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Rotat ing needles, v ibrat ing
str ings, and Four ier summation

Joshua Zahl

We give a brief survey of the connection between
seemingly unrelated problems such as sets in the plane
containing lines pointing in many directions, vibrat-
ing strings and drum heads, and a classical problem
from Fourier analysis.

In 1917, the mathematician Sōichi Kakeya (1886–1947) posed the following
question [1]: Imagine that an infinitely thin needle covered in ink has been
placed on a sheet of paper so that the sharp end points straight up. Your job is
to slide and rotate (but not lift!) the needle so that it points straight down; the
goal is to leave the least possible amount of ink on the paper (that is, the inked
region should have the smallest possible area). How good of a job can you do?

Rather surprisingly, two years later Abram Samoilovitch Besicovitch
(1891–1970) discovered while working on a seemingly unrelated problem that
the area stained by the ink can be arbitrarily small [2] – in other words, for
any positive number r, there is a sequence of rotations and translations so that
the ink left on the paper has area at most r. The pattern made by the ink on
the paper has a curious property: it has very little area, but it contains a line
segment pointing in each direction. Sets in the plane that contain a line segment
pointing in each direction are now called Besicovitch sets, and they have unex-
pected connections to many fields of mathematics. One of the most surprising
connections was found by Charles Fefferman in the 1970s [3]. Before we can
discuss Fefferman’s work, however, we need to go back by about 200 years,
when the problem of vibrating strings was first given a proper mathematical
description.
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A violin string can vibrate in several ways, which are called vibrational modes.
First, there is the fundamental frequency (also known as first harmonic), where
the entire string vibrates back and forth – just the endpoints are fixed. Then
there is the second harmonic, where the endpoints and midpoint of the string
remain stationary while the two segments between them can move freely; the
third harmonic, where there are two stationary points (respectively a third
and two thirds away from the endpoints); and so on. For simplicity, we will
suppose that the string has length π. We will use the variable x to represent
the distance along the violin string from its first end; it will thus take values
between 0 and π. At maximum displacement, the position of each point of the
violin string vibrating at its first harmonic would be represented by a function
of our variable x, given by the expression f1(x) = a1 sin(x), where a1 is a real
number. This number is called amplitude, it is the value of the highest point
the string can reach in the direction orthogonal to the one given by the string
at rest. Notice that for this first harmonic a1 sin(x) = 0 if x = 0 or x = π,
and a1 sin(x) = a1 if x = π/2, namely, the endpoints are at rest and the highest
point is reached at the center of the string. In general, the position of a violin
string vibrating at its n-th harmonic would be represented at its maximum
displacement by the equation fn(x) = an sin(nx).

A violin string can also vibrate in a superposition of several of the different
vibrational modes described above. For example, it can vibrate in a combination
of the fundamental frequency and the third harmonic. This would be represented
by the equation f(x) = a1 sin(x) + a3 sin(3x), which is simply the sum of the
two functions characterizing these two harmonics. Such superpositions are the
only ways a violin string can vibrate, that is, at maximum displacement, the
position of any violin string can be represented by a sum of harmonics with an
expression of the form f(x) =

∑
n an sin(nx).

However, a sufficiently skilled violinist could make a string vibrate in any
pattern she wishes. This means that it should be possible for a violin string
at maximum displacement to resemble any function f(x), provided that the
two ends of the string are fixed (that is, f(0) = 0 and f(π) = 0), and that
the function f(x) is differentiable (namely, the string doesn’t have any kinks).
This created a seeming paradox: a violin string at maximum displacement can
resemble any differentiable function whatsoever, and yet that vibration can also
be thought of as a superposition of vibrational modes.

One of the first mathematicians to help resolve this conundrum was Jean
Baptiste Joseph Fourier (1768–1830). He showed that no matter how you cause
a violin string to vibrate, the position of the string at maximum displacement
can be expressed as a combination vibrational modes. In particular, any
differentiable function f(x) (defined for all x between 0 and π) satisfying f(0) = 0
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and f(π) = 0 can be written as a sum of harmonics:

f(x) =
∑
n

an sin(nx), (1)

where the numbers an are called the coefficients of the Fourier sine series of f ,
and are given by

an = 2
π

∫ π

0
f(x) sin(nx). (2)

The catch is that the number of modes required (that is, the number of terms
in the sum (1)) might be infinite. At the time, Fourier and his contemporaries
did not have a mathematically rigorous way of dealing with this type of infinite
summation.

