a1, a2, . . . , ak) = (b1, b2, . . . , bm). This is exactly what we needed
to prove. So we have shown (by induction) that there exists at most one
CFL factorization of w. This completes the proof of Theorem 6.1.27. �

The CFL factorization allows us to count all Lyndon words of a given
length if A is finite:

Exercise 6.1.29. Assume that the alphabet A is finite. Let q = |A|. Let
µ be the number-theoretic Möbius function (defined as in Exercise 2.9.6).

Show that the number of Lyndon words of length n equals
1

n

∑
d|n
µ (d) qn/d

for every positive integer n (where “
∑
d|n

” means a sum over all positive

divisors of n). 285

Exercise 6.1.29 is a well-known result and appears, e.g., in [38, Theorem
1.5] or in [139, Section 5.1].

We will now study another kind of factorization: not of an arbitrary
word into Lyndon words, but of a Lyndon word into two smaller Lyndon
words. This factorization is called standard factorization ([139, §5.1]) or
canonical factorization ([93, Lemma 6.5.33]); we only introduce it from the
viewpoint we are interested in, namely its providing a way to do induction
over Lyndon words286. Here is what we need to know:

Theorem 6.1.30. Let w be a Lyndon word of length > 1. Let v be the
(lexicographically) smallest nonempty proper suffix of w. Since v is a
proper suffix of w, there exists a nonempty u ∈ A∗ such that w = uv.
Consider this u. Then:

(a) The words u and v are Lyndon.
(b) We have u < w < v.

Proof. Every nonempty proper suffix of v is ≥ v (since every nonempty
proper suffix of v is a nonempty proper suffix of w, but v is the smallest
such suffix) and therefore > v (since a proper suffix of v cannot be = v).
Combined with the fact that v is nonempty, this yields that v is Lyndon.

285In particular,
1

n

∑
d|n

µ (d) qn/d is an integer.

286e.g., allowing to solve Exercise 6.1.24 in a simpler way
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Since w is Lyndon, we know that every nonempty proper suffix of w is
> w. Applied to the nonempty proper suffix v of w, this yields that v > w.
Hence, w < v. Since v is nonempty, we have u < uv = w < v. This proves
Theorem 6.1.30(b).

Let p be a nonempty proper suffix of u. Then, pv is a nonempty proper
suffix of uv = w. Thus, pv > w (since every nonempty proper suffix of w
is > w). Thus, pv > w = uv, so that uv < pv. Thus, Proposition 6.1.2(e)
(applied to a = u, b = v, c = p and d = v) yields that either we have u ≤ p
or the word p is a prefix of u.

Let us assume (for the sake of contradiction) that p ≤ u. Then, p < u
(because p is a proper suffix of u, and therefore p 6= u). Hence, we cannot
have u ≤ p. Thus, the word p is a prefix of u (since either we have u ≤ p
or the word p is a prefix of u). In other words, there exists a q ∈ A∗ such
that u = pq. Consider this q. We have w = u︸︷︷︸

=pq

v = pqv = p (qv), and thus

qv is a proper suffix of w (proper because p is nonempty). Moreover, qv is
nonempty (since v is nonempty). Hence, qv is a nonempty proper suffix of
w. Since v is the smallest such suffix, this entails that v ≤ qv. Proposition
6.1.2(b) (applied to a = p, c = v and d = qv) thus yields pv ≤ pqv. Hence,
pv ≤ pqv = w, which contradicts pv > w. This contradiction shows that
our assumption (that p ≤ u) was false. We thus have p > u.

We now have shown that p > u whenever p is a nonempty proper suffix
of u. Combined with the fact that u is nonempty, this shows that u is a
Lyndon word. This completes the proof of Theorem 6.1.30(a). �

Another approach to the standard factorization is given in the following
exercise:

Exercise 6.1.31. Let w be a Lyndon word of length > 1. Let v be the
longest proper suffix of w such that v is Lyndon287. Since v is a proper
suffix of w, there exists a nonempty u ∈ A∗ such that w = uv. Consider
this u. Prove that:

(a) The words u and v are Lyndon.
(b) We have u < w < v.
(c) The words u and v are precisely the words u and v constructed in

Theorem 6.1.30.

Notice that a well-known recursive characterization of Lyndon words
[38, A′ = A′′] can be easily derived from Theorem 6.1.30 and Proposition
6.1.16(a). We will not dwell on it.

The following exercise surveys some variations on the characterizations
of Lyndon words288:

Exercise 6.1.32. Let w be a nonempty word. Consider the following nine
assertions:

• Assertion A′: The word w is a power of a Lyndon word.

287This is well-defined, because there exists at least one proper suffix v of w such
that v is Lyndon. (Indeed, the last letter of w forms such a suffix, because it is a proper
suffix of w (since w has length > 1) and is Lyndon (since it is a one-letter word, and
since every one-letter word is Lyndon).)

288Compare this with [112, §7.2.11, Theorem Q].
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• Assertion B′: If u and v are nonempty words satisfying w = uv,
then either we have v ≥ w or the word v is a prefix of w.
• Assertion C ′: If u and v are nonempty words satisfying w = uv,

then either we have v ≥ u or the word v is a prefix of u.
• Assertion D′: If u and v are nonempty words satisfying w = uv,

then we have vu ≥ uv.
• Assertion E ′: If u and v are nonempty words satisfying w = uv,

then either we have v ≥ u or the word v is a prefix of w.
• Assertion F ′: The word w is a prefix of a Lyndon word in A∗.
• Assertion F ′′: Let m be an object not in the alphabet A. Let us

equip the set A∪{m} with a total order which extends the total or-
der on the alphabet A and which satisfies (a < m for every a ∈ A).
Then, the word wm ∈ (A ∪ {m})∗ (the concatenation of the word
w with the one-letter word m) is a Lyndon word.
• Assertion G ′: There exists a Lyndon word t ∈ A∗, a positive integer
` and a prefix p of t (possibly empty) such that w = t`p.
• Assertion H′: There exists a Lyndon word t ∈ A∗, a nonnegative

integer ` and a prefix p of t (possibly empty) such that w = t`p.
(a) Prove the equivalence A′ ⇐⇒ D′.
(b) Prove the equivalence B′ ⇐⇒ C ′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G ′ ⇐⇒ H′.
(c) Prove the implication F ′ =⇒ B′.
(d) Prove the implication D′ =⇒ B′. (The implication B′ =⇒ D′ is

false, as witnessed by the word 11211.)
(e) Prove that if there exists a letter µ ∈ A such that

(µ > a for every letter a of w), then the equivalence F ′ ⇐⇒ F ′′
holds.

(f) Prove that if there exists a letter µ ∈ A such that
(µ > a for some letter a of w), then the equivalence F ′ ⇐⇒ F ′′
holds.

The next exercise (based on work of Hazewinkel [92]) extends some of
the above properties of Lyndon words (and words in general) to a more
general setting, in which the alphabet A is no longer required to be totally
ordered, but only needs to be a poset:

Exercise 6.1.33. In this exercise, we shall loosen the requirement that the
alphabet A be a totally ordered set: Instead, we will only require A to be
a poset. The resulting more general setting will be called the partial-order
setting , to distinguish it from the total-order setting in which A is required
to be a totally ordered set. All results in Chapter 6 so far address the
total-order setting. In this exercise, we will generalize some of them to the
partial-order setting.

All notions that we have defined in the total-order setting (the notion of
a word, the relation ≤, the notion of a Lyndon word, etc.) are defined in
precisely the same way in the partial-order setting. However, the poset A∗

is no longer totally ordered in the partial-order setting.

(a) Prove that Proposition 6.1.2 holds in the partial-order setting, as
long as one replaces “a total order” by “a partial order” in part (a)
of this Proposition.
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(b) Prove (in the partial-order setting) that if a, b, c, d ∈ A∗ are four
words such that the words ab and cd are comparable (with respect
to the partial order ≤), then the words a and c are comparable.

(c) Prove that Proposition 6.1.4, Proposition 6.1.5, Corollary 6.1.6,
Corollary 6.1.8, Exercise 6.1.9, Exercise 6.1.10, Exercise 6.1.11,
Exercise 6.1.12, Proposition 6.1.14, Corollary 6.1.15, Proposition
6.1.16, Corollary 6.1.17, Proposition 6.1.18, Theorem 6.1.20, Exer-
cise 6.1.21(a), Exercise 6.1.23, Exercise 6.1.24, Exercise 6.1.31(a)
and Exercise 6.1.31(b) still hold in the partial-order setting.

(d) Find a counterexample to Exercise 6.1.22 in the partial-order set-
ting.

(e) Salvage Exercise 6.1.22 in the partial-order setting (i.e., find a state-
ment which is easily equivalent to this exercise in the total-order
setting, yet true in the partial-order setting).

(f) In the partial-order setting, a Hazewinkel-CFL factorization of a
word w will mean a tuple (a1, a2, . . . , ak) of Lyndon words such
that w = a1a2 · · · ak and such that no i ∈ {1, 2, . . . , k − 1} satisfies
ai < ai+1. Prove that every word w has a unique Hazewinkel-CFL
factorization (in the partial-order setting).289

(g) Prove that Exercise 6.1.32 still holds in the partial-order setting.

The reader is invited to try extending other results to the partial-order
setting (it seems that no research has been done on this except for Hazewinkel’s
[92]). We shall now, however, return to the total-order setting (which has
the most known applications).

Another extension of the notion of Lyndon words has been introduced
in 2018 by Dolce, Restivo and Reutenauer [53]; it is based on a generalized
version of the lexicographic order, in which different letters are compared
differently depending on their positions in the word (i.e., there is one total
order for comparing first letters, another for comparing second letters, etc.).

Lyndon words are related to various other objects in mathematics, such
as free Lie algebras (Subsection 6.1.1 below), shuffles and shuffle algebras
(Sections 6.2 and 6.3 below), QSym (Sections 6.4 and 6.5), Markov chains
on combinatorial Hopf algebras ([52]), de Bruijn sequences ([72], [159],
[160], [112, §7.2.11, Algorithm F]), symmetric functions (specifically, the
transition matrices between the bases (hλ)λ∈Par, (eλ)λ∈Par and (mλ)λ∈Par;
see [117] for this), and the Burrows-Wheeler algorithm for data compres-
sion (see Remark 6.6.31 below for a quick idea, and [45], [81], [116] for
more). They are also connected to necklaces (in the combinatorial sense)
– a combinatorial object that also happens to be related to a lot of algebra
([185, Chapter 5], [48]). Let us survey the basics of this latter classical
connection in an exercise:

Exercise 6.1.34. Let A be any set (not necessarily totally ordered). Let
C denote the infinite cyclic group, written multiplicatively. Fix a generator
c of C. 290 Fix a positive integer n. The group C acts on An from the

289This result, as well as the validity of Proposition 6.1.16 in the partial-order setting,
are due to Hazewinkel [92].

290So C is a group isomorphic to (Z,+), and the isomorphism (Z,+) → C sends
every n ∈ Z to cn. (Recall that we write the binary operation of C as · instead of +.)
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left according to the rule

c · (a1, a2, . . . , an) = (a2, a3, . . . , an, a1) for all (a1, a2, . . . , an) ∈ An.
291 The orbits of this C-action will be called n-necklaces292; they form a set
partition of the set An.

The n-necklace containing a given n-tuple w ∈ An will be denoted by
[w].

(a) Prove that every n-necklace N is a finite nonempty set and satisfies
|N | | n. (Recall that N is an orbit, thus a set; as usual, |N | denotes
the cardinality of this set.)

The period of an n-necklace N is defined as the positive integer |N |.
(This |N | is indeed a positive integer, since N is a finite nonempty set.)293

An n-necklace is said to be aperiodic if its period is n.

(b) Given any n-tuple w = (w1, w2, . . . , wn) ∈ An, prove that the n-
necklace [w] is aperiodic if and only if every k ∈ {1, 2, . . . , n− 1}
satisfies (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6= w.

From now on, we assume that the set A is totally ordered. We use A as
our alphabet to define the notions of words, the lexicographic order, and
Lyndon words. All notations that we introduced for words will thus be
used for elements of An.

(c) Prove that every aperiodic n-necklace contains exactly one Lyndon
word.

291In other words, c rotates any n-tuple of elements of A cyclically to the left. Thus,
cn ∈ C acts trivially on An, and so this action of C on An factors through C/ 〈cn〉 (a
cyclic group of order n).

292Classically, one visualizes them as necklaces of n beads of |A| colors. (The colors
are the elements of A.) For example, the necklace containing an n-tuple (w1, w2, . . . , wn)
is visualized as follows:

w1
,, w2

��
wn

::

w3

��
wn−1

WW

. .
.

mm

with w1, w2, . . . , wn being the colors of the respective beads. The intuition behind this
is that a necklace is an object that doesn’t really change when we rotate it in its plane.
However, to make this intuition match the definition, we need to think of a necklace as
being stuck in its (fixed) plane, so that we cannot lift it up and turn it around, dropping
it back to its plane in a reflected state.

293For example, the 6-necklace [232232] – or, visually,

2 ** 3

��
2

??

2

��
3

RR

2jj

– has period 3, as it is a set of size 3 (with elements 232232, 322322 and 223223). The
word “period” hints at the geometric meaning: If an n-necklace N is represented by
coloring the vertices of a regular n-gon, then its period is the smallest positive integer d
such that the colors are preserved when the n-gon is rotated by 2πd/n.
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(d) If N is an n-necklace which is not aperiodic, then prove that N
contains no Lyndon word.

(e) Show that the aperiodic n-necklaces are in bijection with Lyndon
words of length n.

From now on, we assume that the set A is finite. Define the number-
theoretic Möbius function µ and the Euler totient function φ as in Exercise
2.9.6.

(f) Prove that the number of all aperiodic n-necklaces is

1

n

∑
d|n

µ (d) |A|n/d .

(g) Prove that the number of all n-necklaces is

1

n

∑
d|n

φ (d) |A|n/d .

(h) Solve Exercise 6.1.29 again.
(i) Forget that we fixed A. Show that every q ∈ Z satisfies n |∑

d|n µ (d) qn/d and n |
∑

d|n φ (d) qn/d.

[Hint: For (c), use Theorem 6.1.20. For (i), either use parts (f) and (g)
and a trick to extend to q negative; or recall Exercise 2.9.8.]

We will pick up the topic of necklaces again in Section 6.6, where we will
connect it back to symmetric functions.

6.1.1. Free Lie algebras. In this brief subsection, we shall review the con-
nection between Lyndon words and free Lie algebras (following [124, Kap.
4], but avoiding the generality of Hall sets in favor of just using Lyndon
words). None of this material shall be used in the rest of these notes. We
will only prove some basic results; for more thorough and comprehensive
treatments of free Lie algebras, see [182], [27, Chapter 2] and [124, Kap.
4].

We begin with some properties of Lyndon words.

Exercise 6.1.35. Let w ∈ A∗ be a nonempty word. Let v be the longest
Lyndon suffix of w 294. Let t be a Lyndon word. Then, t is the longest
Lyndon suffix of wt if and only if we do not have v < t.

(We have written “we do not have v < t” instead of “v ≥ t” in Exercise
6.1.35 for reasons of generalizability: This way, Exercise 6.1.35 general-
izes to the partial-order setting introduced in Exercise 6.1.33, whereas the
version with “v ≥ t” does not.)

Exercise 6.1.36. Let w ∈ A∗ be a word of length > 1. Let v be the longest
Lyndon proper suffix of w 295. Let t be a Lyndon word. Then, t is the
longest Lyndon proper suffix of wt if and only if we do not have v < t.

(Exercise 6.1.36, while being a trivial consequence of Exercise 6.1.35,
is rather useful in the study of free Lie algebras. It generalizes both [38,
Lemma (1.6)] (which is obtained by taking w = c, v = b and t = d) and
[139, Proposition 5.1.4] (which is obtained by taking v = m and t = n).)

294Of course, a Lyndon suffix of w just means a suffix p of w such that p is Lyndon.
295Of course, a Lyndon proper suffix of w just means a proper suffix p of w such that

p is Lyndon.
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Definition 6.1.37. For the rest of Subsection 6.1.1, we let L be the set of
all Lyndon words (over the alphabet A).

Definition 6.1.38. Let w be a Lyndon word of length > 1. Let v be the
longest proper suffix of w such that v is Lyndon. (This is well-defined,
as we know from Exercise 6.1.31.) Since v is a proper suffix of w, there
exists a nonempty u ∈ A∗ such that w = uv. Consider this u. (Clearly,
this u is unique.) Theorem 6.1.30(a) shows that the words u and v are
Lyndon. In other words, u ∈ L and v ∈ L. Hence, (u, v) ∈ L×L. The pair
(u, v) ∈ L× L is called the standard factorization of w, and is denoted by
stf w.

For the sake of easier reference, we gather a few basic properties of the
standard factorization:

Exercise 6.1.39. Let w be a Lyndon word of length > 1. Let (g, h) =
stf w. Prove the following:

(a) The word h is the longest Lyndon proper suffix of w.
(b) We have w = gh.
(c) We have g < gh < h.
(d) The word g is Lyndon.
(e) We have g ∈ L, h ∈ L, ` (g) < ` (w) and ` (h) < ` (w).
(f) Let t be a Lyndon word. Then, t is the longest Lyndon proper suffix

of wt if and only if we do not have h < t.

Exercise 6.1.40. Let g be a Lie algebra. For every Lyndon word w, let bw
be an element of g. Assume that for every Lyndon word w of length > 1,
we have

(6.1.2) bw = [bu, bv] , where (u, v) = stf w.

Let B be the k-submodule of g spanned by the family (bw)w∈L.

(a) Prove that B is a Lie subalgebra of g.
(b) Let h be a k-Lie algebra. Let f : B → h be a k-module homomor-

phism. Assume that whenever w is a Lyndon word of length > 1,
we have

(6.1.3) f ([bu, bv]) = [f (bu) , f (bv)] , where (u, v) = stf w.

Prove that f is a Lie algebra homomorphism.

[Hint: Given two words w and w′, write w ∼ w′ if and only if w′ is a
permutation of w. Part (a) follows from the fact that for any (p, q) ∈ L×L
satisfying p < q, we have [bp, bq] ∈ Bpq,q, where Bh,s denotes the k-linear
span of {bw | w ∈ L, w ∼ h and w < s} for any two words h and s. Prove
this fact by a double induction, first inducting over ` (pq), and then (for
fixed ` (pq)) inducting over the rank of q in lexicographic order (i.e., assume
that the fact is already proven for every q′ < q instead of q). In the
induction step, assume that (p, q) 6= stf (pq) (since otherwise the claim is
rather obvious) and conclude that p has length > 1; thus, set (u, v) = stf p,

so that

 bp︸︷︷︸
=[bu,bv ]

, bq

 = [[bu, bv] , bq] = [[bu, bq] , bv] − [[bv, bq] , bu], and use

Exercise 6.1.36 to obtain v < q.
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The proof of (b) proceeds by a similar induction, piggybacking on the
[bp, bq] ∈ Bpq,q claim.]

Exercise 6.1.41. Let V be the free k-module with basis (xa)a∈A. For every
word w ∈ A∗, let xw be the tensor xw1 ⊗ xw2 ⊗ · · · ⊗ xw`(w)

. As we know

from Example 1.1.2, the tensor algebra T (V ) is a free k-module with basis
(xw)w∈A∗ . We regard V as a k-submodule of T (V ).

The tensor algebra T (V ) becomes a Lie algebra via the commutator
(i.e., its Lie bracket is defined by [α, β] = αβ − βα for all α ∈ T (V ) and
β ∈ T (V )).

We define a sequence (g1, g2, g3, . . .) of k-submodules of T (V ) as follows:
Recursively, we set g1 = V , and for every i ∈ {2, 3, 4, . . .}, we set gi =
[V, gi−1]. Let g be the k-submodule g1 + g2 + g3 + · · · of T (V ).

Prove the following:

(a) The k-submodule g is a Lie subalgebra of T (V ).
(b) If k is any Lie subalgebra of T (V ) satisfying V ⊂ k, then g ⊂ k.

Now, for every w ∈ L, we define an element bw of T (V ) as follows: We
define bw by recursion on the length of w. If the length of w is 1 296, then
we have w = (a) for some letter a ∈ A, and we set bw = xa for this letter
a. If the length of w is > 1, then we set bw = [bu, bv], where (u, v) = stf w
297.

Prove the following:

(c) For every w ∈ L, we have

bw ∈ xw +
∑

v∈A`(w);
v>w

kxv.

(d) The family (bw)w∈L is a basis of the k-module g.
(e) Let h be any k-Lie algebra. Let ξ : A → h be any map. Then,

there exists a unique Lie algebra homomorphism Ξ : g → h such
that every a ∈ A satisfies Ξ (xa) = ξ (a).

Remark 6.1.42. Let V and g be as in Exercise 6.1.41. In the language
of universal algebra, the statement of Exercise 6.1.41(e) says that g (or,
to be more precise, the pair (g, f), where f : A → g is the map sending
each a ∈ A to xa ∈ g) satisfies the universal property of the free Lie
algebra on the set A. Thus, this exercise allows us to call g the free Lie
algebra on A. Most authors define the free Lie algebra differently, but
all reasonable definitions of a free Lie algebra298 lead to isomorphic Lie

296The length of any w ∈ L must be at least 1. (Indeed, if w ∈ L, then the word w
is Lyndon and thus nonempty, and hence its length must be at least 1.)

297This is well-defined, because bu and bv have already been defined. [Proof. Let
(u, v) = stf w. Then, Exercise 6.1.39(e) (applied to (g, h) = (u, v)) shows that u ∈ L,
v ∈ L, ` (u) < ` (w) and ` (v) < ` (w). Recall that we are defining bw by recursion on
the length of w. Hence, bp is already defined for every p ∈ L satisfying ` (p) < ` (w).
Applying this to p = u, we see that bu is already defined (since u ∈ L and ` (u) < ` (w)).
The same argument (but applied to v instead of u) shows that bv is already defined.
Hence, bu and bv have already been defined. Thus, bw is well-defined by bw = [bu, bv],
qed.]

298Here, we call a definition “reasonable” if the “free Lie algebra” it defines satisfies
the universal property.
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algebras (because the universal property determines the free Lie algebra
uniquely up to canonical isomorphism).

Notice that the Lie algebra g does not depend on the total order on the
alphabet A, but the basis (bw)w∈L constructed in Exercise 6.1.41(d) does.
There is no known basis of g defined without ordering A.

It is worth noticing that our construction of g proves not only that the
free Lie algebra on A exists, but also that this free Lie algebra can be
realized as a Lie subalgebra of the (associative) algebra T (V ). Therefore,
if we want to prove that a certain identity holds in every Lie algebra, we
only need to check that this identity holds in every associative algebra (if
all Lie brackets are replaced by commutators); the universal property of the
free Lie algebra (i.e., Exercise 6.1.41(e)) will then ensure that this identity
also holds in every Lie algebra h.

There is much more to say about free Lie algebras than what we have said
here; in particular, there are connections to symmetric functions, necklaces,
representations of symmetric groups and NSym. See [139, §5.3], [182], [27,
Chapter 2], [124, §4] and [24] for further developments299.

6.2. Shuffles and Lyndon words. We will now connect the theory of
Lyndon words with the notion of shuffle products. We have already intro-
duced the latter notion in Definition 1.6.2, but we will now study it more
closely and introduce some more convenient notations (e.g., we will need a
notation for single shuffles, not just the whole multiset).300

Definition 6.2.1. (a) Let n ∈ N and m ∈ N. Then, Shn,m denotes the
subset{

σ ∈ Sn+m : σ−1 (1) < σ−1 (2) < · · · < σ−1 (n) ;

σ−1 (n+ 1) < σ−1 (n+ 2) < · · · < σ−1 (n+m)
}

of the symmetric group Sn+m.
(b) Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vm) be two words. If

σ ∈ Shn,m, then, u�
σ
v will denote the word

(
wσ(1), wσ(2), . . . , wσ(n+m)

)
,

where (w1, w2, . . . , wn+m) is the concatenation

u · v = (u1, u2, . . . , un, v1, v2, . . . , vm) .

We notice that the multiset of all letters of u�
σ
v is the disjoint union

of the multiset of all letters of u with the multiset of all letters of
v. As a consequence, `

(
u�

σ
v
)

= ` (u) + ` (v).

(c) Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vm) be two words. The
multiset of shuffles of u and v is defined as the multiset{(

wσ(1), wσ(2), . . . , wσ(n+m)

)
: σ ∈ Shn,m

}
multiset

,

299The claim made in [24, page 2] that “{x1, . . . , xn} generates freely a Lie subalgebra
of AR” is essentially our Exercise 6.1.41(e).

300Parts (a) and (c) of the below Definition 6.2.1 define notions which have already
been introduced in Definition 1.6.2. Of course, the definitions of these notions are
equivalent; however, the variables are differently labelled in the two definitions (for
example, the variables u, v, w and σ of Definition 6.2.1(c) correspond to the variables
a, b, c and w of Definition 1.6.2). The labels in Definition 6.2.1 have been chosen to
match with the rest of Section 6.2.
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where (w1, w2, . . . , wn+m) is the concatenation

u · v = (u1, u2, . . . , un, v1, v2, . . . , vm) .

In other words, the multiset of shuffles of u and v is the multiset{
u�

σ
v : σ ∈ Shn,m

}
multiset

.

It is denoted by u� v.

The next fact provides the main connection between Lyndon words and
shuffles:

Theorem 6.2.2. Let u and v be two words.
Let (a1, a2, . . . , ap) be the CFL factorization of u. Let (b1, b2, . . . , bq) be

the CFL factorization of v.

(a) Let (c1, c2, . . . , cp+q) be the result of sorting the list
(a1, a2, . . . , ap, b1, b2, . . . , bq) in decreasing order301. Then, the lexi-
cographically highest element of the multiset u� v is c1c2 · · · cp+q
(and (c1, c2, . . . , cp+q) is the CFL factorization of this element).

(b) Let L denote the set of all Lyndon words. If w is a Lyndon word
and z is any word, let multw z denote the number of terms in the
CFL factorization of z which are equal to w. The multiplicity with
which the lexicographically highest element of the multiset u � v

appears in the multiset u� v is
∏

w∈L

(
multw u+ multw v

multw u

)
. (This

product is well-defined because almost all of its factors are 1.)
(c) If ai ≥ bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}, then the

lexicographically highest element of the multiset u� v is uv.
(d) If ai > bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}, then the

multiplicity with which the word uv appears in the multiset u� v
is 1.

(e) Assume that u is a Lyndon word. Also, assume that u ≥ bj for
every j ∈ {1, 2, . . . , q}. Then, the lexicographically highest element
of the multiset u � v is uv, and the multiplicity with which this
word uv appears in the multiset u� v is multu v + 1.

Example 6.2.3. For this example, let u and v be the words u = 23232
and v = 323221 over the alphabet A = {1, 2, 3, . . .} with total order
given by 1 < 2 < 3 < · · · . The CFL factorizations of u and v are
(23, 23, 2) and (3, 23, 2, 2, 1), respectively. Thus, using the notations of
Theorem 6.2.2, we have p = 3, (a1, a2, . . . , ap) = (23, 23, 2), q = 5 and
(b1, b2, . . . , bq) = (3, 23, 2, 2, 1). Thus, Theorem 6.2.2(a) predicts that the
lexicographically highest element of the multiset u� v is c1c2c3c4c5c6c7c8,
where c1, c2, c3, c4, c5, c6, c7, c8 are the words 23, 23, 2, 3, 23, 2, 2, 1 listed in
decreasing order (in other words,
(c1, c2, c3, c4, c5, c6, c7, c8) = (3, 23, 23, 23, 2, 2, 2, 1)). In other words, The-
orem 6.2.2(a) predicts that the lexicographically highest element of the
multiset u�v is 32323232221. We could verify this by brute force, but this

would be laborious since the multiset u� v has

(
5 + 6

5

)
= 462 elements

(with multiplicities). Theorem 6.2.2(b) predicts that this lexicographically

301with respect to the total order on A∗ whose greater-or-equal relation is ≥
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highest element 32323232221 appears in the multiset u�v with a multiplic-

ity of
∏

w∈L

(
multw u+ multw v

multw u

)
. This product

∏
w∈L

(
multw u+ multw v

multw u

)
is infinite, but all but finitely many of its factors are 1 and therefore can be
omitted; the only factors which are not 1 are those corresponding to Lyn-
don words w which appear both in the CFL factorization of u and in the
CFL factorization of v (since for any other factor, at least one of the num-
bers multw u or multw v equals 0, and therefore the binomial coefficient(

multw u+ multw v

multw u

)
equals 1). Thus, in order to compute the product∏

w∈L

(
multw u+ multw v

multw u

)
, we only need to multiply these factors. In our

example, these are the factors for w = 23 and for w = 2 (these are the only
Lyndon words which appear both in the CFL factorization (23, 23, 2) of u
and in the CFL factorization (3, 23, 2, 2, 1) of v). So we have

∏
w∈L

(
multw u+ multw v

multw u

)
=

(
mult23 u+ mult23 v

mult23 u

)
︸ ︷︷ ︸

=

(
2 + 1

2

)
=3

(
mult2 u+ mult2 v

mult2 u

)
︸ ︷︷ ︸

=

(
1 + 2

1

)
=3

= 3 · 3 = 9.

The word 32323232221 must thus appear in the multiset u � v with a
multiplicity of 9. This, too, could be checked by brute force.

Theorem 6.2.2 (and Theorem 6.2.22 further below, which describes more
precisely how the lexicographically highest element of u � v emerges by
shuffling u and v) is fairly close to [177, Theorem 2.2.2] (and will be used
for the same purposes), the main difference being that we are talking about
the shuffle product of two (not necessarily Lyndon) words, while Radford
(and most other authors) study the shuffle product of many Lyndon words.

In order to prove Theorem 6.2.2, we will need to make some stronger
statements, for which we first have to introduce some more notation:

Definition 6.2.4. (a) If p and q are two integers, then [p : q]+ denotes
the interval {p+ 1, p+ 2, . . . , q} of Z. Note that

∣∣[p : q]+
∣∣ = q − p

if q ≥ p.
(b) If I and J are two nonempty intervals of Z, then we say that I < J

if and only if every i ∈ I and j ∈ J satisfy i < j. This defines
a partial order on the set of nonempty intervals of Z. (Roughly
speaking, I < J if the interval I ends before J begins.)

(c) If w is a word with n letters (for some n ∈ N), and I is an in-
terval of Z such that I ⊂ [0 : n]+, then w [I] will denote the word
(wp+1, wp+2, . . . , wq), where I is written in the form I = [p : q]+ with
q ≥ p. Obviously, ` (w [I]) = |I| = q − p. A word of the form w [I]
for an interval I ⊂ [0 : n]+ (equivalently, a word which is a prefix
of a suffix of w) is called a factor of w.

(d) Let α be a composition. Then, we define a tuple intsysα of intervals
of Z as follows: Write α in the form (α1, α2, . . . , α`) (so that ` =
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` (α)). Then, set intsysα = (I1, I2, . . . , I`), where

Ii =

[
i−1∑
k=1

αk :
i∑

k=1

αk

]+

for every i ∈ {1, 2, . . . , `} .

This `-tuple intsysα is a tuple of nonempty intervals of Z. This tu-
ple intsysα is called the interval system corresponding to α. (This is
precisely the `-tuple (I1, I2, . . . , I`) constructed in Definition 4.3.4.)
The length of the tuple intsysα is ` (α).

Example 6.2.5. (a) We have [2 : 4]+ = {3, 4} and [3 : 3]+ = ∅.
(b) We have [2 : 4]+ < [4 : 5]+ < [6 : 8]+, but we have neither [2 : 4]+ <

[3 : 5]+ nor [3 : 5]+ < [2 : 4]+.
(c) If w is the word 915352, then w

[
[0 : 3]+

]
= (w1, w2, w3) = 915 and

w
[
[2 : 4]+

]
= (w3, w4) = 53.

(d) If α is the composition (4, 1, 4, 2, 3), then the interval system corre-
sponding to α is

intsysα =
(
[0 : 4]+ , [4 : 5]+ , [5 : 9]+ , [9 : 11]+ , [11 : 14]+

)
= ({1, 2, 3, 4} , {5} , {6, 7, 8, 9} , {10, 11} , {12, 13, 14}) .

The following properties of the notions introduced in the preceding def-
inition are easy to check:

Remark 6.2.6. (a) If I and J are two nonempty intervals of Z satisfying
I < J , then I and J are disjoint.

(b) If I and J are two disjoint nonempty intervals of Z, then either
I < J or J < I.

(c) Let α be a composition. Write α in the form (α1, α2, . . . , α`) (so
that ` = ` (α)). The interval system intsysα can be described as the
unique `-tuple (I1, I2, . . . , I`) of nonempty intervals of Z satisfying
the following three properties:

– The intervals I1, I2, . . ., I` form a set partition of the set
[0 : n]+, where n = |α|.

– We have I1 < I2 < · · · < I`.
– We have |Ii| = αi for every i ∈ {1, 2, . . . , `}.

Exercise 6.2.7. Prove Remark 6.2.6.

The following two lemmas are collections of more or less trivial conse-
quences of what it means to be an element of Shn,m and what it means to
be a shuffle:

Lemma 6.2.8. Let n ∈ N and m ∈ N. Let σ ∈ Shn,m.

(a) If I is an interval of Z such that I ⊂ [0 : n+m]+, then σ (I)∩[0 : n]+

and σ (I) ∩ [n : n+m]+ are intervals.
(b) Let K and L be nonempty intervals of Z such that K ⊂ [0 : n]+

and L ⊂ [0 : n]+ and K < L and such that K∪L is an interval. As-
sume that σ−1 (K) and σ−1 (L) are intervals, but σ−1 (K)∪σ−1 (L)
is not an interval. Then, there exists a nonempty interval P ⊂
[n : n+m]+ such that σ−1 (P ), σ−1 (K) ∪ σ−1 (P ) and σ−1 (P ) ∪
σ−1 (L) are intervals and such that σ−1 (K) < σ−1 (P ) < σ−1 (L).
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(c) Lemma 6.2.8(b) remains valid if “K ⊂ [0 : n]+ and L ⊂ [0 : n]+”
and “P ⊂ [n : n+m]+” are replaced by “K ⊂ [n : n+m]+ and
L ⊂ [n : n+m]+” and “P ⊂ [0 : n]+”, respectively.

Exercise 6.2.9. Prove Lemma 6.2.8.

Lemma 6.2.10. Let u and v be two words. Let n = ` (u) and m = ` (v).
Let σ ∈ Shn,m.

(a) If I is an interval of Z satisfying either I ⊂ [0 : n]+ or I ⊂ [n : n+m]+,
and if σ−1 (I) is an interval, then

(6.2.1)
(
u�

σ
v
) [
σ−1 (I)

]
= (uv) [I] .

(b) Assume that u�
σ
v is the lexicographically highest element of the

multiset u � v. Let I ⊂ [0 : n]+ and J ⊂ [n : n+m]+ be two
nonempty intervals. Assume that σ−1 (I) and σ−1 (J) are also in-
tervals, that σ−1 (I) < σ−1 (J), and that σ−1 (I) ∪ σ−1 (J) is an
interval as well. Then, (uv) [I] · (uv) [J ] ≥ (uv) [J ] · (uv) [I].

(c) Lemma 6.2.10(b) remains valid if “I ⊂ [0 : n]+ and J ⊂ [n : n+m]+”
is replaced by “I ⊂ [n : n+m]+ and J ⊂ [0 : n]+”.

Exercise 6.2.11. Prove Lemma 6.2.10.
[Hint: For (b), show that there exists a τ ∈ Shn,m such that u�

τ
v differs

from u�
σ
v only in the order of the subwords (uv) [I] and (uv) [J ].]

We are still a few steps away from stating our results in a way that allows
comfortably proving Theorem 6.2.2. For the latter aim, we introduce the
notion of α-clumping permutations, and characterize them in two ways:

Definition 6.2.12. Let n ∈ N. Let α be a composition of n. Let ` = ` (α).

(a) For every set S of positive integers, let
−→
S denote the list of all

elements of S in increasing order (with each element appearing ex-

actly once). Notice that this list
−→
S is a word over the set of positive

integers.
(b) For every τ ∈ S`, we define a permutation iper (α, τ) ∈ Sn as

follows:
The interval system corresponding to α is an `-tuple of intervals

(since ` (α) = `); denote this `-tuple by (I1, I2, . . . , I`). Now, define
iper (α, τ) to be the permutation in Sn which (in one-line notation)

is the word
−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`) (a concatenation of ` words). This is

well-defined302; hence, iper (α, τ) ∈ Sn is defined.
(c) The interval system corresponding to α is an `-tuple of intervals

(since ` (α) = `); denote this `-tuple by (I1, I2, . . . , I`).
A permutation σ ∈ Sn is said to be α-clumping if every i ∈
{1, 2, . . . , `} has the two properties that:

– the set σ−1 (Ii) is an interval;

302In fact, from the properties of interval systems, we know that the intervals I1, I2,
. . ., I` form a set partition of the set [0 : n]

+
. Hence, the intervals Iτ(1), Iτ(2), . . ., Iτ(`)

form a set partition of the set [0 : n]
+

. As a consequence, the word
−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−→
Iτ(`) is

a permutation of the word 12 . . . n, and so there exists a permutation in Sn which (in
one-line notation) is this word, qed.
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– the restriction of the map σ−1 to the interval Ii is increasing.

Example 6.2.13. For this example, let n = 7 and α = (2, 1, 3, 1). Then,
` = ` (α) = 4 and (I1, I2, I3, I4) = ({1, 2} , {3} , {4, 5, 6} , {7}) (where we are

using the notations of Definition 6.2.12). Hence,
−→
I1 = 12,

−→
I2 = 3,

−→
I3 = 456

and
−→
I4 = 7.

(a) If τ ∈ S` = S4 is the permutation (2, 3, 1, 4), then iper (α, τ) is
the permutation in S7 which (in one-line notation) is the word
−−→
Iτ(1)

−−→
Iτ(2)

−−→
Iτ(3)

−−→
Iτ(4) =

−→
I2
−→
I3
−→
I1
−→
I4 = 3456127.

If τ ∈ S` = S4 is the permutation (3, 1, 4, 2), then iper (α, τ)
is the permutation in S7 which (in one-line notation) is the word
−−→
Iτ(1)

−−→
Iτ(2)

−−→
Iτ(3)

−−→
Iτ(4) =

−→
I3
−→
I1
−→
I4
−→
I2 = 4561273.

(b) The permutation σ = (3, 7, 4, 5, 6, 1, 2) ∈ S7 (given here in one-line
notation) is α-clumping, because:

– every i ∈ {1, 2, . . . , `} = {1, 2, 3, 4} has the property that
σ−1 (Ii) is an interval (namely, σ−1 (I1) = σ−1 ({1, 2}) = {6, 7},
σ−1 (I2) = σ−1 ({3}) = {1}, σ−1 (I3) = σ−1 ({4, 5, 6}) = {3, 4, 5}
and σ−1 (I4) = σ−1 ({7}) = {2}), and

– the restrictions of the map σ−1 to the intervals Ii are increas-
ing (this means that σ−1 (1) < σ−1 (2) and σ−1 (4) < σ−1 (5) <
σ−1 (6), since the one-element intervals I2 and I4 do not con-
tribute anything to this condition).

Here is a more or less trivial observation:

Proposition 6.2.14. Let n ∈ N. Let α be a composition of n. Let
` = ` (α). Write α in the form (α1, α2, . . . , α`). The interval system corre-
sponding to α is an `-tuple of intervals (since ` (α) = `); denote this `-tuple
by (I1, I2, . . . , I`). Let τ ∈ S`. Set σ = iper (α, τ).

(a) We have σ−1
(
Iτ(j)

)
=
[∑j−1

k=1 ατ(k) :
∑j

k=1 ατ(k)

]+

for every j ∈
{1, 2, . . . , `}.

(b) For every j ∈ {1, 2, . . . , `}, the restriction of the map σ−1 to the
interval Iτ(j) is increasing.

(c) The permutation iper (α, τ) is α-clumping.
(d) Let i ∈ {1, 2, . . . , `− 1}. Then, the sets σ−1

(
Iτ(i)

)
, σ−1

(
Iτ(i+1)

)
and

σ−1
(
Iτ(i)

)
∪σ−1

(
Iτ(i+1)

)
are nonempty intervals. Also, σ−1

(
Iτ(i)

)
<

σ−1
(
Iτ(i+1)

)
.

Exercise 6.2.15. Prove Proposition 6.2.14.

Proposition 6.2.16. Let n ∈ N. Let α be a composition of n. Let
` = ` (α).

(a) Define a map

iperα : S` −→ {ω ∈ Sn | ω is α-clumping} ,
τ 7−→ iper (α, τ)

303. This map iperα is bijective.

303This map is well-defined because for every τ ∈ S`, the permutation iper (α, τ) is
α-clumping (according to Proposition 6.2.14(c)).
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(b) Let σ ∈ Sn be an α-clumping permutation. Then, there exists a
unique τ ∈ S` satisfying σ = iper (α, τ).

Exercise 6.2.17. Prove Proposition 6.2.16.

Next, we recall that the concatenation α ·β of two compositions α and β
is defined in the same way as the concatenation of two words; if we regard
compositions as words over the alphabet {1, 2, 3, . . .}, then the concatena-
tion α ·β of two compositions α and β is the concatenation αβ of the words
α and β. Thus, we are going to write αβ for the concatenation α ·β of two
compositions α and β from now on.

Proposition 6.2.18. Let n ∈ N and m ∈ N. Let α be a composition
of n, and β be a composition of m. Let p = ` (α) and q = ` (β). Let
τ ∈ Sp+q. Notice that iper (αβ, τ) ∈ Sn+m (since αβ is a composition of
n+m having length ` (αβ) = ` (α) + ` (β) = p+ q). Then, τ ∈ Shp,q if and
only if iper (αβ, τ) ∈ Shn,m.

Exercise 6.2.19. Prove Proposition 6.2.18.

Here is one more simple fact:

Lemma 6.2.20. Let u and v be two words. Let n = ` (u) and m =
` (v). Let α be a composition of n, and let β be a composition of m.
Let p = ` (α) and q = ` (β). The concatenation αβ is a composition of
n + m having length ` (αβ) = ` (α) + ` (β) = p + q. Thus, the interval
system corresponding to αβ is a (p+ q)-tuple of intervals which covers
[0 : n+m]+. Denote this (p+ q)-tuple by (I1, I2, . . . , Ip+q).

Let τ ∈ Shp,q. Set σ = iper (αβ, τ). Then,

u�
σ
v = (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
.

Exercise 6.2.21. Prove Lemma 6.2.20.

Having these notations and trivialities in place, we can say a bit more
about the lexicographically highest element of a shuffle product than what
was said in Theorem 6.2.2:

Theorem 6.2.22. Let u and v be two words. Let n = ` (u) and m = ` (v).
Let (a1, a2, . . . , ap) be the CFL factorization of u. Let (b1, b2, . . . , bq) be

the CFL factorization of v.
Let α be the p-tuple (` (a1) , ` (a2) , . . . , ` (ap)). Then, α is a composi-

tion304 of length p and size
∑p

k=1 ` (ak) = `

a1a2 · · · ap︸ ︷︷ ︸
=u

 = ` (u) = n.

Let β be the q-tuple (` (b1) , ` (b2) , . . . , ` (bq)). Then, β is a composition
of length q and size

∑q
k=1 ` (bk) = m. 305

Now, α is a composition of length p and size n, and β is a composition
of length q and size m. Thus, the concatenation αβ of these two tuples is
a composition of length p + q and size n + m. The interval system corre-
sponding to this composition αβ is a (p+ q)-tuple (since said composition
has length p+ q); denote this (p+ q)-tuple by (I1, I2, . . . , Ip+q).

304since Lyndon words are nonempty, and thus ` (ai) > 0 for every i
305The proof of this is the same as the proof of the fact that α is a composition of

length p and size
∑p
k=1 ` (αk) = n.
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(a) If τ ∈ Shp,q satisfies (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
,

and if we set σ = iper (αβ, τ), then σ ∈ Shn,m, and the word u�
σ
v

is the lexicographically highest element of the multiset u� v.
(b) Let σ ∈ Shn,m be a permutation such that u�

σ
v is the lexicograph-

ically highest element of the multiset u� v. Then, there exists a
unique permutation τ ∈ Shp,q satisfying (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥

· · · ≥ (uv)
[
Iτ(p+q)

]
and σ = iper (αβ, τ).

Proof. Before we step to the actual proof, we need to make some prepara-
tion. First of all, (I1, I2, . . . , Ip+q) is the interval system corresponding to
the composition αβ. In other words,

(6.2.2) (I1, I2, . . . , Ip+q) = intsys (αβ) .

But since α = (` (a1) , ` (a2) , . . . , ` (ap)) and β = (` (b1) , ` (b2) , . . . , ` (bq)),
we have

αβ = (` (a1) , ` (a2) , . . . , ` (ap) , ` (b1) , ` (b2) , . . . , ` (bq)) .

Thus, (6.2.2) rewrites as

(I1, I2, . . . , Ip+q) = intsys (` (a1) , ` (a2) , . . . , ` (ap) , ` (b1) , ` (b2) , . . . , ` (bq)) .

By the definition of intsys (` (a1) , ` (a2) , . . . , ` (ap) , ` (b1) , ` (b2) , . . . , ` (bq)),
we thus have

Ii =

[
i−1∑
k=1

` (ak) :
i∑

k=1

` (ak)

]+

for every i ∈ {1, 2, . . . , p} ,

and besides

Ip+j =

[
n+

j−1∑
k=1

` (bk) : n+

j∑
k=1

` (bk)

]+

for every j ∈ {1, 2, . . . , q}

(since
∑p

k=1 ` (ak) = n). Moreover, Remark 6.2.6(c) shows that
(I1, I2, . . . , Ip+q) is a (p+ q)-tuple of nonempty intervals of Z and satisfies
the following three properties:

• The intervals I1, I2, . . ., Ip+q form a set partition of the set [0 : n+m]+.
• We have I1 < I2 < · · · < Ip+q.
• We have |Ii| = ` (ai) for every i ∈ {1, 2, . . . , p} and |Ip+j| = ` (bj)

for every j ∈ {1, 2, . . . , q}.
Of course, every i ∈ {1, 2, . . . , p} satisfies

(6.2.3) Ii ⊂ [0 : n]+ and (uv) [Ii] = u [Ii] = ai.

Meanwhile, every i ∈ {p+ 1, p+ 2, . . . , p+ q} satisfies

(6.2.4) Ii ⊂ [n : n+m]+ and (uv) [Ii] = v [Ii − n] = bi−p

(where Ii − n denotes the interval {k − n | k ∈ Ii}). We thus see that

(6.2.5) (uv) [Ii] is a Lyndon word for every i ∈ {1, 2, . . . , p+ q}
306.

By the definition of a CFL factorization, we have a1 ≥ a2 ≥ · · · ≥ ap
and b1 ≥ b2 ≥ · · · ≥ bq.

306Indeed, when i ≤ p, this follows from (6.2.3) and the fact that ai is Lyndon;
whereas in the other case, this follows from (6.2.4) and the fact that bi−p is Lyndon.
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We have σ ∈ Shn,m, so that σ−1 (1) < σ−1 (2) < · · · < σ−1 (n) and
σ−1 (n+ 1) < σ−1 (n+ 2) < · · · < σ−1 (n+m). In other words, the re-
striction of the map σ−1 to the interval [0 : n]+ is strictly increasing, and
so is the restriction of the map σ−1 to the interval [n : n+m]+.

(b) We will first show that

if J ⊂ [0 : n]+ is an interval

such that the word (uv) [J ] is Lyndon,

then σ−1 (J) is an interval.(6.2.6)

Proof of (6.2.6): We will prove (6.2.6) by strong induction over |J |.
So, fix some N ∈ N. Assume (as the induction hypothesis) that (6.2.6)

has been proven whenever |J | < N . We now need to prove (6.2.6) when
|J | = N .

