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Introduction by the Organizers

The workshop Homotopy Theory, organised by Jesper Grodal (Copenhagen),
Michael Hill (Los Angeles), and Birgit Richter (Hamburg) was well attended,
with over fifty participants representing a number of countries around Europe and
the world. Participants from all career stages attended, ranging from advanced
graduate students to senior faculty, and the workshop also represented almost all
research areas in homotopy theory. The workshop consisted of 23 talks, ranging
in length from 30 minutes to an hour. Talks on the first day included more intro-
ductory material, serving as a broad overview of the respective area, and all talks
described cutting-edge research in homotopy theory. Two evenings also included
scheduled sessions for people to bring up research or expository questions in an
informal setting.

Homotopy theory covers a wide-swath of algebraic topology, exploring every-
thing from particular algebraic invariants of spaces or spectra to fundamental,
structural questions in homotopical or higher category theory. Much of the work
discussed during the workshop draws from many different classical approaches,
using tools of equivariant, motivic, and chromatic homotopy to study problems in
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topology and number theory, and a common thread through all the talks was the
uses of higher categories.

1.1. Chromatic homotopy. Starting with work of Quillen, homotopy theory has
had a close connection with algebraic geometry. Lazard’s height stratification of
1-dimensional, commutative formal groups gives rise to a filtration of the stable
homotopy category: the chomatic filtration. This filtration provides a systematic
way to understand maps between finite complexes by breaking them into peri-
odic families corresponding to various chromatic strata, and chromatic homotopy
techniques are the primary way we can carry out explicit computations.

Piotr Pstragowski described his recent work which shows that chromatic ho-
motopy is equivalent to a category of comodules in a particular range. When
we instead look at arbitrary heights and primes, we still have additional unex-
pected structure when we look at the individual layers (the K(n)-local stable ho-
motopy categories). Lior Yanovski described joint work with Carmeli and Schlank
where they showed that Hopkins–Lurie ambidexterity holds more generally than
just K(n)-locally, using instead telescopic localizations. Working unstably, Lukas
Brantner explained how to model K(n)-local homotopy with an emphasis on de-
scribing loop spaces.

Spectacular work of Devinatz–Hopkins–Smith in the early 1980s explicitly de-
scribed how we can understand the chromatic filtration when restricted to finite
spectra. Part of this was the determination of the “thick” subcategories of finite
spectra, showing these are all describable in chromatic terms. Balmer showed
that much of their analysis works in an arbitrary tensor-triangulated category,
showing how to associated to a tensor-triangulated category a space analogous to
the Zariski spectrum of a ring. Markus Hausmann spoke about joint work with
T. Barthel, J. Greenlees, N. Naumann, T. Nikolaus, J. Noel, and N. Stapleton
analyzing the Balmer spectrum for finite G-spectra and resolving a conjecture of
Balmer–Sanders for abelian Lie groups. Nick Kuhn described joint work with Chris
Lloyd on how classical constructions in homotopy theory could be used to build
explicit examples of finite G-spectra with particular properties, working towards
the non-abelian case. Drew Heard reported on work with Barthel, Castellana, and
Valenzuela on understanding the thick subcategories of the categories of modules
over a commutative Noetherian ring spectrum.

1.2. Derived algebraic geometry. Goerss–Hopkins–Miller produced the first
example of a derived algebraic geometry object, showing how the Lubin–Tate uni-
versal deformation of a formal group law in characteristic p lifts to commutative
ring spectra. The resulting commutative ring spectrum has an action of the auto-
morphism group of the original formal group law, and the homotopy fixed points
of this action recovers the K(n)-localization of the sphere spectrum. In general,
this automorphism group is a p-adic Lie group of dimension n2, and cohomological
information about it can be difficult to access. Dustin Clausen described a gen-
eral framework to understand a generalization of the Lazard–Serre analysis of the
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continuous cohomology of p-adic Lie groups. Restricting the action of the auto-
morphism groups to finite subgroups gives various finitary approximations to the
K(n)-local sphere. Mingcong Zeng talked about recent work with Lennart Meier
on how constructions in equivariant homotopy theory can be used to study related
problems.