One way to make sense of an infinite sum like (1) is to choose a large integer N
and to only sum the terms an sin(nx) from (1) with n ≤ N , that is we could
consider partial sums of the form

N∑
n=1

an sin(nx). (3)

It turns out that as N becomes larger, this partial sum becomes an increasingly
good approximation for the original function f . Mathematically, we say that the
partial sum converges to f . This is true if the original function f is differentiable,
and it can sometimes remain true even if the function f(x) isn’t differentiable,
as long as the function f(x) is reasonably well behaved. These ideas launched
a vast and vibrant area of mathematics called Fourier analysis, which has
connections to areas as diverse as physics, electrical engineering, and signal
processing. Though some subtle questions are still being investigated, Fourier
analysis in one dimension is now relatively well understood.

Sums of the form (1) are useful for analyzing functions that are defined on an
interval [0, π], or equivalently, functions that are defined for all real numbers but
that are 2π-periodic, which means that f(x) = f(x+2π) for all x ∈ R 1 . Fourier
analysis has also developed tools for analyzing functions that are defined for all
real numbers and are not necessarily periodic. One such was of representing a
function of this form is

g(x) =
∫
e−ixsh(s)ds, (4)

where for each real number s, the number h(s) is given by

h(s) = 1
2π

∫
eixsg(x)dx.

1 As a technical aside, the sum (1) can only express functions that are 2π-periodic, that
vanish at zero, and that are odd, which means that f(x) = −f(−x) for all real numbers x.
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The function h is called the Fourier transform of g. The values of this function
are the equivalent of the Fourier coefficients for the summation (1).

In analogy with the partial sums (3), we could consider the partial integral

SNg(x) =
∫ N

−N
e−ixsh(s)ds, (5)

and we could ask whether the function SNg(x) is a good approximation for g(x)
when N is large. There are several different ways that this question can be
phrased, and these different questions sometimes yield different answers. One
way of making this question precise is to measure the so-called Lp error∫

|g(x)− SNg(x)|pdx,

for some real number p ≥ 1, and ask whether this error becomes smaller as N
grows. If the original function g is well behaved, then the integral (5) does
an increasingly good job at approximating the function g, and the Lp error
becomes smaller.

What happens if we move from functions of one variable to functions of two
variables? If a function of one variable represents the maximum displacement
of a vibrating string, then a function of two variables represents the maximum
displacement of a vibrating drum head. If g(x, y) is a function of two variables,
then the analogue of (4) would be

g(x, y) =
∫ ∫

e−i(xs+yt)h(s, t)dsdt, (6)

where for each pair of real numbers s and t, the number h(s, t) is given by

h(s, t) = 1
(2π)2

∫ ∫
ei(xs+yt)g(x, y)dxdy.

Again, we might expect that as N becomes larger, partial integrals like

S�
Ng(x, y) =

∫ N

−N

∫ N

−N
e−i(xs+yt)h(s, t)dsdt (7)

or
S◦Ng(x, y) =

∫ ∫
B(N)

e−i(xs+yt)h(s, t)dsdt, (8)

where B(N) = {(s, t) ∈ R2 :
√
s2 + t2 ≤ N}, should be good approximations

for g(x, y). The function S�
Ng(x, y) is labeled with a square because we are

integrating over the box {(s, t) ∈ R2 : − N ≤ s ≤ N, −N ≤ t ≤ N}.
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The sum S◦Ng(x, y) is instead labeled with a circle since we are integrating
over the disk B(N).

It turns out that S�
Ng is a good approximation for g, in the sense that the Lp

error
∫ ∫
|g(x, y)− S�

Ng(x, y)|pdxdy becomes small as N becomes large. It was
generally assumed that the approximation S◦Ng should behave similarly. In 1971,
however, Charles Fefferman showed that this was not the case: for certain
functions g, the approximation S◦Ng could behave very differently from S�

Ng,
and therefore from g. The function g that Fefferman constructed was closely
related to the Besicovitch sets described above. Specifically, he considered a
Besicovitch set E in the plane that had very small area, and he defined g to be
the function that takes the value g(x, y) = 1 when (x, y) ∈ E and g(x, y) = 0
when (x, y) 6∈ E. The function g therefore describes a set that has small area
and contains line segments pointing in every direction, while S◦Ng describes a
very different set: the operation of applying S◦N shifts each of the lines, so that
they no longer overlap. Thus the functions g and S◦Ng look very different. This
unexpected discovery connected the geometric world of Besicovitch sets to the
analytic world of Fourier analysis; and by doing so, it created a new area of
mathematics that seeks to explore these connections.
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