Let J ⊂ [0 : n]+ be an interval such that the word (uv) [J ] is Lyndon
and such that |J | = N . We have to prove that σ−1 (J) is an interval. This
is obvious if |J | = 1 (because in this case, σ−1 (J) is a one-element set,
thus trivially an interval). Hence, we WLOG assume that we don’t have
|J | = 1. We also don’t have |J | = 0, because (uv) [J ] has to be Lyndon
(and the empty word is not). So we have |J | > 1. Now, ` ((uv) [J ]) =
|J | > 1, and thus (uv) [J ] is a Lyndon word of length > 1. Let v′ be
the (lexicographically) smallest nonempty proper suffix of (uv) [J ]. Since
v′ is a proper suffix of w, there exists a nonempty u′ ∈ A∗ such that
(uv) [J ] = u′v′. Consider this u′.

Now, Theorem 6.1.30(a) (applied to (uv) [J ], u′ and v′ instead of w,
u and v) yields that the words u′ and v′ are Lyndon. Also, Theorem
6.1.30(b) (applied to (uv) [J ], u′ and v′ instead of w, u and v) yields that
u′ < (uv) [J ] < v′.

But from the fact that (uv) [J ] = u′v′ with u′ and v′ both being nonempty,
it becomes immediately clear that we can write J as a union of two dis-
joint nonempty intervals K and L such that K < L, u′ = (uv) [K] and
v′ = (uv) [L]. Consider these K and L. The intervals K and L are
nonempty and have their sizes add up to |J | (since they are disjoint and
their union is J), and hence both must have size smaller than |J | = N .
So K ⊂ [0 : n]+ is an interval of size |K| < N having the property that
(uv) [K] is Lyndon (since (uv) [K] = u′ is Lyndon). Thus, we can apply
(6.2.6) to K instead of J (because of the induction hypothesis). As a result,
we conclude that σ−1 (K) is an interval. Similarly, we can apply (6.2.6) to
L instead of J (we know that (uv) [L] is Lyndon since (uv) [L] = v′), and
learn that σ−1 (L) is an interval. The intervals σ−1 (K) and σ−1 (L) are
both nonempty (since K and L are nonempty), and their union is σ−1 (J)
(because the union of K and L is J). The nonempty intervals K and L
both are subsets of [0 : n]+ (since their union is J ⊂ [0 : n]+), and their
union K ∪L is an interval (since their union K ∪L is J , and we know that
J is an interval).

Now, assume (for the sake of contradiction) that σ−1 (J) is not an in-
terval. Since J is the union of K and L, we have J = K ∪ L and thus
σ−1 (J) = σ−1 (K ∪ L) = σ−1 (K)∪ σ−1 (L) (since σ is a bijection). There-
fore, σ−1 (K) ∪ σ−1 (L) is not an interval (since σ−1 (J) is not an inter-
val). Thus, Lemma 6.2.8(b) yields that there exists a nonempty interval
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P ⊂ [n : n+m]+ such that σ−1 (P ), σ−1 (K)∪σ−1 (P ) and σ−1 (P )∪σ−1 (L)
are intervals and such that σ−1 (K) < σ−1 (P ) < σ−1 (L). Consider this P .
Since P is nonempty, we have |P | 6= 0.

Lemma 6.2.10(b) (applied to K and P instead of I and J) yields

(6.2.7) (uv) [K] · (uv) [P ] ≥ (uv) [P ] · (uv) [K] .

Since (uv) [K] = u′, this rewrites as

(6.2.8) u′ · (uv) [P ] ≥ (uv) [P ] · u′.

But Lemma 6.2.10(c) (applied to P and L instead of I and J) yields

(6.2.9) (uv) [P ] · (uv) [L] ≥ (uv) [L] · (uv) [P ] .

Since (uv) [L] = v′, this rewrites as

(6.2.10) (uv) [P ] · v′ ≥ v′ · (uv) [P ] .

Recall also that u′ < v′, and that both words u′ and v′ are Lyndon.
Now, Corollary 6.1.17 (applied to u′, v′ and (uv) [P ] instead of u, v and
z) yields that (uv) [P ] is the empty word (because of (6.2.8) and (6.2.10)),
so that ` ((uv) [P ]) = 0. This contradicts ` ((uv) [P ]) = |P | 6= 0. This
contradiction shows that our assumption (that σ−1 (J) is not an interval)
was wrong. Hence, σ−1 (J) is an interval. This completes the induction
step, and thus (6.2.6) is proven.

Similarly to (6.2.6), we can show that

if J ⊂ [n : n+m]+ is an interval

such that the word (uv) [J ] is Lyndon,

then σ−1 (J) is an interval.(6.2.11)

Now, let i ∈ {1, 2, . . . , p+ q} be arbitrary. We are going to prove that

(6.2.12) σ−1 (Ii) is an interval.

Proof of (6.2.12): We must be in one of the following two cases:
Case 1: We have i ∈ {1, 2, . . . , p}.
Case 2: We have i ∈ {p+ 1, p+ 2, . . . , p+ q}.
Let us first consider Case 1. In this case, we have i ∈ {1, 2, . . . , p}. Thus,

Ii ⊂ [0 : n]+ (by (6.2.3)). Also, (6.2.3) yields that (uv) [Ii] = ai is a Lyndon
word. Hence, (6.2.6) (applied to J = Ii) yields that σ−1 (Ii) is an interval.
Thus, (6.2.12) is proven in Case 1.

Similarly, we can prove (6.2.12) in Case 2, using (6.2.4) and (6.2.11)
instead of (6.2.3) and (6.2.6), respectively. Hence, (6.2.12) is proven.

So we know that σ−1 (Ii) is an interval. But we also know that either
Ii ⊂ [0 : n]+ or Ii ⊂ [n : n+m]+ (depending on whether i ≤ p or i >
p). As a consequence, the restriction of the map σ−1 to the interval Ii is
increasing (because the restriction of the map σ−1 to the interval [0 : n]+ is
strictly increasing, and so is the restriction of the map σ−1 to the interval
[n : n+m]+).

Now, let us forget that we fixed i. We thus have shown that every
i ∈ {1, 2, . . . , p+ q} has the two properties that:

• the set σ−1 (Ii) is an interval;
• the restriction of the map σ−1 to the interval Ii is increasing.
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In other words, the permutation σ is (αβ)-clumping (since (I1, I2, . . . , Ip+q)
is the interval system corresponding to the composition αβ). Hence, Propo-
sition 6.2.16(b) (applied to n+m, αβ and p+q instead of n, α and `) shows
that there exists a unique τ ∈ Sp+q satisfying σ = iper (αβ, τ). Thus, the
uniqueness part of Theorem 6.2.22(b) (i.e., the claim that the τ in Theorem
6.2.22(b) is unique if it exists) is proven.

It now remains to prove the existence part of Theorem 6.2.22(b), i.e.,
to prove that there exists at least one permutation τ ∈ Shp,q satisfying
(uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
and σ = iper (αβ, τ).

We already know that there exists a unique τ ∈ Sp+q satisfying σ =
iper (αβ, τ). Consider this τ . We will now prove that (uv)

[
Iτ(1)

]
≥

(uv)
[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
and τ ∈ Shp,q. Once this is done, the

existence part of Theorem 6.2.22(b) will be proven, and thus the proof of
Theorem 6.2.22(b) will be complete.

Proposition 6.2.18 yields that τ ∈ Shp,q if and only if iper (αβ, τ) ∈
Shn,m. Since we know that iper (αβ, τ) = σ ∈ Shn,m, we thus conclude that
τ ∈ Shp,q. The only thing that remains to be proven now is that

(6.2.13) (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
.

Proof of (6.2.13): We have τ ∈ Shp,q. In other words, τ−1 (1) < τ−1 (2) <
· · · < τ−1 (p) and τ−1 (p+ 1) < τ−1 (p+ 2) < · · · < τ−1 (p+ q). In other
words, the restriction of the map τ−1 to the interval [0 : p]+ is strictly in-
creasing, and so is the restriction of the map τ−1 to the interval [p : p+ q]+.

Let i ∈ {1, 2, . . . , p+ q − 1}. We will show that

(6.2.14) (uv)
[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
.

Clearly, both τ (i) and τ (i+ 1) belong to {1, 2, . . . , p+ q} = {1, 2, . . . , p}∪
{p+ 1, p+ 2, . . . , p+ q}. Thus, we must be in one of the following four
cases:

Case 1: We have

τ (i) ∈ {1, 2, . . . , p} and τ (i+ 1) ∈ {1, 2, . . . , p} .
Case 2: We have

τ (i) ∈ {1, 2, . . . , p} and τ (i+ 1) ∈ {p+ 1, p+ 2, . . . , p+ q} .
Case 3: We have

τ (i) ∈ {p+ 1, p+ 2, . . . , p+ q} and τ (i+ 1) ∈ {1, 2, . . . , p} .
Case 4: We have

τ (i) ∈ {p+ 1, p+ 2, . . . , p+ q} and τ (i+ 1) ∈ {p+ 1, p+ 2, . . . , p+ q} .
Let us consider Case 1 first. In this case, we have τ (i) ∈ {1, 2, . . . , p}

and τ (i+ 1) ∈ {1, 2, . . . , p}. From the fact that the restriction of the
map τ−1 to the interval [0 : p]+ is strictly increasing, we can easily deduce
τ (i) < τ (i+ 1) 307. Therefore, aτ(i) ≥ aτ(i+1) (since a1 ≥ a2 ≥ · · · ≥ ap).

307Proof. Assume the contrary. Then, τ (i) ≥ τ (i+ 1). Since both τ (i) and τ (i+ 1)

belong to {1, 2, . . . , p} = [0 : p]
+

, this yields τ−1 (τ (i)) ≥ τ−1 (τ (i+ 1)) (since the

restriction of the map τ−1 to the interval [0 : p]
+

is strictly increasing), which contradicts
τ−1 (τ (i)) = i < i+1 = τ−1 (τ (i+ 1)). This contradiction proves the assumption wrong,
qed.
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But (uv)
[
Iτ(i)

]
= aτ(i) (by (6.2.3), applied to τ (i) instead of i) and

(uv)
[
Iτ(i+1)

]
= aτ(i+1) (similarly). In view of these equalities, the inequality

aτ(i) ≥ aτ(i+1) rewrites as (uv)
[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
. Thus, (6.2.14) is

proven in Case 1.
Similarly, we can show (6.2.14) in Case 4 (observing that (uv)

[
Iτ(i)

]
=

bτ(i)−p and (uv)
[
Iτ(i+1)

]
= bτ(i+1)−p in this case).

Let us now consider Case 2. In this case, we have τ (i) ∈ {1, 2, . . . , p}
and τ (i+ 1) ∈ {p+ 1, p+ 2, . . . , p+ q}. From τ (i) ∈ {1, 2, . . . , p}, we
conclude that Iτ(i) ⊂ [0 : n]+. From τ (i+ 1) ∈ {p+ 1, p+ 2, . . . , p+ q},
we conclude that Iτ(i+1) ⊂ [n : n+m]+. The intervals Iτ(i) and Iτ(i+1) are
clearly nonempty.

Proposition 6.2.14(d) (applied to n+m, αβ, p+q and (I1, I2, . . . , Ip+q) in-
stead of n, α, ` and (I1, I2, . . . , I`)) yields that the sets σ−1

(
Iτ(i)

)
, σ−1

(
Iτ(i+1)

)
and σ−1

(
Iτ(i)

)
∪ σ−1

(
Iτ(i+1)

)
are nonempty intervals, and that we have

σ−1
(
Iτ(i)

)
< σ−1

(
Iτ(i+1)

)
. Hence, Lemma 6.2.10(b) (applied to I = Iτ(i)

and J = Iτ(i+1)) yields

(uv)
[
Iτ(i)

]
· (uv)

[
Iτ(i+1)

]
≥ (uv)

[
Iτ(i+1)

]
· (uv)

[
Iτ(i)

]
.

But (uv)
[
Iτ(i)

]
and (uv)

[
Iτ(i+1)

]
are Lyndon words (as a consequence of

(6.2.5)). Thus, Proposition 6.1.18 (applied to (uv)
[
Iτ(i)

]
and (uv)

[
Iτ(i+1)

]
instead of u and v) shows that (uv)

[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
if and only if

(uv)
[
Iτ(i)

]
· (uv)

[
Iτ(i+1)

]
≥ (uv)

[
Iτ(i+1)

]
· (uv)

[
Iτ(i)

]
. Since we know that

(uv)
[
Iτ(i)

]
·(uv)

[
Iτ(i+1)

]
≥ (uv)

[
Iτ(i+1)

]
·(uv)

[
Iτ(i)

]
holds, we thus conclude

that (uv)
[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
. Thus, (6.2.14) is proven in Case 2.

The proof of (6.2.14) in Case 3 is analogous to that in Case 2 (the main
difference being that Lemma 6.2.10(c) is used in lieu of Lemma 6.2.10(b)).

Thus, (6.2.14) is proven in all possible cases. So we always have (6.2.14).
In other words, (uv)

[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
.

Now, forget that we fixed i. We hence have shown that (uv)
[
Iτ(i)

]
≥

(uv)
[
Iτ(i+1)

]
for all i ∈ {1, 2, . . . , p+ q − 1}. This proves (6.2.13), and thus

completes our proof of Theorem 6.2.22(b).
(a) Let τ ∈ Shp,q be such that

(6.2.15) (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
.

Set σ = iper (αβ, τ). Then, Proposition 6.2.18 yields that τ ∈ Shp,q if and
only if iper (αβ, τ) ∈ Shn,m. Since we know that τ ∈ Shp,q, we can deduce
from this that iper (αβ, τ) ∈ Shn,m, so that σ = iper (αβ, τ) ∈ Shn,m.

It remains to prove that the word u�
σ
v is the lexicographically highest

element of the multiset u� v.
It is clear that the multiset u � v has some lexicographically highest

element. This element has the form u �
σ̃
v for some σ̃ ∈ Shn,m (because

any element of this multiset has such a form). Consider this σ̃. Theorem
6.2.22(b) (applied to σ̃ instead of σ) yields that there exists a unique permu-
tation τ̃ ∈ Shp,q satisfying (uv)

[
Iτ̃(1)

]
≥ (uv)

[
Iτ̃(2)

]
≥ · · · ≥ (uv)

[
Iτ̃(p+q)

]
and σ̃ = iper (αβ, τ̃). (What we call τ̃ here is what has been called τ in
Theorem 6.2.22(b).)

Now, the chain of inequalities

(uv)
[
Iτ̃(1)

]
≥ (uv)

[
Iτ̃(2)

]
≥ · · · ≥ (uv)

[
Iτ̃(p+q)

]
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shows that the list
(
(uv)

[
Iτ̃(1)

]
, (uv)

[
Iτ̃(2)

]
, . . . , (uv)

[
Iτ̃(p+q)

])
is the result

of sorting the list ((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q]) in decreasing order.
But the chain of inequalities (6.2.15) shows that the list(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is the result of sorting the same

list ((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q]) in decreasing order. So each of the
two lists

(
(uv)

[
Iτ̃(1)

]
, (uv)

[
Iτ̃(2)

]
, . . . , (uv)

[
Iτ̃(p+q)

])
and(

(uv)
[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is the result of sorting one and

the same list ((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q]) in decreasing order. Since
the result of sorting a given list in decreasing order is unique, this yields(

(uv)
[
Iτ̃(1)

]
, (uv)

[
Iτ̃(2)

]
, . . . , (uv)

[
Iτ̃(p+q)

])
=
(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
.

Hence,

(uv)
[
Iτ̃(1)

]
· (uv)

[
Iτ̃(2)

]
· · · · · (uv)

[
Iτ̃(p+q)

]
= (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
.(6.2.16)

But Lemma 6.2.20 yields

(6.2.17) u�
σ
v = (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
.

Meanwhile, Lemma 6.2.20 (applied to τ̃ and σ̃ instead of τ and σ) yields

u�
σ̃
v = (uv)

[
Iτ̃(1)

]
· (uv)

[
Iτ̃(2)

]
· · · · · (uv)

[
Iτ̃(p+q)

]
= (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
(by (6.2.16))

= u�
σ
v (by (6.2.17)) .

Thus, u�
σ
v is the lexicographically highest element of the multiset u� v

(since we know that u�
σ̃
v is the lexicographically highest element of the

multiset u� v). This proves Theorem 6.2.22(a). �

Now, in order to prove Theorem 6.2.2, we record a very simple fact about
counting shuffles:

Proposition 6.2.23. Let p ∈ N and q ∈ N. Let W be a totally ordered
set, and let h : {1, 2, . . . , p+ q} → W be a map. Assume that h (1) ≥
h (2) ≥ · · · ≥ h (p) and h (p+ 1) ≥ h (p+ 2) ≥ · · · ≥ h (p+ q).

For every w ∈ W, let a (w) denote the number of all i ∈ {1, 2, . . . , p}
satisfying h (i) = w, and let b (w) denote the number of all
i ∈ {p+ 1, p+ 2, . . . , p+ q} satisfying h (i) = w.

Then, the number of τ ∈ Shp,q satisfying h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥

h (τ (p+ q)) is
∏

w∈W

(
a (w) + b (w)

a (w)

)
. (Of course, all but finitely many

factors of this product are 1.)

Exercise 6.2.24. Prove Proposition 6.2.23.

Proof of Theorem 6.2.2. Let n = ` (u) and m = ` (v). Define α, β and
(I1, I2, . . . , Ip+q) as in Theorem 6.2.22.

Since (a1, a2, . . . , ap) is the CFL factorization of u, we have a1 ≥ a2 ≥
· · · ≥ ap and a1a2 · · · ap = u. Similarly, b1 ≥ b2 ≥ · · · ≥ bq and b1b2 · · · bq =
v.
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From (6.2.3), we see that (uv) [Ii] = ai for every i ∈ {1, 2, . . . , p}. From
(6.2.4), we see that (uv) [Ii] = bi−p for every i ∈ {p+ 1, p+ 2, . . . , p+ q}.
Combining these two equalities, we obtain

(6.2.18) (uv) [Ii] =

{
ai, if i ≤ p;

bi−p, if i > p

for every i ∈ {1, 2, . . . , p+ q}. In other words,

((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q])

= (a1, a2, . . . , ap, b1, b2, . . . , bq) .(6.2.19)

(a) Let z be the lexicographically highest element of the multiset u� v.
We must prove that z = c1c2 · · · cp+q.

Since z ∈ u�v, we can write z in the form u�
σ
v for some σ ∈ Shn,m (since

we can write any element of u� v in this form). Consider this σ. Then,
u�

σ
v = z is the lexicographically highest element of the multiset u� v.

Hence, Theorem 6.2.22(b) yields that there exists a unique permutation
τ ∈ Shp,q satisfying (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
and

σ = iper (αβ, τ). Consider this τ .
Now, τ ∈ Shp,q ⊂ Sp+q is a permutation, and thus the list(

(uv)
[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is a rearrangement of the list

((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q]). Due to (6.2.19), this rewrites as fol-
lows: The list

(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is a rearrange-

ment of the list (a1, a2, . . . , ap, b1, b2, . . . , bq). Hence,(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is the result of sorting the list

(a1, a2, . . . , ap, b1, b2, . . . , bq) in decreasing order (since
(uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
). But since the result of

sorting the list (a1, a2, . . . , ap, b1, b2, . . . , bq) in decreasing order is
(c1, c2, . . . , cp+q), this becomes(

(uv)
[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
= (c1, c2, . . . , cp+q) .

Hence,

(uv)
[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
= c1 · c2 · · · · · cp+q.

But Lemma 6.2.20 yields

u�
σ
v = (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
.

Altogether, we have

z = u�
σ
v = (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
= c1 · c2 · · · · · cp+q = c1c2 · · · cp+q.

This proves Theorem 6.2.2(a).

(b) Recall that u� v =
{
u�

σ
v : σ ∈ Shn,m

}
multiset

. Hence,

(the multiplicity with which the lexicographically highest element

of the multiset u� v appears in the multiset u� v)

=
(

the number of all σ ∈ Shn,m such that u�
σ
v is the

lexicographically highest element of the multiset u� v) .
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However, for a given σ ∈ Shn,m, we know that u �
σ
v is the lexico-

graphically highest element of the multiset u � v if and only if σ can
be written in the form σ = iper (αβ, τ) for some τ ∈ Shp,q satisfying
(uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
. 308 Hence,(

the number of all σ ∈ Shn,m such that u�
σ
v is the

lexicographically highest element of the multiset u� v)

= (the number of all σ ∈ Shn,m which can be written in

the form σ = iper (αβ, τ) for some τ ∈ Shp,q

satisfying (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

])
= (the number of all τ ∈ Shp,q

satisfying (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

])
(because if a σ ∈ Shn,m can be written in the form σ = iper (αβ, τ) for
some τ ∈ Shp,q satisfying (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
,

then σ can be written uniquely in this form309). Thus,

(the multiplicity with which the lexicographically highest element

of the multiset u� v appears in the multiset u� v)

=
(

the number of all σ ∈ Shn,m such that u�
σ
v is the

lexicographically highest element of the multiset u� v)

= (the number of all τ ∈ Shp,q

satisfying (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

])
.

(6.2.20)

Now, define a map h : {1, 2, . . . , p+ q} → L by

h (i) =

{
ai, if i ≤ p;

bi−p, if i > p
for every i ∈ {1, 2, . . . , p+ q} .

Then, h (1) ≥ h (2) ≥ · · · ≥ h (p) (because this is just a rewriting of
a1 ≥ a2 ≥ · · · ≥ ap) and h (p+ 1) ≥ h (p+ 2) ≥ · · · ≥ h (p+ q) (since this
is just a rewriting of b1 ≥ b2 ≥ · · · ≥ bq). For every w ∈ L, the number of

308In fact, the “if” part of this assertion follows from Theorem 6.2.22(a), whereas its
“only if” part follows from Theorem 6.2.22(b).

309Proof. Let σ ∈ Shn,m be such that σ can be written in the form σ = iper (αβ, τ)
for some τ ∈ Shp,q satisfying (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
. Then,

the word u�
σ
v is the lexicographically highest element of the multiset u� v (according

to Theorem 6.2.22(a)). Hence, there exists a unique permutation τ ∈ Shp,q satisfying
(uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
and σ = iper (αβ, τ) (according to The-

orem 6.2.22(b)). In other words, σ can be written uniquely in the form σ = iper (αβ, τ)
for some τ ∈ Shp,q satisfying (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
, qed.
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all i ∈ {1, 2, . . . , p} satisfying h (i) = w is∣∣∣∣∣∣
i ∈ {1, 2, . . . , p} | h (i)︸︷︷︸

=ai

= w


∣∣∣∣∣∣

= |{i ∈ {1, 2, . . . , p} | ai = w}|
= (the number of terms in the list (a1, a2, . . . , ap) which are equal to w)

= (the number of terms in the CFL factorization of u which are equal to w)

(since the list (a1, a2, . . . , ap) is the CFL factorization of u)

= multw u

(because multw u is defined as the number of terms in the CFL factorization
of u which are equal to w). Similarly, for every w ∈ L, the number of all i ∈
{p+ 1, p+ 2, . . . , p+ q} satisfying h (i) = w equals multw v. Thus, we can
apply Proposition 6.2.23 to W = L, a (w) = multw u and b (w) = multw v.
As a result, we see that the number of τ ∈ Shp,q satisfying h (τ (1)) ≥

h (τ (2)) ≥ · · · ≥ h (τ (p+ q)) is
∏

w∈L

(
multw u+ multw v

multw u

)
. In other

words,

(the number of all τ ∈ Shp,q

satisfying h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)))

=
∏
w∈L

(
multw u+ multw v

multw u

)
.(6.2.21)

However, for every i ∈ {1, 2, . . . , p+ q}, we have

h (i) =

{
ai, if i ≤ p;

bi−p, if i > p
= (uv) [Ii] (by (6.2.18)) .

Hence, for any τ ∈ Shp,q, the condition h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥
h (τ (p+ q)) is equivalent to (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
.

Thus,

(the number of all τ ∈ Shp,q

satisfying h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)))

= (the number of all τ ∈ Shp,q

satisfying (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

])
= (the multiplicity with which the lexicographically highest element of

the multiset u� v appears in the multiset u� v)

(by (6.2.20)). Compared with (6.2.21), this yields

(the multiplicity with which the lexicographically highest element of

the multiset u� v appears in the multiset u� v)

=
∏
w∈L

(
multw u+ multw v

multw u

)
.

This proves Theorem 6.2.2(b).
(c) We shall use the notations of Theorem 6.2.2(a) and Theorem 6.2.2(b).
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Assume that ai ≥ bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}.
This, combined with a1 ≥ a2 ≥ · · · ≥ ap and b1 ≥ b2 ≥ · · · ≥ bq,
yields that a1 ≥ a2 ≥ · · · ≥ ap ≥ b1 ≥ b2 ≥ · · · ≥ bq. Thus, the
list (a1, a2, . . . , ap, b1, b2, . . . , bq) is weakly decreasing. Thus, the result of
sorting the list (a1, a2, . . . , ap, b1, b2, . . . , bq) in decreasing order is the list
(a1, a2, . . . , ap, b1, b2, . . . , bq) itself. But since this result is (c1, c2, . . . , cp+q),
this shows that (c1, c2, . . . , cp+q) = (a1, a2, . . . , ap, b1, b2, . . . , bq). Hence,
c1c2 · · · cp+q = a1a2 · · · ap︸ ︷︷ ︸

=u

b1b2 · · · bq︸ ︷︷ ︸
=v

= uv. Now, Theorem 6.2.2(a) yields

that the lexicographically highest element of the multiset u� v is
c1c2 · · · cp+q = uv. This proves Theorem 6.2.2(c).

(d) We shall use the notations of Theorem 6.2.2(a) and Theorem 6.2.2(b).
Assume that ai > bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}.

Thus, ai ≥ bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. Hence,
Theorem 6.2.2(c) yields that the lexicographically highest element of the
multiset u� v is uv. Therefore, Theorem 6.2.2(b) shows that the multi-
plicity with which this word uv appears in the multiset u� v is∏

w∈L

(
multw u+ multw v

multw u

)
.

Now, every w ∈ L satisfies

(
multw u+ multw v

multw u

)
= 1 310. Thus, as

we know, the multiplicity with which this word uv appears in the multiset

u� v is
∏

w∈L

(
multw u+ multw v

multw u

)
︸ ︷︷ ︸

=1

=
∏

w∈L 1 = 1. This proves Theorem

6.2.2(d).
(e) We shall use the notations of Theorem 6.2.2(a) and Theorem 6.2.2(b).
Since u is a Lyndon word, the 1-tuple (u) is the CFL factorization of

u. Hence, we can apply Theorem 6.2.2(c) to 1 and (u) instead of p and
(a1, a2, . . . , ap). As a result, we conclude that the lexicographically highest
element of the multiset u�v is uv. It remains to prove that the multiplicity
with which this word uv appears in the multiset u� v is multu v + 1.

For every w ∈ L satisfying w 6= u, we have

(6.2.22) multw u = 0

311. Also, multu u = 1 (for a similar reason). But uv is the lexicographically
highest element of the multiset u� v. Hence, the multiplicity with which

310Proof. Assume the contrary. Then, there exists at least one w ∈ L such that(
multw u+ multw v

multw u

)
6= 1. Consider this w. Both multw u and multw v must be positive

(since

(
multw u+ multw v

multw u

)
6= 1). Since multw u is positive, there must be at least one

term in the CFL factorization of u which is equal to w. In other words, there is at least
one i ∈ {1, 2, . . . , p} satisfying ai = w (since (a1, a2, . . . , ap) is the CFL factorization
of u). Similarly, there is at least one j ∈ {1, 2, . . . , q} satisfying bj = w. These i and
j satisfy ai = w = bj , which contradicts ai > bj . This contradiction shows that our
assumption was false, qed.

311Proof of (6.2.22): Let w ∈ L be such that w 6= u. Then, the number of terms
in the list (u) which are equal to w is 0. Since (u) is the CFL factorization of u, this
rewrites as follows: The number of terms in the CFL factorization of u which are equal
to w is 0. In other words, multw u = 0. This proves (6.2.22).
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the word uv appears in the multiset u� v is the multiplicity with which
the lexicographically highest element of the multiset u� v appears in the
multiset u� v. According to Theorem 6.2.2(b), the latter multiplicity is∏
w∈L

(
multw u+ multw v

multw u

)
=

(
multu u+ multu v

multu u

)
︸ ︷︷ ︸

=

(
1 + multu v

1

)
(since multu u=1)

·
∏
w∈L;
w 6=u

(
multw u+ multw v

multw u

)
︸ ︷︷ ︸

=

(
0 + multw v

0

)
(since multw u=0 (by (6.2.22)))

(since u ∈ L)

=

(
1 + multu v

1

)
︸ ︷︷ ︸

=1+multu v=multu v+1

·
∏
w∈L;
w 6=u

(
0 + multw v

0

)
︸ ︷︷ ︸

=1

= (multu v + 1) ·
∏
w∈L;
w 6=u

1

︸ ︷︷ ︸
=1

= multu v + 1.

This proves Theorem 6.2.2(e). �

As an application of our preceding results, we can prove a further neces-
sary and sufficient criterion for a word to be Lyndon; this criterion is due
to Chen/Fox/Lyndon [38, A′′ = A′′′′]:

Exercise 6.2.25. Let w ∈ A∗ be a nonempty word. Prove that w is
Lyndon if and only if for any two nonempty words u ∈ A∗ and v ∈ A∗

satisfying w = uv, there exists at least one s ∈ u� v satisfying s > w.

6.3. Radford’s theorem on the shuffle algebra. We recall that our
goal in Chapter 6 is to exhibit an algebraically independent generating set
of the k-algebra QSym. Having the notion of Lyndon words – which will, to
some extent, but not literally, parametrize this generating set – in place, we
could start the construction of this generating set immediately. However, it
might come off as rather unmotivated this way, and so we begin with some
warmups. First, we shall prove Radford’s theorem on the shuffle algebra.

Definition 6.3.1. A polynomial algebra will mean a k-algebra which is
isomorphic to the polynomial ring k [xi | i ∈ I] as a k-algebra (for some
indexing set I). Note that I need not be finite.

Equivalently, a polynomial algebra can be defined as a k-algebra which
has an algebraically independent (over k) generating set. Yet equivalently,
a polynomial algebra can be defined as a k-algebra which is isomorphic to
the symmetric algebra of a free k-module.

Keep in mind that when we say that a certain bialgebra A is a polynomial
algebra, we are making no statement about the coalgebra structure on A.
The isomorphism from A to the symmetric algebra of a free k-module
need not be a coalgebra isomorphism, and the algebraically independent
generating set of A need not consist of primitives. Thus, showing that
a bialgebra A is a polynomial algebra does not trivialize the study of its
bialgebraic structure.
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Remark 6.3.2. Let V be a k-module, and let A be a totally ordered set.
Let ba be an element of V for every a ∈ A. Consider the shuffle algebra
Sh (V ) (defined in Definition 1.6.7).

For every word w ∈ A∗ over the alphabet A, let us define an element
bw of Sh (V ) by bw = bw1bw2 · · · bw` , where ` is the length of w. (The
multiplication used here is that of T (V ), not that of Sh (V ); the latter is
denoted by �.)

Let u ∈ A∗ and v ∈ A∗ be two words over the alphabet A. Let n = ` (u)
and m = ` (v). Then,

bu� bv =
∑

σ∈Shn,m

bu�
σ
v.

Exercise 6.3.3. Prove Remark 6.3.2.
[Hint: This follows from the definition of �.]

We can now state Radford’s theorem [177, Theorem 3.1.1(e)]:

Theorem 6.3.4. Assume that Q is a subring of k. Let V be a free
k-module with a basis (ba)a∈A, where A is a totally ordered set. Then,
the shuffle algebra Sh (V ) (defined in Definition 1.6.7) is a polynomial k-
algebra. An algebraically independent generating set of Sh (V ) can be
constructed as follows:

For every word w ∈ A∗ over the alphabet A, let us define an element
bw of Sh (V ) by bw = bw1bw2 · · · bw` , where ` is the length of w. (The
multiplication used here is that of T (V ), not that of Sh (V ); the latter
is denoted by �.) Let L denote the set of all Lyndon words over the
alphabet A. Then, (bw)w∈L is an algebraically independent generating set
of the k-algebra Sh (V ).

Example 6.3.5. For this example, let A be the alphabet {1, 2, 3, . . .} with
total order given by 1 < 2 < 3 < · · · , and assume that Q is a subring of
k. Let V be the free k-module with basis (ba)a∈A. We use the notations of
Theorem 6.3.4. Then, Theorem 6.3.4 yields that (bw)w∈L is an algebraically
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independent generating set of the k-algebra Sh (V ). Here are some exam-
ples of elements of Sh (V ) written as polynomials in this generating set:

b12 = b12 (the word 12 itself is Lyndon) ;

b21 = b1� b2 − b12;

b11 =
1

2
b1� b1;

b123 = b123 (the word 123 itself is Lyndon) ;

b132 = b132 (the word 132 itself is Lyndon) ;

b213 = b2� b13 − b123 − b132;

b231 = b23� b1 − b2� b13 + b132;

b312 = b3� b12 − b123 − b132;

b321 = b1� b2� b3 − b23� b1 − b3� b12 + b123;

b112 = b112 (the word 112 itself is Lyndon) ;

b121 = b12� b1 − 2b112;

b1212 =
1

2
b12� b12 − 2b1122;

b4321 = b1� b2� b3� b4 − b1� b2� b34 − b1� b23� b4 − b12� b3� b4

+ b1� b234 + b12� b34 + b123� b4 − b1234.

312

Note that Theorem 6.3.4 cannot survive without the condition that Q
be a subring of k. For instance, for any v ∈ V , we have v � v = 2vv in
Sh (V ), which vanishes if 2 = 0 in k; this stands in contrast to the fact
that polynomial k-algebras are integral domains when k itself is one. We
will see that QSym is less sensitive towards the base ring in this regard
(although proving that QSym is a polynomial algebra is much easier when
Q is a subring of k).

Remark 6.3.6. Theorem 6.3.4 can be contrasted with the following fact: If
Q is a subring of k, then the shuffle algebra Sh (V ) of any k-module V
(not necessarily free!) is isomorphic (as a k-algebra) to the symmetric alge-
bra Sym

(
(ker ε) / (ker ε)2) (by Theorem 1.7.29(e), applied to A = Sh (V )).

This fact is closely related to Theorem 6.3.4, but neither follows from it

312A pattern emerges in the formulas for b21, b321 and b4321: for every n ∈ N, we have

b(n,n−1,...,1) =
∑

α∈Compn

(−1)
n−`(α)

bd1(α) � bd2(α) � · · ·� bd`(α)(α),

where (d1 (α)) · (d2 (α)) · · · · ·
(
d`(α) (α)

)
is the factorization of the word (1, 2, . . . , n) into

factors of length α1, α2, . . ., α` (where α = (α1, α2, . . . , α`)). This can be proved by an
application of Lemma 5.2.7(a) (as it is easy to see that for any composition α of n, we
have

bd1(α) � bd2(α) � · · ·� bd`(α)(α)

=
(
the sum of bπ for all words π ∈ Sn satisfying Des

(
π−1

)
⊂ D (α)

)
=

∑
β∈Compn;
β coarsens α

∑
π∈Sn;

γ(π−1)=β

bπ,

where γ
(
π−1

)
denotes the composition τ of n satisfying D (τ) = Des

(
π−1

)
).
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(since Theorem 6.3.4 only considers the case of free k-modules V ) nor yields
it (since this fact does not provide explicit generators for the k-module
(ker ε) / (ker ε)2 and thus for the k-algebra Sh (V )).

In our proof of Theorem 6.3.4 (but not only there), we will use part (a) of
the following lemma313, which makes proving that certain families indexed
by Lyndon words generate certain k-algebras more comfortable:

Lemma 6.3.7. Let A be a commutative k-algebra. Let A be a totally
ordered set. Let L be the set of all Lyndon words over the alphabet A.
Let bw be an element of A for every w ∈ L. For every word u ∈ A∗, define
an element bu of A by bu = ba1ba2 · · · bap , where (a1, a2, . . . , ap) is the CFL
factorization of u.

(a) The family (bw)w∈L is an algebraically independent generating set
of the k-algebra A if and only if the family (bu)u∈A∗ is a basis of
the k-module A.

(b) The family (bw)w∈L generates the k-algebra A if and only if the
family (bu)u∈A∗ spans the k-module A.

(c) Assume that the k-algebra A is graded. Let wt : A → {1, 2, 3, . . .}
be any map such that for every N ∈ {1, 2, 3, . . .}, the set wt−1 (N)
is finite.

For every word w ∈ A∗, define an element Wt (w) ∈ N by
Wt (w) = wt (w1) + wt (w2) + · · · + wt (wk), where k is the length
of w.

Assume that for every w ∈ L, the element bw of A is homogeneous
of degree Wt (w).

Assume further that the k-module A has a basis (gu)u∈A∗ having
the property that for every u ∈ A∗, the element gu of A is homoge-
neous of degree Wt (u).

Assume also that the family (bw)w∈L generates the k-algebra A.
Then, this family (bw)w∈L is an algebraically independent gener-

ating set of the k-algebra A.

Exercise 6.3.8. Prove Lemma 6.3.7.
[Hint: For (a) and (b), notice that the bu are the “monomials” in the

bw. For (c), use Exercise 2.5.18(b) in every homogeneous component of A.]

The main workhorse of our proof of Theorem 6.3.4 will be the following
consequence of Theorem 6.2.2(c):

Proposition 6.3.9. Let V be a free k-module with a basis (ba)a∈A, where
A is a totally ordered set.

For every word w ∈ A∗ over the alphabet A, let us define an element
bw of Sh (V ) by bw = bw1bw2 · · · bw` , where ` is the length of w. (The
multiplication used here is that of T (V ), not that of Sh (V ); the latter is
denoted by �.)

For every word u ∈ A∗, define an element bu by bu = ba1�ba2�· · ·�bap ,
where (a1, a2, . . . , ap) is the CFL factorization of u.

313And in a later proof, we will also use its part (c) (which is tailored for application
to QSym).
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If ` ∈ N and if x ∈ A` is a word, then there is a family (ηx,y)y∈A` ∈ NA`

of elements of N satisfying

bx =
∑
y∈A`;
y≤x

ηx,yby

and ηx,x 6= 0 (in N).

Before we prove this, let us show a very simple lemma:

Lemma 6.3.10. Let A be a totally ordered set. Let n ∈ N and m ∈ N.
Let σ ∈ Shn,m.

(a) If u, v and v′ are three words satisfying ` (u) = n, ` (v) = m, ` (v′) =
m and v′ < v, then u�

σ
v′ < u�

σ
v.

(b) If u, u′ and v are three words satisfying ` (u) = n, ` (u′) = n, ` (v) =
m and u′ < u, then u′�

σ
v < u�

σ
v.

(c) If u, v and v′ are three words satisfying ` (u) = n, ` (v) = m, ` (v′) =
m and v′ ≤ v, then u�

σ
v′ ≤ u�

σ
v.

Exercise 6.3.11. Prove Lemma 6.3.10.

Exercise 6.3.12. Prove Proposition 6.3.9.
[Hint: Proceed by induction over `. In the induction step, apply The-

orem 6.2.2(c)314 to u = a1 and v = a2a3 · · · ap, where (a1, a2, . . . , ap) is the
CFL factorization of x. Use Lemma 6.3.10 to get rid of smaller terms.]

Exercise 6.3.13. Prove Theorem 6.3.4.
[Hint: According to Lemma 6.3.7(a), it suffices to show that the family

(bu)u∈A∗ defined in Proposition 6.3.9 is a basis of the k-module Sh (V ).
When A is finite, the latter can be proven by triangularity using Proposition
6.3.9. Reduce the general case to that of finite A.]

6.4. Polynomial freeness of QSym: statement and easy parts.

Definition 6.4.1. For the rest of Section 6.4 and for Section 6.5, we
introduce the following notations: We let A be the totally ordered set
{1, 2, 3, . . .} with its natural order (that is, 1 < 2 < 3 < · · · .) Thus, the
words over A are precisely the compositions. That is, A∗ = Comp. We let
L denote the set of all Lyndon words over A. These Lyndon words are also
called Lyndon compositions .

A natural question is how many Lyndon compositions of a given size
exist. While we will not use the answer, we nevertheless record it:

Exercise 6.4.2. Show that the number of Lyndon compositions of size n
equals

1

n

∑
d|n

µ (d)
(
2n/d − 1

)
=

1

n

∑
d|n

µ (d) 2n/d − δn,1

for every positive integer n (where “
∑
d|n

” means a sum over all positive

divisors of n, and where µ is the number-theoretic Möbius function).

314Or Theorem 6.2.2(e), if you prefer.
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[Hint: One solution is similar to the solution of Exercise 6.1.29 using
CFL factorization. Another proceeds by defining a bijection between Lyn-
don compositions and Lyndon words over a two-letter alphabet {0,1} (with
0 < 1) which are 6= 1. 315]

Let us now state Hazewinkel’s result ([89, Theorem 8.1], [93, §6.7]) which
is the main goal of Chapter 6:

Theorem 6.4.3. The k-algebra QSym is a polynomial algebra. It is iso-
morphic, as a graded k-algebra, to the k-algebra k [xw | w ∈ L]. Here,

the grading on k [xw | w ∈ L] is defined by setting deg (xw) =
∑`(w)

i=1 wi
for every w ∈ L.

We shall prove Theorem 6.4.3 in the next section (Section 6.5). But the
particular case of Theorem 6.4.3 when Q is a subring of k can be proven
more easily; we state it as a proposition:

Proposition 6.4.4. Assume that Q is a subring of k. Then, Theorem
6.4.3 holds.

We will give two proofs of Proposition 6.4.4 in this Section 6.4; a third
proof of Proposition 6.4.4 will immediately result from the proof of Theorem
6.4.3 in Section 6.5. (There is virtue in giving three different proofs, as they
all construct different isomorphisms k [xw | w ∈ L]→ QSym.)

Our first proof – originating in Malvenuto’s [145, Corollaire 4.20] – can
be given right away; it relies on Exercise 5.4.12:

First proof of Proposition 6.4.4. Let V be the free k-module with basis
(bn)n∈{1,2,3,...}. Endow the k-module V with a grading by assigning to each

basis vector bn the degree n. Exercise 5.4.12(k) shows that QSym is isomor-
phic to the shuffle algebra Sh (V ) (defined as in Proposition 1.6.7) as Hopf
algebras. By being a bit more careful, we can obtain the slightly stronger
result that QSym is isomorphic to the shuffle algebra Sh (V ) as graded
Hopf algebras316. In particular, QSym ∼= Sh (V ) as graded k-algebras.

Theorem 6.3.4 (applied to ba = ba) yields that the shuffle algebra Sh (V )
is a polynomial k-algebra, and that an algebraically independent generating
set of Sh (V ) can be constructed as follows:

For every word w ∈ A∗ over the alphabet A, let us define an element
bw of Sh (V ) by bw = bw1bw2 · · · bw` , where ` is the length of w. (The

315This bijection is obtained by restricting the bijection

Comp→
{
w ∈ {0,1}∗ | w does not start with 1

}
,

(α1, α2, . . . , α`) 7→ 01α1−101α2−1 · · ·01α`−1

(where 01k is to be read as 0
(
1k
)
, not as (01)

k
) to the set of Lyndon compositions. The

idea behind this bijection is well-known in the Grothendieck-Teichmüller community:
see, e.g., [94, §3.1] (and see [77, Note 5.16] for a different appearance of this idea).

316Proof. In the solution of Exercise 5.4.12(k), we have shown that QSym ∼= T (V )
o

as graded Hopf algebras. But Remark 1.6.9(b) shows that the Hopf algebra T (V )
o

is
naturally isomorphic to the shuffle algebra Sh (V o) as Hopf algebras; it is easy to see
that the natural isomorphism T (V )

o → Sh (V o) is graded (because it is the direct sum

of the isomorphisms (V ⊗n)
o → (V o)

⊗n
over all n ∈ N, and each of these isomorphisms

is graded). Hence, T (V )
o ∼= Sh (V o) as graded Hopf algebras. But V o ∼= V as graded k-

modules (since V is of finite type), and thus Sh (V o) ∼= Sh (V ) as graded Hopf algebras.
Altogether, we obtain QSym ∼= T (V )

o ∼= Sh (V o) ∼= Sh (V ) as graded Hopf algebras,
qed.
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multiplication used here is that of T (V ), not that of Sh (V ); the latter is
denoted by �.) Then, (bw)w∈L is an algebraically independent generating
set of the k-algebra Sh (V ).

For every w ∈ A∗, we have bw = bw1bw2 · · · bw`(w)
(by the definition of

bw). For every w ∈ A∗, the element bw = bw1bw2 · · · bw`(w)
of Sh (V ) is

homogeneous of degree
∑`(w)

i=1 deg (bwi)︸ ︷︷ ︸
=wi

=
∑`(w)

i=1 wi.

Now, define a grading on the k-algebra k [xw | w ∈ L] by setting

deg (xw) =

`(w)∑
i=1

wi for every w ∈ L.

By the universal property of the polynomial algebra k [xw | w ∈ L], we
can define a k-algebra homomorphism Φ : k [xw | w ∈ L] → Sh (V ) by
setting

Φ (xw) = bw for every w ∈ L.

This homomorphism Φ is a k-algebra isomorphism (since (bw)w∈L is an
algebraically independent generating set of the k-algebra Sh (V )) and is
graded (because for every w ∈ L, the element bw of Sh (V ) is homogeneous

of degree
∑`(w)

i=1 wi = deg (xw)). Thus, Φ is an isomorphism of graded
k-algebras. Hence, Sh (V ) ∼= k [xw | w ∈ L] as graded k-algebras. Alto-
gether, QSym ∼= Sh (V ) ∼= k [xw | w ∈ L] as graded k-algebras. Thus,
QSym is a polynomial algebra. This proves Theorem 6.4.3 under the as-
sumption that Q be a subring of k. In other words, this proves Proposition
6.4.4. �

Our second proof of Proposition 6.4.4 comes from [93] (where Proposition
6.4.4 appears as [93, Theorem 6.5.13]). This proof will construct an explicit
algebraically independent family generating the k-algebra QSym. 317 The
generating set will be very unsophisticated: it will be (Mα)α∈L, where A
and L are as in Theorem 6.4.3. Here, we are using the fact that words
over the alphabet {1, 2, 3, . . .} are the same thing as compositions, so, in
particular, a monomial quasisymmetric function Mα is defined for every
such word α.

It takes a bit of work to show that this family indeed fits the bill. We
begin with a corollary of Proposition 5.1.3 that is essentially obtained by
throwing away all non-bijective maps f :

Proposition 6.4.5. Let α ∈ A∗ and β ∈ A∗. Then,

MαMβ

=
∑
γ∈α�β

Mγ + (a sum of terms of the form Mδ with δ ∈ A∗

satisfying ` (δ) < ` (α) + ` (β)) .

318

317We could, of course, obtain such a family from our above proof as well (this is
done by Malvenuto in [145, Corollaire 4.20]), but it won’t be a very simple one.

318The sum
∑
γ∈α�βMγ ranges over the multiset α � β; if an element appears

several times in α� β, then it has accordingly many addends corresponding to it.
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Exercise 6.4.6. Prove Proposition 6.4.5.
[Hint: Recall what was said about the p = `+m case in Example 5.1.4.]

Corollary 6.4.7. Let α ∈ A∗ and β ∈ A∗. Then, MαMβ is a sum of terms
of the form Mδ with δ ∈ A∗ satisfying ` (δ) ≤ ` (α) + ` (β).

Exercise 6.4.8. Prove Corollary 6.4.7.

We now define a partial order on the compositions of a given nonnegative
integer:

Definition 6.4.9. Let n ∈ N. We define a binary relation ≤
wll

on the set

Compn as follows: For two compositions α and β in Compn, we set α ≤
wll
β

if and only if

either ` (α) < ` (β) or (` (α) = ` (β) and α ≤ β in lexicographic order) .

This binary relation ≤
wll

is the smaller-or-equal relation of a total order on

Compn; we refer to said total order as the wll-order on Compn, and we
denote by <

wll
the smaller relation of this total order.

Notice that if α and β are two compositions satisfying ` (α) = ` (β),
then α ≤ β in lexicographic order if and only if α ≤ β with respect to the
relation ≤ defined in Definition 6.1.1.

A remark about the name “wll-order” is in order. We have taken this
notation from [89, Definition 6.7.14], where it is used for an extension of
this order to the whole set Comp. We will never use this extension, as we
will only ever compare two compositions of the same integer.319

We now state a fact which is similar (and plays a similar role) to Propo-
sition 6.3.9:

Proposition 6.4.10. For every composition u ∈ Comp = A∗, define an
element Mu ∈ QSym by Mu = Ma1Ma2 · · ·Map , where (a1, a2, . . . , ap) is
the CFL factorization of the word u.