Goerss–Hopkins–Miller lifted the classial Landweber–Ravenel–Stong result to a
sheaf of commutative ring spectra lifting the structure sheaf of the moduli stack of
elliptic curves, giving a concrete instance of algebraic geometry objects in homo-
topy theory. Recent work of Lurie provided a vast generalization of this, providing
a framework for one to simply do many classical algebraic geometry constructions
in commutative ring spectra. Lennart Meier spoke on Lurie’s equivariant elliptic
cohomology, describing recent work with David Gepner on explicit computations
of various fixed point spectra for S1-equivariant topological modular forms. John
Rognes continued the discussion of topological modular forms, describing joint
work with Bruner on the Anderson and Brown–Comenetz duals of tmf at the
prime 2, originally described by Stojanoska.

1.3. Higher categories and geometry. A feature of Lurie’s work is a vast
literature on quasicategories, a particular model of higher categories (in particular
“(∞, 1)-categories”). This reflects decades of work on models of higher categories
and tools to work with them. Julie Bergner described joint work with Nick Kuhn
and Inna Zakharevich on a study of 2-Segal spaces, a 2-dimensional generalization
of the usual Segal spaces, together with applications to Hall algebras. Viktoriya
Ozornova explained recent work with Martina Rovelli on stratified simplicial sets as
a model for (∞, n)-categories, focusing on the particular case of (∞, 2)-categories.

Peter Haine described an application of higher categories to the study of strati-
fied spaces. Mixing homotopy theory and geometry, Sam Nariman explained how
Thurston’s fragmentation technique in foliation theory can be used to show a ho-
mology h-principle for certain sheaves on manifolds. Alexander Kupers described
joint work with Manuel Krannich in which they study the cohomology groups of
the space diffeomorphisms of certain 2n-manifolds outside of the classically studied
stable range.

1.4. Algebraic K-theory. Quillen’s algebraic K-theory of a ring is a fundamen-
tal invariant, recording deep and subtle number-theoretic information about the
ring. Computations of algebra K-groups are notoriously difficult, but trace meth-
ods, pioneered by Goodwillie and Bökstedt–Hsiang–Madsen, show that topological
Hochschild homology, as a cyclotomic spectrum, can approximate these groups in
a variety of cases. Thomas Nikolaus described an application of this, talking about
a vast generalization of Beilinson’s fiber sequence in K-theory obtained via topo-
logical cyclic homology. Markus Land then discussed recent work with Meier and
Tamme that shows that the algebraicK-theory functor preserves telescopic equiv-
alences. On a computational side, Achim Krause talked about joint work with
Nikolaus on an extension of Bökstedt’s classical periodicity for THH of a perfect
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field in characteristic p to discrete valuation rings, giving a way to understand the
topological Hochschild homology of DVRs.

1.5. Equivariant and motivic homotopy. Tom Bachmann described joint work
with Jeremy Hahn on normed motivic spectra, a motivic analogue of an equivari-
ant commutative ring spectrum, exploring some of the basic examples and some
of the motivic analogues of classical equivariant results. Kyle Ormsby reported
on recent work with Röndigs wherein they use the motivic slice spectral sequence
to compute the homotopy groups of the η-local sphere spectrum, working over an
arbitrary base field. On the equivariant front, Clover May described work with
Dugger and Hazel on a classification of compact objects in the category of chain
complexes of modules over the constant Mackey functor F2 for the group C2.

1.6. Operads and loop spaces. Joana Cirici talked about formality for algebraic
structures, explaining how the presence of a weight decomposition can be used to
obtain new formality results e.g., for configuration spaces, as in her joint work with
Geoffroy Horel. Anna Marie Bohmann talked on joint work with Angelica Osorno.
They show a a multiplicative comparison of Segal andWaldhausenK-theory which
yields a comparison of the ring spectra built from these.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Nilpotence in normed MGL-modules

Tom Bachmann

(joint work with Jeremy Hahn)

Motivic stable homotopy theory. For a scheme S, we have the motivic stable
∞-category

SH(S) = LA1,NisP (SmS)∗[(P
1)−1].

It is clear that if f : S′ → S is a morphism of schemes, then there is an induced
symmetric monoidal cocontinuous functor f∗ : SH(S) → SH(S′). It is less clear,
but established in [BHo17] that for a finite étale morphism p : S′ → S, the Weil
restriction [CGP15, §A.5] induces a symmetric monoidal functor p⊗ : SH(S′) →
SH(S). It only preserves sifted colimits, however.

Normed spectra. The functorialities f∗ and p⊗ can be used to define the cat-
egory NAlg(SH(S)) [BHo17, §7] of so-called normed spectra. This comes with a
forgetful functor NAlg(SH(S)) → CAlg(SH(S)), i.e. is an enhancement of the
category of E∞-ring spectra in SH(S). Intuitively, an object E ∈ NAlg(SH(S))
consists of an underlying spectrum E ∈ SH(S), for every finite étale map p : X →
Y ∈ SmS a morphism

p⊗(E|X) → E|Y ,

and an infinite amount of coherences among these data.