If n ∈ N and if x ∈ Compn, then there is a family (ηx,y)y∈Compn
∈ NCompn

of elements of N satisfying

Mx =
∑

y∈Compn;
y≤

wll
x

ηx,yMy

and ηx,x 6= 0 (in N).

Before we prove it, let us show the following lemma:

Lemma 6.4.11. Let n ∈ N and m ∈ N. Let u ∈ Compn and v ∈ Compm.
Let z be the lexicographically highest element of the multiset u� v.

(a) We have z ∈ Compn+m.

319In [89, Definition 6.7.14], the name “wll-order” is introduced as an abbreviation
for “weight first, then length, then lexicographic” (in the sense that two compositions
are first compared by their weights, then, if the weights are equal, by their lengths, and
finally, if the lengths are also equal, by the lexicographic order). For us, the alternative
explanation “word length, then lexicographic” serves just as well.
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(b) There exists a positive integer h such that

MuMv = hMz +
(
a sum of terms of the form Mw with w ∈ Compn+m

satisfying w <
wll
z

)
.

(c) Let v′ ∈ Compm be such that v′ <
wll
v. Then,

MuMv′ =
(
a sum of terms of the form Mw with w ∈ Compn+m

satisfying w <
wll
z

)
.

Exercise 6.4.12. Prove Lemma 6.4.11.
[Hint: For (b), set h to be the multiplicity with which the word z appears

in the multiset u� v, then use Proposition 6.4.5 and notice that MuMv is
homogeneous of degree n+m. For (c), use (b) for v′ instead of v and notice
that Lemma 6.3.10(a) shows that the lexicographically highest element of
the multiset u� v′ is <

wll
z.]

Exercise 6.4.13. Prove Proposition 6.4.10.
[Hint: Proceed by strong induction over n. In the induction step, let

(a1, a2, . . . , ap) be the CFL factorization of x, and set u = a1 and v =
a2a3 · · · ap; then apply Proposition 6.4.10 to v instead of x, and multiply the
resulting equality Mv =

∑
y∈Comp|v|;

y≤
wll
v

ηv,yMy with Mu to obtain an expression

for MuMv = Mx. Use Lemma 6.4.11 to show that this expression has
the form

∑
y∈Compn;
y≤

wll
x

ηx,yMy with ηx,x 6= 0; here it helps to remember that

the lexicographically highest element of the multiset u� v is uv = x (by
Theorem 6.2.2(c)).]

We are almost ready to give our second proof of Proposition 6.4.4; our
last step is the following proposition:

Proposition 6.4.14. Assume that Q is a subring of k. Then, (Mw)w∈L is
an algebraically independent generating set of the k-algebra QSym.

Exercise 6.4.15. Prove Proposition 6.4.14.
[Hint: Define Mu for every u ∈ Comp as in Proposition 6.4.10. Conclude

from Proposition 6.4.10 that, for every n ∈ N, the family (Mu)u∈Compn

expands invertibly triangularly320 (with respect to the total order ≤
wll

on

Compn) with respect to the basis (Mu)u∈Compn
of QSymn. Conclude that

this family (Mu)u∈Compn
is a basis of QSymn itself, and so the whole family

(Mu)u∈Comp is a basis of QSym. Conclude using Lemma 6.3.7(a).]

Second proof of Proposition 6.4.4. Proposition 6.4.14 yields that (Mw)w∈L
is an algebraically independent generating set of the k-algebra QSym.

Define a grading on the k-algebra k [xw | w ∈ L] by setting deg (xw) =∑`(w)
i=1 wi for every w ∈ L. By the universal property of the polyno-

mial algebra k [xw | w ∈ L], we can define a k-algebra homomorphism

320See Definition 11.1.16(b) for the meaning of this.
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Φ : k [xw | w ∈ L]→ QSym by setting

Φ (xw) = Mw for every w ∈ L.

This homomorphism Φ is a k-algebra isomorphism (since (Mw)w∈L is an
algebraically independent generating set of the k-algebra QSym) and is
graded (because for every w ∈ L, the element Mw of QSym is homogeneous

of degree |w| =
∑`(w)

i=1 wi = deg (xw)). Thus, Φ is an isomorphism of graded
k-algebras. Hence, QSym ∼= k [xw | w ∈ L] as graded k-algebras. In
particular, this shows that QSym is a polynomial algebra. This proves
Theorem 6.4.3 under the assumption that Q be a subring of k. Proposition
6.4.4 is thus proven again. �

6.5. Polynomial freeness of QSym: the general case. We now will
prepare for proving Theorem 6.4.3 without any assumptions on k. In our
proof, we follow [89] and [93, §6.7], but without using the language of
plethysm and Frobenius maps. We start with the following definition:

Definition 6.5.1. Let α be a composition. Write α in the form α =
(α1, α2, . . . , α`) with ` = ` (α).

(a) Let SIS (`) denote the set of all strictly increasing `-tuples (i1, i2, . . . , i`)
of positive integers.321 For every `-tuple i = (i1, i2, . . . , i`) ∈ SIS (`), we de-
note the monomial xα1

i1
xα2
i2
· · ·xα`i` by xαi . This xαi is a monomial of degree

α1 + α2 + · · ·+ α` = |α|. Then,

(6.5.1) Mα =
∑

i∈SIS(`)

xαi .

322

(b) Consider the ring k [[x]] endowed with the coefficientwise topology323.
The family (xαi )i∈SIS(`) of elements of k [[x]] is power-summable324. Hence,

321“Strictly increasing” means that i1 < i2 < · · · < i` here. Of course, the elements
of SIS (`) are in 1-to-1 correspondence with `-element subsets of {1, 2, 3, . . .}.

322Proof of (6.5.1): By the definition of Mα, we have

Mα =
∑

i1<i2<···<i` in {1,2,3,...}︸ ︷︷ ︸
=
∑

(i1,i2,...,i`)∈SIS(`)

xα1
i1
xα2
i2
· · ·xα`i` =

∑
(i1,i2,...,i`)∈SIS(`)

xα1
i1
xα2
i2
· · ·xα`i`

=
∑

i=(i1,i2,...,i`)∈SIS(`)

xα1
i1
xα2
i2
· · ·xα`i`︸ ︷︷ ︸

=xαi
(by the definition of xαi )

=
∑

i=(i1,i2,...,i`)∈SIS(`)

xαi =
∑

i∈SIS(`)

xαi ,

qed.
323This topology is defined as follows:
We endow the ring k with the discrete topology. Then, we can regard the k-module

k [[x]] as a direct product of infinitely many copies of k (by identifying every power
series in k [[x]] with the family of its coefficients). Hence, the product topology is a
well-defined topology on k [[x]]; this topology is denoted as the coefficientwise topology .
A sequence (an)n∈N of power series converges to a power series a with respect to this
topology if and only if for every monomial m, all sufficiently high n ∈ N satisfy

(the coefficient of m in an) = (the coefficient of m in a) .

Note that this is not the topology obtained by taking the completion of k [x1, x2, x3, . . .]
with respect to the standard grading (in which all xi have degree 1). (The latter com-
pletion is actually a smaller ring than k [[x]].)

324Let us define what “power-summable” means for us:
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for every f ∈ Λ, there is a well-defined power series f
(

(xαi )i∈SIS(`)

)
∈ k [[x]]

obtained by “evaluating” f at (xαi )i∈SIS(`)
325. In particular, for every

s ∈ Z, we can evaluate the symmetric function es ∈ Λ 326 at (xαi )i∈SIS(`).

The resulting power series es

(
(xαi )i∈SIS(`)

)
∈ k [[x]] will be denoted M

〈s〉
α .

Thus,

M 〈s〉
α = es

(
(xαi )i∈SIS(`)

)
.

A family (ni)i∈I ∈ NI (where I is some set) is said to be finitely supported if all but
finitely many i ∈ I satisfy ni = 0.

If (ni)i∈I ∈ NI is a finitely supported family, then
∑

i∈I ni is a well-defined element

of N. If N ∈ N, then a family (ni)i∈I ∈ NI will be called (≤ N)-supported if it is finitely
supported and satisfies

∑
i∈I ni ≤ N .

We say that a family (si)i∈I ∈ RI of elements of a topological commutative k-algebra
R is power-summable if it satisfies the following property: For every N ∈ N, the sum∑

(ni)i∈I∈N
I;

(ni)i∈I is (≤N)-supported

α(ni)i∈I

∏
i∈I

sni

i

converges in the topology on R for every choice of scalars α(ni)i∈I
∈ k corresponding to

all (≤ N)-supported (ni)i∈I ∈ NI. In our specific case, we consider k [[x]] as a topological
commutative k-algebra, where the topology is the coefficientwise topology. The fact that
the family (xαi )i∈SIS(`) is power-summable then can be proven as follows:

• If α 6= ∅, then this fact follows from the (easily-verified) observation that every
given monomial in the variables x1, x2, x3, . . . can be written as a product of
monomials of the form xαi (with i ∈ SIS (`)) in only finitely many ways.

• If α = ∅, then this fact follows by noticing that (xαi )i∈SIS(`) is a finite family

(indeed, SIS (`) = SIS (0) = {()}), and every finite family is power-summable.

325Here is how this power series f
(

(xαi )i∈SIS(`)

)
is formally defined:

Let R be any topological commutative k-algebra, and let (si)i∈I ∈ RI be any power-
summable family of elements of R. Assume that the indexing set I is countably infinite,
and fix a bijection j : {1, 2, 3, . . .} → I. Let g ∈ R (x) be arbitrary. Then, we can
substitute sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in g, thus obtaining an
infinite sum which converges in R (in fact, its convergence follows from the fact that
the family (si)i∈I ∈ RI is power-summable). The value of this sum will be denoted by

g
(
(si)i∈I

)
. In general, this value depends on the choice of the bijection j, so the notation

g
(
(si)i∈I

)
is unambiguous only if this bijection j is chosen once and for all. However,

when g ∈ Λ, one can easily see that the choice of j has no effect on g
(
(si)i∈I

)
.

We can still define g
(
(si)i∈I

)
when the set I is finite instead of being countably

infinite. In this case, we only need to modify our above definition as follows: Instead of
fixing a bijection j : {1, 2, 3, . . .} → I, we now fix a bijection j : {1, 2, . . . , |I|} → I, and
instead of substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in g, we now
substitute sj(1), sj(2), . . ., sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in g. Again,

the same observations hold as before: g
(
(si)i∈I

)
is independent on j if g ∈ Λ.

Hence, g
(
(si)i∈I

)
is well-defined for every g ∈ R (x), every countable (i.e., finite or

countably infinite) set I, every topological commutative k-algebra R and every power-
summable family (si)i∈I ∈ RI of elements of R, as long as a bijection j is chosen. In
particular, we can apply this to g = f , I = SIS (`), R = k [[x]] and (si)i∈I = (xαi )i∈SIS(`),

choosing j to be the bijection which sends every positive integer k to the k-th smallest
element of SIS (`) in the lexicographic order. (Of course, since f ∈ Λ, the choice of j is
irrelevant.)

326Recall that e0 = 1, and that es = 0 for s < 0.



266 DARIJ GRINBERG AND VICTOR REINER

The power series M
〈s〉
α are the power series es (α) in [93]. We will shortly

(in Corollary 6.5.8(a)) see that M
〈s〉
α ∈ QSym (although this is also easy to

prove by inspection). Here are some examples of M
〈s〉
α :

Example 6.5.2. If α is a composition and ` denotes its length ` (α), then

M 〈0〉
α = e0︸︷︷︸

=1

(
(xαi )i∈SIS(`)

)
= 1

(
(xαi )i∈SIS(`)

)
= 1

and

M 〈1〉
α = e1

(
(xαi )i∈SIS(`)

)
=

∑
i∈SIS(`)

xαi = Mα (by (6.5.1))

and327

M 〈2〉
α = e2

(
(xαi )i∈SIS(`)

)
=

∑
i∈SIS(`), j∈SIS(`);

i<j

xαi xαj

(where the notation “i < j” should be interpreted with respect to an arbi-
trary but fixed total order on the set SIS (`) – for example, the lexicographic
order). Applying the last of these three equalities to α = (2, 1), we obtain

M
〈2〉
(2,1) =

∑
i∈SIS(2), j∈SIS(2),

i<j

x
(2,1)
i x

(2,1)
j =

∑
(i1,i2)∈SIS(2), (j1,j2)∈SIS(2);

(i1,i2)<(j1,j2)

x
(2,1)
(i1,i2)︸ ︷︷ ︸

=x2
i1
x1
i2

x
(2,1)
(j1,j2)︸ ︷︷ ︸

=x2
j1
x1
j2

=
∑

(i1,i2)∈SIS(2), (j1,j2)∈SIS(2);
(i1,i2)<(j1,j2)

x2
i1
x1
i2
x2
j1
x1
j2

=
∑

i1<i2; j1<j2;
i1<j1

x2
i1
x1
i2
x2
j1
x1
j2

︸ ︷︷ ︸
=M(2,1,2,1)+M(2,3,1)+2M(2,2,1,1)+M(2,2,2)

+
∑

i1<i2; j1<j2;
i1=j1; i2<j2

x2
i1
x1
i2
x2
j1
x1
j2

︸ ︷︷ ︸
=M(4,1,1)(

here, we have WLOG assumed that the
order on SIS (2) is lexicographic

)
= M(2,1,2,1) +M(2,3,1) + 2M(2,2,1,1) +M(2,2,2) +M(4,1,1).

Of course, every negative integer s satisfies M
〈s〉
α = es︸︷︷︸

=0

(
(xαi )i∈SIS(`)

)
=

0.

There is a determinantal formula for the s!M
〈s〉
α (and thus also for M

〈s〉
α

when s! is invertible in k), but in order to state it, we need to introduce
one more notation:

Definition 6.5.3. Let α = (α1, α2, . . . , α`) be a composition, and let k be a
positive integer. Then, α {k} will denote the composition (kα1, kα2, . . . , kα`).
Clearly, ` (α {k}) = ` (α) and |α {k}| = k |α|.

Exercise 6.5.4. Let α be a composition. Write the composition α in the
form α = (α1, α2, . . . , α`) with ` = ` (α).

327This is not completely obvious, but easy to check (see Exercise 6.5.4(b)).



HOPF ALGEBRAS IN COMBINATORICS 267

(a) Show that the s-th power-sum symmetric function ps ∈ Λ satisfies

ps

(
(xαi )i∈SIS(`)

)
= Mα{s}

for every positive integer s.
(b) Let us fix a total order on the set SIS (`) (for example, the lexico-

graphic order). Show that the s-th elementary symmetric function
es ∈ Λ satisfies

M 〈s〉
α = es

(
(xαi )i∈SIS(`)

)
=

∑
(i1,i2,...,is)∈(SIS(`))s;

i1<i2<···<is

xαi1x
α
i2
· · ·xαis

for every s ∈ N.

(c) Let s ∈ N, and let n be a positive integer. Let e
〈n〉
s be the symmetric

function
∑

i1<i2<···<is x
n
i1
xni2 · · ·x

n
is ∈ Λ. Then, show that

M
〈s〉
α{n} = e〈n〉s

(
(xαi )i∈SIS(`)

)
.

(d) Let s ∈ N, and let n be a positive integer. Prove that there exists
a polynomial P ∈ k [z1, z2, z3, . . .] such that

M
〈s〉
α{n} = P

(
M 〈1〉

α ,M 〈2〉
α ,M 〈3〉

α , . . .
)
.

[Hint: For (a), (b) and (c), apply the definition of f
(

(xαi )i∈SIS(`)

)
with f

a symmetric function328. For (d), recall that Λ is generated by e1, e2, e3, . . ..]

Exercise 6.5.5. Let s ∈ N. Show that the composition (1) satisfies M
〈s〉
(1) =

es.

Proposition 6.5.6. Let α = (α1, α2, . . . , α`) be a composition.

(a) Let n ∈ N. Define a matrix A
〈α〉
n =

(
a
〈α〉
i,j

)
i,j=1,2,...,n

by

a
〈α〉
i,j =


Mα{i−j+1}, if i ≥ j;

i, if i = j − 1;

0, if i < j − 1

for all (i, j) ∈ {1, 2, . . . , n}2 .

328There are two subtleties that need to be addressed:

• the fact that the definition of f
(

(xαi )i∈SIS(`)

)
distinguishes between two cases

depending on whether or not SIS (`) is finite;
• the fact that the total order on the set {1, 2, 3, . . .} (which appears in the sum-

mation subscript in the equality es =
∑

(i1,i2,...,is)∈{1,2,3,...}s;
i1<i2<···<is

xi1xi2 · · ·xis) has

nothing to do with the total order on the set SIS (`) (which appears in the sum-
mation subscript in

∑
(i1,i2,...,is)∈(SIS(`))s;

i1<i2<···<is

xαi1x
α
i2
· · ·xαis). For instance, the former

total order is well-founded, whereas the latter may and may not be. So there is
(generally) no bijection between {1, 2, 3, . . .} and SIS (`) preserving these orders
(even if SIS (`) is infinite). Fortunately, this does not matter much, because the
total order is only being used to ensure that every product of s distinct elements
appears exactly once in the sum.
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This matrix A
〈α〉
n looks as follows:

A〈α〉n =



Mα{1} 1 0 · · · 0 0
Mα{2} Mα{1} 2 · · · 0 0
Mα{3} Mα{2} Mα{1} · · · 0 0
...

...
...

. . .
...

...
Mα{n−1} Mα{n−2} Mα{n−3} · · · Mα{1} n− 1
Mα{n} Mα{n−1} Mα{n−2} · · · Mα{2} Mα{1}


.

Then, det
(
A
〈α〉
n

)
= n!M

〈n〉
α .

(b) Let n be a positive integer. Define a matrix B
〈α〉
n =

(
b
〈α〉
i,j

)
i,j=1,2,...,n

by

b
〈α〉
i,j =

{
iM
〈i〉
α , if j = 1;

M
〈i−j+1〉
α , if j > 1

for all (i, j) ∈ {1, 2, . . . , n}2 .

The matrix B
〈α〉
n looks as follows:

B〈α〉n =



M
〈1〉
α M

〈0〉
α M

〈−1〉
α · · · M

〈−n+3〉
α M

〈−n+2〉
α

2M
〈2〉
α M

〈1〉
α M

〈0〉
α · · · M

〈−n+4〉
α M

〈−n+3〉
α

3M
〈3〉
α M

〈2〉
α M

〈1〉
α · · · M

〈−n+5〉
α M

〈−n+4〉
α

...
...

...
. . .

...
...

(n− 1)M
〈n−1〉
α M

〈n−2〉
α M

〈n−3〉
α · · · M

〈1〉
α M

〈0〉
α

nM
〈n〉
α M

〈n−1〉
α M

〈n−2〉
α · · · M

〈2〉
α M

〈1〉
α



=



M
〈1〉
α 1 0 · · · 0 0

2M
〈2〉
α M

〈1〉
α 1 · · · 0 0

3M
〈3〉
α M

〈2〉
α M

〈1〉
α · · · 0 0

...
...

...
. . .

...
...

(n− 1)M
〈n−1〉
α M

〈n−2〉
α M

〈n−3〉
α · · · M

〈1〉
α 1

nM
〈n〉
α M

〈n−1〉
α M

〈n−2〉
α · · · M

〈2〉
α M

〈1〉
α


.

Then, det
(
B
〈α〉
n

)
= Mα{n}.

Exercise 6.5.7. Prove Proposition 6.5.6.
[Hint: Substitute (xαi )i∈SIS(`) for the variable set in Exercise 2.9.13, and

recall Exercise 6.5.4(a).]

Corollary 6.5.8. Let α be a composition. Let s ∈ Z.

(a) We have M
〈s〉
α ∈ QSym.

(b) We have M
〈s〉
α ∈ QSyms|α|.

Exercise 6.5.9. Prove Corollary 6.5.8.

We make one further definition:

Definition 6.5.10. Let α be a nonempty composition. Then, we de-
note by gcdα the greatest common divisor of the parts of α. (For in-
stance, gcd (8, 6, 4) = 2.) We also define redα to be the composition(

α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
, where α is written in the form (α1, α2, . . . , α`).
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We say that a nonempty composition α is reduced if gcdα = 1.
We define RL to be the set of all reduced Lyndon compositions. In other

words, RL = {w ∈ L | w is reduced} (since L is the set of all Lyndon
compositions).

Hazewinkel, in [93, proof of Thm. 6.7.5], denotes RL by eLY N , calling
reduced Lyndon compositions “elementary Lyndon words”.

Remark 6.5.11. Let α be a nonempty composition.
(a) We have α = (redα) {gcdα}.
(b) The composition α is Lyndon if and only if the composition redα is

Lyndon.
(c) The composition redα is reduced.
(d) If α is reduced, then redα = α.
(e) If s ∈ {1, 2, 3, . . .}, then the composition α {s} is nonempty and

satisfies red (α {s}) = redα and gcd (α {s}) = s gcdα.
(f) We have (gcdα) |redα| = |α|.

Exercise 6.5.12. Prove Remark 6.5.11.

Our goal in this section is now to prove the following result of Hazewinkel:

Theorem 6.5.13. The family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is an algebraically

independent generating set of the k-algebra QSym.

This will (almost) immediately yield Theorem 6.4.3.
Our first step towards proving Theorem 6.5.13 is the following observa-

tion:

Lemma 6.5.14. The family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is a reindexing of the

family
(
M
〈gcdα〉
redα

)
α∈L

.

Exercise 6.5.15. Prove Lemma 6.5.14.

Next, we show a lemma:

Lemma 6.5.16. Let α be a nonempty composition. Let s ∈ N. Then,

(6.5.2) s!M 〈s〉
α −M s

α ∈
∑

β∈Comps|α|;

`(β)≤(s−1)`(α)

kMβ.

(That is, s!M
〈s〉
α −M s

α is a k-linear combination of terms of the formMβ with
β ranging over the compositions of s |α| satisfying ` (β) ≤ (s− 1) ` (α).)

Exercise 6.5.17. Prove Lemma 6.5.16.
[Hint: There are two approaches: One is to apply Proposition 6.5.6(a)

and expand the determinant; the other is to argue which monomials can

appear in s!M
〈s〉
α −M s

α.]

We now return to studying products of monomial quasisymmetric func-
tions:

Lemma 6.5.18. Let n ∈ N and m ∈ N. Let u ∈ Compn and v ∈ Compm.
Let z be the lexicographically highest element of the multiset u� v. Let
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h be the multiplicity with which the word z appears in the multiset u� v.
Then,329

MuMv = hMz +
(
a sum of terms of the form Mw with w ∈ Compn+m

satisfying w <
wll
z

)
.

Proof of Lemma 6.5.18. Lemma 6.5.18 was shown during the proof of Lemma
6.4.11(b). �

Corollary 6.5.19. Let n ∈ N and m ∈ N. Let u ∈ Compn and v ∈
Compm. Regard u and v as words in A∗. Assume that u is a Lyndon word.
Let (b1, b2, . . . , bq) be the CFL factorization of the word v.

Assume that u ≥ bj for every j ∈ {1, 2, . . . , q}. Let

h = 1 + |{j ∈ {1, 2, . . . , q} | bj = u}| .

Then,

MuMv = hMuv +
(
a sum of terms of the form Mw with w ∈ Compn+m

satisfying w <
wll
uv

)
.

Exercise 6.5.20. Prove Corollary 6.5.19.
[Hint: Apply Lemma 6.5.18, and notice that uv is the lexicographically

highest element of the multiset u� v (by Theorem 6.2.2(e)), and that h
is the multiplicity with which this word uv appears in the multiset u� v
(this is a rewriting of Theorem 6.2.2(e)).]

Corollary 6.5.21. Let k ∈ N and s ∈ N. Let x ∈ Compk be such that x
is a Lyndon word. Then:

(a) The lexicographically highest element of the multiset x�xs is xs+1.
(b) We have

MxMxs = (s+ 1)Mxs+1 + (a sum of terms of the form Mw

with w ∈ Comp(s+1)k satisfying w <
wll
xs+1

)
.

(c) Let t ∈ Compsk be such that t <
wll
xs. Then,

MxMt =
(
a sum of terms of the form Mw with w ∈ Comp(s+1)k

satisfying w <
wll
xs+1

)
.

Exercise 6.5.22. Prove Corollary 6.5.21.

[Hint: Notice that

x, x, . . . , x︸ ︷︷ ︸
s times

 is the CFL factorization of the word

xs. Now, part (a) of Corollary 6.5.21 follows from Theorem 6.2.2(c), part
(b) follows from Corollary 6.5.19, and part (c) from Lemma 6.4.11(c) (using
part (a)).]

329The following equality makes sense because we have z ∈ Compn+m (by

Lemma 6.4.11(a)).
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Corollary 6.5.23. Let n ∈ N and m ∈ N. Let u ∈ Compn and v ∈
Compm. Regard u and v as words in A∗. Let (a1, a2, . . . , ap) be the CFL
factorization of u. Let (b1, b2, . . . , bq) be the CFL factorization of the word
v. Assume that ai > bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}.
Then,

MuMv = Muv +
(
a sum of terms of the form Mw with w ∈ Compn+m

satisfying w <
wll
uv

)
.

Exercise 6.5.24. Prove Corollary 6.5.23.
[Hint: Combine Lemma 6.5.18 with the parts (c) and (d) of Theorem

6.2.2.]

Corollary 6.5.25. Let n ∈ N. Let u ∈ Compn be a nonempty composi-
tion. Regard u as a word in A∗. Let (a1, a2, . . . , ap) be the CFL factorization
of u. Let k ∈ {1, 2, . . . , p− 1} be such that ak > ak+1. Let x be the word
a1a2 · · · ak, and let y be the word ak+1ak+2 · · · ap. Then,

Mu = MxMy − (a sum of terms of the form Mw with w ∈ Compn

satisfying w <
wll
u

)
.

Exercise 6.5.26. Prove Corollary 6.5.25.
[Hint: Apply Corollary 6.5.23 to x, y, |x|, |y|, k, p − k, (a1, a2, . . . , ak)

and (ak+1, ak+2, . . . , ap) instead of u, v, n, m, p, q, (a1, a2, . . . , ap) and
(b1, b2, . . . , bq); then, notice that xy = u and |x|+ |y| = n.]

Corollary 6.5.27. Let k ∈ N. Let x ∈ Compk be a composition. Assume
that x is a Lyndon word. Let s ∈ N. Then,

M s
x − s!Mxs ∈

∑
w∈Compsk;
w<

wll
xs

kMw.

(Recall that xs is defined to be the word xx · · ·x︸ ︷︷ ︸
s times

.)

Exercise 6.5.28. Prove Corollary 6.5.27.
[Hint: Rewrite the claim of Corollary 6.5.27 in the form M s

x ∈ s!Mxs +∑
w∈Compsk;
w<

wll
xs

kMw. This can be proven by induction over s, where in the in-

duction step we need the following two observations:

(1) We have MxMxs ∈ (s+ 1)Mxs+1 +
∑

w∈Comp(s+1)k;

w<
wll
xs+1

kMw.

(2) For every t ∈ Compsk satisfying t <
wll
xs, we have

MxMt ∈
∑

w∈Comp(s+1)k;

w<
wll
xs+1

kMw.

These two observations follow from parts (b) and (c) of Corollary 6.5.21.]
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Corollary 6.5.29. Let k ∈ N. Let x ∈ Compk be a composition. Assume
that x is a Lyndon word. Let s ∈ N. Then,

M 〈s〉
x −Mxs ∈

∑
w∈Compsk;
w<

wll
xs

kMw.

(Recall that xs is defined to be the word xx · · ·x︸ ︷︷ ︸
s times

.)

Exercise 6.5.30. Prove Corollary 6.5.29.
[Hint: Lemma 6.5.16 (applied to α = x) yields

s!M 〈s〉
x −M s

x ∈
∑

β∈Compsk;
`(β)≤(s−1)`(x)

Mβ =
∑

w∈Compsk;
`(w)≤(s−1)`(x)

kMw ⊂
∑

w∈Compsk;
w<

wll
xs

kMw

330. Adding this to the claim of Corollary 6.5.27, obtain s!M
〈s〉
x − s!Mxs ∈∑

w∈Compsk;
w<

wll
xs

kMw, that is, s!
(
M
〈s〉
x −Mxs

)
∈

∑
w∈Compsk;
w<

wll
xs

kMw. It remains to

get rid of the s! on the left hand side. Assume WLOG that k = Z, and
argue that every f ∈ QSym satisfying s! · f ∈

∑
w∈Compsk;
w<

wll
xs

kMw must itself lie

in
∑

w∈Compsk;
w<

wll
xs

kMw.]

We are now ready to prove Theorem 6.5.13:

Exercise 6.5.31. Prove Theorem 6.5.13.
[Hint: Lemma 6.5.14 yields that the family

(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is a

reindexing of the family
(
M
〈gcdw〉
redw

)
w∈L

. Hence, it is enough to prove that

the family
(
M
〈gcdw〉
redw

)
w∈L

is an algebraically independent generating set of

the k-algebra QSym. The latter claim, in turn, will follow from Lemma

6.3.7(c)331 once it is proven that the family
(
M
〈gcdw〉
redw

)
w∈L

generates the

k-algebra QSym. So it remains to show that the family
(
M
〈gcdw〉
redw

)
w∈L

generates the k-algebra QSym.

Let U denote the k-subalgebra of QSym generated by
(
M
〈gcdw〉
redw

)
w∈L

. It

then suffices to prove that U = QSym. To this purpose, it is enough to
prove that

(6.5.3) Mβ ∈ U for every composition β.

For every reduced Lyndon composition α and every j ∈ {1, 2, 3, . . .}, the

quasisymmetric function M
〈j〉
α is an element of the family

(
M
〈gcdw〉
redw

)
w∈L

330since every w ∈ Compsk with the property that ` (w) ≤ (s− 1) ` (x) must satisfy
w <

wll
xs

331applied to A = QSym, bw = M
〈gcdw〉
redw , wt (N) = N and gu = Mu
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and thus belongs to U . Combine this with Exercise 6.5.4(d) to see that
(6.5.4)

M
〈s〉
β ∈ U for every Lyndon composition β and every s ∈ {1, 2, 3, . . .}

(because every Lyndon composition β can be written as α {n} for a reduced
Lyndon composition α and an n ∈ {1, 2, 3, . . .}). Now, prove (6.5.3) by
strong induction: first, induct on |β|, and then, for fixed |β|, induct on β in
the wll-order. The induction step looks as follows: Fix some composition
α, and assume (as induction hypothesis) that:

• (6.5.3) holds for every composition β satisfying |β| < |α|;
• (6.5.3) holds for every composition β satisfying |β| = |α| and β <

wll
α.

It remains to prove that (6.5.3) holds for β = α. In other words, it remains
to prove that Mα ∈ U .

Let (a1, a2, . . . , ap) be the CFL factorization of the word α. Assume
WLOG that p 6= 0 (else, all is trivial). We are in one of the following two
cases:

Case 1: All of the words a1, a2, . . ., ap are equal.
Case 2: Not all of the words a1, a2, . . ., ap are equal.
In Case 2, there exists a k ∈ {1, 2, . . . , p− 1} satisfying ak > ak+1 (since

a1 ≥ a2 ≥ · · · ≥ ap), and thus Corollary 6.5.25 (applied to u = α, n = |α|,
x = a1a2 · · · ak and y = ak+1ak+2 · · · ap) shows that

Mα = Ma1a2···ak︸ ︷︷ ︸
∈U

(by the induction
hypothesis)

Mak+1ak+2···ap︸ ︷︷ ︸
∈U

(by the induction
hypothesis)

−

a sum of terms of the form Mw︸︷︷︸
∈U

(by the induction
hypothesis)

with w ∈ Comp|α|

satisfying w <
wll
α


∈ UU − (a sum of terms in U) ⊂ U.

Hence, it only remains to deal with Case 1. In this case, set x = a1 =
a2 = · · · = ap. Thus, α = a1a2 · · · ap = xp, whence |α| = p |x|. But
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Corollary 6.5.29 (applied to s = p and k = |x|) yields

M 〈p〉
x −Mxp ∈

∑
w∈Compp|x|;

w<
wll
xp

kMw =
∑

w∈Comp|α|;
w<

wll
α

k Mw︸︷︷︸
∈U

(by the induction
hypothesis)

(since p |x| = |α| and xp = α)

⊂
∑

w∈CompN ;
w<

wll
α

kU ⊂ U,

so that Mxp ∈ M 〈p〉
x︸︷︷︸
∈U

(by (6.5.4))

−U ⊂ U − U ⊂ U . This rewrites as Mα ∈ U

(since α = xp). So Mα ∈ U is proven in both Cases 1 and 2, and thus the
induction proof of (6.5.3) is finished.]

Exercise 6.5.32. Prove Theorem 6.4.3.

Of course, this proof of Theorem 6.4.3 yields a new (third) proof for
Proposition 6.4.4.

We notice the following corollary of our approach to Theorem 6.4.3:

Corollary 6.5.33. The Λ-algebra QSym is a polynomial algebra (over Λ).

Exercise 6.5.34. Prove Corollary 6.5.33.

[Hint: The algebraically independent generating set
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

of QSym contains the elements M
〈s〉
(1) = es ∈ Λ for all s ∈ {1, 2, 3, . . .}.]

6.6. The Gessel-Reutenauer bijection and symmetric functions.
In this section, we shall discuss the Gessel-Reutenauer bijection between
words and multisets of aperiodic necklaces, and use it to study another
family of symmetric functions.

The Gessel-Reutenauer bijection was studied in [82], where it was ap-
plied to various enumeration problems (e.g., counting permutations in Sn

with given descent set and given cycle type); it is also closely related to
the Burrows-Wheeler bijection used in data compression ([45]), and to the
structure of free Lie algebras ([81], [182]). We shall first introduce the
Gessel-Reutenauer bijection and study it combinatorially in Subsection
6.6.1; then, in the following Subsection 6.6.2, we shall apply it to sym-
metric functions.

6.6.1. Necklaces and the Gessel-Reutenauer bijection. We begin with defi-
nitions, some of which have already been made in Exercise 6.1.34:

Definition 6.6.1. Throughout Section 6.6, we shall freely use Defini-
tion 6.1.1 and Definition 6.1.13. We fix a totally ordered alphabet A.
(This alphabet can be arbitrary, although most examples will use A =
{1 < 2 < 3 < · · · }.)

Let C denote the infinite cyclic group, written multiplicatively. Fix a
generator c of C. 332

332So C is a group isomorphic to (Z,+), and the isomorphism (Z,+) → C sends
every n ∈ Z to cn. (Recall that we write the binary operation of C as · instead of +.)
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For any positive integer n, the group C acts on An from the left according
to the rule

c · (a1, a2, . . . , an) = (a2, a3, . . . , an, a1) for all (a1, a2, . . . , an) ∈ An.

333 The orbits of this C-action will be called n-necklaces334; they form a set
partition of the set An.

The n-necklace containing a given n-tuple w ∈ An will be denoted by
[w].

A necklace shall mean an n-necklace for some positive integer n. Thus,
for each nonempty word w, there is a well-defined necklace [w] (namely,
[w] is an n-necklace, where n = ` (w)).

The period of a necklace N is defined as the positive integer |N |. (This
|N | is indeed a positive integer, since N is a finite nonempty set335.)

An n-necklace is said to be aperiodic if its period is n.

Example 6.6.2. Let A be the alphabet {1 < 2 < 3 < · · · }. The orbit of
the word 223 under the C-action is the 3-necklace {223, 232, 322}; it is an
aperiodic 3-necklace. The orbit of the word 223223 under the C-action is
the 6-necklace {223223, 232232, 322322}; it is not aperiodic (since it has
period 3). The orbit of any nonempty word w = (w1, w2, . . . , wn) ∈ An is
the n-necklace

{(wi, wi+1, . . . , wn, w1, w2, . . . , wi−1) | i ∈ {1, 2, . . . , n}} .

We can draw this n-necklace on the plane as follows:

w1
++ w2

��
wn

::

w3

__
wn−1

VV

. .
.

ll

It is easy to see that the notion of an “aperiodic necklace” we just de-
fined is equivalent to the notion of a “primitive necklace” used in Exercise
4.6.4(b).

Exercise 6.1.34(a) shows that any n-necklace for any positive integer n
is a finite nonempty set. In other words, any necklace is a finite nonempty
set.

Let us next introduce some notations regarding words and permutations.
We recall that a cycle of a permutation τ ∈ Sn is an orbit under the action
of τ on {1, 2, . . . , n}. (This orbit can be a 1-element set, when τ has fixed
points.) We begin with a basic definition:

Definition 6.6.3. Let τ ∈ Sn be a permutation. Let h ∈ {1, 2, . . . , n}.

333In other words, c rotates any n-tuple of elements of A cyclically to the left. Thus,
cn ∈ C acts trivially on An, and so this action of C on An factors through C/ 〈cn〉 (a
cyclic group of order n).

334See Exercise 6.1.34 for the motivation behind this word.
Notice that there are no 0-necklaces, because we required n to be positive in the

definition of a necklace. This is intentional.
335by Exercise 6.1.34(a), because N is an n-necklace for some positive integer n
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(a) We let ordτ (h) denote the smallest positive integer i such that
τ i (h) = h. (Basic properties of permutations show that this i
exists.)

(b) Let w = (w1, w2, . . . , wn) ∈ An be a word. Then, wτ,h shall denote
the word wτ1(h)wτ2(h) · · ·wτk(h), where k = ordτ (h).

Example 6.6.4. Let τ be the permutation 3142765 ∈ S7 (in one-line
notation). Then, ordτ (1) = 4 (since τ 4 (1) = 1, but τ i (1) 6= 1 for every
positive integer i < 4). Likewise, ordτ (2) = 4 and ordτ (3) = 4 and
ordτ (4) = 4 and ordτ (5) = 2 and ordτ (6) = 1 and ordτ (7) = 2.

Now, let w be the word 4112524 ∈ A7. Then,

wτ,3 = wτ1(3)wτ2(3)wτ3(3)wτ4(3) (since ordτ (3) = 4)

= w4w2w1w3(
since τ 1 (3) = 4 and τ 2 (3) = τ (4) = 2

and τ 3 (3) = τ (2) = 1 and τ 4 (3) = τ (1) = 3

)
= 2141.

Likewise, we can check that wτ,1 = w3w4w2w1 = 1214 and wτ,5 = w7w5 =
45 and wτ,6 = w6 = 2.

We begin the study of the words wτ,h by stating some of their simplest
properties:336

Proposition 6.6.5. Let w = (w1, w2, . . . , wn) ∈ An be a word. Let τ ∈ Sn.
Let h ∈ {1, 2, . . . , n}. Then:

(a) The word wτ,h is nonempty and has length ordτ (h).
(b) The first letter of the word wτ,h is wτ(h).
(c) The last letter of the word wτ,h is wh.
(d) We have wτ,τ(h) = c · wτ,h.
(e) We have wτ,τ i(h) = ci · wτ,h for each i ∈ Z.

Recall that if n ∈ N and if w ∈ An is a word, then a permutation stdw ∈
Sn was defined in Definition 5.3.3. The words wτ,h have particularly nice

properties when τ = (stdw)−1:

Lemma 6.6.6. Let w = (w1, w2, . . . , wn) ∈ An be a word. Let τ be the
permutation (stdw)−1 ∈ Sn. Let α and β be two elements of {1, 2, . . . , n}
such that α < β. Then:

(a) If τ−1 (α) < τ−1 (β), then wα ≤ wβ.
(b) If τ−1 (α) ≥ τ−1 (β), then wα > wβ.
(c) We have wτ(α) ≤ wτ(β).
(d) If τ (α) ≥ τ (β), then wτ(α) < wτ(β).
(e) If wτ(α) = wτ(β), then τ (α) < τ (β).
(f) If wτ,α = wτ,β, then τ (α) < τ (β) and wτ,τ(α) = wτ,τ(β).
(g) If wτ,α = wτ,β, then τ i (α) < τ i (β) for each i ∈ N.
(h) Let j ∈ N be such that every i ∈ {0, 1, . . . , j − 1} satisfies wτ i+1(α) =

wτ i+1(β). Then, wτ j+1(α) ≤ wτ j+1(β).

Proposition 6.6.7. Let w ∈ An be a word. Let τ be the permutation
(stdw)−1 ∈ Sn. Let z be a cycle of τ . Then:

336See Exercise 6.6.8 below for the proof of Proposition 6.6.5, as well as for the proofs
of all other propositions stated before Exercise 6.6.8.
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(a) For each h ∈ z, we have [wτ,h] = {wτ,i | i ∈ z}.
(b) If α and β are two distinct elements of z, then wτ,α 6= wτ,β.
(c) We have |{wτ,i | i ∈ z}| = |z|.
(d) The set {wτ,i | i ∈ z} is an aperiodic necklace.

Exercise 6.6.8. Prove Proposition 6.6.5, Lemma 6.6.6 and Proposition
6.6.7.

Definition 6.6.9. Let w ∈ An be a word. Let τ be the permutation
(stdw)−1 ∈ Sn. Let z be a cycle of τ . Then, we define an aperiodic neck-
lace [w]z by [w]z = {wτ,i | i ∈ z}. (This is indeed an aperiodic necklace,
according to Proposition 6.6.7(d).)

Example 6.6.10. Let A be the alphabet {1 < 2 < 3 < · · · }, and let w
be the word 2511321 ∈ A7. Let τ be the permutation (stdw)−1 ∈ S7;
this is the permutation 3471652 (in one-line notation). One cycle of τ is
z = {1, 3, 7, 2, 4}. The corresponding aperiodic necklace [w]z is

[w]z = {wτ,i | i ∈ z}
= {wτ,1, wτ,3, wτ,7, wτ,2, wτ,4} (since z = {1, 3, 7, 2, 4})
= {11512, 15121, 51211, 12115, 21151} = [11512] .

Definition 6.6.11. We let N be the set of all necklaces. We let Na be the
set of all aperiodic necklaces. We let MNa be the set of all finite multisets
of aperiodic necklaces.

Definition 6.6.12. We define a map GR : A∗ →MNa as follows:
Let w ∈ A∗. Let n = ` (w) (so that w ∈ An). Let τ be the permutation

(stdw)−1 ∈ Sn. Then, we define the multiset GRw ∈MNa by setting

GRw = {[w]z | z is a cycle of τ}multiset .

(This multiset GRw is indeed a finite multiset of aperiodic necklaces337,
and thus belongs to MNa.)

Example 6.6.13. Let A be the alphabet {1 < 2 < 3 < · · · }, and let w =
33232112 ∈ A8.

To compute GRw, we first notice that stdw = 67384125 (in one-line
notation). Hence, the permutation τ from Definition 6.6.12 satisfies τ =
(stdw)−1 = 67358124. The cycles of τ are {1, 6}, {2, 7}, {3} and {4, 5, 8}.
Thus,

GRw = {[w]z | z is a cycle of τ}multiset

=
{

[w]{1,6} , [w]{2,7} , [w]{3} , [w]{4,5,8}

}
multiset

= {[31] , [31] , [2] , [322]}multiset = {[13] , [13] , [2] , [223]}multiset

337Indeed, this multiset GRw is finite (since τ has only finitely many cycles), and its
elements [w]z are aperiodic necklaces (as we have seen in the definition of [w]z).
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(since [31] = [13] and [322] = [223] as necklaces). Drawn on the plane, the
necklaces in GRw look as follows:

1
��
3\\ 1

��
3\\ 2

2

��
2

pp3

>>

The map GR is called the Gessel-Reutenauer bijection. In order to show
that it indeed is a bijection, we shall construct its inverse. First, we intro-
duce some further objects.

Definition 6.6.14. A nonempty word w is said to be aperiodic if there
exist no m ≥ 2 and u ∈ A∗ satisfying w = um.

Let Aa be the set of all aperiodic words in A∗.

For example, the word 132231 is aperiodic, but the word 132132 is not
(since 132132 = um for u = 132 and m = 2).

Aperiodic words are directly connected to aperiodic necklaces, as the
following facts show:338

Proposition 6.6.15. Let w ∈ A∗ be a nonempty word. Then, the word w
is aperiodic if and only if the necklace [w] is aperiodic.

Corollary 6.6.16. Let w ∈ A∗ be an aperiodic word. Then, the word c ·w
is aperiodic.339

Corollary 6.6.17. Each aperiodic necklace is a set of aperiodic words.

Let us now introduce a new total order on the set Aa of all aperiodic
words:

Definition 6.6.18. Let u and v be two aperiodic words. Then, we write
u ≤ω v if and only if uv ≤ vu. Thus, we have defined a binary relation ≤ω
on the set Aa of all aperiodic words.

Proposition 6.6.19. The relation ≤ω on the set Aa is the smaller-or-equal
relation of a total order.

For the next proposition, we should recall Definition 6.6.1 (and, in par-
ticular, the meaning of c and its action on words).

Proposition 6.6.20. Let u and v be two aperiodic words.

(a) We have u ≤ω v if and only if

either u1 < v1 or (u1 = v1 and c · u ≤ω c · v) .
340

(b) If u 6= v, then there exists some i ∈ N satisfying (ci · u)1 6= (ci · v)1.
(c) We have u ≤ω v if and only if the smallest i ∈ N satisfying (ci · u)1 6=

(ci · v)1 either does not exist or satisfies (ci · u)1 < (ci · v)1.

338See Exercise 6.6.23 for the proofs of all unproved statements made until Exercise
6.6.23.

339See Definition 6.6.1 for the definition of c and its action on words.
340The relation “c · u ≤ω c · v” here makes sense because the words c · u and c · v are

aperiodic (by Corollary 6.6.16).
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(d) Let n and m be positive integers such that n` (u) = m` (v). We
have u ≤ω v if and only if un ≤ vm.

Remark 6.6.21. We are avoiding the use of infinite words here; if we didn’t,
we could restate the relation ≤ω in a simpler way (which is easily seen to be
equivalent to Proposition 6.6.20(c)): Two aperiodic words u and v satisfy
u ≤ω v if and only if u∞ ≤ v∞. Here, for any nonempty word w, we are
letting w∞ denote the infinite word(

w1, w2, . . . , w`(w), w1, w2, . . . , w`(w), w1, w2, . . . , w`(w), . . .
)

(that is, the word w repeated endlessly), and the symbol “≤” in “u∞ ≤ v∞”
refers to the lexicographic order on A∞.

Other equivalent descriptions of the relation≤ω (or, more precisely, of the
“strictly less” relation corresponding to it) can be found in [54, Corollary
11].

Proposition 6.6.22. Let w ∈ An be a word. Let τ be the permutation
(stdw)−1 ∈ Sn. Then:

(a) The words wτ,1, wτ,2, . . . , wτ,n are aperiodic.
(b) We have wτ,1 ≤ω wτ,2 ≤ω · · · ≤ω wτ,n.

Exercise 6.6.23. Prove Proposition 6.6.15, Corollary 6.6.16, Corollary
6.6.17, Proposition 6.6.19, Proposition 6.6.20 and Proposition 6.6.22.

We need two more notations about multisets:

Definition 6.6.24. Let T be a totally ordered set, and let ≤T be the
smaller-or-equal relation of T . Let M be a finite multiset of elements of T .
Then, there is a unique list (m1,m2, . . . ,mn) such that

{m1,m2, . . . ,mn}multiset = M and m1 ≤T m2 ≤T · · · ≤T mn.

This list (m1,m2, . . . ,mn) is obtained by listing all elements of M (with
their multiplicities) in increasing order (increasing with respect to ≤T ). We
shall refer to this list (m1,m2, . . . ,mn) as the ≤T -increasing list of M .

(For example, the≤Z-increasing list of {1, 2, 3, 2, 1}multiset is (1, 1, 2, 2, 3).)

Definition 6.6.25. Let S be a finite multiset.

(a) The support SuppS is defined to be the set of all elements of S.
Thus, if S = {m1,m2, . . . ,mn}multiset, then SuppS = {m1,m2, . . . ,mn}.

(b) For each s ∈ S, let Ms be a finite multiset. Then, we define the mul-
tiset union

⊎
s∈SMs to be the finite multiset M with the following

property: For any object x, we have

(multiplicity of x in M)

=
∑

s∈SuppS

(multiplicity of s in S) · (multiplicity of x in Ms) .

For example:
• If S = {1, 2, 3}multiset and Ms = {s, s+ 1}multiset for each s ∈

SuppS, then
⊎
s∈SMs = {1, 2, 2, 3, 3, 4}multiset.

• If S = {1, 1, 2}multiset and Ms = {s, s+ 1}multiset for each s ∈
SuppS, then

⊎
s∈SMs = {1, 1, 2, 2, 2, 3}multiset.

We regard each set as a multiset; thus, the multiset union
⊎
s∈SMs

is also defined when the Ms are sets.
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Now, we can construct the inverse of the Gessel-Reutenauer bijection:

Definition 6.6.26. We define a map RG : MNa → A∗ as follows:
Let M ∈ MNa be a finite multiset of aperiodic necklaces. Let M ′ =⊎
N∈M N . (We are here using the fact that each necklace N ∈M is a finite

set, thus a finite multiset.) Notice that M ′ is a finite multiset of aperiodic
words341. Let (m1,m2, . . . ,mn) be the ≤ω-increasing list of M ′. For each
i ∈ {1, 2, . . . , n}, let `i be the last letter of the nonempty word mi. Then,
RG (M) is defined to be the word (`1, `2, . . . , `n) ∈ A∗.

Example 6.6.27. Let A be the alphabet {1 < 2 < 3 < · · · }, and let M =
{[13] , [13] , [2] , [223]}multiset. Clearly, M ∈MNa (since M is a finite multi-
set of aperiodic necklaces). (Actually, M is the multiset of aperiodic neck-
laces drawn in Example 6.6.13.) In order to compute the word RG (M),
let us first compute the multiset M ′ from Definition 6.6.26. Indeed, the
definition of M ′ yields

M ′ =
⊎
N∈M

N = [13]︸︷︷︸
={13,31}

] [13]︸︷︷︸
={13,31}

] [2]︸︷︷︸
={2}

] [223]︸︷︷︸
={223,232,322}(

where we are using the notation M1 ]M2 ] · · · ]Mk

for a multiset union
⊎

s∈{1,2,...,k}
Ms

)
= {13, 31} ] {13, 31} ] {2} ] {223, 232, 322}
= {13, 31, 13, 31, 2, 223, 232, 322}multiset .

Hence, the ≤ω-increasing list of M ′ is (13, 13, 2, 223, 232, 31, 31, 322) (since
13 ≤ω 13 ≤ω 2 ≤ω 223 ≤ω 232 ≤ω 31 ≤ω 31 ≤ω 322). The last letters of
the words in this list are 3, 3, 2, 3, 2, 1, 1, 2 (in this order). Hence, Definition
6.6.26 shows that

RG (M) = (3, 3, 2, 3, 2, 1, 1, 2) = 33232112.

Remark 6.6.28. The ≤ω-increasing list of a multiset M ′ of aperiodic words
is not always the same as its ≤-increasing list. For example, the ≤ω-
increasing list of {2, 21} is (21, 2) (since 21 ≤ω 2), whereas its ≤-increasing
list is (2, 21) (since 2 ≤ 21).

A comparison of Examples 6.6.13 and 6.6.27 suggests that the maps GR
and RG undo one another. This is indeed true, as the following theorem
(due to Gessel and Reutenauer [82, Lemma 3.4 and Example 3.5]; also
proved in [182, Theorem 7.20], [51, Theorem 3.1 and Proposition 3.1] and
[81, §2]) shows:

Theorem 6.6.29. The maps GR : A∗ → MNa and RG : MNa → A∗ are
mutually inverse bijections.

341Indeed:

• Each N ∈ M is an aperiodic necklace (since M is a multiset of aperiodic
necklaces), and thus (by Corollary 6.6.17) a set of aperiodic words. Therefore,⊎
N∈M N is a multiset of aperiodic words.

• Each N ∈M is a necklace, and thus is a finite set (since any necklace is a finite
set). Since the multiset M is also finite, this shows that

⊎
N∈M N is finite.

Thus,
⊎
N∈M N is a finite multiset of aperiodic words. In other words, M ′ is a finite

multiset of aperiodic words (since M ′ =
⊎
N∈M N).
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Exercise 6.6.30. Prove Theorem 6.6.29.
[Hint: First, use Proposition 6.6.22 to show that RG ◦GR = id. Then

recall the fact that any injective map between two finite sets of the same
sizes is a bijection. This does not directly apply here, since the sets A∗

and MNa are usually not finite. However, GR can be restricted to a map
between two appropriate finite subsets, obtained by focussing on a finite
sub-alphabet of A and fixing the length of the words; these subsets can be
shown to have equal size using the Chen-Fox-Lyndon factorization (see the
following paragraph for the connection).342]

Theorem 6.6.29 shows that the sets A∗ and MNa are in bijection. This
bijection is in some sense similar to the Chen-Fox-Lyndon factorization343,
and preserves various quantities (for example, the number of times a given
letter a appears in a word w ∈ A∗ equals the number of times this letter a
appears in the words in the corresponding multiset GRw ∈MNa, provided
that we pick one representative of each necklace in GRw), and predictably
affects other quantities (for example, the cycles of the standardization stdw
of a word w ∈ A∗ have the same lengths as the aperiodic necklaces in
the corresponding multiset GRw ∈ MNa); these properties have ample
applications to enumerative questions (discussed in [82]).

Remark 6.6.31. The Gessel-Reutenauer bijection relates to the Burrows-
Wheeler transformation (e.g., [45, §2]). Indeed, the latter sends an ape-
riodic word w ∈ Aa to the word RG ({[w]}multiset) obtained by applying
RG to the multiset consisting of the single aperiodic necklace [w]. This
transformation is occasionally applied in (lossless) data compression, as
the word RG ({[w]}multiset) tends to have many strings of consecutive equal
letters when w has substrings occurring multiple times (for example, if
A = {a < b < c < d < · · · } and w = bananaban, then RG ({[w]}multiset) =
nnbbnaaaa), and strings of consecutive equal letters can easily be com-
pressed. (In order to guarantee that w can be recovered from the result,
one can add a new letter ζ – called a “sentinel symbol” – to the alphabet A,
and apply the Burrows-Wheeler transformation to the word wζ instead of
w. This also ensures that wζ is an aperiodic word, so the Burrows-Wheeler
transformation can be applied to wζ even if it cannot be applied to w.)

Kufleitner, in [116, §4], suggests a bijective variant of the Burrows-
Wheeler transformation. In our notations, it sends a word w ∈ A∗ to
the word RG ({[a1] , [a2] , . . . , [ak]}multiset), where (a1, a2, . . . , ak) is the CFL
factorization of w.

For variants and generalizations of the Gessel-Reutenauer bijection, see
[116], [209], [200], [56] and [179].

6.6.2. The Gessel-Reutenauer symmetric functions. In this subsection, we
shall study a certain family of symmetric functions. First, we recall that

342This argument roughly follows [81].
343The Chen-Fox-Lyndon factorization (Theorem 6.1.27) provides a bijection between

words in A∗ and multisets of Lyndon words (because the factors in the CFL factoriza-
tion of a word w ∈ A∗ can be stored in a multiset), whereas the Gessel-Reutenauer
bijection GR : A∗ →MNa is a bijection between words in A∗ and multisets of aperiodic
necklaces. Since the Lyndon words are in bijection with the aperiodic necklaces (by
Exercise 6.1.34(e)), we can thus view the two bijections as having the same targets (and
the same domains). That said, they are not the same bijection.
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every word w ∈ A∗ has a unique CFL factorization (see Theorem 6.1.27).
Based on this fact, we can make the following definition:

Definition 6.6.32. For the rest of Subsection 6.6.2, we let A be the al-
phabet {1 < 2 < 3 < · · · }.

Let w ∈ A∗ be a word. The CFL type of w is defined to be the partition
whose parts are the positive integers ` (a1) , ` (a2) , . . . , ` (ak) (listed in de-
creasing order), where (a1, a2, . . . , ak) is the CFL factorization of w. This
CFL type is denoted by CFLtypew.

Example 6.6.33. Let w be the word 213212412112. Then, the tuple
(2, 132, 124, 12, 112) is the CFL factorization of w. Hence, the CFL type of
w is the partition whose parts are the positive integers
` (2) , ` (132) , ` (124) , ` (12) , ` (112) (listed in decreasing order). In other
words, the CFL type of w is the partition (3, 3, 3, 2, 1) (since the positive
integers ` (2) , ` (132) , ` (124) , ` (12) , ` (112) are 1, 3, 3, 2, 3).

Definition 6.6.34. For each word w = (w1, w2, . . . , wn) ∈ A∗, we define
a monomial xw in k [[x]] by setting xw = xw1xw2 · · ·xwn . (For example,
x(1,3,2,1) = x1x3x2x1 = x2

1x2x3.)
For any partition λ, we define a power series GRλ ∈ k [[x]] by

GRλ =
∑
w∈A∗;

CFLtypew=λ

xw.

Example 6.6.35. Let us compute GR(2,1). Indeed, the words w ∈ A∗ sat-
isfying CFLtypew = (2, 1) are the words whose CFL factorization consists
of two words, one of which has length 1 and the other has length 2. In other
words, these words w ∈ A∗ must have the form w = a1a2 for two Lyndon
words a1 and a2 satisfying a1 ≥ a2 and (` (a1) , ` (a2)) ∈ {(1, 2) , (2, 1)}. A
straightforward analysis of possibilities reveals that these are precisely the
3-letter words w = (w1, w2, w3) satisfying either (w1 < w2 and w1 ≥ w3) or
(w1 > w2 and w2 < w3). Hence,

GR(2,1) =
∑
w∈A∗;

CFLtypew=(2,1)

xw =
∑
w∈A∗;

w1<w2 and w1≥w3

xw +
∑
w∈A∗;

w1>w2 and w2<w3

xw

=
∑
w∈A∗;

w1<w2 and w1≥w3

xw

+
∑
w∈A∗;

w1>w2 and w2<w3 and w1≤w3

xw +
∑
w∈A∗;

w1>w2 and w2<w3 and w1>w3

xw

(
here, we have split the second sum

according to the relation between w1 and w3

)
=

∑
w∈A∗;

w3≤w1<w2

xw +
∑
w∈A∗;

w2<w1≤w3

xw +
∑
w∈A∗;

w2<w3<w1

xw

(here, we rewrote the conditions under the summation signs). The three
sums on the right hand side are clearly quasisymmetric functions. Using
(5.2.3), we can rewrite them as L(2,1), L(1,2) and L(1,1,1), respectively. Thus,
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we obtain

GR(2,1) = L(2,1) + L(1,2) + L(1,1,1) = 3M(1,1,1) +M(1,2) +M(2,1)

= 3m(1,1,1) +m(2,1).

Thus, GR(2,1) is actually a symmetric function! We shall soon (in Propo-
sition 6.6.37) see that this is not a coincidence.

We shall now state various properties of the power series GRλ; their
proofs are all part of Exercise 6.6.51.

Proposition 6.6.36. Let n be a positive integer. Then:

(a) The partition (n) satisfies

GR(n) =
∑
w∈An;

w is Lyndon

xw.

(b) Assume that k is a Q-algebra. Then,

GR(n) =
1

n

∑
d|n

µ (d) p
n/d
d .

Here, µ denotes the number-theoretical Möbius function (defined as
in Exercise 2.9.6), and the summation sign “

∑
d|n” is understood to

range over all positive divisors d of n.

Proposition 6.6.37. Let λ be a partition. Then, the power series GRλ

belongs to Λ.

Thus, (GRλ)λ∈Par is a family of symmetric functions.344 Unlike many
other such families we have studied, it is not a basis of Λ; it is not linearly
independent (e.g., it satisfies GR(2,1,1) = GR(4)). Nevertheless, it satisfies
a Cauchy-kernel-like identity345:

Proposition 6.6.38. Consider two countable sets of indeterminates x =
(x1, x2, x3, . . .) and y = (y1, y2, y3, . . .).

(a) In the power series ring k [[x,y]] = k [[x1, x2, x3, . . . , y1, y2, y3, . . .]],
we have∑

λ∈Par

GRλ (x) pλ (y) =
∑
λ∈Par

pλ (x) GRλ (y) .

(b) For each word w = (w1, w2, . . . , wn) ∈ A∗, we define a monomial yw
in k [[y]] by setting yw = yw1yw2 · · · ywn . Then,∑

λ∈Par

GRλ (x) pλ (y) =
∑
w∈A∗

xwpCFLtypew (y) =
∏
w∈L

∏
u∈L

1

1− x
`(u)
w y

`(w)
u

=
∑
λ∈Par

pλ (x) GRλ (y) .

The proof of this proposition rests upon the following simple equality346:

344Several sources, including [82], [206, Exercise 7.89] and [66], write Lλ for what we
call GRλ. (So would we if Lα didn’t already have another meaning here.)

345Recall that L denotes the set of Lyndon words in A∗.
346Recall that L denotes the set of Lyndon words in A∗. Also, recall that A =

{1 < 2 < 3 < · · · }. Thus, p1 =
∑
i≥1 xi =

∑
a∈A xa.
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Proposition 6.6.39. In the power series ring (k [[x]]) [[t]], we have

1

1− p1t
=
∏
w∈L

1

1− xwt`(w)
.

We can furthermore represent the symmetric functions GRλ in terms of
the fundamental basis (Lα)α∈Comp of QSym; here, the Gessel-Reutenauer
bijection from Theorem 6.6.29 reveals its usefulness. We will use Defini-
tion 5.3.5.

Proposition 6.6.40. Let λ be a partition. Let n = |λ|. Then,

GRλ =
∑
σ∈Sn;

σ has cycle type λ

Lγ(σ).

The proof of this relies on Lemma 5.3.6 (see Exercise 6.6.51 below for
the details).

Definition 6.6.41. Let S =
⊔
n∈NSn (an external disjoint union). For

each σ ∈ S, we let typeσ denote the cycle type of σ.

Proposition 6.6.42. Consider two countable sets of indeterminates x =
(x1, x2, x3, . . .) and y = (y1, y2, y3, . . .).

In the power series ring k [[x,y]], we have∑
λ∈Par

GRλ (x) pλ (y) =
∑
λ∈Par

pλ (x) GRλ (y) =
∑
σ∈S

Lγ(σ) (x) ptypeσ (y) .

Let us finally give two alternative descriptions of the GRλ that do not
rely on the notion of CFL factorization. First, we state a fact that is
essentially trivial:

Proposition 6.6.43. Let N be a necklace. Let w and w′ be two elements
of N . Then:

(a) There exist words u and v such that w = uv and w′ = vu.
(b) We have xw = xw′ .

Definition 6.6.44. Let N ∈ N be a necklace. Then, we define a monomial
xN in k [[x]] by setting xN = xw, where w is any element of N . (This is
well-defined, because Proposition 6.6.43(b) shows that xw does not depend
on the choice of w.)

Definition 6.6.45. Let M be a finite multiset of necklaces. Then, we
define a monomial xM in k [[x]] by setting xM = xN1xN2 · · ·xNk , where M
is written in the form M = {N1, N2, . . . , Nk}multiset.

Definition 6.6.46. Let M be a finite multiset of necklaces. Then, we can
obtain a partition by listing the sizes of the necklaces in M in decreasing
order. This partition will be called the type of M , and will be denoted by
typeM .

Example 6.6.47. If M = {[13] , [13] , [2] , [223]}multiset, then the type of M
is (3, 2, 2, 1) (because the sizes of the necklaces in M are 2, 2, 1, 3).

Proposition 6.6.48. Let λ be a partition. Then,

GRλ =
∑

M∈MNa;
typeM=λ

xM .
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This was our first alternative description of GRλ. Note that it is used
as a definition of GRλ in [82, (2.1)] (where GRλ is denoted by Lλ). Using
the Gessel-Reutenauer bijection, we can restate it as follows:

Proposition 6.6.49. Let λ be a partition. Then,

GRλ =
∑
w∈A∗;

type(GRw)=λ

xw.

Let us finally give a second alternative description of GRλ:

Proposition 6.6.50. Let λ be a partition. Then,

GRλ =
∑
w∈A∗;

type(stdw)=λ

xw.

Exercise 6.6.51. Prove all statements made in Subsection 6.6.2.
[Hint: Here is one way to proceed:

• First prove Proposition 6.6.39, by using the CFL factorization to
argue that both sides equal

∑
w∈A∗ xwt

`(w).
• Use a similar argument to derive Proposition 6.6.38 (starting with

part (b)).
• Proposition 6.6.43 is almost trivial.
• Derive Proposition 6.6.48 from the definition of GRλ using the

uniqueness of the CFL factorization.
• Derive Proposition 6.6.49 from Proposition 6.6.48 using the bijec-

tivity of GR.
• Derive Proposition 6.6.50 from Proposition 6.6.49.
• Obtain Proposition 6.6.40 by combining Proposition 6.6.50 with

Lemma 5.3.6.
• Derive Proposition 6.6.42 from Propositions 6.6.40 and 6.6.38.
• Derive Proposition 6.6.37 either from Proposition 6.6.48 or from

Proposition 6.6.38. (In the latter case, make sure to work with
k = Q first, and then extend to all other k, as the proof will rely
on the k-linear independence of (pλ)λ∈Par, which doesn’t hold for all
k.)
• Prove Proposition 6.6.36(a) directly using the definition of GR(n).
• Show that each positive integer n satisfies

pn1 =
∑
d|n

d ·GR(d)

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
by taking logarithms in Proposition 6.6.39. Use this and (2.9.7) to
prove Proposition 6.6.36(b) recursively.

Other approaches are, of course, possible.]

Remark 6.6.52. Let n be a positive integer. The symmetric function GR(n)

has a few more properties:

(a) It is an N-linear combination of Schur functions. To state the pre-
cise rule, we need a few more notations: A standard tableau can be
defined as a column-strict tableau T with cont (T ) = (1m), where
m is the number of boxes of T . (That is, each of the numbers
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1, 2, . . . ,m appears exactly once in T , and no other numbers ap-
pear.) If T is a standard tableau with m boxes, then a descent of
T means an i ∈ {1, 2, . . . ,m− 1} such that the entry i+ 1 appears
in T in a row further down than i does. The major index majT
of a standard tableau T is defined to be the sum of its descents.347

Now,

GR(n) =
∑

λ∈Parn

aλ,1sλ,

where aλ,1 is the number of standard tableaux T of shape λ satis-
fying majT ≡ 1 modn. (See [206, Exercise 7.89 (c)].)

(b) Assume that k = C. Recall the map ch : A (S)→ Λ from Theorem
4.4.1. Embed the cyclic group Cn = Z/nZ as a subgroup in the
symmetric group Sn by identifying some generator g of Cn with
some n-cycle in Sn. Let ω be a primitive n-th root of unity in C
(for instance, exp (2πi/n)). Let γ : Cn → C be the character of Cn
that sends each gi ∈ Cn to ωi. Then,

GR(n) = ch
(
IndSn

Cn
γ
)
.

(See [206, Exercise 7.89 (b)].)
(c) The character IndSn

Cn
γ of Sn is actually the character of a represen-

tation. To construct it, set k = C, and recall the notations from
Exercise 6.1.41 (while keeping A = {1, 2, 3, . . .}). Let mn be the C-
vector subspace of T (V ) spanned by the products xσ(1)xσ(2) · · ·xσ(n)

with σ ∈ Sn. The symmetric group Sn acts on T (V ) by alge-
bra homomorphisms, with σ ∈ Sn sending each xi to xσ(i) when
i ≤ n and to xi otherwise. Both gn and mn are CSn-submodules
of T (V ). Thus, so is the intersection gn ∩ mn. It is not hard to
see that this intersection is spanned by all “nested commutators”[
xσ(1),

[
xσ(2),

[
xσ(3), . . .

]]]
(in T (V )) with σ ∈ Sn. The charac-

ter of this CSn-module gn ∩ mn is precisely the IndSn
Cn
γ from Re-

mark 6.6.52(b), so applying the Frobenius characteristic map ch to
it yields the symmetric function GR(n). (See [182, Theorem 9.41(i)].
There are similar ways to obtain GRλ for all λ ∈ Par.)

Exercise 6.6.53. Prove the claim of Remark 6.6.52(b).
[Hint: It helps to recall (or prove) that for any positive integer m, the

sum of all primitive m-th roots of unity in C is µ (m).]

The symmetric functions GRλ for more general partitions λ can be ex-
pressed in terms of the symmetric functions GR(n) (which, as we recall
from Proposition 6.6.36(b), have a simple expression in terms of the pm)
using the concept of plethysm; see [82, Theorem 3.6].

In [82], Gessel and Reutenauer apply the symmetric functions GRλ to
questions of permutation enumeration via the following result348:

347For example, the tableau
1 3 4 8
2 5 6 9
7

is standard and has descents 1, 4, 6, 8 and major index 1 + 4 + 6 + 8 = 19.
348Proposition 6.6.54(a) is [82, Corollary 2.2]; Proposition 6.6.54(b) is [82, Theorem

2.1].
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Proposition 6.6.54. Let n ∈ N. Let λ ∈ Parn and β = (β1, β2, . . . , βk) ∈
Compn. We shall use the notations introduced in Definition 5.1.10. Defi-
nition 5.3.5 and Definition 6.6.41.

(a) Let µ ∈ Parn be the partition obtained by sorting the entries of β
into decreasing order. Then,

(the number of permutations σ ∈ Sn satisfying typeσ = λ

such that β refines γ (σ))

= (the number of permutations σ ∈ Sn satisfying typeσ = λ

and Desσ ⊂ D (β))

=
(

the coefficient of xβ1

1 x
β2

2 · · ·x
βk
k in GRλ

)
= (the coefficient of xµ in GRλ)

= (GRλ, hµ)

(this is the Hall inner product of GRλ ∈ Λ and hµ ∈ Λ) .

(b) Recall the ribbon diagram Rib (β) corresponding to the composition
β (defined as in Definition 5.1.10). Then,

(the number of permutations σ ∈ Sn satisfying typeσ = λ

and β = γ (σ))

= (the number of permutations σ ∈ Sn satisfying typeσ = λ

and Desσ = D (β))

=
(
GRλ, sRib(β)

)(
this is the Hall inner product of GRλ ∈ Λ and sRib(β) ∈ Λ

)
.

Exercise 6.6.55. Prove Proposition 6.6.54.
[Hint: Use Proposition 6.6.40, Theorem 5.4.10, the equality (5.4.3) and

the adjointness between π and i in Corollary 5.4.3.]

By strategic application of Proposition 6.6.54, Gessel and Reutenauer
arrive at several enumerative consequences, such as the following:

• ([82, Theorem 8.3]) If A is a proper subset of {1, 2, . . . , n− 1}, then

(the number of permutations σ ∈ Sn

satisfying |Fixσ| = 0 and Desσ = A)

= (the number of permutations σ ∈ Sn

satisfying |Fixσ| = 1 and Desσ = A) ,

where Fixσ denotes the set of all fixed points of a permutation σ.
This can also be proved bijectively; such a bijective proof can be
obtained by combining [50, Theorems 5.1 and 6.1].
• ([82, Theorem 9.4]) If i ∈ {1, 2, . . . , n− 1}, then

(the number of n-cycles σ ∈ Sn satisfying Desσ = {i})

=
∑

d|gcd(n,i)

µ (d)

(
n/d

i/d

)
.

Note that this also equals the number of necklaces [(w1, w2, . . . , wn)]
(or, equivalently, Lyndon words (w1, w2, . . . , wn)) with w1, w2, . . . , wn ∈
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{0, 1} and w1 +w2 +· · ·+wn = i. This suggests that there should be
a bijection between {n-cycles σ ∈ Sn satisfying Desσ = {i}} and
the set of such necklaces; and indeed, such a bijection can be found
in [45, Theorem 1].

See [82] and [66] for more such applications.
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7. Aguiar-Bergeron-Sottile character theory Part I: QSym
as a terminal object

It turns out that the universal mapping property of NSym as a free
associative algebra leads via duality to a universal property for its dual
QSym, elegantly explaining several combinatorial invariants that take the
form of quasisymmetric or symmetric functions:

• Ehrenborg’s quasisymmetric function of a ranked poset [64],
• Stanley’s chromatic symmetric function of a graph [205],
• the quasisymmetric function of a matroid considered in [21].

7.1. Characters and the universal property.

Definition 7.1.1. Given a Hopf algebra A over k, a character is an algebra

morphism A
ζ−→ k, that is,

• ζ(1A) = 1k,
• ζ is k-linear, and
• ζ(ab) = ζ(a)ζ(b) for a, b in A.

Example 7.1.2. A particularly important character for A = QSym is
defined as follows:349

QSym
ζQ−→ k,

f(x) 7−→ f(1, 0, 0, . . .) = [f(x)]x1=1,x2=x3=···=0 .

Hence,

ζQ(Mα) = ζQ(Lα) =

{
1, if α = (n) for some n;

0, otherwise.

In other words, the restriction ζQ|QSymn
coincides with the functional Hn

in NSymn = Homk(QSymn,k): one has for f in QSymn that

(7.1.1) ζQ(f) = (Hn, f).

It is worth remarking that there is nothing special about setting x1 = 1
and x2 = x3 = · · · = 0: for quasisymmetric f , we could have defined the
same character ζQ by picking any variable, say xn, and sending

f(x) 7−→ [f(x)] xn=1, and
xm=0 for m 6=n

.

This character QSym
ζQ−→ k has a certain universal property, known

as the Aguiar-Bergeron-Sottile universality theorem (part of [4, Theorem
4.1]):

Theorem 7.1.3. Let A be a connected graded Hopf algebra, and let A
ζ−→

k be a character. Then, there is a unique graded Hopf morphism A
Ψ−→

QSym making the following diagram commute:

(7.1.2) A
Ψ //

ζ ��

QSym

ζQ||
k

349We are using the notation of Proposition 5.1.9 here, and we are still identifying
QSym with QSym (x), where x denotes the infinite chain (x1 < x2 < · · · ).
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Furthermore, Ψ is given by the following formula on homogeneous elements:

(7.1.3) Ψ(a) =
∑

α∈Compn

ζα(a)Mα for all n ∈ N and a ∈ An,

where for α = (α1, . . . , α`), the map ζα is the composite

An
∆(`−1)

−→ A⊗`
πα−→ Aα1 ⊗ · · · ⊗ Aα`

ζ⊗`−→ k

in which A⊗`
πα−→ Aα1 ⊗ · · · ⊗ Aα` is the canonical projection.

Proof. One argues that Ψ is unique, and has formula (7.1.3), using only
that ζ is k-linear and sends 1 to 1 and that Ψ is a graded k-coalgebra
map making (7.1.2) commute. Equivalently, consider the adjoint k-algebra
map350

NSym = QSymo Ψ∗−→ Ao.

Commutativity of (7.1.2) implies that for a in An,

(Ψ∗(Hn), a) = (Hn,Ψ(a))
(7.1.1)

= ζQ(Ψ(a)) = ζ(a),

whereas gradedness of Ψ∗ yields that (Ψ∗(Hm), a) = 0 whenever a ∈ An
and m 6= n. In other words, Ψ∗(Hn) is the element of Ao defined as the
following functional on A:

(7.1.4) Ψ∗(Hn)(a) =

{
ζ(a), if a ∈ An;

0, if a ∈ Am for some m 6= n.

By the universal property for NSym ∼= k〈H1, H2, . . .〉 as free associative k-

algebra, we see that any choice of a k-linear map A
ζ→ k uniquely produces

a k-algebra morphism Ψ∗ : QSymo → Ao which satisfies (7.1.4) for all
n ≥ 1. It is easy to see that this Ψ∗ then automatically satisfies (7.1.4) for
n = 0 as well if ζ sends 1 to 1 (it is here that we use ζ(1) = 1 and the

connectedness of A). Hence, any given k-linear map A
ζ→ k sending 1 to 1

uniquely produces a k-algebra morphism Ψ∗ : QSymo → Ao which satisfies
(7.1.4) for all n ≥ 0. Formula (7.1.3) follows as

Ψ(a) =
∑

α∈Comp

(Hα,Ψ(a)) Mα

and for a composition α = (α1, . . . , α`), one has

(Hα,Ψ(a)) = (Ψ∗(Hα), a) = (Ψ∗(Hα1) · · ·Ψ∗(Hα`), a)

=
(
Ψ∗(Hα1)⊗ · · · ⊗Ψ∗(Hα`),∆

(`−1)(a)
)

(7.1.4)
=

(
ζ⊗` ◦ πα

) (
∆(`−1)(a)

)
= ζα(a),

where the definition of ζα was used in the last equality.

We wish to show that if, in addition, A is a Hopf algebra and A
ζ−→ k

is a character (i.e., an algebra morphism), then A
Ψ−→ QSym will be an

algebra morphism, that is, the two maps A⊗A −→ QSym given by Ψ ◦m
350Here we are using the fact that there is a 1-to-1 correspondence between graded

k-linear maps A → QSym and graded k-linear maps QSymo → Ao given by f 7→ f∗,
and this correspondence has the property that a given graded map f : A→ QSym is a
k-coalgebra morphism if and only if f∗ is a k-algebra morphism. This is a particular
case of Exercise 1.6.1(f).
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and m ◦ (Ψ⊗Ψ) coincide. To see this, consider these two diagrams having
the two maps in question as the composites of their top rows:

(7.1.5)

A⊗ A m //

ζ⊗ζ
""

A
Ψ //

ζ
��

QSym

ζQ||
k

A⊗ A Ψ⊗Ψ //

ζ⊗ζ
((

QSym⊗2 m //

ζQ⊗ζQ
��

QSym

ζQ
vvk

The fact that ζ, ζQ are algebra morphisms makes the above diagrams com-
mute, so that applying the uniqueness in the first part of the proof to the

character A⊗A ζ⊗ζ−→ k proves the desired equality Ψ◦m = m◦(Ψ⊗Ψ). �

Remark 7.1.4. When one assumes in addition that A is cocommutative,
it follows that the image of Ψ will lie in the subalgebra Λ ⊂ QSym, e.g.
from the explicit formula (7.1.3) and the fact that one will have ζα = ζβ

whenever β is a rearrangement of α. In other words, the character Λ
ζΛ−→ k

defined by restricting ζQ to Λ, or by

ζΛ(mλ) =

{
1, if λ = (n) for some n;

0, otherwise,

has a universal property as terminal object with respect to characters on
cocommutative Hopf algebras.

The graded Hopf morphism Ψ in Theorem 7.1.3 will be called the map
A→ QSym induced by the character ζ.

We close this section by discussing a well-known polynomiality and reci-
procity phenomenon; see, e.g., Humpert and Martin [103, Prop. 2.2], Stan-
ley [205, §4].

Definition 7.1.5. The binomial Hopf algebra (over the commutative ring
k) is the polynomial algebra k [m] in a single variable m, with a Hopf
algebra structure transported from the symmetric algebra Sym (k1) (which
is a Hopf algebra by virtue of Example 1.3.14, applied to V = k1) along the
isomorphism Sym (k1) → k [m] which sends the standard basis element of
k1 to m. Thus the element m is primitive; that is, ∆m = 1⊗m+m⊗1 and
S(m) = −m. As S is an algebra anti-endomorphism by Proposition 1.4.10
and k[m] is commutative, one has S(g)(m) = g(−m) for all polynomials
g(m) in k[m].

Definition 7.1.6. For an element f(x) in QSym and a nonnegative integer
m, let ps1(f)(m) denote the element of k obtained by principal specializa-
tion at q = 1

ps1(f)(m) = [f(x)] x1=x2=···=xm=1,
xm+1=xm+2=···=0

= f(1, 1, . . . , 1︸ ︷︷ ︸
m ones

, 0, 0, . . .).
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Proposition 7.1.7. Assume that Q is a subring of k. The map ps1 has
the following properties.

(i) Let f ∈ QSym. There is a unique polynomial in k[m] which agrees
for each nonnegative integer m with ps1(f)(m), and which, by abuse
of notation, we will also denote ps1(f)(m). If f lies in QSymn, then
ps1(f)(m) is a polynomial of degree at most n, taking these values
on Mα, Lα for α = (α1, . . . , α`) in Compn:

ps1(Mα)(m) =

(
m

`

)
,

ps1(Lα)(m) =

(
m− `+ n

n

)
.

(ii) The map QSym
ps1

−→ k[m] is a Hopf morphism into the binomial
Hopf algebra.

(iii) For all m in Z and f in QSym one has

ζ?mQ (f) = ps1(f)(m).

In particular, one also has

ζ
?(−m)
Q (f) = ps1(S(f))(m) = ps1(f)(−m).

(iv) For a graded Hopf algebra A with a character A
ζ−→ k, and any

element a in An, the polynomial ps1(Ψ(a))(m) in k[m] has degree
at most n, and when specialized to m in Z satisfies

ζ?m(a) = ps1(Ψ(a))(m).

Proof. To prove assertion (i), note that one has

ps1(Mα)(m) = Mα(1, 1, . . . , 1, 0, 0, . . .) =
∑

1≤i1<···<i`≤m

[
xα1
i1
· · ·xα`i`

]
xj=1

=

(
m

`

)
,

ps1(Lα)(m) = Lα(1, 1, . . . , 1, 0, 0, . . .) =
∑

1≤i1≤···≤in≤m:
ik<ik+1 if k∈D(α)

[xi1 · · ·xin ]xj=1

= |{1 ≤ j1 ≤ j2 ≤ · · · ≤ jn ≤ m− `+ 1}| =
(
m− `+ n

n

)
.

As {Mα}α∈Compn form a basis for QSymn, and
(
m
`

)
is a polynomial func-

tion in m of degree `(≤ n), one concludes that for f in QSymn one has
that ps1(f)(m) is a polynomial function in m of degree at most n. The
polynomial giving rise to this function is unique, since infinitely many of
its values are fixed.

To prove assertion (ii), note that ps1 is an algebra morphism because it
is an evaluation homomorphism. To check that it is a coalgebra morphism,
it suffices to check ∆◦ps1 = (ps1⊗ps1)◦∆ on each Mα for α = (α1, . . . , α`)
in Compn. Using the Vandermonde summation

(
A+B
`

)
=
∑

k

(
A
k

)(
B
`−k

)
, one
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has

(∆ ◦ ps1)(Mα) = ∆

(
m

`

)
=

(
m⊗ 1 + 1⊗m

`

)
=
∑̀
k=0

(
m⊗ 1

k

)(
1⊗m
`− k

)

=
∑̀
k=0

(
m

k

)
⊗
(

m

`− k

)
while at the same time(

(ps1 ⊗ ps1) ◦∆
)

(Mα) =
∑̀
k=0

ps1(M(α1,...,αk))⊗ ps1(M(αk+1,...,α`))

=
∑̀
k=0

(
m

k

)
⊗
(

m

`− k

)
.

Thus ps1 is a bialgebra morphism, and hence also a Hopf morphism, by
Corollary 1.4.27.

For assertion (iii), first assume m lies in {0, 1, 2, . . .}. Since ζQ(f) =
f(1, 0, 0, . . .), one has

ζ?mQ (f) = ζ⊗mQ ◦∆(m−1)f(x) = ζ⊗mQ
(
f(x(1),x(2), . . . ,x(m))

)
=
[
f(x(1),x(2), . . . ,x(m))

]
x

(1)
1 =x

(2)
1 =···=x(m)

1 =1,

x
(j)
2 =x

(j)
3 =···=0 for all j

= f(1, 0, 0, . . . , 1, 0, 0, . . . , · · · , 1, 0, 0, . . .) = f(1, 1, . . . , 1︸ ︷︷ ︸
m ones

, 0, 0, . . .)

= ps1(f)(m).

351 But then Proposition 1.4.26(a) also implies

ζ
?(−m)
Q (f) =

(
ζ
?(−1)
Q

)?m
(f) = (ζQ ◦ S)?m (f) = ζ?mQ (S(f))

= ps1(S(f))(m) = S(ps1(f))(m) = ps1(f)(−m).

For assertion (iv), note that

ζ?m(a) = (ζQ ◦Ψ)?m(a) = (ζ?mQ )(Ψ(a)) = ps1(Ψ(a))(m),

where the three equalities come from (7.1.2), Proposition 1.4.26(a), and
assertion (iii) above, respectively. �

Remark 7.1.8. Aguiar, Bergeron and Sottile give a very cute (third) proof of
the QSym antipode formula Theorem 5.1.11, via Theorem 7.1.3, in [4, Ex-
ample 4.8]. They apply Theorem 7.1.3 to the coopposite coalgebra QSymcop

and its character ζ
?(−1)
Q . One can show that the map QSymcop Ψ→ QSym

induced by ζ
?(−1)
Q is Ψ = S, the antipode of QSym, because S : QSym →

QSym is a coalgebra anti-endomorphism (by Exercise 1.4.28) satisfying

ζ
?(−1)
Q = ζQ ◦ S. They then use the formula (7.1.3) for Ψ = S (together

with the polynomiality Proposition 7.1.7) to derive Theorem 5.1.11.

351See Exercise 7.1.9 for an alternative way to prove this, requiring less thought to
verify its soundness.
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Exercise 7.1.9. Show that ζ?mQ (f) = ps1(f)(m) for all f ∈ QSym and
m ∈ {0, 1, 2, . . .}. (This was already proven in Proposition 7.1.7(iii); give
an alternative proof using Proposition 5.1.7.)

7.2. Example: Ehrenborg’s quasisymmetric function of a ranked
poset. Here we consider incidence algebras, coalgebras and Hopf alge-
bras generally, and then particularize to the case of graded posets, to
recover Ehrenborg’s interesting quasisymmetric function invariant via The-
orem 7.1.3.

7.2.1. Incidence algebras, coalgebras, Hopf algebras.

Definition 7.2.1. Given a family P of finite partially ordered sets P , let
k[P ] denote the free k-module whose basis consists of symbols [P ] corre-
sponding to isomorphism classes of posets P in P .

We will assume throughout that each P in P is bounded , that is, it has
a unique minimal element 0̂ := 0̂P and a unique maximal element 1̂ := 1̂P .
In particular, P 6= ∅, although it is allowed that |P | = 1, so that 0̂ = 1̂;
denote this isomorphism class of posets with one element by [o].

If P is closed under taking intervals

[x, y] := [x, y]P := {z ∈ P : x ≤P z ≤P y},
then one can easily see that the following coproduct and counit endow k[P ]
with the structure of a coalgebra, called the (reduced) incidence coalgebra:

∆[P ] :=
∑
x∈P

[0̂, x]⊗ [x, 1̂],

ε[P ] :=

{
1, if |P | = 1;

0, otherwise.

The dual algebra k[P ]∗ is generally called the reduced incidence algebra
(modulo isomorphism) for the family P (see, e.g., [192]). It contains the

important element k[P ]
ζ−→ k, called the ζ-function that takes the value

ζ[P ] = 1 for all P .
If P (is not empty and) satisfies the further property of being heredi-

tary in the sense that for every P1, P2 in P , the Cartesian product poset
P1 × P2 with componentwise partial order is also in P , then one can check
that the following product and unit endow k[P ] with the structure of a
(commutative) algebra:

[P1] · [P2] := m([P1]⊗ [P2]) := [P1 × P2],

1k[P] := [o].

Proposition 7.2.2. For any hereditary family P of finite posets, k[P ] is
a bialgebra, and even a Hopf algebra with antipode S given as in (1.4.7)
(Takeuchi’s formula):

S[P ] =
∑
k≥0

(−1)k
∑

0̂=x0<···<xk=1̂

[x0, x1] · · · [xk−1, xk].

Proof. Checking the commutativity of the pentagonal diagram in (1.3.4)
amounts to the fact that, for any (x1, x2) <P1×P2 (y1, y2), one has a poset
isomorphism

[(x1, x2) , (y1, y2)]P1×P2

∼= [x1, y1]P1 × [x2, y2]P2 .
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Commutativity of the remaining diagrams in (1.3.4) is straightforward, and
so k[P ] is a bialgebra. But then Remark 1.4.25 implies that it is a Hopf
algebra, with antipode S as in (1.4.7), because the map f := idk[P]−uε
(sending the class [o] to 0, and fixing all other [P ]) is locally ?-nilpotent:

f ?k[P ] =
∑

0̂=x0<···<xk=1̂

[x0, x1] · · · [xk−1, xk]

will vanish due to an empty sum whenever k exceeds the maximum length
of a chain in the finite poset P . �

It is perhaps worth remarking how this generalizes the Möbius function

formula of P. Hall. Note that the zeta function k[P ]
ζ−→ k is a character,

that is, an algebra morphism. Proposition 1.4.26(a) then tells us that ζ

should have a convolutional inverse k[P ]
µ=ζ?−1

−→ k, traditionally called the
Möbius function, with the formula µ = ζ?−1 = ζ ◦S. Rewriting this via the
antipode formula for S given in Proposition 7.2.2 yields P. Hall’s formula.

Corollary 7.2.3. For a finite bounded poset P , one has

µ[P ] =
∑
k≥0

(−1)k|{chains 0̂ = x0 < · · · < xk = 1̂ in P}|.

We can also notice that S is an algebra anti-endomorphism (by Proposi-
tion 1.4.10), thus an algebra endomorphism (since k[P ] is commutative, so
Exercise 1.5.8(a) shows that the algebra anti-endomorphisms of k[P ] are
the same as the algebra endomorphisms of k[P ]). Hence, µ = ζ◦S is a com-
position of two algebra homomorphisms, thus an algebra homomorphism
itself. We therefore obtain the following classical fact:

Corollary 7.2.4. For two finite bounded posets P and Q, we have µ[P ×
Q] = µ[P ] · µ[Q].

7.2.2. The incidence Hopf algebras for ranked posets and Ehrenborg’s func-
tion.

Definition 7.2.5. Take P to be the class of bounded ranked finite posets
P , that is, those for which all maximal chains from 0̂ to 1̂ have the same
length r(P ). This is a hereditary class, as it implies that any interval is
[x, y]P is also ranked, and the product of two bounded ranked posets is also

bounded and ranked. It also uniquely defines a rank function P
r−→ N in

which r(0̂) = 0 and r(x) is the length of any maximal chain from 0̂ to x.

Example 7.2.6. Consider a pyramid with apex vertex a over a square
base with vertices b, c, d, e:

a

b e

c d
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Ordering its faces by inclusion gives a bounded ranked poset P , where the
rank of an element is one more than the dimension of the face it represents:

rank:

abcd 4

abc acd ade abe bcde 3

ab ac ad ae be bc cd de 2

a b c d e 1

∅ 0

Definition 7.2.7. Ehrenborg’s quasisymmetric function Ψ[P ] for a bounded

ranked poset P is the image of [P ] under the map k[P ]
Ψ−→ QSym induced

by the zeta function k[P ]
ζ−→ k as a character, via Theorem 7.1.3.

The quasisymmetric function Ψ[P ] captures several interesting combina-
torial invariants of P ; see Stanley [206, Chap. 3] for more background on
these notions.

Definition 7.2.8. Let P be a bounded ranked poset P of rank r(P ) :=
r(1̂). Define its rank-generating function

RGF (P, q) :=
∑
p∈P

qr(p) ∈ Z [q] ,

its characteristic polynomial

χ(P, q) :=
∑
p∈P

µ(0̂, p)qr(p) ∈ Z [q]

(where µ(u, v) is shorthand for µ([u, v])), and its zeta polynomial

Z(P,m)

= |{multichains 0̂ ≤P p1 ≤P · · · ≤P pm−1 ≤P 1̂}|(7.2.1)

=

r(P )−1∑
s=0

(
m

s+ 1

)
|{chains 0̂ < p1 < · · · < ps < 1̂}|(7.2.2)

∈ Q [m]

352. Also, for each subset S ⊂ {1, 2, . . . , r(P )− 1}, define the flag number
fS of P by

fS = |{chains 0̂ <P p1 <P · · · <P ps <P 1̂ with {r(p1), . . . , r(ps)} = S}|.

352Actually, (7.2.2) is false if |P | = 1 (but only then). We use (7.2.1) to define Z(P,m)
in this case.
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These flag numbers are the components of the flag f -vector (fS)S⊂[r−1] of
P . Further define the flag h-vector (hT )T⊂[r−1] of P , whose entries hT are

given by fS =
∑

T⊂S hT , or, equivalently353, by hS =
∑

T⊂S(−1)|S\T |fT .

Example 7.2.9. For the poset P in Example 7.2.6, one has RGF (P, q) =
1+5q+8q2+5q3+q4. Since P is the poset of faces of a polytope, the Möbius
function values for its intervals are easily predicted: µ(x, y) = (−1)r[x,y],
that is, P is an Eulerian ranked poset ; see Stanley [206, §3.16]. Hence its
characteristic polynomial is trivially related to the rank generating func-
tion, sending q 7→ −q, that is,

χ(P, q) = RGF (P,−q) = 1− 5q + 8q2 − 5q3 + q4.

Its flag f -vector and h-vector entries are given in the following table.

S fS hS
∅ 1 1
{1} 5 5− 1 = 4
{2} 8 8− 1 = 7
{3} 5 5− 1 = 4
{1, 2} 16 16− (5 + 8) + 1 = 4
{1, 3} 16 16− (5 + 5) + 1 = 7
{2, 3} 16 16− (5 + 8) + 1 = 4
{1, 2, 3} 32 32− (16 + 16 + 16) + (5 + 8 + 5)− 1 = 1

and using (7.2.2), its zeta polynomial is

Z(P,m) = 1

(
m

1

)
+ (5 + 8 + 5)

(
m

2

)
+ (16 + 16 + 16)

(
m

3

)
+ 32

(
m

4

)
=
m2(2m− 1)(2m+ 1)

3
.

Theorem 7.2.10. Assume that Q is a subring of k. Ehrenborg’s qua-
sisymmetric function Ψ[P ] for a bounded ranked poset P encodes

(i) the flag f -vector entries fS and flag h-vector entries hS as its Mα

and Lα expansion coefficients354 :

Ψ[P ] =
∑
α

fD(α)(P ) Mα =
∑
α

hD(α)(P ) Lα,

(ii) the zeta polynomial as the specialization from Definition 7.1.6

Z(P,m) = ps1(Ψ[P ])(m) = [Ψ[P ]] x1=x2=···=xm=1,
xm+1=xm+2=···=0

,

(iii) the rank-generating function as the specialization

RGF (P, q) = [Ψ[P ]] x1=q,x2=1,
x3=x4=···=0

,

(iv) the characteristic polynomial as the convolution

χ(P, q) = ((ψq ◦ S) ? ζQ) ◦Ψ[P ],

where QSym
ψq−→ k[q] maps f(x) 7−→ f(q, 0, 0, . . .).

353The equivalence follows from inclusion-exclusion (more specifically, from the con-
verse of Lemma 5.2.6(a)).

354In fact, Ehrenborg defined Ψ[P ] in [64, Defn. 4.1] via this Mα expansion, and then
showed that it gave a Hopf morphism.
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Proof. In assertion (i), the expansion Ψ[P ] =
∑

α fD(α)(P )Mα is (7.1.3),
since ζα[P ] = fD(α)(P ). The Lα expansion follows from this, as Lα =∑

β:D(β)⊃D(α) Mβ and fS(P ) =
∑

T⊂S hT .

Assertion (ii) is immediate from Proposition 7.1.7(iv), since Z(P,m) =
ζ?m[P ].

Assertion (iii) can be deduced from assertion (i), but it is perhaps more
fun and in the spirit of things to proceed as follows. Note that ψq(Mα) = qn

for α = (n), and ψq(Mα) vanishes for all other α 6= (n) in Compn. Hence
for a bounded ranked poset P one has

(7.2.3) (ψq ◦Ψ)[P ] = qr(P ).

But if we treat ζQ : QSym → k as a map QSym → k [q], then (1.4.2)
(applied to k [P ], QSym, k [q], k [q], Ψ, idk[q], ψq and ζQ instead of C, C ′,
A, A′, γ, α, f and g) shows that

(7.2.4) (ψq ? ζQ) ◦Ψ = (ψq ◦Ψ) ? (ζQ ◦Ψ) ,

since Ψ : k [P ] → QSym is a k-coalgebra homomorphism. Consequently,
one can compute

RGF (P, q) =
∑
p∈P

qr(p) · 1 =
∑
p∈P

qr([0̂,p]) · ζ[p, 1̂]

(7.2.3),
(7.1.2)

=
∑
p∈P

(ψq ◦Ψ)[0̂, p] · (ζQ ◦Ψ)[p, 1̂]

= ((ψq ◦Ψ) ? (ζQ ◦Ψ)) [P ]
(7.2.4)

= (ψq ? ζQ)(Ψ[P ])

= (ψq ⊗ ζQ) (∆Ψ[P ])

= [Ψ[P ](x,y)]x1=q,x2=x3=···=0
y1=1,y2=y3=···=0

= [Ψ[P ](x)] x1=q,x2=1,
x3=x4=···=0

.