Some examples.

(1) Many of the motivic spectra analogous to classical E∞-rings are normed
spectra. This is true for example for the sphere spectrum S0, the algebraic
cobordism spectrum MGL, the algebraic K-theory spectrum KGL, and
the motivic cohomology spectrum HZ.

(2) Recall that the geometric Hopf map A2 \ 0 → P1 induces a non-nilpotent
endomorphism η of the motivic sphere spectrum S0. One may show that
the mapping telescope S0[η−1] is not normed [BHo17, Example 12.11],
even though it is an E∞-ring.

(3) More is true: if E ∈ NAlg(SH(S)) is any normed spectrum on which η
acts invertibly, then E ≃ 0 [BHo17, Example 12.12].

(4) On the other hand, if p : S′ → S is any finite étale morphism (with S 6= ∅),
then p⊗(η) 6= 0.
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Normed nilpotence. In general, given E ∈ NAlg(SH(S)) and x ∈ π∗∗(E), we
call x normed nilpotent if the analog of (3) holds: for any F ∈ NAlg(SH(S))E/
such that x acts invertibly on F , we have F ≃ 0. It seems to be an important
problem to develop criteria for deciding if some x ∈ π∗∗E is normed nilpotent. In
a lot of ways, this is equivalent to finding criteria for deciding if E ≃ 0. Inspired
by analogous results about classical E∞-ring spectra, we establish the following.

Theorem (motivic May nilpotence theorem [BHa19]). Let E ∈ NAlg(SH(S))
(where S is noetherian, finite dimensional, and whenever 1/p 6∈ S then 1/p ∈ E).
If E ∧HZ ≃ 0, then also E ∧MGL ≃ 0.

Some questions.

(1) Let E ∈ NAlg(SH(S)). If E ∧MGL ≃ 0, is then also E ≃ 0?
(2) Recall the motivic “cofiber τ” ring spectrum S0/τ ∈ CAlg(SH(C)∧2 )

[Ghe17]. Can we lift S0/τ ∈ NAlg(SH(C)∧2 )?
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2-Segal sets, algebraic K-theory, and Hall algebras

Julie Bergner

(joint work with Nick Kuhn and Inna Zakharevich)

The notion of 2-Segal space was defined by Dyckerhoff and Kapranov [2], and
independently under the name of decomposition space by Gálvez-Carrillo, Kock,
and Tonks [3]. The structure given by a 2-Segal space is something like that
of a topological category up to homotopy, but for which composition need not be
defined, or be unique even when it is, but still satisfies associativity. Although both
sets of authors give many different examples arising from different perspectives, two
key themes emerge. First, 2-Segal spaces can be obtained via S•-constructions, and
hence have a close relationship with algebraic K-theory. Second, 2-Segal spaces
satisfying certain finiteness assumptions give rise to Hall algebra constructions.

A natural question, then, is what these two themes have to do with one another.
Indeed, it has long been thought by experts that there should be a close relationship
between Hall algebras and algebraic K-theory. However, many of the classical
examples in both fields tend to be somewhat large; for example, most familiar
Hall algebras are infinite-dimensional. In this talk, we consider 2-Segal sets, or
discrete 2-Segal spaces, and some explicit examples whose Hall algebras have very
concrete descriptions.
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The family of examples we consider arises from finite graphs. Given a finite graph
G, we construct a simplicial setXG with a single 0-simplex, 1-simplices given by the
subgraphs of G, and higher simplices given by subgraphs equipped with ordered
partitions of the vertices of the subgraph into (possibly empty) subsets. That
this simplicial set is a 2-Segal set was shown in joint work with Angélica Osorno,
Viktoriya Ozornova, Martina Rovelli, and Claudia Scheimbauer [1], following the
example of the decomposition space of all graphs as described by Gálvez-Carrillo,
Kock, and Tonks [3].

Although their construction can be defined for more general 2-Segal objects, we
consider Dyckerhoff and Kapranov’s definition of the Hall algebra associated to a
reduced 2-Segal set [2]. Its underlying vector space is generated by the 1-simplices
of the 2-Segal set, and the multiplication essentially counts the 2-simplices which
encode the different ways to “compose” a given pair of 1-simplices. This definition
makes sense so long as this counting always produces a finite sum, so we restrict
to 2-Segal sets with finitely many nondegenerate simplices.