Similarly, for assertion (iv) first note that

(7.2.5) ((ψq ◦ S) ? ζQ) ◦Ψ = (ψq ◦ S ◦Ψ) ? (ζQ ◦Ψ) ,

(this is proven similarly to (7.2.4), but now using the map ψq ◦ S instead
of ψq). Now, Proposition 7.2.2 and Corollary 7.2.3 let one calculate that

(ψq ◦Ψ ◦ S)[P ]

=
∑
k

(−1)k
∑

0̂=x0<···<xk=1̂

(ψq ◦Ψ)([x0, x1]) · · · (ψq ◦Ψ)([xk−1, xk])

(7.2.3)
=

∑
k

(−1)k
∑

0̂=x0<···<xk=1̂

qr(P ) = µ(0̂, 1̂)qr(P ).

This is used in the penultimate equality here:

((ψq ◦ S) ? ζQ) ◦Ψ[P ]
(7.2.5)

= ((ψq ◦ S ◦Ψ) ? (ζQ ◦Ψ))[P ]

= ((ψq ◦Ψ ◦ S) ? ζ)[P ] =
∑
p∈P

(ψq ◦Ψ ◦ S)[0̂, p] · ζ[p, 1̂]

=
∑
p∈P

µ[0̂, p]qr(p) = χ(P, q). �
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7.3. Example: Stanley’s chromatic symmetric function of a graph.
We introduce the chromatic Hopf algebra of graphs and an associated char-
acter ζ so that the map Ψ from Theorem 7.1.3 sends a graph G to Stanley’s
chromatic symmetric function of G. Then principal specialization ps1 sends
this to the chromatic polynomial of the graph.

7.3.1. The chromatic Hopf algebra of graphs.

Definition 7.3.1. The chromatic Hopf algebra (see Schmitt [194, §3.2]) G
is a free k-module whose k-basis elements [G] are indexed by isomorphism
classes of (finite) simple graphs G = (V,E). Define for G1 = (V1, E1), G2 =
(V2, E2) the multiplication

[G1] · [G2] := [G1 tG2]

where [G1 t G2] denote the isomorphism class of the disjoint union, on
vertex set V = V1 t V2 which is a disjoint union of copies of their vertex
sets V1, V2, with edge set E = E1 t E2. For example, • •

•

 ·
 •
•

 =

 • • •
• •


Thus the class [∅] of the empty graph ∅ having V = ∅, E = ∅ is a unit
element.

Given a graph G = (V,E) and a subset V ′ ⊂ V , the subgraph induced
on vertex set V ′ is defined as the graph G|V ′ := (V ′, E ′) with edge set
E ′ = {e ∈ E : e = {v1, v2} ⊂ V ′}. This lets one define a comultiplication
∆ : G → G ⊗ G by setting

∆[G] :=
∑

(V1,V2):V1tV2=V

[G|V1 ]⊗ [G|V2 ].

Define a counit ε : G → k by

ε[G] :=

{
1, if G = ∅;

0, otherwise.

Proposition 7.3.2. The above maps endow G with the structure of a con-
nected graded finite type Hopf algebra over k, which is both commutative
and cocommutative.

Example 7.3.3. Here are some examples of these structure maps: • •
•

 ·
 •
•

 =

 • • •
• •

 ;

∆

 • •
•

 = 1⊗

 • •
•

+ 2 [ • ]⊗

 •
•

+ 2

 •
•

⊗ [ • ]

+ [ • • ]⊗ [ • ] + [ • ]⊗ [ • • ] +

 • •
•

⊗ 1
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Proof of Proposition 7.3.2. The associativity of the multiplication and co-
multiplication should be clear as

m(2)([G1]⊗ [G2]⊗ [G3]) = [G1 tG2 tG3],

∆(2)[G] =
∑

(V1,V2,V3):
V=V1tV2tV3

[G|V1 ]⊗ [G|V2 ]⊗ [G|V3 ].

Checking the unit and counit conditions are straightforward. Commuta-
tivity of the pentagonal bialgebra diagram in (1.3.4) comes down to check
that, given graphs G1, G2 on disjoint vertex sets V1, V2 , when one applies
to [G1] ⊗ [G2] either the composite ∆ ◦ m or the composite (m ⊗ m) ◦
(id⊗T ⊗ id) ◦ (∆⊗∆), the result is the same:∑

(V11,V12,V21,V22):
V1=V11tV12
V2=V21tV22

[G1|V11 tG2|V21 ]⊗ [G1|V12 tG2|V22 ].

Letting Gn be the k-span of [G] having n vertices makes G a bialgebra
which is graded and connected, and hence also a Hopf algebra by Proposi-
tion 1.4.16. Cocommutativity should be clear, and commutativity follows
from the graph isomorphism G1tG2

∼= G2tG1. Finally, G is of finite type
since there are only finitely many isomorphism classes of simple graphs on
n vertices for every given n. �

Remark 7.3.4. Humpert and Martin [103, Theorem 3.1] gave the following
expansion for the antipode in the chromatic Hopf algebra, containing fewer
terms than Takeuchi’s general formula (1.4.7): given a graph G = (V,E),
one has

(7.3.1) S[G] =
∑
F

(−1)|V |−rank(F ) acyc(G/F )[GV,F ].

Here F runs over all subsets of edges that form flats in the graphic matroid
for G, meaning that if e = {v, v′} is an edge in E for which one has a path of
edges in F connecting v to v′, then e also lies in F . Here G/F denotes the
quotient graph in which all of the edges of F have been contracted, while
acyc(G/F ) denotes its number of acyclic orientations, and GV,F := (V, F )
as a simple graph.355

Remark 7.3.5. In [14], Benedetti, Hallam and Machacek define a Hopf al-
gebra of simplicial complexes, which contains G as a Hopf subalgebra (and
also has G as a quotient Hopf algebra). They compute a formula for its
antipode similar to (and generalizing) (7.3.1).

Remark 7.3.6. The chromatic Hopf algebra G is used in [122] and [39,
§14.4] to study Vassiliev invariants of knots. In fact, a certain quotient
of G (named F in [122] and L in [39, §14.4]) is shown to naturally host
invariants of chord diagrams and therefore Vassiliev invariants of knots.

355The notation rank(F ) denotes the rank of F in the graphic matroid of G. We can
define it without reference to matroid theory as the maximum cardinality of a subset
F ′ of F such that the graph GV,F ′ is acyclic. Equivalently, rank(F ) is |V | − c(F ),
where c(F ) denotes the number of connected components of the graph GV,F . Thus, the

equality (7.3.1) can be rewritten as S[G] =
∑
F (−1)c(F ) acyc(G/F )[GV,F ]. In this form,

this equality is also proven in [15, Thm. 7.1].
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Remark 7.3.7. The k-algebra G is isomorphic to a polynomial algebra (in
infinitely many indeterminates) over k. Indeed, every finite graph can be
uniquely written as a disjoint union of finitely many connected finite graphs
(up to order). Therefore, the basis elements [G] of G corresponding to con-
nected finite graphs G are algebraically independent in G and generate the
whole k-algebra G (indeed, the disjoint unions of connected finite graphs
are precisely the monomials in these elements). Thus, G is isomorphic to
a polynomial k-algebra with countably many generators (one for each iso-
morphism class of connected finite graphs). As a consequence, for example,
we see that G is an integral domain if k is an integral domain.

7.3.2. A “ribbon basis” for G and self-duality. In this subsection, we shall
explore a second basis of G and a bilinear form on G. This material will not
be used in the rest of these notes (except in Exercise 7.3.25), but it is of some
interest and provides an example of how a commutative cocommutative
Hopf algebra can be studied.

First, let us define a second basis of G, which is obtained by Möbius
inversion (in an appropriate sense) from the standard basis
([G])[G] is an isomorphism class of finite graphs:

Definition 7.3.8. For every finite graph G = (V,E), set

[G]] =
∑

H=(V,E′);
E′⊃Ec

(−1)|E
′\Ec| [H] ∈ G,

where Ec denotes the complement of the subset E in the set of all two-
element subsets of V . Clearly, [G]] depends only on the isomorphism class
[G] of G, not on G itself.

Proposition 7.3.9. (a) Every finite graph G = (V,E) satisfies

[G] =
∑

H=(V,E′);
E′∩E=∅

[H]] .

(b) The elements [G]], where [G] ranges over all isomorphism classes of
finite graphs, form a basis of the k-module G.

(c) For any graph H = (V,E), we have

(7.3.2) ∆ [H]] =
∑

(V1,V2);
V=V1tV2;

H=H|V1
tH|V2

[H|V1 ]] ⊗ [H|V2 ]] .

(d) For any two graphs H1 = (V1, E1) and H2 = (V2, E2), we have

(7.3.3) [H1]] [H2]] =
∑

H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

[H]] .
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For example, • •
•

] =

 • •
•

−
 • •

•

−
 • •

•

+

 • •
•


=

 • •
•

− 2

 • •
•

+

 • •
•

 .
Proving Proposition 7.3.9 is part of Exercise 7.3.14 further below.
The equalities that express the elements [G]] in terms of the elements

[H] (as in Definition 7.3.8), and vice versa (Proposition 7.3.9(a)), are rem-
iniscent of the relations (5.4.10) and (5.4.9) between the bases (Rα) and

(Hα) of NSym. In this sense, we can call the basis of G formed by the [G]]

a “ribbon basis” of G.
We now define a k-bilinear form on G:

Definition 7.3.10. For any two graphs G and H, let Iso (G,H) denote the
set of all isomorphisms from G to H 356. Let us now define a k-bilinear
form (·, ·) : G × G → k on G by setting(

[G]] , [H]
)

= |Iso (G,H)| .
357

Proposition 7.3.11. The form (·, ·) : G × G → k is symmetric.

Again, we refer to Exercise 7.3.14 for a proof of Proposition 7.3.11.
The basis of G constructed in Proposition 7.3.9(b) and the bilinear form

(·, ·) defined in Definition 7.3.10 can be used to construct a Hopf algebra
homomorphism from G to its graded dual Go:
Definition 7.3.12. For any finite graph G, let aut (G) denote the number
|Iso (G,G)|. Notice that this is a positive integer, since the set Iso (G,G)
is nonempty (it contains idG).

Now, recall that the Hopf algebra G is a connected graded Hopf algebra
of finite type. The n-th homogeneous component is spanned by the [G]
where G ranges over the graphs with n vertices. Since G is of finite type,
its graded dual Go is defined. Let ([G]∗)[G] is an isomorphism class of finite graphs be

the basis of Go dual to the basis ([G])[G] is an isomorphism class of finite graphs of G.
Define a k-linear map ψ : G → Go by

ψ
(

[G]]
)

= aut (G) · [G]∗ for every finite graph G.

356We recall that if G = (V,E) and H = (W,F ) are two graphs, then an isomorphism
from G to H means a bijection ϕ : V → W such that ϕ∗ (E) = F . Here, ϕ∗ denotes
the map from the powerset of V to the powerset of W which sends every T ⊂ V to
ϕ (T ) ⊂W .

357This is well-defined, because:

• the number |Iso (G,H)| depends only on the isomorphism classes [G] and [H]
of G and H, but not on G and H themselves;

• the elements [G]
]
, where [G] ranges over all isomorphism classes of finite graphs,

form a basis of the k-module G (because of Proposition 7.3.9(b));
• the elements [G], where [G] ranges over all isomorphism classes of finite graphs,

form a basis of the k-module G.
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358

Proposition 7.3.13. Consider the map ψ : G → Go defined in Defini-
tion 7.3.12.

(a) This map ψ satisfies (ψ (a)) (b) = (a, b) for all a ∈ G and b ∈ G.
(b) The map ψ : G → Go is a Hopf algebra homomorphism.
(c) If Q is a subring of k, then the map ψ is a Hopf algebra isomorphism
G → Go.

Exercise 7.3.14. Prove Proposition 7.3.9, Proposition 7.3.11 and Propo-
sition 7.3.13.

Remark 7.3.15. Proposition 7.3.13(c) shows that the Hopf algebra G is self-
dual when Q is a subring of k. On the other hand, if k is a field of positive
characteristic, then G is never self-dual. Here is a quick way to see this:
The elements [G]∗ of Go defined in Definition 7.3.12 have the property that

([◦]∗)n = n! ·
∑

[G] is an isomorphism
class of finite graphs on

n vertices

[G]∗

for every n ∈ N, where ◦ denotes the graph with one vertex.359 Thus, if p is
a prime and k is a field of characteristic p, then ([◦]∗)p = 0. Hence, the k-
algebra Go has nilpotents in this situation. However, the k-algebra G does
not (indeed, Remark 7.3.7 shows that it is an integral domain whenever k
is an integral domain). Thus, when k is a field of characteristic p, then G
and Go are not isomorphic as k-algebras (let alone as Hopf algebras).

7.3.3. Stanley’s chromatic symmetric function of a graph.

Definition 7.3.16. Stanley’s chromatic symmetric function Ψ[G] for a

simple graph G = (V,E) is the image of [G] under the map G Ψ−→ QSym

induced via Theorem 7.1.3 from the edge-free character G ζ−→ k defined
by
(7.3.4)

ζ[G] =


1, if G has no edges, that is, G is an independent/stable

set of vertices;

0, otherwise.

Note that, because G is cocommutative, Ψ[G] is symmetric and not just
quasisymmetric; see Remark 7.1.4.

Recall that for a graph G = (V,E), a (vertex-)coloring f : V → {1, 2, . . .}
is called proper if no edge e = {v, v′} in E has f(v) = f(v′).

358This is well-defined, since
(

[G]
]
)

[G] is an isomorphism class of finite graphs
is a basis of

the k-module G (because of Proposition 7.3.9(b)).
359To see this, observe that the tensor [◦]⊗n appears in the iterated coproduct

∆(n−1) ([G]) exactly n! times whenever G is a graph on n vertices.
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Proposition 7.3.17. For a graph G = (V,E), the symmetric function
Ψ[G] has the expansion 360

Ψ[G] =
∑

proper colorings
f :V→{1,2,...}

xf

where xf :=
∏

v∈V xf(v). In particular, its specialization from Proposi-
tion 7.1.6 gives the chromatic polynomial of G:

ps1Ψ[G](m) = χG(m) = |{proper colorings f : V → {1, 2, . . . ,m}}| .

Proof. The iterated coproduct G ∆(`−1)

−→ G⊗` sends

[G] 7−→
∑

(V1,...,V`):
V=V1t···tV`

[G|V1 ]⊗ · · · ⊗ [G|V` ]

and the map ζ⊗` sends each addend on the right to 1 or 0, depending upon
whether each Vi ⊂ V is a stable set or not, that is, whether the assignment
of color i to the vertices in Vi gives a proper coloring of G. Thus formula
(7.1.3) shows that the coefficient ζα of xα1

1 · · ·x
α`
` in Ψ[G] counts the proper

colorings f in which |f−1(i)| = αi for each i. �

Example 7.3.18. For the complete graph Kn on n vertices, one has

Ψ[Kn] = n!en, thus

ps1(Ψ[Kn])(m) = n!en(1, 1, . . . , 1︸ ︷︷ ︸
m ones

) = n!

(
m

n

)
= m(m− 1) · · · (m− (n− 1)) = χKn(m).

In particular, the single vertex graph K1 has Ψ[K1] = e1, and since the Hopf
morphism Ψ is in particular an algebra morphism, a graph Ktn1 having n
isolated vertices and no edges will have Ψ[Ktn1 ] = en1 .

As a slightly more interesting example, the graph P3 which is a path
having three vertices and two edges will have

Ψ[P3] = m(2,1) + 6m(1,1,1) = e2e1 + 3e3.

One might wonder, based on the previous examples, when Ψ[G] is e-
positive, that is, when does its unique expansion in the {eλ} basis for Λ
have nonnegative coefficients? This is an even stronger assertion than s-
positivity , that is, having nonnegative coefficients for the expansion in terms
of Schur functions {sλ}, since each eλ is s-positive. This weaker property
fails, starting with the claw graph K3,1, which has

Ψ[K3,1] = s(3,1) − s(2,2) + 5s(2,1,1) + 8s(1,1,1,1).

On the other hand, a result of Gasharov [75, Theorem 2] shows that one
at least has s-positivity for Ψ[inc(P )] where inc(P ) is the incomparability
graph of a poset which is (3 + 1)-free; we refer the reader to Stanley [205,
§5] for a discussion of the following conjecture, which remains open361:

360In fact, Stanley defined Ψ[G] in [205, Defn. 2.1] via this expansion.
361A recent refinement for incomparability graphs of posets which are both (3 + 1)-

and (2+2)-free, also known as unit interval orders is discussed by Shareshian and Wachs
[198].
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Conjecture 7.3.19. For any (3 + 1)-free poset P , the incomparability
graph inc(P ) has Ψ[inc(P )] an e-positive symmetric function.

Here is another question about Ψ[G]: how well does it distinguish non-
isomorphic graphs? Stanley gave this example of two graphs G1, G2 having
Ψ[G1] = Ψ[G2]:

G1 = • •
•

• •

G2 = • •

• • •
At least Ψ[G] appears to do better at distinguishing trees, much better
than its specialization, the chromatic polynomial χG(m), which takes the
same value m(m− 1)n−1 on all trees with n vertices.

Question 7.3.20. Does the chromatic symmetric function (for k = Z)
distinguish trees?

It has been checked that the answer is affirmative for trees on 23 vertices or
less. There are also interesting partial results on this question by Martin,
Morin and Wagner [161].

We close this section with a few other properties of Ψ[G] proven by Stan-
ley which follow easily from the theory we have developed. For example,
his work makes no explicit mention of the chromatic Hopf algebra G, and
the fact that Ψ is a Hopf morphism (although he certainly notes the triv-
ial algebra morphism property Ψ[G1 t G2] = Ψ[G1]Ψ[G2]). One property
he proves is implicitly related to Ψ as a coalgebra morphism: he consid-
ers (in the case when Q is a subring of k) the effect on Ψ of the operator
∂
∂p1

: ΛQ −→ ΛQ which acts by first expressing a symmetric function f ∈ ΛQ

as a polynomial in the power sums {pn}, and then applies the partial de-
rivative operator ∂

∂p1
of the polynomial ring Q [p1, p2, p3, . . .]. It is not hard

to see that ∂
∂p1

is the same as the skewing operator s⊥(1) = p⊥1 : both act as

derivations on ΛQ = Q[p1, p2, . . .] (since p1 ∈ ΛQ is primitive), and agree
in their effect on each pn, in that both send p1 7→ 1, and both annihilate
p2, p3, . . ..

Proposition 7.3.21. (Stanley [205, Cor. 2.12(a)]) For any graph G =
(V,E), one has

∂

∂p1

Ψ[G] =
∑
v∈V

Ψ[G|V \v].

Proof. Since Ψ is a coalgebra homomorphism, we have

∆Ψ[G] = (Ψ⊗Ψ)∆[G] =
∑

(V1,V2):
V=V1tV2

Ψ[G|V1 ]⊗Ψ[G|V2 ].

Using this expansion (and the equality ∂
∂p1

= s⊥(1)), we now compute

∂

∂p1

Ψ[G] = s⊥(1)Ψ[G] =
∑

(V1,V2):
V=V1tV2

(s(1),Ψ[G|V1 ]) ·Ψ[G|V2 ] =
∑
v∈V

Ψ[G|V \v]

(since degree considerations force (s(1),Ψ[G|V1 ]) = 0 unless |V1| = 1, in
which case Ψ[G|V1 ] = s(1)). �
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Definition 7.3.22. Given a graph G = (V,E), an acyclic orientation Ω of
the edges E (that is, an orientation of each edge such that the resulting
directed graph has no cycles), and a vertex-coloring f : V → {1, 2, . . .}, say
that the pair (Ω, f) are weakly compatible if whenever Ω orients an edge
{v, v′} in E as v → v′, one has f(v) ≤ f(v′). Note that a proper vertex-
coloring f of a graph G = (V,E) is weakly compatible with a unique acyclic
orientation Ω.

Proposition 7.3.23. (Stanley [205, Prop. 4.1, Thm. 4.2]) The involu-
tion ω of Λ sends Ψ[G] to ω (Ψ[G]) =

∑
(Ω,f) xf in which the sum runs

over weakly compatible pairs (Ω, f) of an acyclic orientation Ω and vertex-
coloring f .

Furthermore, the chromatic polynomial χG(m) has the property that
(−1)|V |χG(−m) counts all such weakly compatible pairs (Ω, f) in which
f : V → {1, 2, . . . ,m} is a vertex-m-coloring.

Proof. As observed above, a proper coloring f is weakly compatible with a
unique acyclic orientation Ω of G. Denote by PΩ the poset on V which is
the transitive closure of Ω, endowed with a strict labelling by integers, that
is, every i ∈ PΩ and j ∈ PΩ satisfying i <PΩ

j must satisfy i >Z j. Then
proper colorings f that induce Ω are the same as PΩ-partitions, so that

(7.3.5) Ψ[G] =
∑

Ω

FPΩ
(x).

Applying the antipode S and using Corollary 5.2.20 gives

ω (Ψ[G]) = (−1)|V |S (Ψ[G]) =
∑

Ω

FP opp
Ω

(x) =
∑
(Ω,f)

xf

where in the last line one sums over weakly compatible pairs as in the
proposition. The last equality comes from the fact that since each PΩ has
been given a strict labelling, P opp

Ω acquires a weak (or natural) labelling ,
that is, every i ∈ PΩ and j ∈ Pω satisfying i <P opp

Ω
j must satisfy i <Z j.

The last assertion follows from Proposition 7.1.7(iii). �

Remark 7.3.24. The interpretation of χG(−m) in Proposition 7.3.23 is a
much older result of Stanley [204]. The special case interpreting χG(−1)
as (−1)|V | times the number of acyclic orientations of G has sometimes
been called Stanley’s (-1)-color theorem. It also follows (via Proposi-
tion 7.1.7) from Humpert and Martin’s antipode formula for G discussed
in Remark 7.3.4: taking ζ to be the character of G given in (7.3.4),

χG(−1) = ζ?(−1)[G] = ζ(S[G]) =
∑
F

(−1)|V |−rank(F ) acyc(G/F )ζ[GV,F ]

= (−1)|V | acyc(G)

where the last equality uses the vanishing of ζ on graphs that have edges,
so only the F = ∅ term survives.

Exercise 7.3.25. If V and X are two sets, and if f : V → X is any map,
then eqs f will denote the set

{{u, u′} | u ∈ V, u′ ∈ V, u 6= u′ and f (u) = f (u′)} .
This is a subset of the set of all two-element subsets of V .
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If G = (V,E) is a finite graph, then show that the map Ψ introduced in
Definition 7.3.16 satisfies

Ψ
(

[G]]
)

=
∑

f :V→{1,2,3,...};
eqs f=E

xf ,

where xf :=
∏

v∈V xf(v). Here, [G]] is defined as in Definition 7.3.8.

7.4. Example: The quasisymmetric function of a matroid. We in-
troduce the matroid-minor Hopf algebra of Schmitt [191], and studied ex-
tensively by Crapo and Schmitt [41, 42, 43]. A very simple character ζ on
this Hopf algebra will then give rise, via the map Ψ from Theorem 7.1.3, to
the quasisymmetric function invariant of matroids from the work of Billera,
Jia and the second author [21].

7.4.1. The matroid-minor Hopf algebra. We begin by reviewing some no-
tions from matroid theory; see Oxley [164] for background, undefined terms
and unproven facts.

Definition 7.4.1. A matroid M of rank r on a (finite) ground set E is
specified by a nonempty collection B(M) of r-element subsets of E with
the following exchange property :

For any B,B′ in B(M) and b in B, there exists b′ in B′ with
(B \ {b}) ∪ {b′} in B(M).

The elements of B (M) are called the bases of the matroid M .

Example 7.4.2. A matroid M with ground set E is represented by a
family of vectors S = (ve)e∈E in a vector space if B (M) is the collection of
subsets B ⊂ E having the property that the subfamily (ve)e∈B is a basis
for the span of all of the vectors in S.

For example, if M is the matroid with

B(M) = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}}
on the ground set E = {a, b, c, d}, then M is represented by the family
S = (va, vb, vc, vd) of the four vectors va = (1, 0), vb = (1, 1), vc = (0, 1) = vd
in R2 depicted here

vc, vd vb

//

OOOO
;;

va

.

Conversely, whenever E is a finite set and S = (ve)e∈E is a family of
vectors in a vector space, then the set{

B ⊂ E : the subfamily (ve)e∈B is a basis for the span

of all of the vectors in S}
is a matroid on the ground set E.

A matroid is said to be linear if there exists a family of vectors in a vector
space representing it. Not all matroids are linear, but many important ones
are.

Example 7.4.3. A special case of matroids M represented by vectors are
graphic matroids , coming from a graph G = (V,E), with parallel edges and
self-loops allowed. One represents these by vectors in RV with standard
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basis {εv}v∈V by associating the vector εv − εv′ to any edge connecting
a vertex v with a vertex v′. One can check (or see [164, §1.2]) that the
bases B in B(M) correspond to the edge sets of spanning forests for G,
that is, edge sets which are acyclic and contain one spanning tree for each
connected component of G. For example, the matroid B(M) corresponding
to the graph G = (V,E) shown below:

•
a b

•
c

d

•

is exactly the matroid represented by the vectors in Example 7.4.2; indeed,
the spanning forests of this graph G are the edge sets {a, b}, {a, c}, {a, d},
{b, c}, {b, d}. (In this example, spanning forests are the same as spanning
trees, since G is connected.)

To define the matroid-minor Hopf algebra one needs the basic matroid
operations of deletion and contraction. These model the operations of
deleting or contracting an edge in a graph. For configurations of vectors
they model the deletion of a vector, or the passage to images in the quotient
space modulo the span of a vector.

Definition 7.4.4. Given a matroid M of rank r and an element e of its
ground set E, say that e is loop (resp. coloop) of M if e lies in no basis
(resp. every basis) B in B(M). If e is not a coloop, the deletion M \ e is a
matroid of rank r on ground set E \ {e} having bases

(7.4.1) B(M \ e) := {B ∈ B(M) : e 6∈ B}.

If e is not a loop, the contraction M/e is a matroid of rank r−1 on ground
set E \ {e} having bases

(7.4.2) B(M/e) := {B \ {e} : e ∈ B ∈ B(M)}.

When e is a loop of M , then M/e has rank r instead of r − 1 and one
defines its bases as in (7.4.1) rather than (7.4.2); similarly, if e is a coloop
of M then M \ e has rank r− 1 instead of r and one defines its bases as in
(7.4.2) rather than (7.4.1).

Example 7.4.5. Starting with the graph G and its graphic matroid M
from Example 7.4.3, the deletion M \ a and contraction M/c correspond
to the graphs G \ a and G/c shown here:

G \ a = •
b

•
c

d

•

G/c = •
a b

•
d

One has

• B(M \ a) = {{b, c}, {b, d}}, so that b has become a coloop in M \ a,
and
• B(M/c) = {{a}, {b}}, so that d has become a loop in M/c.
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Definition 7.4.6. Deletions and contractions commute with each other.
Thus, given a matroid M with ground set E, and a subset A ⊂ E, two
well-defined matroids can be constructed:

• the restriction M |A, which is a matroid on ground set A, obtained
from M by deleting all e ∈ E \ A in any order, and
• the quotient/contraction M/A, which is a matroid on ground set
E \ A, obtained from M by contracting all e ∈ A in any order.

We will also need the direct sum M1 ⊕M2 of two matroids M1 and M2.
This is the matroid whose ground set E = E1 tE2 is the disjoint union of
a copy of the ground sets E1, E2 for M1,M2, and whose bases are

B(M1 ⊕M2) := {B1 tB2 : Bi ∈ B(Mi) for i = 1, 2}.

Lastly, say that two matroidsM1,M2 are isomorphic if there is a bijection

of their ground sets E1
ϕ−→ E2 having the property that ϕB(M1) = B(M2).

Now one can define the matroid-minor Hopf algebra, originally intro-
duced by Schmitt [191, §15], and studied further by Crapo and Schmitt
[41, 42, 43].

Definition 7.4.7. Let M have k-basis elements [M ] indexed by isomor-
phism classes of matroids. Define the multiplication via

[M1] · [M2] := [M1 ⊕M2],

so that the class [∅] of the empty matroid ∅ having empty ground set gives
a unit. Define the comultiplication for M a matroid on ground set E via

∆[M ] :=
∑
A⊂E

[M |A]⊗ [M/A],

and a counit

ε[M ] :=

{
1, if M = ∅;

0, otherwise.

Proposition 7.4.8. The above maps endow M with the structure of a
connected graded finite type Hopf algebra over k, which is commutative.

Proof. Checking the unit and counit conditions are straightforward. Asso-
ciativity and commutativity of the multiplication follow because the direct
sum operation ⊕ for matroids is associative and commutative up to iso-
morphism. Coassociativity follows because for a matroid M on ground set
E, one has the following equality between the two candidates for ∆(2)[M ]:∑

∅⊂A1⊂A2⊂E

[M |A1 ]⊗ [(M |A2)/A1]⊗ [M/A2]

=
∑

∅⊂A1⊂A2⊂E

[M |A1 ]⊗ [(M/A1)|A2\A1 ]⊗ [M/A2]

due to the matroid isomorphism (M |A2)/A1
∼= (M/A1)|A2\A1 . Commuta-

tivity of the bialgebra diagram in (1.3.4) amounts to the fact that for a
pair of matroids M1,M2 and subsets A1, A2 of their (disjoint) ground sets
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E1, E2, one has isomorphisms

M1|A1 ⊕M2|A2
∼= (M1 ⊕M2) |A1tA2 ,

M1/A1 ⊕M2/A2
∼= (M1 ⊕M2) /(A1 t A2).

Letting Mn be the k-span of [M ] for matroids whose ground set E has
cardinality |E| = n, one can then easily check thatM becomes a bialgebra
which is graded, connected, and of finite type, hence also a Hopf algebra
by Proposition 1.4.16. �

See [59] for an application ofM (and the operator exp? from Section 1.7)
to proving the Tutte recipe theorem, a “universal” property of the Tutte
polynomial of a matroid.

7.4.2. A quasisymmetric function for matroids.

Definition 7.4.9. Define a character M ζ−→ k by

ζ[M ] =

{
1, if M has only one basis;

0, otherwise.

It is easily checked that this is a character, that is, an algebra morphism

M ζ−→ k. Note that if M has only one basis, say B(M) = {B}, then
B := coloops(M) is the set of coloops of M , and E \ B = loops(M) is
the set of loops of M . Equivalently, M =

⊕
e∈EM |{e} is the direct sum of

matroids each having one element, each a coloop or loop.
Define Ψ[M ] for a matroid M to be the image of [M ] under the map

M Ψ−→ QSym induced via Theorem 7.1.3 from the above character ζ.

It turns out that Ψ[M ] is intimately related with greedy algorithms and
finding minimum cost bases. A fundamental property of matroids (and one
that characterizes them, in fact; see [164, §1.8]) is that no matter how one
assigns costs f : E → R to the elements of E, the following greedy algorithm
(generalizing Kruskal’s algorithm for finding minimum cost spanning trees)
always succeeds in finding one basis B in B(M) achieving the minimum
total cost f(B) :=

∑
b∈B f(b):

Algorithm 7.4.10. Start with the empty subset I0 = ∅ of E. For j =
1, 2, . . . , r, having already defined the set Ij−1, let e be the element of
E \ Ij−1 having the lowest cost f(e) among all those for which Ij−1 ∪{e} is
independent, that is, still a subset of at least one basis B in B(M). Then
define Ij := Ij−1 ∪ {e}. Repeat this until j = r, and B = Ir will be among
the bases that achieve the minimum cost.

Definition 7.4.11. Say that a cost function f : E → {1, 2, . . .} is M-
generic if there is a unique basis B in B(M) achieving the minimum cost
f(B).
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Example 7.4.12. For the graphic matroid M of Example 7.4.3, this cost
function f1 : E → {1, 2, . . .}

•
f1(a)=1 f1(b)=3

•
f1(c)=3

f1(d)=2

•

is M -generic, as it minimizes uniquely on the basis {a, d}, whereas this cost
function f2 : E → {1, 2, . . .}

•
f2(a)=1 f2(b)=3

•
f2(c)=2

f2(d)=2

•

is not M -generic, as it achieves its minimum value on the two bases {a, c},
{a, d}.

Proposition 7.4.13. For a matroid M on ground set E, one has this
expansion362

Ψ[M ] =
∑

M -generic
f :E→{1,2,...}

xf

where xf :=
∏

e∈E xf(e). In particular, for m ≥ 0, its specialization ps1

from Definition 7.1.6 has this interpretation:

ps1Ψ[M ](m) = |{M -generic f : E → {1, 2, . . . ,m}}|.

Proof. The iterated coproduct M ∆(`−1)

−→ M⊗` sends

[M ] 7−→
∑

[M |A1 ]⊗ [(M |A2)/A1]⊗ · · · ⊗ [(M |A`)/A`−1]

where the sum is over flags of nested subsets

(7.4.3) ∅ = A0 ⊂ A1 ⊂ · · · ⊂ A`−1 ⊂ A` = E.

The map ζ⊗` sends each summand to 1 or 0, depending upon whether each
(M |Aj)/Aj−1 has a unique basis or not. Thus formula (7.1.3) shows that
the coefficient ζα of xα1

i1
· · ·xα`i` in Ψ[M ] counts the flags of subsets in (7.4.3)

for which |Aj \Aj−1| = αj and (M |Aj)/Aj−1 has a unique basis, for each j.
Given a flag as in (7.4.3), associate the cost function f : E → {1, 2, . . .}

whose value on each element of Aj \ Aj−1 is ij; conversely, given any cost
function f , say whose distinct values are i1 < · · · < i`, one associates the
flag having Aj \ Aj−1 = f−1(ij) for each j.

Now, apply the greedy algorithm (Algorithm 7.4.10) to find a minimum-
cost basis of M for such a cost function f . At each step of the greedy
algorithm, one new element is added to the independent set; these elements

362In fact, this expansion was the original definition of Ψ[M ] in [21, Defn. 1.1].
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weakly increase in cost as the algorithm progresses363. Thus, the algorithm
first adds some elements of cost i1, then adds some elements of cost i2, then
adds some elements of cost i3, and so on. We can therefore subdivide the
execution of the algorithm into phases 1, 2, . . . , `, where each phase consists
of some finite number of steps, such that all elements added in phase k have
cost ik. (A phase may be empty.) For each k ∈ {1, 2, . . . , `}, we let βk be
the number of steps in phase k; in other words, βk is the number of elements
of elements of cost ik added during the algorithm.

We will prove below, using induction on s = 0, 1, 2, . . . , ` the following
claim: After having completed phases 1, 2, . . . , s in the greedy algorithm
(Algorithm 7.4.10), there is a unique choice for the independent set pro-
duced thus far, namely

(7.4.4) Iβ1+β2+···+βs =
s⊔
j=1

coloops((M |Aj)/Aj−1),

if and only if each of the matroids (M |Aj)/Aj−1 for j = 1, 2, . . . , s has a
unique basis.

The case s = ` in this claim would show what we want, namely that f is
M -generic, minimizing uniquely on the basis shown in (7.4.4) with s = `,
if and only if each (M |Aj)/Aj−1 has a unique basis.

The assertion of the claim is trivially true for s = 0. In the inductive
step, one may assume that

• the independent set Iβ1+β2+···+βs−1 takes the form in (7.4.4), replac-
ing s by s− 1,
• it is the unique f -minimizing basis for M |As−1 , and
• (M |Aj)/Aj−1 has a unique basis for j = 1, 2, . . . , s− 1.

Since As−1 exactly consists of all of the elements e of E whose costs f(e)
lie in the range {i1, i2, . . . , is−1}, in phase s the algorithm will work in the
quotient matroid M/As−1 and attempt to augment Iβ1+β2+···+βs−1 using the
next-cheapest elements, namely the elements of As \ As−1, which all have
cost f equal to is. Thus the algorithm will have no choices about how to do
this augmentation if and only if (M |As)/As−1 has a unique basis, namely
its set of coloops, in which case the algorithm will choose to add all of
these coloops, giving Iβ1+β2+···+βs as described in (7.4.4). This completes
the induction.

The last assertion follows from Proposition 7.1.7. �

Example 7.4.14. IfM has one basis then every function f : E → {1, 2, . . .}
is M -generic, and

Ψ[M ] =
∑

f :E→{1,2,...}

xf = (x1 + x2 + · · · )|E| = M
|E|
(1) .

Example 7.4.15. Let Ur,n denote the uniform matroid of rank r on n
elements E, having B(Ur,n) equal to all of the r-element subsets of E.

363Proof. Let e be the element added at step i, and let e′ be the element added at step
i+ 1. We want to show that f (e) ≤ f (e′). But the element e′ could already have been
added at step i. Since it wasn’t, we thus conclude that the element e that was added
instead must have been cheaper or equally expensive. In other words, f (e) ≤ f (e′),
qed.
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As U1,2 has E = {1, 2} and B = {{1}, {2}}, genericity means f(1) 6=
f(2), so

Ψ[U1,2] =
∑

(f(1),f(2)):
f(1)6=f(2)

xf(1)xf(2) = x1x2 + x2x1 + x1x3 + x3x1 + · · · = 2M(1,1).

Similarly U1,3 has E = {1, 2, 3} with B = {{1}, {2}, {3}}, and genericity
means either that f(1), f(2), f(3) are all distinct, or that two of them are
the same and the third is smaller. This shows

Ψ[U1,3] = 3
∑
i<j

xix
2
j + 6

∑
i<j<k

xixjxk

= 3M(1,2) + 6M(1,1,1);

ps1Ψ[U1,3](m) = 3

(
m

2

)
+ 6

(
m

3

)
=
m(m− 1)(2m− 1)

2
.

One can similarly analyze U2,3 and check that

Ψ[U2,3] = 3M(2,1) + 6M(1,1,1);

ps1Ψ[U2,3](m) = 3

(
m

2

)
+ 6

(
m

3

)
=
m(m− 1)(2m− 1)

2
.

These last examples illustrate the behavior of Ψ under the duality oper-
ation on matroids.

Definition 7.4.16. Given a matroid M of rank r on ground set E, its dual
or orthogonal matroid M⊥ is a matroid of rank |E|− r on the same ground
set E, having

B(M⊥) := {E \B}B∈B(M).

See [164, Theorem 2.1.1] or [34, Section 4] for a proof of the fact that
this is well-defined (i.e., that the collection {E \ B}B∈B(M) really satisfies
the exchange property). Here are a few examples of dual matroids.

Example 7.4.17. The dual of a uniform matroid is another uniform ma-
troid:

U⊥r,n = Un−r,n.

Example 7.4.18. IfM is matroid of rank r represented by family of vectors
{e1, . . . , en} in a vector space over some field k, one can find a family of
vectors {e⊥1 , . . . , e⊥n } that represent M⊥ in the following way. Pick a basis
for the span of the vectors {ei}ni=1, and create a matrix A in kr×n whose
columns express the ei in terms of this basis. Then pick any matrix A⊥

whose row space is the null space of A, and one finds that the columns
{e⊥i }ni=1 of A⊥ represent M⊥. See Oxley [164, §2.2].

Example 7.4.19. Let G = (V,E) be a graph embedded in the plane with
edge set E, giving rise to a graphic matroid M on ground set E. Let G⊥ be
a planar dual of G, so that, in particular, for each edge e in E, the graph
G⊥ has one edge e⊥, crossing e transversely. Then the graphic matroid of
G⊥ is M⊥. See Oxley [164, §2.3].

Proposition 7.4.20. If Ψ[M ] =
∑

α cαMα then Ψ[M⊥] =
∑

α cαMrev(α).
Consequently, ps1Ψ[M ](m) = ps1Ψ[M⊥](m).
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Proof. First, let us prove that

if Ψ[M ] =
∑
α

cαMα then Ψ[M⊥] =
∑
α

cαMrev(α).

In other words, let us show that for any given composition α, the coefficient
of Mα in Ψ[M ] (when Ψ[M ] is expanded in the basis (Mβ)β∈Comp of QSym)

equals the coefficient of Mrev(α) in Ψ[M⊥]. This amounts to showing that
for any composition α = (α1, . . . , α`), the cardinality of the set of M -generic
f having xf = xα is the same as the cardinality of the set of M⊥-generic
f⊥ having xf⊥ = xrev(α). We claim that the map f 7−→ f⊥ in which
f⊥(e) = `+ 1− f(e) gives a bijection between these sets. To see this, note
that any basis B of M satisfies

f(B) + f(E \B) =
∑
e∈E

f(e),(7.4.5)

f(E \B) + f⊥(E \B) = (`+ 1)(|E| − r),(7.4.6)

where r denotes the rank of M . Thus B is f -minimizing if and only if
E \ B is f -maximizing (by (7.4.5)) if and only if E \ B is f⊥-minimizing
(by (7.4.6)). Consequently f is M -generic if and only if f⊥ is M⊥-generic.

The last assertion follows, for example, from the calculation in Proposi-
tion 7.1.7(i) that ps1(Mα)(m) =

(
m
`(α)

)
together with the fact that

`(rev(α)) = `(α). �

Just as (7.3.5) showed that Stanley’s chromatic symmetric function of
a graph has an expansion as a sum of P -partition enumerators for certain
strictly labelled posets364 P , the same holds for Ψ[M ].

Definition 7.4.21. Given a matroid M on ground set E, and a basis B
in B(M), define the base-cobase poset PB to have b < b′ whenever b lies in
B and b′ lies in E \B and (B \ {b}) ∪ {b′} is in B(M).

Proposition 7.4.22. For any matroid M , one has

Ψ[M ] =
∑

B∈B(M)

F(PB ,strict)(x)

where F(P, strict)(x) for a poset P means the P -partition enumerator for
any strict labelling of P , i.e. a labelling such that the P -partitions satisfy
f(i) < f(j) whenever i <P j.

In particular, Ψ[M ] expands nonnegatively in the {Lα} basis.

Proof. A basic result about matroids, due to Edmonds [62], describes the
edges in the matroid base polytope which is the convex hull of all vectors
{
∑

b∈B εb}B∈B(M) inside RE with standard basis {εe}e∈E. He shows that all
such edges connect two bases B,B′ that differ by a single basis exchange,
that is, B′ = (B \ {b}) ∪ {b′} for some b in B and b′ in E \B.

Polyhedral theory then says that a cost function f on E will minimize
uniquely at B if and only if one has a strict increase f(B) < f(B′) along
each such edge B → B′ emanating from B, that is, if and only if f(b) <
f(b′) whenever b <PB b′ in the base-cobase poset PB, that is, f lies in
A(PB, strict). �

364A labelled poset P is said to be strictly labelled if every two elements i and j of P
satisfying i <P j satisfy i >Z j.
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Example 7.4.23. The graphic matroid from Example 7.4.3 has this ma-
troid base polytope, with the bases B in B(M) labelling the vertices:

cd

ac ad

bc bd

The base-cobase posets PB for its five vertices B are as follows:

a b

c d

b d

a c

a d

b c

a c

b d

b c

a d

One can label the first of these five strictly as

1 2

3 4

and compute its strict P -partition enumerator from the linear extensions
{3412, 3421, 4312, 4321} as

L(2,2) + L(2,1,1) + L(1,1,2) + L(1,1,1,1),

while any of the last four can be labelled strictly as

1 2

3 4

and they each have an extra linear extension 3142 giving their strict P -
partition enumerators as

L(2,2) + L(2,1,1) + L(1,1,2) + L(1,1,1,1) + L(1,2,1).

Hence one has

Ψ[M ] = 5L(2,2) + 5L(1,1,2) + 4L(1,2,1) + 5L(2,1,1) + 5L(1,1,1,1).

As M is a graphic matroid for a self-dual planar graph, one has a ma-
troid isomorphism M ∼= M⊥ (see Example 7.4.19), reflected in the fact
that Ψ[M ] is invariant under the symmetry swapping Mα ↔ Mrev(α) (and
simultaneously swapping Lα ↔ Lrev(α)).

This P -partition expansion for Ψ[M ] also allows us to identify its image
under the antipode of QSym.

Proposition 7.4.24. For a matroid M on ground set E, one has

S(Ψ[M ]) = (−1)|E|
∑

f :E→{1,2,...}

|{f -maximizing bases B}| · xf

and

ps1Ψ[M ](−m) = (−1)|E|
∑

f :E→{1,2,...,m}

|{f -maximizing bases B}|.
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In particular, the expected number of f -maximizing bases among all cost
functions f : E → {1, 2, . . . ,m} is (−m)−|E|ps1Ψ[M ](−m).

Proof. Corollary 5.2.20 implies

S(Ψ[M ]) =
∑

B∈B(M)

S(F(PB ,strict)(x)) = (−1)|E|
∑

B∈B(M)

F(P opp
B ,natural)(x),

where F(P,natural)(x) is the enumerator for P -partitions in which P has been
naturally labelled, so that they satisfy f(i) ≤ f(j) whenever i <P j. When
P = P opp

B , this is exactly the condition for f to achieve its maximum value
at f(B) (possibly not uniquely), that is, for f to lie in the closed normal
cone to the vertex indexed by B in the matroid base polytope; compare
this with the discussion in the proof of Proposition 7.4.22. Thus one has

S(Ψ[M ]) = (−1)|E|
∑

(B,f):
B∈B(M)

f maximizing at B

xf ,

which agrees with the statement of the proposition, after reversing the
order of the summation.

The rest follows from Proposition 7.1.7. �

Example 7.4.25. We saw in Example 7.4.23 that the matroid M from
Example 7.4.3 has

Ψ[M ] = 5L(2,2) + 5L(1,1,2) + 4L(1,2,1) + 5L(2,1,1) + 5L(1,1,1,1),

and therefore will have

ps1Ψ[M ](m) = 5

(
m− 2 + 4

4

)
+ (5 + 4 + 5)

(
m− 3 + 4

4

)
+ 5

(
m− 4 + 4

4

)
=
m(m− 1)(2m2 − 2m+ 1)

2

using ps1(Lα)(m) =
(
m−`+|α|
|α|

)
from Proposition 7.1.7 (i). Let us first do a

reality-check on a few of its values with m ≥ 0 using Proposition 7.4.13,
and for negative m using Proposition 7.4.24:

m −1 0 1 2
ps1Ψ[M ](m) 5 0 0 5

When m = 0, interpreting the set of cost functions f : E → {1, 2, . . . ,m}
as being empty explains why the value shown is 0. When m = 1, there is
only one function f : E → {1}, and it is not M -generic; any of the 5 bases
in B(M) will minimize f(B), explaining both why the value for m = 1 is
0, but also explaining the value of 5 for m = −1. The value of 5 for m = 2
counts these M -generic cost functions f : E → {1, 2}:

•
1 1

•
2

2

•

•
1 2

•
1

2

•

•
1 2

•
2

1

•
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•
2 1

•
1

2

•

•
2 1

•
2

1

•

Lastly, Proposition 7.4.24 predicts the expected number of f -minimizing
bases for f : E → {1, 2, . . . ,m} as

(−m)−|E|ps1Ψ[M ](−m) = (−m)−4m(m+ 1)(2m2 + 2m+ 1)

2

=
(m+ 1)(2m2 + 2m+ 1)

2m3
,

whose limit as m → ∞ is 1, consistent with the notion that “most” cost
functions should be generic with respect to the bases of M , and maxi-
mize/minimize on a unique basis.

Remark 7.4.26. It is not coincidental that there is a similarity of results for
Stanley’s chromatic symmetric function of a graph Ψ[G] and for the matroid
quasisymmetric function Ψ[M ], such as the P -partition expansions (7.3.5)
versus Proposition 7.4.22, and the reciprocity results Proposition 7.3.23
versus Proposition 7.4.24. It was noted in [21, §9] that one can associate
a similar quasisymmetric function invariant to any generalized permutohe-
dra in the sense of Postnikov [173]. Furthermore, recent work of Ardila
and Aguiar [3] has shown that there is a Hopf algebra of such general-
ized permutohedra, arising from a Hopf monoid in the sense of Aguiar and
Mahajan [6]. This Hopf algebra generalizes the chromatic Hopf algebra
of graphs365 and the matroid-minor Hopf algebra, and its quasisymmetric
function invariant derives as usual from Theorem 7.1.3. Their work [3] also
provides a generalization of the chromatic Hopf algebra antipode formula
of Humpert and Martin [103] discussed in Remark 7.3.4 above.

365Aguiar and Ardila actually work with a larger Hopf algebra of graphs. Namely,
their concept of graphs allows parallel edges, and it also allows “half-edges”, which have
only one endpoint. If G = (V,E) is such a graph (where E is the set of its edges and its
half-edges), and if V ′ is a subset of V , then they define G/V ′ to be the graph on vertex
set V ′ obtained from G by

• removing all vertices that are not in V ′,
• removing all edges that have no endpoint in V ′, and all half-edges that have no

endpoint in V ′, and
• replacing all edges that have only one endpoint in V ′ by half-edges.

(This is to be contrasted with the induced subgraph G |V ′ , which is constructed in the
same way but with the edges that have only one endpoint in V ′ getting removed as
well.) The comultiplication they define on the Hopf algebra of such graphs sends the
isomorphism class [G] of a graph G = (V,E) to

∑
(V1,V2):V1tV2=V

[G |V1
]⊗ [G/V2

]. This is

no longer a cocommutative Hopf algebra; our Hopf algebra G is a quotient of it. In [3,
Corollary 13.10], Ardila and Aguiar compute the antipode of the Hopf monoid of such
graphs; this immediately leads to a formula for the antipode of the corresponding Hopf
algebra, because what they call the Fock functor K preserves antipodes [3, Theorem
2.18].
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8. The Malvenuto-Reutenauer Hopf algebra of permutations

Like so many Hopf algebras we have seen, the Malvenuto-Reutenauer
Hopf algebra FQSym can be thought of fruitfully in more than one way.
One is that it gives a natural noncommutative lift of the quasisymmetric P -
partition enumerators and the fundamental basis {Lα} of QSym, rendering
their product and coproduct formulas even more natural.

8.1. Definition and Hopf structure.

Definition 8.1.1. We shall regard permutations as words (over the alpha-
bet {1, 2, 3, . . .}) by identifying every permutation π ∈ Sn with the word
(π(1), π(2), . . . , π(n)).

Define FQSym =
⊕

n≥0 FQSymn to be a graded k-module in which
FQSymn has k-basis {Fw}w∈Sn indexed by the permutations w = (w1, . . . , wn)
in Sn.

We first attempt to lift the product and coproduct formulas (5.2.6),
(5.2.5) in the {Lα} basis of QSym. We attempt to define a product for
u ∈ Sk and v ∈ S` as follows366:

(8.1.1) FuFv :=
∑

w∈u� v[k]

Fw,

where for any word v = (v1, . . . , v`) we set v[k] := (k+v1, . . . , k+v`). Note
that the multiset u � v[k] is an actual set in this situation (i.e., has each
element appear only once) and is a subset of Sk+`.

The coproduct will be defined using the notation of standardization of
std(w) a word w in some linearly ordered alphabet (see Definition 5.3.3).

Example 8.1.2. Considering words in the Roman alphabet a < b < c <
· · · , we have

std(b a c c b a a b a c b)
= (5 1 9 10 6 2 3 7 4 11 8).

Using this, define for w = (w1, . . . , wn) in Sn the element ∆Fw ∈
FQSym⊗FQSym by

(8.1.2) ∆Fw :=
n∑
k=0

Fstd(w1,w2,...,wk) ⊗ Fstd(wk+1,wk+2,...,wn).

It is possible to check directly that the maps defined in (8.1.1) and (8.1.2)
endow FQSym with the structure of a connected graded finite type Hopf
algebra; see Hazewinkel, Gubareni, Kirichenko [93, Thm. 7.1.8]. However
in justifying this here, we will follow the approach of Duchamp, Hivert and
Thibon [58, §3], which exhibits FQSym as a subalgebra of a larger ring
of (noncommutative) power series of bounded degree in a totally ordered
alphabet.

Definition 8.1.3. Given a totally ordered set I, create a totally ordered
variable set {Xi}i∈I , and the ring R〈{Xi}i∈I〉 of noncommutative power
series of bounded degree in this alphabet367. Many times, we will use a
variable set X := (X1 < X2 < · · · ), and call the ring R〈X〉.

366Recall that we regard permutations as words.
367Let us recall the definition of R〈{Xi}i∈I〉.
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We first identify the algebra structure for FQSym as the subalgebra of
finite type within R〈{Xi}i∈I〉 spanned by the elements

(8.1.3) Fw = Fw({Xi}i∈I) :=
∑

i=(i1,...,in):
std(i)=w−1

Xi,

where Xi := Xi1 · · ·Xin , as w ranges over
⋃
n≥0 Sn .

Example 8.1.4. For the alphabet X = (X1 < X2 < · · · ), in R〈X〉 one has

F1 =
∑
1≤i

Xi = X1 +X2 + · · · ,

F12 =
∑

1≤i≤j

XiXj = X2
1 +X2

2 + · · ·+X1X2 +X1X3 +X2X3 +X1X4 + · · · ,

F21 =
∑

1≤i<j

XjXi = X2X1 +X3X1 +X3X2 +X4X1 + · · · ,

F312 =
∑

i:std(i)=231

Xi =
∑

1≤i<j≤k

XjXkXi

= X2
2X1 +X2

3X1 +X2
3X2 + · · ·+X2X3X1 +X2X4X1 + · · · .

Proposition 8.1.5. For any totally ordered infinite set I, the elements
{Fw} as w ranges over

⋃
n≥0 Sn form a k-basis for a subalgebra

FQSym({Xi}i∈I) of R〈X〉, which is connected graded and of finite type,
having multiplication defined k-linearly by (8.1.1).

Consequently all such algebras are isomorphic to a single algebra FQSym,
having basis {Fw} and multiplication given by the rule (8.1.1), with the
isomorphism mapping Fw 7−→ Fw({Xi}i∈I).

Let N denote the free monoid on the alphabet {Xi}i∈I ; it consists of words
Xi1Xi2 · · ·Xik . We define a topological k-module k 〈〈{Xi}i∈I〉〉 to be the Cartesian
product kN (equipped with the product topology), but we identify its element (δw,u)u∈N
with the word w for every w ∈ N . Thus, every element (λw)w∈N ∈ kN = k 〈〈{Xi}i∈I〉〉
can be rewritten as the convergent sum

∑
w∈N λww. We call λw the coefficient of w in

this element (or the coefficient of this element before w). The elements of k 〈〈{Xi}i∈I〉〉
will be referred to as noncommutative power series. We define a multiplication on
k 〈〈{Xi}i∈I〉〉 by the formula

(∑
w∈N

λww

)(∑
w∈N

µww

)
=
∑
w∈N

 ∑
(u,v)∈N2; w=uv

λuµv

w.

(This is well-defined thanks to the fact that, for each w ∈ N , there are only finitely
many (u, v) ∈ N2 satisfying w = uv.) Thus, k 〈〈{Xi}i∈I〉〉 becomes a k-algebra with
unity 1 (the empty word). (It is similar to the monoid algebra kN of N over k, with
the only difference that infinite sums are allowed.)

Now, we define R〈{Xi}i∈I〉 to be the k-subalgebra of k 〈〈{Xi}i∈I〉〉 consisting of all
noncommutative power series

∑
w∈N λww ∈ k 〈〈{Xi}i∈I〉〉 of bounded degree (i.e., such

that all words w ∈ N of sufficiently high length satisfy λw = 0).
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For example,

F1F21 = (X1 +X2 +X3 + · · · )(X2X1 +X3X1 +X3X2 +X4X1 + · · · )
= X1 ·X3X2 +X1 ·X4X2 + · · ·

+X1 ·X2X1 +X2 ·X3X2 +X2 ·X4X2 + · · ·
+X2 ·X3X1 +X2 ·X4X1 + · · ·
+X2 ·X2X1 +X3 ·X3X1 +X3 ·X3X2 + · · ·
+X3 ·X2X1 +X4 ·X2X1 + · · ·

=
∑

i:std(i)=132

Xi +
∑

i:std(i)=231

Xi +
∑

i:std(i)=321

Xi = F132 + F312 + F321

=
∑

w∈1� 32

Fw.

Proof of Proposition 8.1.5. The elements {Fw({Xi}i∈I)} are linearly inde-
pendent as they are supported on disjoint monomials, and so form a k-basis
for their span. The fact that they multiply via rule (8.1.1) is the equiva-
lence of conditions (i) and (iii) in the following Lemma 8.1.6, from which
all the remaining assertions follow. �

Lemma 8.1.6. For a triple of permutations

u = (u1, . . . , uk) in Sk,

v = (v1, . . . , vn−k) in Sn−k,

w = (w1, . . . , wn) in Sn,

the following conditions are equivalent:

(i) w−1 lies in the set u−1
� v−1[k].

(ii) u = std(w1, . . . , wk) and v = std(wk+1, . . . , wn),
(iii) for some word i = (i1, . . . , in) with std(i) = w one has

u = std(i1, . . . , ik) and v = std(ik+1, . . . , in).

Proof. The implication (ii) ⇒ (iii) is clear since std(w) = w. The reverse
implication (iii) ⇒ (ii) is best illustrated by example, e.g. considering
Example 8.1.2 as concatenated, with n = 11 and k = 6 and n− k = 5:

w = std (b a c c b a | a b a c b)
= (5 1 9 10 6 2 | 3 7 4 11 8)

u = std (5 1 9 10 6 2) v = std (3 7 4 11 8)
= (3 1 5 6 4 2) = (1 3 2 5 4)

= std (b a c c b a) = std (a b a c b)

The equivalence of (i) and (ii) is a fairly standard consequence of unique
parabolic factorization W = W JWJ where W = Sn and WJ = Sk ×
Sn−k, so that W J are the minimum-length coset representatives for cosets
xWJ (that is, the permutations x ∈ Sn satisfying x1 < · · · < xk and
xk+1 < · · · < xn). One can uniquely express any w in W as w = xy
with x in W J and y in WJ , which here means that y = u · v[k] = v[k] · u
for some u in Sk and v in Sn−k. Therefore w = xuv[k], if and only if
w−1 = u−1v−1[k]x−1, which means that w−1 is the shuffle of the sequences
u−1 in positions {x1, . . . , xk} and v−1[k] in positions {xk+1, . . . , xn}. �
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Example 8.1.7. To illustrate the equivalence of (i) and (ii) and the par-
abolic factorization in the preceding proof, let n = 9 and k = 5 with

w =

(
1 2 3 4 5 | 6 7 8 9
4 9 6 1 5 | 8 2 3 7

)
=

(
1 2 3 4 5 | 6 7 8 9
1 4 5 6 9 | 2 3 7 8

)(
1 2 3 4 5
2 5 4 1 3

)(
6 7 8 9
9 6 7 8

)
= x · u · v[k];

then

w−1 =

(
1 2 3 4 5 6 7 8 9
4 9 6 1 5 8 2 3 7

)
=

(
1 2 3 4 5
4 1 5 3 2

)(
6 7 8 9
7 8 9 6

)(
1 2 3 4 5 6 7 8 9
1 6 7 2 3 4 8 9 5

)
= u−1 · v−1[k] · x−1.

Proposition 8.1.5 yields that FQSym is isomorphic to the k-subalgebra
FQSym (X) of the k-algebra R 〈X〉 when X is the variable set
(X1 < X2 < · · · ). We identify FQSym with FQSym (X) along this isomor-
phism. For any infinite alphabet {Xi}i∈I and any f ∈ FQSym, we denote

by f
(
{Xi}i∈I

)
the image of f under the algebra isomorphism FQSym →

FQSym
(
{Xi}i∈I

)
defined in Proposition 8.1.5.

One can now use this to define a coalgebra structure on FQSym. Roughly
speaking, one wants to first evaluate an element f in FQSym ∼= FQSym (X) ∼=
FQSym (X,Y) as f(X,Y), using the linearly ordered variable set (X,Y) :=
(X1 < X2 < · · · < Y1 < Y2 < · · · ). Then one should take the image of
f(X,Y) after imposing the partial commutativity relations

(8.1.4) XiYj = YjXi for every pair (Xi, Yj) ∈ X×Y,

and hope that this image lies in a subalgebra isomorphic to

FQSym (X)⊗ FQSym (Y) ∼= FQSym⊗FQSym .

We argue this somewhat carefully. Start by considering the canonical
monoid epimorphism

(8.1.5) F 〈X,Y〉
ρ
�M,

where F 〈X,Y〉 denotes the free monoid on the alphabet (X,Y) and M
denotes its quotient monoid imposing the partial commutativity relations
(8.1.4). Let kM denote the k-module of all functions f : M → k, with
pointwise addition and scalar multiplication; similarly define kF 〈X,Y〉. As
both monoids F 〈X,Y〉 and M enjoy the property that an element m has
only finitely many factorizations as m = m1m2, one can define a convolu-
tion algebra structure on both kF 〈X,Y〉 and kM via

(f1 ? f2)(m) =
∑

(m1,m2)∈N×N :
m=m1m2

f1(m1)f2(m2),

where N is respectively F 〈X,Y〉 or M . As fibers of the map ρ in (8.1.5)
are finite, it induces a map of convolution algebras, which we also call ρ:

(8.1.6) kF 〈X,Y〉
ρ
� kM .
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Now recall that R〈X〉 denotes the algebra of noncommutative formal power
series in the variable set X, of bounded degree, with coefficients in k. One
similarly has the ring R〈X,Y〉, which can be identified with the subalgebra
of kF 〈X,Y〉 consisting of the functions f : F 〈X,Y〉 → k having a bound
on the length of the words in their support (the value of f on a word in
(X,Y) gives its power series coefficient corresponding to said word). We
let R〈M〉 denote the analogous subalgebra of kM ; this can be thought of
as the algebra of bounded degree “partially commutative power series” in
the variable sets X and Y. Note that ρ restricts to a map

(8.1.7) R〈X,Y〉 ρ→ R〈M〉.
Finally, we claim (and see Proposition 8.1.9 below for a proof) that this
further restricts to a map

(8.1.8) FQSym (X,Y)
ρ→ FQSym (X)⊗ FQSym (Y)

in which the target is identified with its image under the (injective368)
multiplication map

FQSym (X)⊗ FQSym (Y) ↪→ R〈M〉,
f(X)⊗ g(Y) 7→ f(X)g(Y).

Using the identification of FQSym with all three of FQSym (X) ,FQSym (Y) ,
FQSym (X,Y), the map ρ in (8.1.8) will then define a coproduct struc-
ture on FQSym. Abusing notation, for f in FQSym, we will simply write
∆(f) = f(X,Y) instead of ρ(f(X,Y)).

Example 8.1.8. Recall from Example 8.1.4 that one has

F312 =
∑

i:std(i)=231

Xi =
∑

1≤i<j≤k

XjXkXi,

and therefore its coproduct is

∆F312 = F312(X1, X2, . . . , Y1, Y2, . . .) (by our abuse of notation)

=
∑
i<j≤k

XjXkXi +
∑
i<j,
k

XjYkXi +
∑
i,
j≤k

YjYkXi +
∑
i<j≤k

YjYkYi

=
∑
i<j≤k

XjXkXi · 1 +
∑
i<j,
k

XjXi · Yk +
∑
i,
j≤k

Xi · YjYk +
∑
i<j≤k

1 · YjYkYi

= F312(X) · 1 + F21(X) · F1(Y) + F1(X) · F12(Y) + 1 · F312(Y)

= F312 ⊗ 1 + F21 ⊗ F1 + F1 ⊗ F12 + 1⊗ F312.

Proposition 8.1.9. The map ρ in (8.1.7) does restrict as claimed to a
map as in (8.1.8), and hence defines a coproduct on FQSym, acting on the
{Fw} basis by the rule (8.1.2). This endows FQSym with the structure of
a connected graded finite type Hopf algebra.

Proof. Let I be the totally ordered set {1 < 2 < 3 < · · · }. Let J be the
totally ordered set{

1 < 2 < 3 < · · · < 1̃ < 2̃ < 3̃ < · · ·
}

. We set Xĩ = Yi for every positive

integer i. Then, the alphabet (X,Y) can be written as {Xi}i∈J .

368as images of the basis Fu(X)⊗ Fv(Y) of FQSym(X)⊗ FQSym(Y) are supported
on disjoint monomials in R〈M〉, so linearly independent.
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If i is a word over the alphabet I = {1 < 2 < 3 < · · · }, then we denote

by ĩ the word over J obtained from i by replacing every letter i by ĩ.
For the first assertion of Proposition 8.1.9, it suffices to check that Fw

indeed has the image under ∆ claimed in (8.1.2). Let n ∈ N and w ∈ Sn.
Then,

∆Fw = Fw (X,Y) (by our abuse of notation)

=
∑

i∈Jn:std(i)=w−1

(X,Y)i =
∑

t∈Jn:std(t)=w−1

(X,Y)t

=
n∑
k=0

∑
(i,j)∈Ik×In−k

∑
t∈Jn:

std(t)=w−1;

t∈i� j̃

(X,Y)t(8.1.9)

(since for every t ∈ Jn, there exists exactly one choice of k ∈ {0, 1, . . . , n}
and (i, j) ∈ Ik × In−k satisfying t ∈ i � j̃; namely, i is the restriction of t
to the subalphabet I of J , whereas j is the restriction of t to J \ I, and k
is the length of i).

We now fix k and (i, j), and try to simplify the inner sum
∑

t∈Jn:
std(t)=w−1;

t∈i� j̃

(X,Y)t

on the right hand side of (8.1.9). First we notice that this sum is nonempty

if and only if there exists some t ∈ i � j̃ satisfying std(t) = w−1. This ex-
istence is easily seen to be equivalent to w−1 ∈ std(i) � std(j)[k] (since the

standardization of any shuffle in i� j̃ is the corresponding shuffle in std(i)�
std(j)[k]). This, in turn, is equivalent to std(i) = (std(w1, . . . , wk))

−1

and std(j) = (std(wk+1, . . . , wn))−1 (according to the equivalence (i) ⇐⇒
(ii) in Lemma 8.1.6). Hence, the inner sum on the right hand side of
(8.1.9) is nonempty if and only if std(i) = (std(w1, . . . , wk))

−1 and std(j) =
(std(wk+1, . . . , wn))−1. When it is nonempty, it has only one addend369,

and this addend is (X,Y)t = XiYj (since t ∈ i � j̃). Summarizing, we
see that the inner sum on the right hand side of (8.1.9) equals XiYj when
std(i) = (std(w1, . . . , wk))

−1 and std(j) = (std(wk+1, . . . , wn))−1, and is
empty otherwise. Thus, (8.1.9) simplifies to

∆Fw =
n∑
k=0

∑
(i,j)∈Ik×In−k:

std(i)=(std(w1,...,wk))−1

std(j)=(std(wk+1,...,wn))−1

XiYj

=
n∑
k=0

Fstd(w1,...,wk)(X)Fstd(wk+1,...,wn)(Y)

=
n∑
k=0

Fstd(w1,...,wk) ⊗ Fstd(wk+1,...,wn) ∈ FQSym⊗FQSym .

This proves (8.1.2), and thus the first assertion of Proposition 8.1.9.
From this, it is easy to derive that ∆ satisfies coassociativity (i.e., the

diagram (1.2.1) holds for C = FQSym). (Alternatively, one can obtain

369In fact, the elements std (t) for t ∈ i � j̃ are distinct, and thus only one of them
can equal w−1.
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this from the associativity of multiplication using Corollary 8.1.11.) We
have already verified the rule (8.1.2). The connected graded structure on
FQSym gives a counit and an antipode for free. �

Exercise 8.1.10. We say that a permutation w ∈ Sn is connected if n
is a positive integer and if there exists no i ∈ {1, 2, . . . , n− 1} satisfying
f ({1, 2, . . . , i}) = {1, 2, . . . , i}. Let CS denote the set of all connected
permutations of all n ∈ N. Show that FQSym is a free (noncommuta-
tive) k-algebra with generators (Fw)w∈CS. (This statement means that
(Fw1Fw2 · · ·Fwk)k∈N; (w1,w2,...,wk)∈CSk is a basis of the k-module FQSym.)

[Hint: This is a result of Poirier and Reutenauer [172, Theorem 2.1]; it
is much easier than the similar Theorem 6.4.3.]

Corollary 8.1.11. The Hopf algebra FQSym is self-dual: Let {Gw} be
the dual k-basis to the k-basis {Fw} for FQSym. Then, the k-linear map
sending Gw 7−→ Fw−1 is a Hopf algebra isomorphism FQSymo −→ FQSym.

Proof. For any 0 ≤ k ≤ n, any u ∈ Sk and any v ∈ Sn−k, one has

Fu−1Fv−1 =
∑

w−1∈u−1
� v−1[k]

Fw−1 =
∑
w∈Sn:

std(w1,...,wk)=u
std(wk+1,...,wn)=v

Fw−1

via the equivalence of (i) and (ii) in Lemma 8.1.6. On the other hand, in
FQSymo, the dual k-basis {Gw} to the k-basis {Fw} for FQSym should
have product formula

GuGv =
∑
w∈Sn:

std(w1,...,wk)=u
std(wk+1,...,wn)=v

Gw

coming from the coproduct formula (8.1.2) for FQSym in the {Fw}-basis.
Comparing these equalities, we see that the k-linear map τ sending Gw 7−→
Fw−1 is an isomorphism FQSymo −→ FQSym of k-algebras. Hence, the
adjoint τ ∗ : FQSymo → (FQSymo)o of this map is an isomorphism of k-
coalgebras. But identifying (FQSymo)o with FQSym in the natural way
(since FQSym is of finite type), we easily see that τ ∗ = τ , whence τ itself is
an isomorphism of both k-algebras and k-coalgebras, hence of k-bialgebras,
hence of Hopf algebras. �

We can now be a bit more precise about the relations between the various
algebras

Λ,QSym,NSym,FQSym, R〈X〉, R(x).

Not only does FQSym allow one to lift the Hopf structure of QSym, it
dually allows one to extend the Hopf structure of NSym. To set up this
duality, note that Corollary 8.1.11 motivates the choice of an inner product
on FQSym in which

(Fu, Fv) := δu−1,v.

We wish to identify the images of the ribbon basis {Rα} of NSym when
included in FQSym.
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Definition 8.1.12. For any composition α, define an element Rα of FQSym
by

Rα :=
∑

w∈S|α|:
Des(w)=D(α)

Fw−1 =
∑
(w,i):
w∈S|α|;

Des(w)=D(α);
std(i)=w

Xi =
∑

i:Des(i)=D(α)

Xi,

where the descent set of a sequence i = (i1, . . . , in) is defined by

Des(i) := {j ∈ {1, 2, . . . , n− 1} : ij > ij+1} = Des(std(i)).

Alternatively,

(8.1.10) Rα =
∑
T

XT

in which the sum is over column-strict tableaux of the ribbon skew shape
Rib (α), and XT = Xi in which i is the sequence of entries of T read in
order from the southwest toward the northeast.

Example 8.1.13. Taking α = (1, 3, 2), with ribbon shape and column-
strict fillings T as shown:

Rib (α) =
� �

� � �
�

and T =

i5 ≤ i6
∧

i2 ≤ i3 ≤ i4
∧
i1

one has that

R(1,3,2) =
∑

i=(i1,i2,i3,i4,i5,i6):
Des(i)=D(α)={1,4}

Xi =
∑

i1>i2≤i3≤i4>i5≤i6

Xi1Xi2Xi3Xi4Xi5Xi6 =
∑
T

XT .

Corollary 8.1.14. For every n ∈ N and w ∈ Sn, we let γ(w) denote the
unique composition α of n satisfying D (α) = Des (w).

(a) The k-linear map

FQSym
π
� QSym,

Fw 7−→ Lγ(w)

is a surjective Hopf algebra homomorphism.
(b) The k-linear map

NSym
ι
↪→ FQSym,

Rα 7−→ Rα

is an injective Hopf algebra homomorphism.
(c) The linear maps π and ι are adjoint maps with respect to the above

choice of inner product on FQSym and the usual dual pairing be-
tween NSym and QSym.

Now, consider the abelianization map ab : R〈X〉 � R(x) defined as the
continuous k-algebra homomorphism sending the noncommutative variable
Xi to the commutative xi.

(d) The map π is a restriction of ab.
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(e) The map ι lets one factor the surjection NSym� Λ as follows:

NSym → FQSym ↪→ R〈X〉 ab→ R(x),
Rα 7−→ Rα 7−→ sRib(α)(x).

Proof. Given n ∈ N, each composition α of n can be written in the form
γ (w) for some w ∈ Sn. 370 Hence, each fundamental quasisymmetric
function Lα lies in the image of π. Thus, π is surjective.

Also, for each n ∈ N and α ∈ Compn, the element Rα is a nonempty
sum of noncommutative monomials (nonempty because α can be written in
the form γ (w) for some w ∈ Sn). Moreover, the elements Rα for varying
n and α are supported on disjoint monomials. Thus, these elements are
linearly independent. Hence, the map ι is injective.

(d) Let A denote the totally ordered set {1 < 2 < 3 < · · · } of positive
integers. For each word w = (w1, w2, . . . , wn) ∈ An, we define a monomial
xw in k [[x]] by xw = xw1xw2 · · ·xwn .

Let n ∈ N and σ ∈ Sn. Then,

Lγ(σ) =
∑
w∈An;

stdw=σ−1

xw

(by Lemma 5.3.6). But (8.1.3) (applied to w = σ) yields

Fσ =
∑

i=(i1,...,in):
std(i)=σ−1

Xi =
∑
w∈An;

stdw=σ−1

Xw

and thus

ab (Fσ) = ab

 ∑
w∈An;

stdw=σ−1

Xw

 =
∑
w∈An;

stdw=σ−1

ab (Xw)︸ ︷︷ ︸
=xw

=
∑
w∈An;

stdw=σ−1

xw = Lγ(σ)

= π (Fσ) .

We have shown this for all n ∈ N and σ ∈ Sn. Thus, π is a restriction of
ab. This proves Corollary 8.1.14(d).

(a) Let n ∈ N and w = (w1, w2, . . . , wn) ∈ Sn. Let α be the composition
γ (w) of n. Thus, the definition of π yields π (Fw) = Lα. But applying the
map π ⊗ π to the equality (8.1.2), we obtain

(π ⊗ π) (∆Fw) = (π ⊗ π)

(
n∑
k=0

Fstd(w1,w2,...,wk) ⊗ Fstd(wk+1,wk+2,...,wn)

)

=
n∑
k=0

π
(
Fstd(w1,w2,...,wk)

)
⊗ π

(
Fstd(wk+1,wk+2,...,wn)

)
=

n∑
k=0

Lγ(std(w1,w2,...,wk)) ⊗ Lγ(std(wk+1,wk+2,...,wn))(8.1.11)

370Indeed, write our composition α as (α1, α2, . . . , αk). Then, we can pick w to
be the permutation whose first α1 entries are the largest α1 elements of {1, 2, . . . , n}
in increasing order; whose next α2 entries are the next-largest α2 elements of
{1, 2, . . . , n} in increasing order; and so on. This permutation w will satisfy Des (w) =
{α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk−1} = D (α) and thus γ (w) = α.
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(by the definition of π). Now, for each k ∈ {0, 1, . . . , n}, the two composi-
tions γ (std(w1, w2, . . . , wk)) γ (std(wk+1, wk+2, . . . , wn)) form a pair (β, γ)
of compositions satisfying371 either β · γ = α or β� γ = α, and in fact they
form the only such pair satisfying |β| = k and |γ| = n− k. Thus, the right
hand side of (8.1.11) can be rewritten as∑

(β,γ):
β·γ=α or β�γ=α

Lβ ⊗ Lγ.

But this sum is ∆Lα, as we know from (5.2.5). Hence, (8.1.11) becomes

(π ⊗ π) (∆Fw) = ∆Lα = ∆ (π (Fw)) (since Lα = π (Fw)) .

We have proven this for each n ∈ N and w ∈ Sn. Thus, we have proven
that (π ⊗ π) ◦ ∆FQSym = ∆QSym ◦ π. Combined with εFQSym = εQSym ◦ π
(which is easy to check), this shows that π is a coalgebra homomorphism.

We can similarly see that π is an algebra homomorphism by checking
that it respects the product (compare (5.2.6) and (8.1.1)). However, this
also follows trivially from Corollary 8.1.14(d).

Thus, π is a bialgebra morphism, and therefore a Hopf algebra morphism
(by Corollary 1.4.27). This proves Corollary 8.1.14(a).

(c) For any composition α and any w ∈ S, we have

(ι(Rα), Fw) = (Rα, Fw) =
∑

u:Des(u)=D(α)

(Fu−1 , Fw) =

{
1, if Des(w) = D(α);

0, otherwise

=

{
1, if γ(w) = α;

0, otherwise
= (Rα, Lγ(w)) = (Rα, π(Fw)).

Thus, the maps π and ι are adjoint. This proves Corollary 8.1.14(c).
(b) Again, there are several ways to prove this. Here is one:
First, note that ι (1) = 1 (because R∅ = 1 and R∅ = 1). Next, let α

and β be two nonempty compositions. Let m = |α| and n = |β|. Then,
RαRβ = Rα·β +Rα�β (by (5.4.11)) and thus

ι (RαRβ) = ι (Rα·β +Rα�β)

= ι (Rα·β)︸ ︷︷ ︸
=Rα·β=

∑
i:Des(i)=D(α·β) Xi

+ ι (Rα�β)︸ ︷︷ ︸
=Rα�β=

∑
i:Des(i)=D(α�β) Xi

=
∑

i:Des(i)=D(α·β)

Xi +
∑

i:Des(i)=D(α�β)

Xi

=
∑

i:Des(i)=D(α·β) or Des(i)=D(α�β)

Xi

=
∑

i=(i1,i2,...,im+n):
Des(i1,i2,...,im)=D(α) and

Des(im+1,im+2,...,im+n)=D(β)

Xi(8.1.12)

(since the words i of length m+ n satisfying Des(i) = D(α · β) or Des(i) =
D(α� β) are precisely the words i = (i1, i2, . . . , im+n) satisfying
Des (i1, i2, . . . , im) = D (α) and Des (im+1, im+2, . . . , im+n) = D (β)). But
choosing a word i = (i1, i2, . . . , im+n) satisfying Des (i1, i2, . . . , im) = D (α)

371See Definition 5.2.14 for the notation we are using.
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and Des (im+1, im+2, . . . , im+n) = D (β) is tantamount to choosing a pair
(u,v) of a word u = (i1, i2, . . . , im) satisfying Des u = D (α) and a word v =
(im+1, im+2, . . . , im+n) satisfying Des v = D (β). Thus, (8.1.12) becomes

ι (RαRβ) =
∑

i=(i1,i2,...,im+n):
Des(i1,i2,...,im)=D(α) and

Des(im+1,im+2,...,im+n)=D(β)

Xi =
∑

u:Desu=D(α)

∑
v:Desv=D(β)

XuXv

=

 ∑
u:Desu=D(α)

Xu


︸ ︷︷ ︸

=Rα=ι(Rα)

 ∑
v:Desv=D(β)

Xv


︸ ︷︷ ︸

=Rβ=ι(Rβ)

= ι (Rα) ι (Rβ) .

Thus, we have proven the equality ι (RαRβ) = ι (Rα) ι (Rβ) whenever α and
β are two nonempty compositions. It also holds if we drop the “nonempty”
requirement (since R∅ = 1 and ι (1) = 1). Thus, the k-linear map ι
respects the multiplication. Since ι (1) = 1, this shows that ι is a k-algebra
homomorphism.

For each n ∈ N, we let idn be the identity permutation in Sn. Next,
we observe that each n ∈ N satisfies Hn = R(n) (this follows, e.g., from
(5.4.9), because the composition (n) is coarsened only by itself). Hence,
each n ∈ N satisfies

ι (Hn) = ι
(
R(n)

)
= R(n) =

∑
w∈Sn:

Des(w)=D((n))

Fw−1

= Fid−1
n

 since the only w ∈ Sn

satisfying Des(w) = D ((n))
is idn


= Fidn .(8.1.13)

In order to show that ι is a k-coalgebra homomorphism, it suffices to
check the equalities (ι⊗ ι) ◦ ∆NSym = ∆FQSym ◦ ι and εNSym = εFQSym ◦ ι.
We shall only prove the first one, since the second is easy. Since ι, ∆NSym

and ∆FQSym are k-algebra homomorphisms, it suffices to check it on the
generators H1, H2, H3, . . . of NSym. But on these generators, it follows
from comparing

((ι⊗ ι) ◦∆NSym) (Hn) = (ι⊗ ι) (∆NSymHn)

= (ι⊗ ι)

(∑
i+j=n

Hi ⊗Hj

)
(by (5.4.2))

=
∑
i+j=n

ι (Hi)︸ ︷︷ ︸
=Fidi

(by (8.1.13))

⊗ ι (Hj)︸ ︷︷ ︸
=Fidj

(by (8.1.13))

=
∑
i+j=n

Fidi ⊗ Fidj

=
n∑
k=0

Fidk ⊗ Fidn−k
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with

(∆FQSym ◦ ι) (Hn) = ∆FQSym (ι (Hn)) = ∆FQSym (Fidn) (by (8.1.13))

=
n∑
k=0

Fidk ⊗ Fidn−k (by (8.1.2)) .

Thus, we know that ι is a k-algebra homomorphism and a k-coalgebra
homomorphism. Hence, ι is a bialgebra morphism, and therefore a Hopf
algebra morphism (by Corollary 1.4.27). This proves Corollary 8.1.14(b).

An alternative proof of Corollary 8.1.14(b) can be obtained by adjoint-
ness from Corollary 8.1.14(a). Both the inner product on FQSym and the
dual pairing (·, ·) : NSym⊗QSym → k respect the Hopf structures (i.e.,
the maps ∆NSym and mQSym are mutually adjoint with respect to these
forms, and so are the maps mNSym and ∆QSym, and the maps ∆FQSym and
mFQSym, and so on). Corollary 8.1.14(c) shows that the map ι is adjoint
to the map π with respect to these two bilinear forms. Hence, we have a
commutative diagram

NSym �
� ι //

∼=
��

FQSym

∼=
��

QSymo

π∗
// FQSymo

of Hopf algebras (where the two vertical arrows are the isomorphisms in-
duced by the two bilinear forms). Thus, Corollary 8.1.14(b) follows from
Corollary 8.1.14(a) by duality.

(e) For each composition α, the abelianization map ab sends the non-
commutative tableau monomial XT to the commutative tableau mono-
mial xT whenever T is a tableau of ribbon shape Rib (α). Thus, ab
sends Rα to sRib(α)(x) (because of the formula (8.1.10)). Hence, the com-

position NSym → FQSym ↪→ R〈X〉 ab→ R(x) does indeed send Rα to
sRib(α)(x). But so does the projection π : NSym → Λ, according to Theo-
rem 5.4.10(b). Hence, the composition factors the projection. This proves
Corollary 8.1.14(e). �

We summarize some of this picture as follows:

FQSym
dual

FQSym

π
����

NSym
dual

π
����

?�

ι

OO

QSym

Λ
dual

Λ
?�

OO
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Furthermore, if we denote by ι the canonical inclusion Λ→ QSym as well,
then the diagram

FQSym
π

%% %%
NSym

π

%% %%

+ �
ι

99

QSym

Λ
+ �

ι

99

is commutative (according to Corollary 8.1.14(e)).

Remark 8.1.15. Different notations for FQSym appear in the literature. In
the book [24] (which presents an unusual approach to the character theory
of the symmetric group using FQSym), the Hopf algebra FQSym is called
P , and its basis that we call {Gw}w∈Sn is denoted {w}w∈Sn . In [93, Chapter
7], the Hopf algebra FQSym and its basis {Fw}w∈Sn are denoted MPR and
{w}w∈Sn , respectively.

11. Appendix: Some basics

In this appendix, we briefly discuss some basic notions from linear algebra
and elementary combinatorics that are used in these notes.

11.1. Linear expansions and triangularity. In this Section, we shall
recall some fundamental results from linear algebra (most importantly, the
notions of a change-of-basis matrix and of a unitriangular matrix), but in
greater generality than how it is usually done in textbooks. We shall use
these results later when studying bases of combinatorial Hopf algebras; but
per se, this section has nothing to do with Hopf algebras.

11.1.1. Matrices. Let us first define the notion of a matrix whose rows and
columns are indexed by arbitrary objects (as opposed to numbers):372

Definition 11.1.1. Let S and T be two sets. An S×T -matrix over k shall
mean a family (as,t)(s,t)∈S×T ∈ kS×T of elements of k indexed by elements

of S × T . Thus, the set of all S × T -matrices over k is kS×T .
We shall abbreviate “S×T -matrix over k” by “S×T -matrix” when the

value of k is clear from the context.

This definition of S×T -matrices generalizes the usual notion of matrices
(i.e., the notion of n × m-matrices): Namely, if n ∈ N and m ∈ N, then
the {1, 2, . . . , n} × {1, 2, . . . ,m}-matrices are precisely the n×m-matrices
(in the usual meaning of this word). We shall often use the word “matrix”
for both the usual notion of matrices and for the more general notion of
S × T -matrices.

Various concepts defined for n×m-matrices (such as addition and mul-
tiplication of matrices, or the notion of a row) can be generalized to S×T -
matrices in a straightforward way. The following four definitions are ex-
amples of such generalizations:

Definition 11.1.2. Let S and T be two sets.

372As before, k denotes a commutative ring.
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(a) The sum of two S × T -matrices is defined by
(as,t)(s,t)∈S×T + (bs,t)(s,t)∈S×T = (as,t + bs,t)(s,t)∈S×T .

(b) If u ∈ k and if (as,t)(s,t)∈S×T ∈ kS×T , then we define u (as,t)(s,t)∈S×T
to be the S × T -matrix (uas,t)(s,t)∈S×T .

(c) Let A = (as,t)(s,t)∈S×T be an S × T -matrix. For every s ∈ S, we

define the s-th row of A to be the {1} × T -matrix (as,t)(i,t)∈{1}×T .

(Notice that {1} × T -matrices are a generalization of row vectors.)
Similarly, for every t ∈ T , we define the t-th column of A to be the
S × {1}-matrix (as,t)(s,i)∈S×{1}.

Definition 11.1.3. Let S be a set.

(a) The S × S identity matrix is defined to be the S × S-matrix
(δs,t)(s,t)∈S×S. This S×S-matrix is denoted by IS. (Notice that the

n× n identity matrix In is I{1,2,...,n} for each n ∈ N.)
(b) An S×S-matrix (as,t)(s,t)∈S×S is said to be diagonal if every (s, t) ∈

S × T satisfying s 6= t satisfies as,t = 0.
(c) Let A = (as,t)(s,t)∈S×S be an S×S-matrix. The diagonal of A means

the family (as,s)s∈S. The diagonal entries of A are the entries of this
diagonal (as,s)s∈S.

Definition 11.1.4. Let S, T and U be three sets. Let A = (as,t)(s,t)∈S×T
be an S×T -matrix, and let B = (bt,u)(t,u)∈T×U be a T ×U -matrix. Assume

that the sum
∑

t∈T as,tbt,u is well-defined for every (s, u) ∈ S × U . (For
example, this is guaranteed to hold if the set T is finite. For infinite T , it
may and may not hold.) Then, the S × U -matrix AB is defined by

AB =

(∑
t∈T

as,tbt,u

)
(s,u)∈S×U

.

Definition 11.1.5. Let S and T be two finite sets. We say that an S×T -
matrix A is invertible if and only if there exists a T ×S-matrix B satisfying
AB = IS and BA = IT . In this case, this matrix B is unique; it is denoted
by A−1 and is called the inverse of A.

The definitions that we have just given are straightforward generaliza-
tions of the analogous definitions for n×m-matrices; thus, unsurprisingly,
many properties of n ×m-matrices still hold for S × T -matrices. For ex-
ample:

Proposition 11.1.6. (a) Let S and T be two sets. Let A be an S×T -
matrix. Then, ISA = A and AIT = A.

(b) Let S, T and U be three sets such that T is finite. Let A and B be
two S×T -matrices. Let C be a T ×U -matrix. Then, (A+B)C =
AC +BC.

(c) Let S, T , U and V be four sets such that T and U are finite. Let
A be an S × T -matrix. Let B be a T × U -matrix. Let C be a
U × V -matrix. Then, (AB)C = A (BC).

The proof of Proposition 11.1.6 (and of similar properties that will be
left unstated) is analogous to the proofs of the corresponding properties of
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n ×m-matrices.373 As a consequence of these properties, it is easy to see
that if S is any finite set, then kS×S is a k-algebra.

In general, S × T -matrices (unlike n×m-matrices) do not have a prede-
fined order on their rows and their columns. Thus, the classical notion of a
triangular n× n-matrix cannot be generalized to a notion of a “triangular
S ×S-matrix” when S is just a set with no additional structure. However,
when S is a poset, such a generalization can be made:

Definition 11.1.7. Let S be a poset. Let A = (as,t)(s,t)∈S×S be an S × S-
matrix.

(a) The matrix A is said to be triangular if and only if every (s, t) ∈
S × S which does not satisfy t ≤ s must satisfy as,t = 0. (Here, ≤
denotes the smaller-or-equal relation of the poset S.)

(b) The matrix A is said to be unitriangular if and only if A is triangular
and has the further property that, for every s ∈ S, we have as,s = 1.

(c) The matrix A is said to be invertibly triangular if and only if A is
triangular and has the further property that, for every s ∈ S, the
element as,s of k is invertible.

Of course, all three notions of “triangular”, “unitriangular” and “invert-
ibly triangular” depend on the partial order on S.

Clearly, every invertibly triangular S×S-matrix is triangular. Also, every
unitriangular S × S-matrix is invertibly triangular (because the element 1
of k is invertible).

We can restate the definition of “invertibly triangular” as follows: The
matrix A is said to be invertibly triangular if and only if it is triangular and
its diagonal entries are invertible. Similarly, we can restate the definition
of “unitriangular” as follows: The matrix A is said to be unitriangular if
and only if it is triangular and all its diagonal entries equal 1.

Definition 11.1.7(a) generalizes both the notion of upper-triangular ma-
trices and the notion of lower-triangular matrices. To wit:

Example 11.1.8. Let n ∈ N. Let N1 be the poset whose ground set is
{1, 2, . . . , n} and whose smaller-or-equal relation ≤1 is given by

s ≤1 t ⇐⇒ s ≤ t (as integers).

373A little warning: In Proposition 11.1.6(c), the condition that T and U be finite can
be loosened (we leave this to the interested reader), but cannot be completely disposed
of. It can happen that both (AB)C and A (BC) are defined, but (AB)C = A (BC)
does not hold (if we remove this condition). For example, this happens if S = Z,

T = Z, U = Z, V = Z, A =

({
1, if i ≥ j;
0, if i < j

)
(i,j)∈Z×Z

, B = (δi,j − δi,j+1)(i,j)∈Z×Z

and C =

({
0, if i ≥ j;
1, if i < j

)
(i,j)∈Z×Z

. (Indeed, in this example, it is easy to check that

AB = IZ and BC = −IZ and thus (AB)︸ ︷︷ ︸
=IZ

C = IZC = C 6= −A = A (−IZ)︸ ︷︷ ︸
=BC

= A (BC).)

This seeming paradox is due to the subtleties of rearranging infinite sums (similarly
to how a conditionally convergent series of real numbers can change its value when its
entries are rearranged).
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(This is the usual order relation on this set.) Let N2 be the poset whose
ground set is {1, 2, . . . , n} and whose order relation ≤2 is given by

s ≤2 t ⇐⇒ s ≥ t (as integers).

Let A ∈ kn×n.

(a) The matrix A is upper-triangular if and only if A is triangular when
regarded as an N1 ×N1-matrix.

(b) The matrix A is lower-triangular if and only if A is triangular when
regarded as an N2 ×N2-matrix.

More interesting examples of triangular matrices are obtained when the
order on S is not a total order:

Example 11.1.9. Let S be the poset whose ground set is {1, 2, 3} and
whose smaller relation <S is given by 1 <S 2 and 3 <S 2. Then, the
triangular S × S-matrices are precisely the 3 × 3-matrices of the form a1,1 0 0

a2,1 a2,2 a2,3

0 0 a3,3

 with a1,1, a2,1, a2,2, a2,3, a3,3 ∈ k.

We shall now state some basic properties of triangular matrices:

Proposition 11.1.10. Let S be a finite poset.

(a) The triangular S × S-matrices form a subalgebra of the k-algebra
kS×S.

(b) The invertibly triangular S×S-matrices form a group with respect
to multiplication.

(c) The unitriangular S × S-matrices form a group with respect to
multiplication.

(d) Any invertibly triangular S×S-matrix is invertible, and its inverse
is again invertibly triangular.

(e) Any unitriangular S×S-matrix is invertible, and its inverse is again
unitriangular.

Exercise 11.1.11. Prove Proposition 11.1.10.

11.1.2. Expansion of a family in another. We will often study situations
where two families (es)s∈S and (ft)t∈T of vectors in a k-module M are given,
and the vectors es can be written as linear combinations of the vectors ft.
In such situations, we can form an S × T -matrix out of the coefficients of
these linear combinations; this is one of the ways how matrices arise in the
theory of modules. Let us define the notations we are going to use in such
situations:

Definition 11.1.12. Let M be a k-module. Let (es)s∈S and (ft)t∈T be two
families of elements of M . (The sets S and T may and may not be finite.)

Let A = (as,t)(s,t)∈S×T be an S × T -matrix. Assume that, for every

s ∈ S, all but finitely many t ∈ T satisfy as,t = 0. (This assumption is
automatically satisfied if T is finite.)

We say that the family (es)s∈S expands in the family (ft)t∈T through the
matrix A if

(11.1.1) every s ∈ S satisfies es =
∑
t∈T

as,tft.
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In this case, we furthermore say that the matrix A is a change-of-basis
matrix (or transition matrix ) from the family (es)s∈S to the family (ft)t∈T .

Remark 11.1.13. The notation in Definition 11.1.12 is not really standard;
even we ourselves will occasionally deviate in its use. In the formulation
“the family (es)s∈S expands in the family (ft)t∈T through the matrix A”,
the word “in” can be replaced by “with respect to”, and the word “through”
can be replaced by “using”.

The notion of a “change-of-basis matrix” is slightly misleading, because
neither of the families (es)s∈S and (ft)t∈T has to be a basis. Our use of
the words “transition matrix” should not be confused with the different
meaning that these words have in the theory of Markov chains. The indef-
inite article in “a change-of-basis matrix” is due to the fact that, for given
families (es)s∈S and (ft)t∈T , there might be more than one change-of-basis
matrix from (es)s∈S to (ft)t∈T . (There also might be no such matrix.) When
(es)s∈S and (ft)t∈T are bases of the k-module M , there exists precisely one
change-of-basis matrix from (es)s∈S to (ft)t∈T .

So a change-of-basis matrix A = (as,t)(s,t)∈S×T from one family (es)s∈S to

another family (ft)t∈T allows us to write the elements of the former family
as linear combinations of the elements of the latter (using (11.1.1)). When
such a matrix A is invertible (and the sets S and T are finite374), it also
(indirectly) allows us to do the opposite: i.e., to write the elements of the
latter family as linear combinations of the elements of the former. This is
because if A is an invertible change-of-basis matrix from (es)s∈S to (ft)t∈T ,
then A−1 is a change-of-basis matrix from (ft)t∈T to (es)s∈S. This is part
(a) of the following theorem:

Theorem 11.1.14. Let M be a k-module. Let S and T be two finite sets.
Let (es)s∈S and (ft)t∈T be two families of elements of M .

Let A be an invertible S × T -matrix. Thus, A−1 is a T × S-matrix.
Assume that the family (es)s∈S expands in the family (ft)t∈T through

the matrix A. Then:

(a) The family (ft)t∈T expands in the family (es)s∈S through the matrix
A−1.

(b) The k-submodule of M spanned by the family (es)s∈S is the k-
submodule of M spanned by the family (ft)t∈T .

(c) The family (es)s∈S spans the k-module M if and only if the family
(ft)t∈T spans the k-module M .

(d) The family (es)s∈S is k-linearly independent if and only if the family
(ft)t∈T is k-linearly independent.

(e) The family (es)s∈S is a basis of the k-module M if and only if the
family (ft)t∈T is a basis of the k-module M .

Exercise 11.1.15. Prove Theorem 11.1.14.

Definition 11.1.16. Let M be a k-module. Let S be a finite poset. Let
(es)s∈S and (fs)s∈S be two families of elements of M .

374We are requiring the finiteness of S and T mainly for the sake of simplicity. We
could allow S and T to be infinite, but then we would have to make some finiteness
requirements on A and A−1.
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(a) We say that the family (es)s∈S expands triangularly in the family
(fs)s∈S if and only if there exists a triangular S × S-matrix A such
that the family (es)s∈S expands in the family (fs)s∈S through the
matrix A.

(b) We say that the family (es)s∈S expands invertibly triangularly in
the family (fs)s∈S if and only if there exists an invertibly triangular
S × S-matrix A such that the family (es)s∈S expands in the family
(fs)s∈S through the matrix A.

(c) We say that the family (es)s∈S expands unitriangularly in the family
(fs)s∈S if and only if there exists a unitriangular S × S-matrix A
such that the family (es)s∈S expands in the family (fs)s∈S through
the matrix A.

Clearly, if the family (es)s∈S expands unitriangularly in the family (fs)s∈S,
then it also expands invertibly triangularly in the family (fs)s∈S (because
any unitriangular matrix is an invertibly triangular matrix).

We notice that in Definition 11.1.16, the two families (es)s∈S and (fs)s∈S
must be indexed by one and the same set S.

The concepts of “expanding triangularly”, “expanding invertibly trian-
gularly” and “expanding unitriangularly” can also be characterized without
referring to matrices, as follows:

Remark 11.1.17. Let M be a k-module. Let S be a finite poset. Let (es)s∈S
and (fs)s∈S be two families of elements of M . Let < denote the smaller
relation of the poset S, and let ≤ denote the smaller-or-equal relation of
the poset S. Then:

(a) The family (es)s∈S expands triangularly in the family (fs)s∈S if and
only if every s ∈ S satisfies

es = (a k-linear combination of the elements ft

for t ∈ S satisfying t ≤ s) .

(b) The family (es)s∈S expands invertibly triangularly in the family
(fs)s∈S if and only if every s ∈ S satisfies

es = αsfs + (a k-linear combination of the elements ft

for t ∈ S satisfying t < s)

for some invertible αs ∈ k.
(c) The family (es)s∈S expands unitriangularly in the family (fs)s∈S if

and only if every s ∈ S satisfies

es = fs + (a k-linear combination of the elements ft

for t ∈ S satisfying t < s) .

All three parts of Remark 11.1.17 follow easily from the definitions.

Example 11.1.18. Let n ∈ N. For this example, let S be the poset
{1, 2, . . . , n} (with its usual order). Let M be a k-module, and let (es)s∈S
and (fs)s∈S be two families of elements of M . We shall identify these fami-
lies (es)s∈S and (fs)s∈S with the n-tuples (e1, e2, . . . , en) and (f1, f2, . . . , fn).
Then, the family (es)s∈S = (e1, e2, . . . , en) expands triangularly in the fam-
ily (fs)s∈S = (f1, f2, . . . , fn) if and only if, for every s ∈ {1, 2, . . . , n}, the
vector es is a k-linear combination of f1, f2, . . . , fs. Moreover, the family
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(es)s∈S = (e1, e2, . . . , en) expands unitriangularly in the family (fs)s∈S =
(f1, f2, . . . , fn) if and only if, for every s ∈ {1, 2, . . . , n}, the vector es is a
sum of fs with a k-linear combination of f1, f2, . . . , fs−1.

Corollary 11.1.19. Let M be a k-module. Let S be a finite poset. Let
(es)s∈S and (fs)s∈S be two families of elements of M . Assume that the
family (es)s∈S expands invertibly triangularly in the family (fs)s∈S. Then:

(a) The family (fs)s∈S expands invertibly triangularly in the family
(es)s∈S.

(b) The k-submodule of M spanned by the family (es)s∈S is the k-
submodule of M spanned by the family (fs)s∈S.

(c) The family (es)s∈S spans the k-module M if and only if the family
(fs)s∈S spans the k-module M .

(d) The family (es)s∈S is k-linearly independent if and only if the family
(fs)s∈S is k-linearly independent.

(e) The family (es)s∈S is a basis of the k-module M if and only if the
family (fs)s∈S is a basis of the k-module M .

Exercise 11.1.20. Prove Remark 11.1.17 and Corollary 11.1.19.

An analogue of Corollary 11.1.19 can be stated for unitriangular expan-
sions, but we leave this to the reader.

12. Further hints to the exercises (work in progress)

The following pages contain hints to (some of375) the exercises in the text
(beyond the hints occasionally included in the exercises themselves). Some
of the hints rise to the level of outlined solutions.

Note that there is also a version of this text that contains detailed so-
lutions for all the exercises; this version can be downloaded from http://

www.cip.ifi.lmu.de/~grinberg/algebra/HopfComb-sols.pdf (or com-
piled from the sourcecode of the text).

Warning: The hints below are new and have never been proofread.
Typos (or worse) are likely. In case of doubt, consult the detailed solutions.

12.1. Hints for Chapter 1. Hint to Exercise 1.2.3. The claim of the
exercise is dual to the classical fact that if A is a k-module and m : A⊗A→
A is a k-linear map, then there exists at most one k-linear map u : k→ A
such that the diagram (1.1.2) commutes376. Take any proof of this latter
fact, rewrite it in an “element-free” fashion377, and “reverse all arrows”.
This will yield a solution to Exercise 1.2.3.

For an alternative solution, use Sweedler notation (as in (1.2.3)) as fol-
lows: The commutativity of the diagram (1.2.2) says that

c =
∑
(c)

ε (c1) c2 =
∑
(c)

ε (c2) c1 for each c ∈ C.

375Currently only the ones from Chapter 1.
376This fact is just the linearization of the known fact that any binary operation has

at most one neutral element.
377This means rewriting it completely in terms of linear maps rather than elements.

For example, instead of talking about m (m (a⊗ b)⊗ c) for three elements a, b, c ∈ A,
you should talk about the map m ◦ (m⊗ idA) : A⊗A⊗A→ A (which is, of course, the
map that sends each a⊗b⊗c to m (m (a⊗ b)⊗ c)). Instead of computing with elements,
you should compute with maps (and commutative diagrams).

http://www.cip.ifi.lmu.de/~grinberg/algebra/HopfComb-sols.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/HopfComb-sols.pdf
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Thus, if ε1 and ε2 are two k-linear maps ε : C → k such that the diagram
(1.2.2) commutes, then each c ∈ C satisfies

c =
∑
(c)

ε1 (c1) c2 =
∑
(c)

ε1 (c2) c1

and

c =
∑
(c)

ε2 (c1) c2 =
∑
(c)

ε2 (c2) c1.

Apply ε2 to both sides of the equality c =
∑

(c) ε1 (c2) c1, and apply ε1 to

both sides of the equality c =
∑

(c) ε2 (c1) c2. Compare the results, and
conclude that ε1 = ε2.

Hint to Exercise 1.3.4. Part (a) is well-known, and part (b) is dual to
part (a). So the trick is (again) to rewrite the classical proof of part (a) in
an “element-free” way, and then “reversing all arrows”. Alternatively, part
(b) can be solved using Sweedler notation.

Hint to Exercise 1.3.6. Same method as for Exercise 1.3.4 above.

Hint to Exercise 1.3.13. (a) Use the following fact from linear algebra:
If U , V , U ′ and V ′ are four k-modules, and φ : U → U ′ and ψ : V → V ′ are
two surjective k-linear maps, then the kernel of φ⊗ψ : U ⊗V → U ′⊗V ′ is

ker (φ⊗ ψ) = (kerφ)⊗ V + U ⊗ (kerψ) .

(b) The fact just mentioned also holds if we no longer require φ and ψ
to be surjective, but instead require k to be a field.

Hint to Exercise 1.3.18. Let f : V → W be an invertible graded k-linear
map. Let n ∈ N and w ∈ Wn. Show that the n-th homogeneous component
of f−1 (w) is also a preimage of w under f , and thus must equal f−1 (w).
Therefore, f−1 (w) ∈ Wn.

Hint to Exercise 1.3.19. (a) Define the k-linear map ∆̃ : A → A ⊗ A

by ∆̃ (x) = ∆ (x)− (x⊗ 1 + 1⊗ x). Argue that ∆̃ is graded, so its kernel

ker ∆̃ is a graded k-submodule of A. But this kernel is precisely p.
(b) The hard part is to show that ε (p) = 0. To do so, consider any x ∈ p,

and apply the map ε⊗ id to both sides of the equality ∆ (x) = x⊗1+1⊗x.
The result simplifies to x = ε (x) · 1A + x. Thus, ε (x) · 1A = 0. Now apply
ε to this, thus obtaining ε (x) = 0.

Hint to Exercise 1.3.20. (a) This follows from 1A ∈ A0, which is part of
what it means for A to be a graded k-algebra.

(b) Let ε′ : A0 → k be the restriction of the map ε to A0. We know
that ε′ is surjective (since ε′ (1A) = 1k), and that both A0 and k are free k-
modules of rank 1 (since connectedness of A means A0

∼= k as k-modules).
It is an an easy exercise in linear algebra to conclude from these facts that
ε′ is an isomorphism. Since ε′ ◦ u = idk, we thus conclude that u : k→ A0

is an isomorphism as well (from k to A0).
(c) This follows from part (b).
(e) This follows from how we solved part (b).
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(d) Since the bialgebra A is graded, the map ε must be graded. Thus,
for each positive integer n, we have ε (An) ⊂ kn = 0. This quickly yields
ε (I) = 0 (where I =

⊕
n>0An), hence I ⊂ ker ε. On the other hand,

ker ε ⊂ I can be shown as follows: Let a ∈ ker ε; write a in the form
a = a′ + a′′ for some a′ ∈ A0 and some a′′ ∈ I, and then argue that
0 = ε (a) = ε (a′ + a′′) = ε (a′) + ε (a′′)︸ ︷︷ ︸

=0
(since a′′∈I⊂ker ε)

= ε (a′), so that a′ = 0 by

part (e) and therefore a ∈ I.
(f) This is most intuitive with Sweedler notation: Let x ∈ A. Then,

∆ (x) =
∑

(x) x1 ⊗ x2. Applying id⊗ε and recalling the commutativity of

(1.2.2), we thus get x =
∑

(x) ε (x2)x1. Thus,

∆ (x)︸ ︷︷ ︸
=
∑

(x) x1⊗x2

− x︸︷︷︸
=
∑

(x) ε(x2)x1

⊗1 =
∑
(x)

x1 ⊗ x2 −
∑
(x)

ε (x2)x1 ⊗ 1

=
∑
(x)

x1︸︷︷︸
∈A

⊗ (x2 − ε (x2) · 1)︸ ︷︷ ︸
∈ker ε=I

(by part (d))

∈ A⊗ I.

(g) Let x ∈ I. Proceeding similarly to part (f), show that

∆ (x)−1⊗x−x⊗1+ε (x) 1⊗1 =
∑
(x)

(x1 − ε (x1) · 1)︸ ︷︷ ︸
∈ker ε=I

(by part (d))

⊗ (x2 − ε (x2) · 1)︸ ︷︷ ︸
∈ker ε=I

(by part (d))

∈ I⊗I.

Since x ∈ I = ker ε, the ε (x) 1⊗ 1 term on the left hand side vanishes.
(h) This follows from part (g), since a simple homogeneity argument

shows that (I ⊗ I)n =
∑n−1

k=1 Ak ⊗ An−k.

Hint to Exercise 1.3.24. We need to check the four equalities Dq ◦m =
m ◦ (Dq ⊗Dq) and Dq ◦ u = u and (Dq ⊗Dq) ◦∆ = ∆ ◦Dq and ε ◦Dq = ε.
This can easily be done by hand (just check everything on homogeneous
elements); a more erudite proof proceeds as follows: Generalize the map
Dq to a map Dq,V : V → V defined (in the same way as Dq) for every
graded k-module V , and show that these maps Dq,V are functorial (i.e., if
f : V → W is a graded k-linear map between two graded k-modules V and
W , then Dq,W ◦ f = f ◦Dq,V ) and “respect tensor products” (i.e., we have
Dq,V⊗W = Dq,V ⊗Dq,W for any two graded k-modules V and W ). The four
equalities are then easily obtained from these two facts, without having to
introduce elements.

Hint to Exercise 1.3.26. (a) Our definition of the k-coalgebra A ⊗ B
yields

∆A⊗B = (idA⊗TA,B ⊗ idB)◦(∆A ⊗∆B) and εA⊗B = θ◦(εA ⊗ εB) ,

where θ is the canonical k-module isomorphism k ⊗ k → k. All maps on
the right hand sides are k-algebra homomorphisms (see Exercise 1.3.6(a));
thus, so are ∆A⊗B and εA⊗B.

(b) Straightforward.

Hint to Exercise 1.4.2. Simple computation (either element-free or with
Sweedler notation).
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Hint to Exercise 1.4.4. Simple computation (either element-free or with
Sweedler notation).

Hint to Exercise 1.4.5. Straightforward computation, best done using
Sweedler notation.

Hint to Exercise 1.4.15. Use Exercise 1.4.2.

Hint to Exercise 1.4.19. The following is more context than hint (see
the last paragraph for an actual hint).

It is easiest to prove this by calculating with elements. To wit, in order
to prove that two k-linear maps from A⊗(k+1) are identical, it suffices to
show that they agree on all pure tensors a1 ⊗ a2 ⊗ · · · ⊗ ak+1 ∈ A⊗(k+1).
But the recursive definition of m(k) shows that

(12.1.1) m(k) (a1 ⊗ a2 ⊗ · · · ⊗ ak+1) = a1 (a2 (a3 (· · · (akak+1) · · · )))
for all a1, a2, . . . , ak+1 ∈ A. Now, the “general associativity” law (a funda-
mental result in abstract algebra, commonly used without mention) says
that, because the multiplication of A is associative, the parentheses in
the product a1 (a2 (a3 (· · · (akak+1) · · · ))) can be omitted without making it
ambiguous – i.e., any two ways of parenthesizing the product a1a2 · · · ak+1

evaluate to the same result. (For example, for k = 4, this says that

a1 (a2 (a3a4)) = a1 ((a2a3) a4) = (a1a2) (a3a4) = (a1 (a2a3)) a4 = ((a1a2) a3) a4

for all a1, a2, a3, a4 ∈ A.) Thus, we can rewrite (12.1.1) as

m(k) (a1 ⊗ a2 ⊗ · · · ⊗ ak+1) = a1a2 · · · ak+1.

Using this formula, all four parts of the exercise become trivial: For exam-
ple, part (a) simply says that

a1a2 · · · ak+1 = (a1a2 · · · ai+1) (ai+2ai+3 · · · ak+1)

for all a1, a2, . . . , ak+1 ∈ A, because we have(
m ◦

(
m(i) ⊗m(k−1−i))) (a1 ⊗ a2 ⊗ · · · ⊗ ak+1)

= (a1a2 · · · ai+1) (ai+2ai+3 · · · ak+1) .

Likewise, part (c) simply says that

a1a2 · · · ak+1 = a1a2 · · · ai (ai+1ai+2) ai+3ai+4 · · · ak+1

for all a1, a2, . . . , ak+1 ∈ A. Parts (b) and (d) are particular cases of parts
(a) and (c), respectively.

Of course, in order for this to be a complete solution, you have to prove
the “general associativity” law used above. It turns out that doing so is
not much easier than solving the exercise from scratch (in fact, part (a)
of the exercise is an equivalent form of the “general associativity” law).
So we can just as well start from scratch and solve part (a) directly by
induction on k, then derive part (b) as its particular case, then solve part
(c) by induction on k using the result of part (b), then derive part (d) as
a particular case of (c).

Hint to Exercise 1.4.20. If you have solved Exercise 1.4.19 in an “element-
free” way, then you can reverse all arrows in said solution and thus obtain
a solution to Exercise 1.4.20.
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Hint to Exercise 1.4.22. (a) Induction on k, using Exercise 1.3.6(b).
(b) This is dual to (a).

(d) For every k-coalgebra C, consider the map ∆
(k)
C : C → C⊗(k+1)

(this is the map ∆(k) defined in Exercise 1.4.20). This map ∆
(k)
C is clearly

functorial in C. By this we mean that if C and D are any two k-coalgebras,
and f : C → D is any k-coalgebra homomorphism, then the diagram

C
f //

∆
(k)
C��

D

∆
(k)
D��

C⊗(k+1)

f⊗(k+1)

// D⊗(k+1)

commutes. Now, apply this to C = H⊗(`+1), D = H and f = m
(`)
H (using

part (a)).
(c) This is dual to (d).

Hint to Exercise 1.4.23. Induction on k.

Hint to Exercise 1.4.28. This is dual to Proposition 1.4.10, so the usual
strategy (viz., rewriting element-free and reversing all arrows) applies.

Hint to Exercise 1.4.29. (a) A straightforward generalization of the proof
of Proposition 1.4.10 (which corresponds to the particular case when C = A
and r = id) does the trick.

(b) This is dual to (a).
(c) Easy.
(d) Apply Exercise 1.4.29(a) to C = A and r = idA; then, apply Propo-

sition 1.4.26(a) to H = A and α = S.
(e) Let s : C → A be the k-linear map that sends every homogeneous

element c ∈ Cn (for every n ∈ N) to the n-th homogeneous component of
r?(−1) (c). Then, s is graded, and (this takes some work) is also a ?-inverse
to r. But r has only one ?-inverse.

Hint to Exercise 1.4.30. (a) Rewrite the assumption as m ◦ (P ⊗ id) ◦
T ◦∆ = u ◦ ε, where T is the twist map TA,A. Proposition 1.4.10 leads to
m◦(S ⊗ S) = S◦m◦T and u = S◦u. Exercise 1.4.28 leads to (S ⊗ S)◦∆ =
T ◦∆ ◦S and ε ◦S = ε. Use these to show that (P ◦ S) ? S = u ◦ ε, so that
P ◦ S = id. Also, show that S ? (S ◦ P ) = u ◦ ε, so that S ◦ P = id.

(b) Similar to (a).
(c) Let A be a connected graded Hopf algebra. Just as a left ?-inverse

S to idA has been constructed in the proof of Proposition 1.4.16, we could
construct a k-linear map P : A → A such that every a ∈ A satisfies∑

(a) P (a2) · a1 = u (ε (a)). Now apply part (a).

Hint to Exercise 1.4.32. Since D is a direct summand of C, we can
identify the tensor products D⊗C, C⊗D and D⊗D with their canonical
images inside C ⊗ C. Now, we can show that ∆ (D) ⊂ D ⊗D as follows:
Let p : C → D be the canonical projection from C onto its direct summand



HOPF ALGEBRAS IN COMBINATORICS 341

D; then, ∆ (D) ⊂ D⊗C shows that (p⊗ id)◦∆ = ∆, and ∆ (D) ⊂ C⊗D
shows that (id⊗p) ◦∆ = ∆. Hence,

(p⊗ p)︸ ︷︷ ︸
=(p⊗id)◦(id⊗p)

◦∆ = (p⊗ id) ◦ (id⊗p) ◦∆︸ ︷︷ ︸
=∆

= (p⊗ id) ◦∆ = ∆.

This yields ∆ (D) ⊂ D ⊗ D. Hence, we get a map ∆D : D → D ⊗ D by
restricting ∆. Obviously, the map ε : C → k restricts to a map εD : D → k
as well. It remains to check the commutativity of the diagrams (1.2.1) and
(1.2.2) for D instead of C; but this is inherited from C.

Hint to Exercise 1.4.33. (a) Let f̃ = (idC ⊗f ⊗ idC) ◦ ∆(2) : C →
C ⊗ U ⊗ C; then, K = ker f̃ . Show (by manipulation of maps, using

Exercise 1.4.20(b)) that (idC ⊗ idU ⊗∆) ◦ f̃ =
(
f̃ ⊗ idC

)
◦∆. Now,

K = ker f̃ ⊂ ker

(idC ⊗ idU ⊗∆) ◦ f̃︸ ︷︷ ︸
=(f̃⊗idC)◦∆

 = ker
((
f̃ ⊗ idC

)
◦∆
)

= ∆−1
(

ker
(
f̃ ⊗ idC

))
and therefore

∆ (K) ⊂ ker
(
f̃ ⊗ idC

)
=
(

ker f̃
)

︸ ︷︷ ︸
=K

⊗C

(since tensoring over a field is left-exact)

= K ⊗ C.

Similarly, ∆ (K) ⊂ C ⊗K. Now, apply Exercise 1.4.32 to D = K.
(b) Let E be a k-subcoalgebra of C which is a subset of ker f . Then,

∆(2) (E) ⊂ E ⊗ E ⊗ E (since E is a subcoalgebra) and f (E) = 0 (since
E ⊂ ker f). Now,

(
(idC ⊗f ⊗ idC) ◦∆(2)

)
(E) = (idC ⊗f ⊗ idC)

∆(2) (E)︸ ︷︷ ︸
⊂E⊗E⊗E


⊂ (idC ⊗f ⊗ idC) (E ⊗ E ⊗ E)

= idC (E)⊗ f (E)︸ ︷︷ ︸
=0

⊗ idC (E) = 0.

Hence, E ⊂ ker
(
(idC ⊗f ⊗ idC) ◦∆(2)

)
= K.

[Remark: Exercise 1.4.33(a) would not hold if we allowed k to be an
arbitrary commutative ring rather than a field.]

Hint to Exercise 1.4.34. (a) Here is Takeuchi’s argument: We know that
the map h |C0∈ Hom (C0, A) is ?-invertible; let g̃ be its ?-inverse. Extend
g̃ to a k-linear map g : C → A by defining it as 0 on every Cn for n > 0.
It is then easy to see that (h ? g) |C0= (g ? h) |C0= (uε) |C0 . This allows
us to assume WLOG that h |C0= (uε) |C0 (because once we know that
h ? g and g ? h are ?-invertible, it follows that so is h). Assuming this,
we conclude that h− uε annihilates C0. Define f as h− uε. Now, we can
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proceed as in the proof of Proposition 1.4.24 to show that
∑

k≥0 (−1)k f ?k

is a well-defined linear map C → A and a two-sided ?-inverse for h. Thus,
h is ?-invertible, and part (a) of the exercise is proven. (An alternative
proof proceeds by mimicking the proof of Proposition 1.4.16, again by first
assuming WLOG that h |C0= (uε) |C0 .)

(b) Apply part (a) to C = A and the map idA : A→ A.
(c) Applying part (b), we see that A is a Hopf algebra (since A0 = k is a

Hopf algebra) in the setting of Proposition 1.4.16. This yields the existence
of the antipode. Its uniqueness is trivial, and its gradedness follows from
Exercise 1.4.29(e).

Hint to Exercise 1.4.35. (a) Let I be a two-sided coideal of A such that
I∩p = 0 and such that I =

⊕
n≥0 (I ∩ An). Let In = I∩An for every n ∈ N.

Then, I =
⊕

n≥0 In. Since I is a two-sided coideal, we have ε (I) = 0.
We want to prove that I = 0. It clearly suffices to show that every

n ∈ N satisfies In = 0 (since I =
⊕

n≥0 In). We shall show this by strong
induction: We fix an N ∈ N, and we assume (as induction hypothesis) that
In = 0 for all n < N . We must prove that IN = 0.

Fix i ∈ IN ; we aim to show that i = 0. We have i ∈ IN ⊂ AN and thus
∆ (i) ∈ (A⊗ A)N (since ∆ is a graded map). On the other hand, from
i ∈ IN ⊂ I, we obtain

∆ (i) ∈ ∆ (I) ⊂ I︸︷︷︸
=
⊕
n≥0 In

⊗ A︸︷︷︸
=
⊕
m≥0 Am

+ A︸︷︷︸
=
⊕
m≥0 Am

⊗ I︸︷︷︸
=
⊕
n≥0 In

(since I is a two-sided coideal)

=
∑

(m,n)∈N2

In ⊗ Am +
∑

(m,n)∈N2

Am ⊗ In.

Combining this with ∆ (i) ∈ (A⊗ A)N , we obtain

∆ (i) ∈
∑

(m,n)∈N2;
m+n=N

In ⊗ Am +
∑

(m,n)∈N2;
m+n=N

Am ⊗ In

(
since In ⊗ Am and Am ⊗ In are subsets of (A⊗ A)n+m

)
=

N∑
n=0

In ⊗ AN−n +
N∑
n=0

AN−n ⊗ In

= IN ⊗ A0︸︷︷︸
=k·1A

+
N−1∑
n=0

In︸︷︷︸
=0

(by the induction
hypothesis)

⊗AN−n

+ A0︸︷︷︸
=k·1A

⊗IN +
N−1∑
n=0

AN−n ⊗ In︸︷︷︸
=0

(by the induction
hypothesis)

= IN ⊗ (k · 1A) + (k · 1A)⊗ IN .

In other words,

(12.1.2) ∆ (i) = j ⊗ 1A + 1A ⊗ k
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for some j, k ∈ IN . By applying ε ⊗ id to both sides of this equality, and
recalling the commutativity of (1.2.2), we obtain i = ε (j) 1A + k. But
ε (j) = 0 (since j ∈ IN ⊂ I, so ε (j) ∈ ε (I) = 0), so this simplifies to i = k.
Similarly, i = j. Hence, (12.1.2) rewrites as ∆ (i) = i⊗ 1A + 1A ⊗ i, which
shows that i ∈ p, hence i ∈ I ∩ p = 0 and thus i = 0. This was for proved
for each i ∈ IN , so we obtain IN = 0. This completes the induction step,
and so part (a) is solved.

(b) Exercise 1.3.13(a) shows that ker f is a two-sided coideal of C. If
f |p is injective, then (ker f) ∩ p = 0. Now, apply part (a) of the current
exercise to I = ker f .

(c) Proceed as in part (b), but use Exercise 1.3.13(b) instead of Exer-
cise 1.3.13(a).

Hint to Exercise 1.5.4. (a) Straightforward (if slightly laborious) com-
putations.

(b) Direct verification (the hard part of which has been done in (1.3.7)
already).

(c) For every subset S of a k-module U , we let 〈S〉 denote the k-
submodule of U spanned by S. Our definition of J thus becomes

(12.1.3) J = T (p) · C · T (p) ,

where C = 〈xy − yx− [x, y] | x, y ∈ p〉. A simple computation shows that
each element of C is primitive. Hence,

∆ (C) ⊂ C ⊗ T (p) + T (p)⊗ C.

Applying ∆ to both sides of (12.1.3), and recalling that ∆ is a k-algebra
homomorphism, we find

∆ (J) = ∆ (T (p))︸ ︷︷ ︸
⊂T (p)⊗T (p)

· ∆ (C)︸ ︷︷ ︸
⊂C⊗T (p)+T (p)⊗C

·∆ (T (p))︸ ︷︷ ︸
⊂T (p)⊗T (p)

⊂ (T (p)⊗ T (p)) · (C ⊗ T (p) + T (p)⊗ C) · (T (p)⊗ T (p))

= J ⊗ T (p) + T (p)⊗ J.

A similar (but simpler) argument shows ε (J) = 0. Thus, J is a two-sided
coideal of T (p). This yields that T (p) /J is a k-bialgebra.

(d) We need to show that S (J) ⊂ J . This can be done in a similar
way as we proved ∆ (J) ⊂ J ⊗ T (p) + T (p) ⊗ J in part (c), once you
know (from Proposition 1.4.10) that the antipode S of T (p) is a k-algebra
anti-homomorphism.

Hint to Exercise 1.5.5. Straightforward and easy verification.

Hint to Exercise 1.5.6. Straightforward and easy verification. Parts (a)
and (b) are dual, of course.

Hint to Exercise 1.5.8. (a) Straightforward and easy verification.
(b) The dual says the following: Let A and B be two k-coalgebras, at

least one of which is cocommutative. Prove that the k-coalgebra anti-
homomorphisms from A to B are the same as the k-coalgebra homomor-
phisms from A to B.
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Hint to Exercise 1.5.9. For every 1 ≤ i < j ≤ k, let ti,j be the transpo-
sition in Sk which transposes i with j. It is well-known that the symmet-
ric group Sk is generated by the transpositions ti,i+1 with i ranging over
{1, 2, . . . , k − 1}. However, we have (ρ (π)) ◦ (ρ (ψ)) = ρ (πψ) for any two
elements π and ψ of Sk. Thus, it suffices to check that

m(k−1) ◦ (ρ (ti,i+1)) = m(k−1) for all i ∈ {1, 2, . . . , k − 1} .

But this is not hard to check usingm(k−1) = m(k−2)◦(idA⊗(i−1) ⊗m⊗ idA⊗(k−1−i))
(a consequence of Exercise 1.4.19(c)) and m ◦ T = m.

Hint to Exercise 1.5.10. Here is the dual statement: Let C be a cocom-
mutative k-coalgebra, and let k ∈ N. The symmetric group Sk acts on the
k-fold tensor power C⊗k by permuting the tensor factors:
σ (v1 ⊗ v2 ⊗ · · · ⊗ vk) = vσ−1(1)⊗vσ−1(2)⊗· · ·⊗vσ−1(k) for all v1, v2, . . . , vk ∈
C and σ ∈ Sk. For every π ∈ Sk, denote by ρ (π) the action of π on
C⊗k (this is an endomorphism of C⊗k). Show that every π ∈ Sk satisfies
(ρ (π)) ◦ ∆(k−1) = ∆(k−1). (Recall that ∆(k−1) : C → C⊗k is defined as in
Exercise 1.4.20 for k ≥ 1, and by ∆(−1) = ε : C → k for k = 0.)

Hint to Exercise 1.5.11. (a) Use Exercise 1.5.6(b) and Exercise 1.3.6(a)
to represent f ? g as a composition of three k-algebra homomorphisms.

(b) Induction on k, using part (a).
(c) Use Proposition 1.4.10, Proposition 1.4.26(a) and the easy fact that

a composition of a k-algebra homomorphism with a
k-algebra anti-homomorphism (in either order) always is a k-algebra anti-
homomorphism.

(d) Use Exercise 1.5.6(b). Then, proceed by induction on k as in the
solution of Exercise 1.4.22(a).

(e) Use Proposition 1.4.3.
(f) Let H be a commutative k-bialgebra. Let k and ` be two nonnega-

tive integers. Then, Exercise 1.5.11(b) (applied to A = H and fi = idH)
yields that id?kH is a k-algebra homomorphism H → H. Now, apply Exer-
cise 1.5.11(e) to H, H, H, H, `, idH , id?kH and idH instead of C, C ′, A, A′,
k, fi, α and γ.

(g) This is an exercise in bootstrapping. First, let k ∈ N. Then, part
(b) of this exercise shows that id?kH is a k-algebra homomorphism. Use
this together with part (c) to conclude that id?kH ◦S is again a k-algebra

homomorphism and a ?-inverse to id?kH ; thus, id?kH ◦S =
(
id?kH

)?(−1)
= id

?(−k)
H ,

and this map id
?(−k)
H is a k-algebra homomorphism.

Now forget that we fixed k. We thus have shown that id?kH and id
?(−k)
H

are k-algebra homomorphisms for each k ∈ N. In other words,

(12.1.4) id?kH is a k-algebra homomorphism for every k ∈ Z.

Furthermore, we have proved the equality id?kH ◦S = id
?(−k)
H for each

k ∈ N. Repeating the proof of this, but now taking k ∈ Z instead of k ∈ N,
we conclude that it also holds for each k ∈ Z (since we already have proved
(12.1.4)). In other words,

(12.1.5) id
?(−k)
H = id?kH ◦S for every k ∈ Z.
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Now, fix two integers k and `. From (12.1.4), we know that id?kH is a
k-algebra homomorphism. Hence, if ` is nonnegative, then we can prove

id?kH ◦ id?`H = id
?(k`)
H just as we did in the solution to Exercise 1.5.11(f).

But the case when ` is negative can be reduced to the previous case by
applying (12.1.5) (once to −` instead of k, and once again to −k` instead

of k). Thus, in each case, we obtain id?kH ◦ id?`H = id
?(k`)
H .

(h) The dual of Exercise 1.5.11(a) is the following exercise:

If H is a k-bialgebra and C is a cocommutative k-coalgebra,
and if f and g are two k-coalgebra homomorphisms C → H,
then prove that f ? g also is a k-coalgebra homomorphism
C → H.

The dual of Exercise 1.5.11(b) is the following exercise:

If H is a k-bialgebra and C is a cocommutative k-coalgebra,
and if f1, f2, . . . , fk are several k-coalgebra homomorphisms
C → H, then prove that f1 ?f2 ? · · ·?fk also is a k-coalgebra
homomorphism C → H.

The dual of Exercise 1.5.11(c) is the following exercise:

IfH is a Hopf algebra and C is a cocommutative k-coalgebra,
and if f : C → H is a k-coalgebra homomorphism, then
prove that S ◦ f : C → H (where S is the antipode of H) is
again a k-coalgebra homomorphism, and is a ?-inverse to f .

The dual of Exercise 1.5.11(d) is the following exercise:

If C is a cocommutative k-coalgebra, then show that ∆(k)

is a k-coalgebra homomorphism for every k ∈ N. (The map
∆(k) : C → C⊗(k+1) is defined as in Exercise 1.4.20.)

The dual of Exercise 1.5.11(e) is Exercise 1.5.11(e) itself (up to renaming
objects and maps).

The dual of Exercise 1.5.11(f) is the following exercise:

If H is a cocommutative k-bialgebra, and k and ` are two

nonnegative integers, then prove that id?`H ◦ id?kH = id
?(`k)
H .

The dual of Exercise 1.5.11(g) is the following exercise:

If H is a cocommutative k-Hopf algebra, and k and ` are

two integers, then prove that id?`H ◦ id?kH = id
?(`k)
H .

Hint to Exercise 1.5.13. This is dual to Corollary 1.4.12 (but can also
easily be shown using Exercise 1.4.29(b), Exercise 1.5.8(b) and Proposi-
tion 1.4.26(b)).

Hint to Exercise 1.5.14. (a) This can be proved computationally (using
Sweedler notation), but there is a nicer argument as well:

A coderivation of a k-coalgebra (C,∆, ε) is defined as a k-linear map
F : C → C such that ∆ ◦ F = (F ⊗ id + id⊗F ) ◦ ∆. (The reader can
check that this axiom is the result of writing the axiom for a derivation
in element-free terms and reversing all arrows. Nothing less should be
expected.) It is easy to see that E is a coderivation. Hence, it will be
enough to check that (S ? f) (a) and (f ? S) (a) are primitive whenever
f : A → A is a coderivation and a ∈ A. So fix a coderivation f : A → A.
Notice that the antipode S of A is a coalgebra anti-endomorphism (by
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Exercise 1.4.28), thus a coalgebra endomorphism (by Exercise 1.5.8(b)).
Thus, ∆ ◦ S = (S ⊗ S) ◦ ∆. Moreover, ∆ : A → A ⊗ A is a coalgebra
homomorphism (by Exercise 1.5.6(a)) and an algebra homomorphism (since
A is a bialgebra). Applying (1.4.2) to A⊗A, A, A, ∆, idA, S and f instead
of A′, C, C ′, α, γ, f and g, we obtain

∆ ◦ (S ? f) = (∆ ◦ S)︸ ︷︷ ︸
=(S⊗S)◦∆

? (∆ ◦ f)︸ ︷︷ ︸
=(f⊗id + id⊗f)◦∆

(since f is a coderivation)

= ((S ⊗ S) ◦∆) ? ((f ⊗ id + id⊗f) ◦∆)

= ((S ⊗ S) ? (f ⊗ id + id⊗f)) ◦∆

= ((S ⊗ S) ? (f ⊗ id))︸ ︷︷ ︸
=(S?f)⊗(S?id)

(by Exercise 1.4.4(a))

◦∆ + ((S ⊗ S) ? (id⊗f))︸ ︷︷ ︸
=(S?id)⊗(S?f)

(by Exercise 1.4.4(a))

◦∆

=

(S ? f)⊗ (S ? id)︸ ︷︷ ︸
=uε

 ◦∆ +

(S ? id)︸ ︷︷ ︸
=uε

⊗ (S ? f)

 ◦∆

= ((S ? f)⊗ uε) ◦∆ + (uε⊗ (S ? f)) ◦∆.

Hence, every a ∈ A satisfies

(∆ ◦ (S ? f)) (a) = (((S ? f)⊗ uε) ◦∆ + (uε⊗ (S ? f)) ◦∆) (a)

= (S ? f) (a)⊗ 1 + 1⊗ (S ? f) (a)

(after some brief computations using (1.2.2)). In other words, for every
a ∈ A, the element (S ? f) (a) is primitive. Similarly the same can be
shown for (f ? S) (a), and so we are done.

(b) is a very simple computation. (Alternatively, the (S ? E) (p) = E (p)
part follows from applying part (c) to a = 1, and similarly one can show
(E ? S) (p) = E (p).)

(c) This is another computation, using Proposition 1.4.17 and the (easy)
observation that E is a derivation of the algebra A.

(d) Assume that the graded algebra A =
⊕

n≥0An is connected and that
Q is a subring of k. Let B be the k-subalgebra of A generated by p. In
order to prove part (d), we need to show that A ⊂ B. Clearly, it suffices
to show that An ⊂ B for every n ∈ N. We prove this by strong induction
on n; thus, we fix some n ∈ N, and assume as induction hypothesis that
Am ⊂ B for every m < n. Our goal is then to show that An ⊂ B. This
being trivial for n = 0 (since A is connected), we WLOG assume that
n > 0. Let a ∈ An. Part (a) of this exercise yields (S ? E) (a) ∈ p ⊂ B.
On the other hand, Exercise 1.3.20(h) (applied to x = a) yields

∆ (a) ∈ 1⊗ a+ a⊗ 1 +
n−1∑
k=1

Ak ⊗ An−k.
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Hence, from the definition of convolution, we obtain

(S ? E) (a) ∈ S (1)︸ ︷︷ ︸
=1

E (a) + S (a)E (1)︸ ︷︷ ︸
=0

+ (m ◦ (S ⊗ E))

(
n−1∑
k=1

Ak ⊗ An−k

)
︸ ︷︷ ︸

=
∑n−1
k=1 S(Ak)E(An−k)

= E (a) +
n−1∑
k=1

S (Ak)︸ ︷︷ ︸
⊂Ak

(since S is graded)

E (An−k)︸ ︷︷ ︸
⊂An−k⊂B

(by the induction
hypothesis)

⊂ E (a) +
n−1∑
k=1

Ak︸︷︷︸
⊂B

(by the induction
hypothesis)

B ⊂ E (a) +B

(since B is a subalgebra). Hence, E (a) ∈ (S ? E) (a) + B = B (since
(S ? E) (a) ∈ B). Since E (a) = na, this becomes na ∈ B, thus a ∈ B
(since Q is a subring of k). Since we have shown this for each a ∈ An, we
thus obtain An ⊂ B, and our induction is complete.

This solution of part (d) is not the most generalizable one – for instance,
(d) also holds if A is connected filtered instead of connected graded, and
then a different argument is necessary. This is a part of the Cartier-Milnor-
Moore theorem, and appears e.g. in [60, §3.2].

(e) If a ∈ T (V ) is homogeneous of positive degree and p ∈ V , then part
(c) quickly yields (S ? E) (ap) = [(S ? E) (a) , p]. This allows proving (e)
by induction over n, with the induction base n = 1 being a consequence of
part (b).

Hint to Exercise 1.6.1. (a) This can be done by diagram chasing. For
example, if m denotes the map ∆∗C ◦ρC,C : C∗⊗C∗ → C∗, then the diagram

C∗ ⊗ C∗ ⊗ C∗m⊗id





ρC,C⊗idvv

id⊗ρC,C

((

id⊗m

��

(C ⊗ C)∗ ⊗ C∗

∆∗C⊗idxx

ρC⊗C,C

((

C∗ ⊗ (C ⊗ C)∗

id⊗∆∗C &&
ρC,C⊗Cvv

C∗ ⊗ C∗
ρC,C

&&

m 66

(C ⊗ C ⊗ C)∗

(∆C⊗id)∗vv

(id⊗∆C)∗

((

C∗ ⊗ C∗
ρC,C

xx

m

hh

(C ⊗ C)∗

∆∗C

((

(C ⊗ C)∗

∆∗Cvv
C∗

is commutative (since each of its little triangles and squares is); thus,
m ◦ (m⊗ id) = m ◦ (id⊗m) for m. This proves that the diagram (1.1.1)
commutes for our algebra C∗. The commutativity of (1.1.2) is obtained
similarly.
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Alternatively, we could also solve part (a) trivially by first solving part
(b) and then recalling Exercise 1.4.2.

(b) Straightforward verification on pure tensors.
(c) Let C =

⊕
n≥0Cn be a graded k-coalgebra. For every n ∈ N, we

identify (Cn)∗ with a k-submodule of C∗, namely with the k-submodule
{f ∈ C∗ | f (Cp) = 0 for all p ∈ N satisfying p 6= n}. By the definition of
Co, we have Co =

⊕
n≥0 (Cn)∗. Hence, it remains to show that (Ca)

∗ (Cb)
∗ ⊂

(Ca+b)
∗ for all a, b ∈ N, and that 1C∗ ∈ (C0)∗. But this is straightforward

using the gradedness of ∆ and ε.
(d) Diagram chasing or simple element-wise verification.
(e) Simple linear algebra (no Hopf algebras involved here).
(f) The “only if” direction is proved in the same way as part (d) (or as

a corollary of part (d), since D◦ and C◦ are subalgebras of D∗ and C∗). It
remains to prove the “if” direction.

Assume that f ∗ : Do → Co is a k-algebra morphism. We want to show
that f : C → D is a k-coalgebra morphism. In other words, we want to
show that the two diagrams

(12.1.6) C

∆C

��

f // D

∆D

��
C ⊗ C f⊗f // D ⊗D

and C

εC ��

f // D

εD��
k

commute. Let us start with the left one of these diagrams. The graded
k-module D is of finite type, and therefore the map ρD,D : Do ⊗ Do →
(D ⊗D)o (a restriction of the map ρD,D : D∗ ⊗ D∗ → (D ⊗D)∗) is an
isomorphism. Its inverse ρ−1

D,D : (D ⊗D)o → Do ⊗ Do is therefore well-

defined378. We can thus form the (asymmetric!) diagram
(12.1.7)

Do f∗ // Co

Do ⊗Do

mD∗

ii

f∗⊗f∗ // Co ⊗ Co

mC∗

55

ρC,C

))
(D ⊗D)o

∆∗D

OO

ρ−1
D,D

55

(f⊗f)∗
// (C ⊗ C)o

∆∗C

OO .

(The arrows labelled mC∗ and mD∗ could just as well have been labelled
mCo and mDo , since the multiplication maps mCo and mDo are restrictions
of mC∗ and mD∗ .) Argue that the diagram (12.1.7) commutes. Thus,
f ∗ ◦ ∆∗D = ∆∗C ◦ (f ⊗ f)∗ as maps from (D ⊗D)o to Co. In other words,
(∆D ◦ f)∗ = ((f ⊗ f) ◦∆C)∗ as maps from (D ⊗D)o to Co. But a general
linear-algebraic fact states that if U and V are two graded k-modules such
that V is of finite type, and if α and β are two graded k-linear maps
U → V such that α∗ = β∗ as maps from V o to U o, then α = β 379.
Hence, (∆D ◦ f)∗ = ((f ⊗ f) ◦∆C)∗ leads to ∆D ◦ f = (f ⊗ f) ◦ ∆C . In
other words, the first diagram in (12.1.6) commutes. The second is similar

378Beware: we don’t have an inverse of the non-restricted map ρD,D : D∗ ⊗ D∗ →
(D ⊗D)

∗
.

379This follows immediately from Exercise 1.6.1 (e).
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but easier. Thus, f is a k-coalgebra morphism, and the “if” direction is
proved.

Hint to Exercise 1.6.4. Straightforward computations. For part (d),
first show (independently of whether k is a field and its characteristic) that(
f (1)
)m

= m!f (m) for every m ∈ N.

Hint to Exercise 1.6.5. It is best to solve parts (c) and (d) before ap-
proaching (b).

(a) Both maps ∆SymV and

k[x]
∆−→ k[x,y],

f(x1, . . . , xn) 7−→ f(x1 + y1, . . . , xn + yn)

are k-algebra homomorphisms. Thus, in order to check that they are equal,
it suffices to verify that they agree on V (since V generates SymV ).

(c) This is a straightforward computation unless you get confused with
the topologist’s sign convention. The latter convention affects the twist
map T = TT (V ),T (V ) : T (V ) ⊗ T (V ) → T (V ) ⊗ T (V ) (in particular, we
now have T (x⊗ x) = −x ⊗ x instead of T (x⊗ x) = x ⊗ x), and thus
also affects the multiplication in the k-algebra T (V )⊗ T (V ), because this
multiplication is given by

mT (V )⊗T (V ) =
(
mT (V ) ⊗mT (V )

)
◦ (id⊗T ⊗ id) .

Make sure you understand why this leads to (1⊗ x) · (x⊗ 1) = −x ⊗ x
(whereas (x⊗ 1) · (1⊗ x) = x⊗ x).

(d) The trickiest part is showing that J is a graded k-submodule of
T (V ). It suffices to check that J is generated (as a two-sided ideal) by
homogeneous elements380; however, this is not completely trivial, as the
designated generators x2 for x ∈ V need not be homogeneous. However, it
helps to observe that J is also the two-sided ideal generated by the set

{x⊗ x}x∈V is homogeneous ∪ {x⊗ y + y ⊗ x}x,y∈V are homogeneous

(why?), which set does consist of homogeneous elements. Thus, J is a
graded k-submodule of T (V ). From part (c), it is easy to observe that J
is a two-sided coideal of T (V ) as well. Hence, T (V ) /J inherits a graded
k-bialgebra structure from T (V ). The rest is easy.

(b) is now a consequence of what has been done in (d).

Hint to Exercise 1.6.6. Easy and straightforward.

Hint to Exercise 1.6.8. The hint after the exercise shows the way; here
are a few more pointers. The solution proceeds in two steps:

• Step 1: Show that Proposition 1.6.7 holds when V is a finite free
k-module.
• Step 2: Use this to conclude that Proposition 1.6.7 always holds.

The trick to Step 1 is to reduce the proof to Example 1.6.3. In a bit
more detail: If V is a finite free k-module with basis (v1, v2, . . . , vn), then
we know from Example 1.6.3 that the graded dual Ao of its tensor algebra
A := T (V ) is a Hopf algebra whose basis

{
y(i1,i2,...,i`)

}
is indexed by words

380Make sure you understand why.
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in the alphabet I := {1, 2, . . . , n}. This allows us to define a k-linear map
φ : Ao → T (V ) by setting

φ
(
y(i1,i2,...,i`)

)
= vi1vi2 · · · vi` for every ` ∈ N and (i1, i2, . . . , i`) ∈ I`.

This k-linear map φ then is an isomorphism from the Hopf algebra Ao to
the putative Hopf algebra

(
Sh (V ) ,�, 1T (V ),∆�, ε, S

)
, in the sense that it

is invertible (since it sends a basis to a basis) and satisfies the five equalities

φ ◦mAo = m� ◦ (φ⊗ φ) ,

φ ◦ uAo = u,

(φ⊗ φ) ◦∆Ao = ∆� ◦ φ,
εAo = ε ◦ φ,

φ ◦ SAo = S ◦ φ
(check all these – for instance, the first of these equalities follows by com-
paring (1.6.4) with the definition of �). Thus, the latter putative Hopf
algebra is an actual Hopf algebra (since the former is). This proves Propo-
sition 1.6.7 for our finite free V , and thus completes Step 1.

Step 2 demonstrates the power of functoriality. We want to prove Propo-
sition 1.6.7 in the general case, knowing that it holds when V is finite free.
So let V be an arbitrary k-module. For the sake of brevity, we shall write V
for T (V ). Let m� denote the k-linear map V⊗V→ V which sends every
a⊗b to a�b. One of the things that need to be shown is the commutativity
of the diagram

(12.1.8) V ⊗V
∆�⊗∆�

vv
m�

��

V ⊗V ⊗V ⊗V

id⊗T⊗id

��

V

∆�

��

V ⊗V ⊗V ⊗V

m�⊗m� ((
V ⊗V

,

where T is the twist map TV,V. By linearity, it is clearly enough to verify
this only on the pure tensors; that is, it is enough to check that every a ∈ V
and b ∈ V satisfy
(12.1.9)

((m� ⊗m�) ◦ (id⊗T ⊗ id) ◦ (∆� ⊗∆�)) (a⊗ b) = (∆� ◦m�) (a⊗ b) .
So let a, b ∈ V be arbitrary. WLOG assume that a = v1v2 · · · vp and
b = vp+1vp+2 · · · vp+q for some p, q ∈ N and v1, v2, . . . , vp+q ∈ V . Define
W to be the free k-module with basis (x1, x2, . . . , xp+q), and let W be
its tensor algebra T (W ). Then, W is a finite free k-module, and so we
know from Step 1 that Proposition 1.6.7 holds for W instead of V . But
we can define a k-linear map f : W → V that sends x1, x2, . . . , xp+q to
v1, v2, . . . , vp+q, respectively. This map f : W → V clearly induces a k-
algebra homomorphism f := T (f) : W → V that respects all relevant
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shuffle-algebraic structure (i.e., it satisfies f◦m� = m�◦(f ⊗ f) and (f ⊗ f)◦
∆� = ∆� ◦ f and so on), simply because this structure has been defined
canonically in terms of each of V and W . Thus, in the diagram

W ⊗W

∆�⊗∆�

tt

m�

!!

f⊗f
��

V ⊗V
∆�⊗∆�

uu

m�

��

W ⊗W ⊗W ⊗W

id⊗T⊗id

��

f⊗f⊗f⊗f
// V ⊗V ⊗V ⊗V

id⊗T⊗id

��

V

∆�

��

W

∆�

}}

f
oo

W ⊗W ⊗W ⊗W

m�⊗m�

**

f⊗f⊗f⊗f // V ⊗V ⊗V ⊗V

m�⊗m� ))
V ⊗V

W ⊗W

f⊗f

OO

,

all the little quadrilaterals commute. The outer pentagon also commutes,
since Proposition 1.6.7 holds for W instead of V . If f was surjective, then
we would be able to conclude that the inner pentagon also commutes, so we
would immediately get the commutativity of (12.1.8). But even if f is not
surjective, we are almost there: The inner pentagon commutes on the image
of the map f⊗ f : W⊗W→ V⊗V (because when we start at W⊗W, we
can walk around the outer pentagon instead, which is known to commute),
but this image contains a ⊗ b (since a = v1v2 · · · vp = f (x1x2 · · · xp) and
similarly b = f (xp+1xp+2 · · ·xp+q)), so we conclude that (12.1.9) holds, as
we wanted to show.

This is only one of the diagrams we need to prove in order to prove
Proposition 1.6.7, but the other diagrams are done in the exact same way.

Hint to Exercise 1.7.9. Straightforward reasoning using facts like “a
union of finitely many finite sets is finite” and “a tensor is a sum of finitely
many pure tensors”.

Hint to Exercise 1.7.13. Parts (a), (b), (d) and (e) of Proposition 1.7.11
are easy. (In proving (1.7.3) and later, it helps to first establish an extension
of (1.7.2) to infinite sums381.) For part (c), recall that the binomial formula

(a+ b)n =
∑n

k=0

(
n

k

)
akbn−k holds for any two commuting elements a and

b of any ring (such as f and g in the convolution algebra Hom (C,A)).
Part (f) follows from (e) using (1.7.3). Part (g) is best proved in two steps:
First, use induction to prove part (g) in the case when u = T k for some
k ∈ N (this relies on (1.7.3)); then, notice that both sides of (1.7.7) depend
k-linearly on u, whence the general case follows (up to some mudfighting

381Namely: Let (rq)q∈Q ∈ (k [[T ]])
Q

be a family of power series such that the

(possibly infinite) sum
∑
q∈Q rq converges in k [[T ]]. Let f ∈ n (C,A). Then, the

family
(
(rq)

?
(f)
)
q∈Q ∈ (Hom (C,A))

Q
is pointwise finitely supported and satisfies(∑

q∈Q rq

)?
(f) =

∑
q∈Q (rq)

?
(f).
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with infinite sums). Part (h) is an instance of the “local ?-nilpotence”
already observed in the proof of Proposition 1.4.7. Part (j) follows from
(h). Part (i) follows from Proposition 1.4.3 (applied to C ′ = C, A′ = B,
γ = idC and α = s) in a similar way as part (g) followed from (1.7.3).

Hint to Exercise 1.7.20. Proposition 1.7.15 is a classical result, often
proved by a lazy reference to the mythical complex analysis class the reader
has surely seen it in. Here is a do-it-yourself purely algebraic proof:

• Step 1: If u, v ∈ k [[T ]] are two power series having the same con-

stant term and satisfying
d

dT
u =

d

dT
v, then u = v. This simple

lemma (whose analogue for differentiable functions is a fundamen-
tal fact of real analysis) is easily proved by comparing coefficients

in
d

dT
u =

d

dT
v and recalling that k is a Q-algebra (so 1, 2, 3, . . . are

invertible in k).
• Step 2: If u, v ∈ k [[T ]] are two power series having constant term

1 and satisfying

(
d

dT
u

)
· v =

(
d

dT
v

)
· u, then u = v. This can be

proved by applying Step 1 to uv−1 and 1 instead of u and v.
• Step 3: The power series log [exp] and exp

[
log
]

are well-defined
and have constant term 0. (Easy.)
• Step 4: If w ∈ k [[T ]] is a power series having constant term 0, then

d

dT
(exp [w]) =

(
d

dT
w

)
· exp [w] and

d

dT

(
log [w]

)
=

(
d

dT
w

)
· 1

1 + w
.

These formulas can be derived from the chain rule, or more directly

from exp [w] =
∑

n≥1

1

n!
wn and log [w] =

∑
n≥1

(−1)n−1

n
wn.

• Step 5: Show exp
[
log
]

= T by applying Step 2 to u = exp
[
log
]

and v = 1 + T .
• Step 6: Show log [exp] = T by applying Step 1 to u = log [exp] and
v = T .

Lemma 1.7.16 easily follows from Proposition 1.7.11(f).
Remains to prove Proposition 1.7.18. It is easy to see that log? (exp? f) =

log
?

(exp?f) for each f ∈ n (C,A); thus, Proposition 1.7.18(a) follows from
(1.7.7) using Proposition 1.7.15 and Proposition 1.7.11(f) (since T ? (f) =
f). A similar argument yields Proposition 1.7.18(b) (this time, we need

to observe that exp? (log? g) = exp?
(

log
?

(g − uAεC)
)

+ uAεC first). To

prove Proposition 1.7.18(c), first use Proposition 1.7.11(c) to show that
exp? (f + g) is well-defined; then, apply the well-known fact that
exp (x+ y) = exp x·exp y for any two commuting elements x and y of a ring
(provided the exponentials are well-defined; some yak-shaving is required
here to convince oneself that the infinite sums behave well)382. Part (d) is

382If you have not seen this well-known fact, prove it by a quick computation using
the binomial formula.
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trivial. Part (e) is an induction on n. Part (f) is a rehash of the definition

of log? (f + uAεC) = log
?
f .

Hint to Exercise 1.7.28. Proposition 1.7.21(a) is easily proved by un-
packing the definition of convolution (just like Proposition 1.4.3). Part (b)
follows from (a) by induction.

The trick to Proposition 1.7.22 is to realize that if f ∈ Hom (C,A) is as
in Proposition 1.7.22, then every x, y ∈ C satisfy

(12.1.10) f (xy) = ε (y) f (x) + ε (x) f (y) ,

because xy − ε (x) y − ε (y)x = ε (x) ε (y) · 1 + (x− ε (x))︸ ︷︷ ︸
∈ker ε

(y − ε (y))︸ ︷︷ ︸
∈ker ε

is an-

nihilated by f . Once this equality is known, it is not hard to prove Propo-
sition 1.7.22 “by hand” by induction on n (using Sweedler notation). Al-
ternatively, for a cleaner proof, the equality (12.1.10) can be restated in an
element-free way as

f ◦mC = mA ◦ (f ⊗ i + i⊗ f) ,

where i = uA ◦ εC is the unity of the k-algebra (Hom (C,A) , ?); then, an
application of Proposition 1.7.21(b) shows that every n ∈ N satisfies

f ?n ◦mC = mA ◦ (f ⊗ i + i⊗ f)?n︸ ︷︷ ︸
=
∑n
i=0

(
n

i

)
(f⊗i)?i?(i⊗f)?(n−i)

(by the binomial formula,
since f⊗i and i⊗f commute in

the convolution algebra Hom(C⊗C,A⊗A))

= mA ◦


n∑
i=0

(
n

i

)
(f ⊗ i)?i ? (i⊗ f)?(n−i)︸ ︷︷ ︸

=f?i⊗f?(n−i)
(by repeated application of Exercise 1.4.4(a))


= mA ◦

(
n∑
i=0

(
n

i

)
f ?i ⊗ f ?(n−i)

)
,

which is precisely Proposition 1.7.22 (restated in an element-free way).
Proposition 1.7.23 is an easy consequence of Proposition 1.7.22, since

(exp? f) (xy) =
∑

n∈N
1

n!
f ?n (xy). (Again, fighting infinite sums is probably

the most laborious part of the proof.)
Lemma 1.7.24 can be reduced to the fact that the matrix(
iN+1−j)

i,j=1,2,...,N+1
∈ Q(N+1)×(N+1) is invertible (since its determinant is

the Vandermonde determinant
∏

1≤i<j≤N+1 (i− j)︸ ︷︷ ︸
6=0

6= 0) and thus has trivial

kernel (not just over Q, but on any torsionfree abelian group).
Lemma 1.7.25 follows from Lemma 1.7.24, because a finitely supported

family indexed by nonnegative integers must become all zeroes from some
point on.
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The proof of Proposition 1.7.26 is rather surprising: It suffices to show
that f (xy) = 0 for all x, y ∈ ker ε. So let us fix x, y ∈ ker ε. Proposi-
tion 1.7.11(h) yields f ∈ n (C,A). Let t ∈ N be arbitrary. Then, Proposi-
tion 1.7.18(e) (applied to n = t) shows that tf ∈ n (C,A) and exp? (tf) =
(exp? f)?t. But Exercise 1.5.11(b) shows that (exp? f)?t is a k-algebra ho-
momorphism C → A. Hence, (exp? f)?t (xy) = (exp? f)?t (x)·(exp? f)?t (y).

Rewriting (exp? f)?t as exp? (tf) =
∑

n∈N
1

n!
f ?ntn on both sides, and mul-

tiplying out the right hand side, we can rewrite this as∑
k∈N

1

k!
f ?k (xy) tk =

∑
k∈N

(
k∑
i=0

f ?i (x)

i!
· f

?(k−i) (y)

(k − i)!

)
tk.

In other words,∑
k∈N

wkt
k = 0, where we set wk =

1

k!
f ?k (xy)−

k∑
i=0

f ?i (x)

i!
· f

?(k−i) (y)

(k − i)!
.

But we have proved this for all t ∈ N. Thus, Lemma 1.7.25 shows that

wk = 0 for every k ∈ N.

Applying this to k = 1 and simplifying, we obtain f (xy) − ε (x) f (y) −
f (x) ε (y) = 0. Since x, y ∈ ker ε, this simplifies even further to f (xy) = 0,
which proves Proposition 1.7.26.

Finally, we need to prove Proposition 1.7.27. Set F = exp? f and F̃ =

F − uAεC , so that F̃ ∈ n (C,A). Then, Proposition 1.7.23 shows that
F : C → A is a k-algebra homomorphism, so it remains to show that F is

surjective. But it is easy to see using Proposition 1.7.18(a) that f = log
?
F̃ .

Define ĩd ∈ n (C,C) by ĩd = idC −uCεC . Then, it is not hard to see that

F ◦ ĩd = F̃ . Hence, f = log
?
F̃︸︷︷︸

=F◦ĩd

= log
?
(
F ◦ ĩd

)
= F ◦

(
log

?
(

ĩd
))

(by

Proposition 1.7.11(i), since F is a k-algebra homomorphism). Therefore,
f (C) ⊂ F (C). Since F is a k-algebra homomorphism, this entails that
F (C) is a k-subalgebra of A that contains f (C) as a subset. But this
causes F (C) to be the whole A (since f (C) generates A). Thus, F is
surjective, so Proposition 1.7.27 is proven.

Hint to Exercise 1.7.33. We must prove Theorem 1.7.29. Part (a) is

easy. For the remainder of the proof, we set ĩd = idA−uAεA ∈ EndA, and
equip ourselves with some simple lemmas:

• The kernel ker ε is an ideal of A.
• We have ĩd ∈ n (A,A) and ker ĩd = k · 1A and ĩd (A) = ker ε.
• We have A/

(
k · 1A + (ker ε)2) ∼= (ker ε) / (ker ε)2 as k-modules.

Now, to the proof of Theorem 1.7.29(b). Using e = log? (idA) = log
?
ĩd

and ĩd (1A) = 0, it is easy to see that e (1A) = 0. Hence, e (A0) = 0 since
A is connected. Thus, Proposition 1.7.26 shows that e

(
(ker ε)2) = 0 (since

exp? e = idA is a k-algebra homomorphism). Combined with e (1A) = 0,
this yields k ·1A+(ker ε)2 ⊂ ker e. But this inclusion is actually an equality,

as we can show by the following computation: We have e = log
?
ĩd =
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∑
n≥1

(−1)n−1

n
ĩd
?n

, and therefore each x ∈ A satisfies

e (x) =
∑
n≥1

(−1)n−1

n
ĩd
?n

(x) = ĩd (x)︸ ︷︷ ︸
=x−ε(x)1A

(by the definition of ĩd)

+
∑
n≥2

(−1)n−1

n
ĩd
?n

(x)︸ ︷︷ ︸
∈(ĩd(A))

n

(by induction on n,
using the definition

of convolution)

∈ x− ε (x) 1A +
∑
n≥2

(−1)n−1

n

ĩd (A)︸ ︷︷ ︸
=ker ε

n

= x− ε (x)︸︷︷︸
∈k

1A +
∑
n≥2

(−1)n−1

n
(ker ε)n︸ ︷︷ ︸

⊂(ker ε)2

⊂ x− k · 1A + (ker ε)2 ,

so that

(12.1.11) x− e (x) ∈ k · 1A + (ker ε)2 .

If x ∈ ker e, then this simplifies to x ∈ k · 1A + (ker ε)2. Thus, ker e ⊂
k · 1A + (ker ε)2. Combining this with k · 1A + (ker ε)2 ⊂ ker e, we obtain
ker e = k · 1A + (ker ε)2. But the homomorphism theorem yields

e (A) ∼= A/ ker e︸︷︷︸
=k·1A+(ker ε)2

= A/
(
k · 1A + (ker ε)2) ∼= (ker ε) / (ker ε)2

(as seen above)

as k-modules. This completes the proof of Theorem 1.7.29(b).
Theorem 1.7.29(c) just requires showing that q (A0) = 0, which is a

consequence of e (A0) = 0.
Next, we shall prove Theorem 1.7.29(d). We have q ∈ n (A, Sym (e (A))).

Furthermore, q (A) generates the k-algebra Sym (e (A)) (since q (A) =
Sym1 (e (A))). From Theorem 1.7.29(b), we get ker e = k · 1A + (ker ε)2,
from which we easily obtain q (1A) = 0 and q

(
(ker ε)2) = 0. Thus, Propo-

sition 1.7.27 (applied to A, Sym (e (A)) and q instead of C, A and f)
shows that exp? q : A → Sym (e (A)) is a surjective k-algebra homomor-
phism. But s is a k-algebra homomorphism Sym (e (A))→ A and satisfies
i = s ◦ ιe(A) (by its definition). Thus, Proposition 1.7.11(i) (applied to
A, Sym (e (A)), A, s, exp and q instead of C, A, B, s, u and f) shows
that s ◦ q ∈ n (A,A) and exp? (s ◦ q) = s ◦ (exp? q). However, it is easy
to see that s ◦ q = e (since i = s ◦ ιe(A)); this lets us rewrite the equal-
ity exp? (s ◦ q) = s ◦ (exp? q) as exp? e = s ◦ (exp? q). Comparing this
with exp? e = idA, we obtain s ◦ (exp? q) = idA. Since exp? q is surjective,
this entails that the maps exp? q and s are mutually inverse. This proves
Theorem 1.7.29(d).

Theorem 1.7.29(d) shows that A ∼= Sym (e (A)) as k-algebras, but Theo-
rem 1.7.29(b) shows that e (A) ∼= (ker ε) / (ker ε)2 as k-modules. Combining
these, we obtain Theorem 1.7.29(e).
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Finally, to prove Theorem 1.7.29(f), we notice that each x ∈ A satisfies

x− e (x) ∈ k · 1A + (ker ε)2 (by (12.1.11))

= ker e (by Theorem 1.7.29(b))

and thus 0 = e (x− e (x)) = e (x)− (e ◦ e) (x).
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[70] Loic Foissy. Algèbres de Hopf combinatoires. http://loic.foissy.free.fr/

pageperso/Hopf.pdf

[71] Loic Foissy. Free and cofree Hopf algebras. Journal of Pure and Applied Algebra
216, Issue 2, February 2012, 480–494. https://doi.org/10.1016/j.jpaa.2011.
07.010 . A preprint is arXiv:1010.5402v3.

[72] Harold Fredricksen, James Maiorana. Necklaces of beads in k colors and k-ary de
Bruijn sequences. Discrete Mathematics 23 (1978), 207–210. https://doi.org/
10.1016/0012-365X(78)90002-X

[73] William Fulton. Young Tableaux. London Mathematical Society Student Texts 35,
Cambridge University Press, Cambridge-New York, 1997. https://doi.org/10.
1017/CBO9780511626241

[74] Adriano M. Garsia. Permutation q-enumeration with the Schur row adder. PU. M.
A. (Pure Mathematics and Applications) 21 (2010), No. 2, 233–248. http://puma.
dimai.unifi.it/21_2/7_Garsia.pdf (also mirrored at http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.432.8196&rep=rep1&type=pdf ).
[75] Vesselin Gasharov. Incomparability graphs of (3+1)-free posets are s-positive. Pro-

ceedings of the 6th Conference on Formal Power Series and Algebraic Combina-
torics (New Brunswick, NJ, 1994). Discrete Math. 157 (1996), 193–197. https:
//doi.org/10.1016/S0012-365X(96)83014-7

[76] Vesselin Gasharov. A Short Proof of the Littlewood-Richardson Rule. European
Journal of Combinatorics, Volume 19, Issue 4, May 1998, Pages 451–453. https:
//doi.org/10.1006/eujc.1998.0212

[77] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Re-
takh, Jean-Yves Thibon. Noncommutative symmetric functions. Adv. Math. 112
(1995), 218–348. https://doi.org/10.1006/aima.1995.1032
A preprint is available as arXiv:hep-th/9407124v1.

[78] M. Gerstenhaber, S.D. Schack. The shuffle bialgebra and the cohomology of com-
mutative algebras. Journal of Pure and Applied Algebra 70 (1991), 263–272.
https://doi.org/10.1016/0022-4049(91)90073-B

[79] Ira M. Gessel. Multipartite P-partitions and inner products of skew Schur functions.
Combinatorics and algebra (Boulder, Colo., 1983), 289–317, Contemp. Math. 34,
Amer. Math. Soc., Providence, RI, 1984. http://people.brandeis.edu/~gessel/
homepage/papers/multipartite.pdf

[80] Ira M. Gessel. A Historical Survey of P-Partitions. 2015, arXiv:1506.03508v1.
Published in: Patricia Hersh, Thomas Lam, Pavlo Pylyavskyy and Victor Reiner
(eds.), The Mathematical Legacy of Richard P. Stanley, Amer. Math. Soc., Provi-
dence, RI, 2016, pp. 169–188.

[81] Ira M. Gessel, Antonio Restivo, Christophe Reutenauer. A Bijection between Words
and Multisets of Necklaces. European Journal of Combinatorics 33 (2012), pp.
1537–1546. https://doi.org/10.1016/j.ejc.2012.03.016

[82] Ira M. Gessel, Christophe Reutenauer. Counting Permutations with Given Cycle
Structure and Descent Set. Journal of Combinatorial Theory, Series A 64 (1993),
189–215. https://doi.org/10.1016/0097-3165(93)90095-P

http://www.arxiv.org/abs/1710.05103v3
http://www.arxiv.org/abs/1107.5610v2
https://scholarlyrepository.miami.edu/oa_dissertations/2091
https://scholarlyrepository.miami.edu/oa_dissertations/2091
http://www-math.mit.edu/~etingof/repb.pdf
http://www.arxiv.org/abs/0901.0827v5
http://www-math.mit.edu/~etingof/reprbook.pdf
http://www-math.mit.edu/~etingof/reprbook.pdf
http://loic.foissy.free.fr/pageperso/Hopf.pdf
http://loic.foissy.free.fr/pageperso/Hopf.pdf
https://doi.org/10.1016/j.jpaa.2011.07.010
https://doi.org/10.1016/j.jpaa.2011.07.010
http://www.arxiv.org/abs/1010.5402v3
https://doi.org/10.1016/0012-365X(78)90002-X
https://doi.org/10.1016/0012-365X(78)90002-X
https://doi.org/10.1017/CBO9780511626241
https://doi.org/10.1017/CBO9780511626241
http://puma.dimai.unifi.it/21_2/7_Garsia.pdf
http://puma.dimai.unifi.it/21_2/7_Garsia.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.432.8196&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.432.8196&rep=rep1&type=pdf
https://doi.org/10.1016/S0012-365X(96)83014-7
https://doi.org/10.1016/S0012-365X(96)83014-7
https://doi.org/10.1006/eujc.1998.0212
https://doi.org/10.1006/eujc.1998.0212
https://doi.org/10.1006/aima.1995.1032
http://www.arxiv.org/abs/hep-th/9407124v1
https://doi.org/10.1016/0022-4049(91)90073-B
http://people.brandeis.edu/~gessel/homepage/papers/multipartite.pdf
http://people.brandeis.edu/~gessel/homepage/papers/multipartite.pdf
http://www.arxiv.org/abs/1506.03508v1
https://doi.org/10.1016/j.ejc.2012.03.016
https://doi.org/10.1016/0097-3165(93)90095-P


HOPF ALGEBRAS IN COMBINATORICS 361

[83] Ira M. Gessel, X.G. Viennot. Determinants, Paths, and Plane Partitions. preprint,
1989, http://people.brandeis.edu/~gessel/homepage/papers/pp.pdf

[84] Andrew Granville. Number Theory Revealed: A Masterclass. Number Theory Re-
vealed: The Series #1B, American Mathematical Society 2019.

[85] Darij Grinberg. Double posets and the antipode of QSym. arXiv:1509.08355v3.
[86] Darij Grinberg. A constructive proof of Orzech’s theorem. Preprint, 20 November

2016.
https://www.cip.ifi.lmu.de/~grinberg/algebra/orzech.pdf

[87] Frank D. Grosshans, Gian-Carlo Rota, Joel A. Stein. Invariant Theory and Super-
algebras. CBMS Regional Conference Series in Mathematics 69, American Math-
ematical Society, 1987. https://bookstore.ams.org/cbms-69

[88] A.M. Hamel, I.P. Goulden. Planar Decompositions of Tableaux and Schur Function
Determinants. Europ. J. Combinatorics 16 (1995), 461–477. https://doi.org/10.
1016/0195-6698(95)90002-0

[89] Michiel Hazewinkel. The algebra of quasi-symmetric functions is free over the in-
tegers. Adv. Math. 164 (2001), 283–300. https://doi.org/10.1006/aima.2001.
2017

[90] Michiel Hazewinkel. Witt vectors. Part 1. In: M. Hazewinkel (ed.), Handbook of
Algebra 6, Elsevier 2009. Also available at arXiv:0804.3888v1.

[91] Michiel Hazewinkel. The Leibniz-Hopf Algebra and Lyndon Words. Preprint AM
CWI 9612 (1996). http://oai.cwi.nl/oai/asset/4828/04828D.pdf

[92] Michiel Hazewinkel. Chen-Fox-Lyndon Factorization for Words over Partially Or-
dered Sets. Journal of Mathematical Sciences 131 (12-2005), Issue 6, 6027–6031.
https://doi.org/10.1007/s10958-005-0458-7

[93] Michiel Hazewinkel, Nadiya Gubareni, and Vladimir V. Kirichenko. Algebras, rings
and modules. Lie algebras and Hopf algebras. Mathematical Surveys and Mono-
graphs 168. American Mathematical Society, Providence, RI, 2010.

[94] Robert Henderson. The Algebra Of Multiple Zeta Values. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.227.5432

[95] Lars Hesselholt. Lecture notes on Witt vectors. http://www.math.nagoya-u.ac.
jp/~larsh/papers/s03/wittsurvey.ps

[96] Lars Hesselholt. The big de Rham–Witt complex. Acta Math. 214 (2015), 135–207.
https://doi.org/10.1007/s11511-015-0124-y

[97] Florent Hivert. An introduction to combinatorial Hopf algebras: examples and real-
izations. Nato Advanced Study Institute School on Physics and Computer Science,
2005, october, 17–29, Cargese, France. http://www-igm.univ-mlv.fr/~hivert/
PAPER/Cargese.pdf

[98] Florent Hivert, Jean-Christophe Novelli and Jean-Yves Thibon. Commutative com-
binatorial Hopf algebras. J. Algebraic Combin. 28 (2008), no. 1, 65–95. https:

//doi.org/10.1007/s10801-007-0077-0

Also available as arXiv:math/0605262v1.
[99] . The algebra of binary search trees. Theoret. Comput. Sci. 339 (2005), no.

1, 129–165. https://doi.org/10.1016/j.tcs.2005.01.012
A preprint appears as arXiv:math/0401089v2.

[100] . Trees, functional equations, and combinatorial Hopf algebras. European
J. Combin. 29 (2008), no. 7, 1682–1695. https://doi.org/10.1016/j.ejc.2007.
09.005

A preprint appears as arXiv:math/0701539v1.
[101] Michael E. Hoffman. Combinatorics of rooted trees and Hopf algebras. Trans. AMS

355 (2003), 3795–3811. https://doi.org/10.1090/S0002-9947-03-03317-8
[102] . A character on the quasi-symmetric functions coming from multiple zeta

values. The Electronic Journal of Combinatorics 15 (2008), R97. http://www.

combinatorics.org/ojs/index.php/eljc/article/view/v15i1r97

[103] Brandon Humpert, and Jeremy L. Martin. The incidence Hopf algebra of graphs.
SIAM Journal on Discrete Mathematics 26, no. 2 (2012), 555–570. Also available
as arXiv:1012.4786v3.

[104] Gordon James and Martin Liebeck. Representations and characters of groups. 2nd
edition, Cambridge University Press, Cambridge-New York, 2001.

http://people.brandeis.edu/~gessel/homepage/papers/pp.pdf
http://www.arxiv.org/abs/1509.08355v3
https://www.cip.ifi.lmu.de/~grinberg/algebra/orzech.pdf
https://bookstore.ams.org/cbms-69
https://doi.org/10.1016/0195-6698(95)90002-0
https://doi.org/10.1016/0195-6698(95)90002-0
https://doi.org/10.1006/aima.2001.2017
https://doi.org/10.1006/aima.2001.2017
http://www.arxiv.org/abs/0804.3888v1
http://oai.cwi.nl/oai/asset/4828/04828D.pdf
https://doi.org/10.1007/s10958-005-0458-7
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.227.5432
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.227.5432
http://www.math.nagoya-u.ac.jp/~larsh/papers/s03/wittsurvey.ps
http://www.math.nagoya-u.ac.jp/~larsh/papers/s03/wittsurvey.ps
https://doi.org/10.1007/s11511-015-0124-y
http://www-igm.univ-mlv.fr/~hivert/PAPER/Cargese.pdf
http://www-igm.univ-mlv.fr/~hivert/PAPER/Cargese.pdf
https://doi.org/10.1007/s10801-007-0077-0
https://doi.org/10.1007/s10801-007-0077-0
http://www.arxiv.org/abs/math/0605262v1
https://doi.org/10.1016/j.tcs.2005.01.012
http://www.arxiv.org/abs/math/0401089v2
https://doi.org/10.1016/j.ejc.2007.09.005
https://doi.org/10.1016/j.ejc.2007.09.005
http://www.arxiv.org/abs/math/0701539v1
https://doi.org/10.1090/S0002-9947-03-03317-8
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r97
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r97
http://www.arxiv.org/abs/1012.4786v3


362 DARIJ GRINBERG AND VICTOR REINER

[105] Emma Yu Jin. Outside nested decompositions of skew diagrams and Schur function
determinants. European Journal of Combinatorics 67 (2018), 239–267. https://
doi.org/10.1016/j.ejc.2017.08.007 . A preprint is available at http://www.

emmayujin.at/Pubs/Jin18.pdf.
[106] S.A. Joni and Gian-Carlo Rota. Coalgebras and bialgebras in combinatorics.

Studies in Applied Mathematics 61 (1979), 93–139. https://doi.org/10.1002/
sapm197961293

[107] Christian Kassel. Quantum groups. Graduate Texts in Mathematics 155. Springer,
Berlin, 1995.

[108] Sergei V. Kerov. Asymptotic representation theory of the symmetric group and its
applications in analysis. Translations of Mathematical Monographs 219. American
Mathematical Society, Providence, RI, 2003.

[109] Anatol N. Kirillov, Arkadiy D. Berenstein. Groups generated by involutions,
Gelfand-Tsetlin patterns and the combinatorics of Young tableaux. Algebra i Analiz
7 (1995), issue 1, 92–152. A preprint is available at http://pages.uoregon.edu/

arkadiy/bk1.pdf

[110] T. Klein. The multiplication of Schur-functions and extensions of p-modules. J.
London Math. Soc. 43 (1968), 280–284. https://doi.org/10.1112/jlms/s1-43.
1.280

[111] Donald E. Knuth. Permutations, matrices, and generalized Young tableaux. Pa-
cific J. Math. 34, Number 3 (1970), 709–727. https://projecteuclid.org/

euclid.pjm/1102971948

[112] Donald E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial
Algorithms, Part 1. Pearson 2011. See https://www-cs-faculty.stanford.edu/

~knuth/taocp.html for errata.
[113] Donald Knutson. λ-Rings and the Representation Theory of the Symmetric Group.

Lecture Notes in Mathematics 308, Springer, Berlin-Heidelberg-New York 1973.
https://doi.org/10.1007/BFb0069217

[114] Manfred Krause. A Simple Proof of the Gale-Ryser Theorem. The American Math-
ematical Monthly 103 (1996), 335–337. https://doi.org/10.2307/2975191
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[136] Jean-Louis Loday and Maŕıa O. Ronco. Combinatorial Hopf algebras. Quanta of
maths, Clay Math. Proc. 11, 347–383, Amer. Math. Soc., Providence, RI, 2010.
http://www-irma.u-strasbg.fr/~loday/PAPERS/2011LodayRonco(CHA).pdf

[137] . Hopf algebra of the planar binary trees. Adv. Math. 139 (1998), no. 2,
293–309. https://doi.org/10.1006/aima.1998.1759

[138] Nicholas A. Loehr. Bijective Combinatorics. CRC Press, 2011. See http://www.

math.vt.edu/people/nloehr/bijbook.html for errata.
[139] M. Lothaire. Combinatorics on words. Corrected printing, Cambridge University

Press, 1997.
[140] Kurt Luoto, Stefan Mykytiuk, Stephanie van Willigenburg. An introduction to

quasisymmetric Schur functions – Hopf algebras, quasisymmetric functions, and
Young composition tableaux. Springer, May 23, 2013. http://www.math.ubc.ca/

~steph/papers/QuasiSchurBook.pdf

[141] R.C. Lyndon. On Burnside’s Problem. Transactions of the AMS 77, 202–215.
https://doi.org/10.1090/S0002-9947-1954-0064049-X

[142] Ian Grant Macdonald. Symmetric functions and Hall polynomials. 2nd edition,
Oxford University Press, Oxford-New York, 1995.

http://www.arxiv.org/abs/1203.0797v1
http://www.uni-kiel.de/math/algebra/laue/vorlesungen/frei/freiealgstr.pdf
http://www.uni-kiel.de/math/algebra/laue/vorlesungen/frei/freiealgstr.pdf
http://www.arxiv.org/abs/1003.2124v1
http://www-math.univ-poitiers.fr/~maavl/pdf/alt-Schur.pdf
http://www-math.univ-poitiers.fr/~maavl/pdf/alt-Schur.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/geometry.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/geometry.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/Hopf.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/Hopf.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/lrr.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/lrr.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/foata-fest.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/foata-fest.pdf
http://www.arxiv.org/abs/0705.0038v4
https://doi.org/10.1090/proc/13692
http://www.arxiv.org/abs/1412.2180v1
https://doi.org/10.1016/0022-4049(80)90103-6
https://doi.org/10.1016/0022-4049(80)90103-6
http://www-irma.u-strasbg.fr/~loday/PAPERS/94Loday%28Eulerien%29.pdf
http://www-irma.u-strasbg.fr/~loday/PAPERS/94Loday%28Eulerien%29.pdf
http://www-irma.u-strasbg.fr/~loday/PAPERS/2011LodayRonco(CHA).pdf
https://doi.org/10.1006/aima.1998.1759
http://www.math.vt.edu/people/nloehr/bijbook.html
http://www.math.vt.edu/people/nloehr/bijbook.html
http://www.math.ubc.ca/~steph/papers/QuasiSchurBook.pdf
http://www.math.ubc.ca/~steph/papers/QuasiSchurBook.pdf
https://doi.org/10.1090/S0002-9947-1954-0064049-X


364 DARIJ GRINBERG AND VICTOR REINER

[143] I.G. Macdonald. Schur functions : theme and variations. Publ. I.R.M.A. Stras-
bourg, 1992, 498/S-27, Actes 28 e Seminaire Lotharingien, 5–39. https://www.
emis.de/journals/SLC/opapers/s28macdonald.html

[144] Manuel Maia, Miguel Méndez. On the arithmetic product of combinatorial species.
Discrete Mathematics 308, Issue 23, 6 December 2008, 5407–5427. https://doi.
org/10.1016/j.disc.2007.09.062 .
See arXiv:math/0503436v2 for a preprint.

[145] Claudia Malvenuto. Produits et coproduits des fonctions quasi-symétriques et de
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?-inverse, 30
?-invertible, 30
?, 20
⊂, 5
., 61
∅, 55
ξn, 209
x, 53
xα, 53
ζ-function in an incidence algebra, 294
{0, 1}-matrix, 64
c, 233, 274
e-positive, 304
eλ, 58
en, 58
f ? g, 20
fS , 296
hλ, 58
hn, 58
i-th letter, 206, 218
i-th part, 55
m, 7
mλ, 55
n-necklace, 234, 275
pλ, 58
pn, 58
q-binomial coefficient, 180
q-binomial theorem, 180
q-multinomial coefficient, 174
s-positive, 304
s-th row of an S × T -matrix, 331
sλ, 58
sλ/µ, 68
t-th column of an S × T -matrix, 331
u, 7
u [v], 46
u� v, 239
u? (f), 44
wi, 206
wn, 107
zλ, 85
Rα, 325
A(P ), 194
B(M), 307
G, 299
M, 309
(-1)-color theorem, 306

Adams operators, 34
adjoint associativity, 145
adjoint map, 35
Aguiar-Bergeron-Sottile universality

theorem, 289
algebra, 7
almost-composition, 155
almost-composition of n, 156
alphabet, 5, 206, 218
alternant, 91
alternating polynomial, 90
anti-endomorphism of a coalgebra, 22
anti-endomorphism of an algebra, 22
anti-homomorphism of algebras, 22
anti-homomorphism of coalgebras, 22
antipode, 21
aperiodic n-necklace, 234, 275
aperiodic word, 278
arithmetic product, 169
Assaf-McNamara skew Pieri rule, 98
associative, 7
associative operation, 7
associator, 127

base-cobase poset, 314
basis of a matroid, 307
Bender-Knuth involution, 61
Bernstein creation operator, 107
bialgebra, 13
biletter, 76
binomial Hopf algebra, 291
binomial ring, 111
biword, 76
Borel subgroup of GLn, 159
bounded degree, 53
bounded poset, 294
box of a Ferrers diagram, 59
Bruhat decomposition of GLn, 159
bumping path, 77
bumping route, 77
Burrows-Wheeler transformation, 281

canonical factorization, 230
Carlitz words, 116
Cartesian product poset, 294
Cauchy determinant, 100
Cauchy identity, 75
Cauchy kernel, 75
Cauchy product, 75
cell of a Ferrers diagram, 59
cell of a skew shape, 68
CFL factorization, 228
CFL type of a word, 282
change-of-basis matrix, 334
character of a Hopf algebra, 289
character of a module, 142
characteristic polynomial of a poset,

296
Chen-Fox-Lyndon factorization, 228
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Chen-Fox-Lyndon theorem, 228
chromatic Hopf algebra, 299
chromatic symmetric function, 303
class function, 142
claw graph K3,1, 304
clumping, 242
coalgebra, 9
coarsening a composition, 191
coarsening of compositions, 191
coassociative, 9
cocommutative, 32
coefficientwise topology, 96, 264
coideal, 15
coinvariant module, 149
coloop of a matroid, 308
column sums, 64
column-strict labelling, 203
column-strict plane partition, 204
column-strict tableau, 58, 68
commutative, 32
commutators, 16
compatible flag, 180
complete homogeneous symmetric

functions, 58
composition, 156
composition of power series, 45, 46
comultiplication, 9
concatenation, 120, 218
concatenation of compositions, 189
conjugate of a partition, 62
connected graded module, 17
connected permutation, 324
constituent, 134
content of a tableau, 59
contraction in a matroid, 308
contraction of a matroid, 309
contragredient action, 24
convolution, 20
convolution algebra, 20
coproduct structure constants, 36
corner cell, 76
counit, 9
cuspidal representation of GLn, 171
cycle type, 85

decreasing, 6
degree of a monomial, 53
deletion in a matroid, 308
descent of a permutation, 52
descent of a standard tableau, 286
descent set of a permutation, 114, 197
descent set of a sequence, 325
diagonal S × S-matrix, 331
diagonal action, 14
diagonal embedding, 10
diagonal entries of an S × S-matrix,

331
diagonal of an S × S-matrix, 331

dictionary order, 219
direct sum of matroids, 309
discrete valuation ring, 182
disjoint, 5
disjoint union, 5
disjoint union of multisets, 9
distinct, 5
divided power algebra, 39
dominance, 61
dominate, 61
dual basis, 35, 36
dual Cauchy identity, 101
dual Jacobi-Trudi formula, 75
dual labelled poset, 202
dual matroid, 313
DVR, 182
Dynkin idempotent, 35

edge-free character, 303
Ehrenborg’s quasisymmetric function,

296
elementary symmetric functions, 58
empty matroid, 309
empty partition, 55
empty word, 218
English notation, 58
entry of a tableau, 59
Euler totient function, 111
Eulerian idempotent, 49, 211
Eulerian ranked poset, 297
exchange property, 307
expands in the family (ft)t∈T through

the matrix A, 333
expands invertibly triangularly in the

family (fs)s∈S , 335
expands triangularly in the family

(fs)s∈S , 335
expands unitriangularly in the family

(fs)s∈S , 335
exterior algebra, 40
external direct sum, 6
external disjoint union, 5

factor of a word, 240
family, 5
Ferrers diagram, 58
finitary symmetric group, 54
finite dual generating system, 151
finite free, 35
finite partial flag variety, 174
finitely supported, 42, 265
fixed space of a CG-module, 147
flag f -vector of a poset, 297
flag h-vector of a poset, 297
flag number of a poset, 296
flag of subspaces, 174
flat in a graphic matroid, 300
free Lie algebra, 237
free monoid, 319
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Frobenius characteristic map, 165
Frobenius endomorphisms, 113
Frobenius reciprocity, 145
fundamental involution, 73
fundamental quasisymmetric function,

194

Gale-Ryser Theorem, 64
Gessel-Reutenauer bijection, 278
ghost-Witt vectors, 111
graded algebra, 17
graded basis, 18, 36
graded basis of Λ, 55
graded bialgebra, 17
graded bilinear form, 125
graded coalgebra, 17
graded component, 16
graded dual, 36
graded linear map, 17
graded module, 16
graded submodule, 17
grading, 16
graphic matroid, 307
group algebra, 9, 13
group-like, 14

Hall algebra, 178, 181
Hall coefficients, 178
Hall inner product, 84
Hall polynomial, 182
Hall’s Theorem, 182
Harish-Chandra induction, 154
Hazewinkel-CFL factorization, 233
hereditary class of posets, 294
homogeneous, 16
homogeneous k-submodule of V , 17
homogeneous component, 16, 53
homogeneous of degree d, 53
homogeneous power series, 53
homogeneous submodule, 17
homomorphism of graded k-modules,

17
homomorphism of Hopf algebras, 30
Hopf algebra, 21
Hopf algebra morphism, 30
Hopf algebra of noncommutative

symmetric functions, 207
Hopf morphism, 30
Hopf subalgebra, 31
horizontal n-strip, 97
horizontal strip, 79, 97

identity matrix, 331
identity of an algebra, 7
increasing, 6
increasing list of a multiset, 279
indecomposable module, 142
induced CG-module, 143
induction of a CH-module, 144

induction of a class function, 144
infinite sums, 42
inflation of a C[G/K]-module, 147
inner tensor product, 167
integer partition, 55
internal comultiplication, 110
internal direct sum, 6
internal disjoint union, 5
internal multiplication, 110
interval system corresponding to α, 241
inverse of an S × T -matrix, 331
invertible S × T -matrix, 331
invertibly triangular S × S-matrix, 332
irreducible character, 143
irreducible module, 142
isomorphic, 11, 309
isomorphic matroids, 309
isomorphism, 11
isomorphism of graded k-modules, 17
isomorphism of graphs, 302
iterated multiplication and

comultiplication, 27

Jacobi identity, 33
Jacobi-Trudi formula, 75
Jordan type, 122, 123, 178

Kostka number, 63
Koszul sign rule, 12
Kronecker coefficients, 110
Kronecker comultiplication, 110
Kronecker delta, 5
Kronecker multiplication, 110

labelled linear order, 200
labelled poset, 194
left coset, 144
length of a composition, 156
length of a partition, 54
length of a word, 218
length of an almost-composition, 155
Leray’s theorem, 48
letter, 76, 218
Levi subgroup, 156
lexicographic order on partitions, 137
lexicographic order on words, 219
Lie algebra, 33
Lie bracket, 33
linear extension, 198
linear matroid, 307
Littlewood-Richardson coefficients, 82
locally ?-nilpotent, 29
longer, 218
longest permutation, 202
loop of a matroid, 308
LPU factorization, 160
Lyndon composition, 259
Lyndon word, 222
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Möbius function, 111, 173
Möbius function of a poset, 295
major index of a standard tableau, 286
majorization, 61
majorize, 61
Malvenuto-Reutenauer Hopf algebra,

318
map A→ QSym induced by the

character ζ, 291
matrix, 330
matrix notation, 58
matroid, 307
monomial basis of Λ, 55
monomial matrix, 153
monomial quasisymmetric function,

185
monomial symmetric function, 55
morphism of algebras, 11
morphism of bialgebras, 19
morphism of coalgebras, 11
multiplication map, 7
multiplicative basis, 67
multiplicative notation, 58
multiset of shuffles of u and v, 238
multiset union, 9, 279
multisubset, 9

natural labelling, 306
NE-set of a tableau, 119
near-concatenation of compositions,

199
necklace, 173, 275
noncommutative power series, 319
noncommutative power series of

bounded degree, 318
noncommutative power sums of the

first kind, 214
noncommutative power sums of the

second kind, 210
noncommutative ribbon function, 212
noncommutative symmetric function,

207
nondecreasing, 6
nonincreasing, 6
northeast, 119
number-theoretic Möbius function, 111,

173

of bounded degree, 53, 319
of finite type, 36
one-line notation, 5
opposite algebra, 25
opposite labelled poset, 202
orthogonal matroid, 313
outer tensor product, 143

parabolic induction, 154
parabolic subgroup of GLn, 153, 156
part of a weak composition, 53

partial-order setting for words, 232
partition, 54
partition of n, 55
parts of a composition, 156
parts of an almost-composition, 155
period of a necklace, 275
period of an n-necklace, 234
Pieri rule, 97
pointwise ?-nilpotent, 44
pointwise finitely supported, 42
polynomial algebra, 255
positive self-dual Hopf algebra, 125
positivity, 125
power sum symmetric functions, 58
power-summable family, 265
prefix, 120, 218
primitive, 14
primitive necklace, 173
primitives, 125
principal specialization at q = 1, 291
product structure constants, 36
proper coloring, 303
proper suffix, 218
PSH, 125
PSH-automorphism, 134
PSH-basis, 125
PSH-endomorphism, 134
PSH-isomorphism, 134
PSH-morphism, 134

quasisymmetric function, 185
quotient of a matroid, 309

rank function of a poset, 295
rank in a graphic matroid, 300
rank-generating function of a poset,

296
ranked poset, 295
rectangular partition, 119
reduced composition, 269
reduced incidence coalgebra, 294
refinement of compositions, 191
refining a composition, 191
representation of a group, 142
represented matroid, 307
residue field, 182
restriction of a CG-module, 145
restriction of a class function, 145
restriction of a matroid, 309
reverse bumping, 80
reverse composition, 192
reverse reading word, 120
reverse RS-insertion, 80
reverse semistandard tableau, 204
ribbon, 191
ribbon diagram, 191
right coset, 144
ring of quasisymmetric functions, 185
ring of symmetric functions, 54
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Robinson-Schensted correspondence, 75
Robinson-Schensted-Knuth algorithm,

76
row bumping lemma, 78
row sums, 64
RS-deletion, 80
RS-insertion, 76

Schur function, 58
self-conjugate partition, 105
self-dual bialgebra, 126
self-duality, 125
semidirect product of groups, 151
semistandard tableau, 59
Semitic reading word, 120
shorter, 218
shuffle algebra, 41
shuffle of words, 37, 238
simple module, 142
size of a composition, 156
size of a partition, 55
size of a weak composition, 53
size of an almost-composition, 155
skew (Ferrers) diagram, 68
skew Cauchy identity, 84
skew Ferrers poset, 203
skew Schur function, 68
skew shape, 68
skewing by f , 102
Smirnov tuple, 115
spanning forest, 308
stagnation set, 115
staircase partition, 91
standard factorization, 230, 236
standard tableau, 285
standardization, 206
Stanley’s chromatic symmetric

function, 303
Steinberg character, 174
Steinitz’s classical Hall algebra, 181
strict labelling, 306
strict partition, 91
strictly decreasing, 6
strictly increasing, 6
strictly labelled poset, 314
subbialgebra, 31
subcoalgebra, 31
subgraph induced on vertex set V ′, 299
suffix, 218
superalgebras, 12
support, 53
support of a multiset, 279
Sweedler notation, 10
symmetric algebra, 8
symmetric function, 54
symmetries of Littlewood-Richardson

coefficients, 118

tableau, 59

tensor algebra, 8, 14
tensor power, 8
tensor product of algebras, 11
tensor product of coalgebras, 12
tensor product of graded modules, 17
tensor product of representations, 143,

167
three towers, 152
Tits building, 174
topologist’s sign convention, 12
total-order setting for words, 232
towers of groups, 152
transition matrix, 334
transitivity of induction, 144
transpose of a partition, 62
triangular S × S-matrix, 332
trivial module, 25
twist map, 11, 22
two-sided coideal, 15
two-sided ideal, 8
type of a finite multiset of necklaces,

284
type of a module over a DVR, 182
type of an abelian p-group, 181

uniform matroid, 312
unipotent character of GLn, 173
unipotent conjugacy class in GLn, 177
unipotent element of GLn, 177
unit, 7
unitriangular S × S-matrix, 332
unity of an algebra, 7
universal enveloping algebra, 33

Vandermonde determinant/product, 92
Verschiebung endomorphisms, 114
vertical n-strip, 97
vertical strip, 97
virtual character, 143
von Nägelsbach-Kostka identity, 75

weak compositions, 53
weak labelling, 306
weakly compatible, 306
weakly decreasing, 6
weakly increasing, 6
Witt basis, 107
wll-order, 262
word, 5, 206, 218

Yamanouchi word, 120
Young diagram, 59
Young subgroup, 156

zeta polynomial of a poset, 296
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