In particular, this construction can be applied to the 2-Segal set XG associated
to a finite graph G. The resulting Hall algebra has several interesting properties.
It is always commutative, and the multiplication can be described very explicitly
in terms of geometric properties of the graph. For example, the product of the
basis elements associated to two subgraphs of G is nonzero precisely when those
two subgraphs are disjoint.

Because the Hall algebras of this particular family of 2-Segal sets can be de-
scribed so explicitly, we can try to identify them with other familiar algebras.
Working over the field F2 for simplicity, for many examples of this kind we can
impose a natural grading so that these Hall algebras agree with the cohomology
of explicitly described topological spaces with coefficients in F2. For example, for
a graph with n vertices and no edges, the Hall algebra has n generators. If we say
that these generators are in degree 1, then this algebra coincides with the coho-
mology of the n-dimensional torus. When G is the graph with two vertices and a
single edge between them, the associated Hall algebra agrees with the cohomology
of the wedge of a torus with a 2-sphere.

While we have worked out many special cases on a small number of vertices, the
general formula for the associated topological space is still conjectural. Still more
intriguing is that fact that, for many of these small examples it can be verified
that this assocated space is homotopy equivalent to the geometric realization of
the simplicial set XG. Thus, a more general question is when the Hall algebra of
a 2-Segal set agrees with the cohomology of its geometric realization. We know,
however, that this relationship does not hold in general. A counterexample is
given by the 2-Segal set given by the nerve of a discrete group G, whose associated
Hall algebra is the group algebra of G over the underlying field, which does not
coincide with the group cohomology algebra of G.
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A multiplicative comparison of Segal and Waldhausen K-theory

Anna Marie Bohmann

(joint work with Angélica M. Osorno)

A very homotopical perspective on algebraic K-theory is that K-theory is a tool for
building spectra from categorical data. For example, in influential work of the 70s
and 80s, Segal [8] and Waldhausen [9] each construct a version of K-theory that
produces spectra from certain types of categories. These constructions agree in
the sense that appropriately equivalent categories yield weakly equivalent spectra.
In fact, Waldhausen provides a comparison map from Segal’s K-theory to his K-
theory in his initial paper on the subject.

We should think of the equivalence between these K-theory constructions, as
well as equivalences coming out of results like the May–Thomason theorem [7],
as additive equivalences. These are comparisons of spectra—in other words, of
spaces equipped with a highly coherent homotopy commutative operation—but
they don’t take into account any possible further structure, such as the multi-
plicative structure needed to build ring spectra.

In the 2000s, work of Elmendorf–Mandell [5] and Blumberg–Mandell [3] pro-
duced more structured versions of Segal and Waldhausen K-theory, respectively.
These versions are “multiplicative,” in the sense that appropriate notions of pair-
ings of categories yield multiplication structure on their resulting spectra. Both
K-theory constructions encode this multiplicativity in the language of multifunc-
tors and multicategories.

In our work, Osorno and I show that that the Elmendorf–Mandell and Blum-
berg–Mandell constructions agree as multiplicative versions of K-theory. Conse-
quently, we get comparisons of ring spectra built from these two constructions.
Furthermore, the same result also allows for comparisons of related constructions
of spectrally-enriched categories. There is related work by Barwick [1], Blumberg–
Gepner–Tabuada [2], and Gepner–Groth–Nikolaus [6] providing ∞-category level
comparisons of several types of K-theory constructions. Our work differs in that
it provides a structured “on-the-nose” comparison between these specific versions
of K-theory. The main theorem can be stated as follows.
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Theorem 1 ([4]). There is a multinatural transformation of symmetric multi-
functors fitting into the diagram

Wald

KBM
$$❍

❍❍
❍❍

❍❍
❍❍

❍
//

✔✔✔✔��

SMC∗

KEM
zz✉✉
✉✉
✉✉
✉✉
✉

Spec

The horizontal multifunctor from Waldhausen categories to strictly unital symmet-
ric monoidal categories is given by endowing a Waldhausen category with a choice
of wedge products.

In fact, to get the full type of equivalence necessary, this theorem must be
refined in two ways. First, we wish to have an enriched comparison. Since the
natural enrichment on the source category is in categories, we pass to categorical
enrichment throughout by working with symmetric spectra in simplicial pointed
categories. We further introduce an intermediate categorically-enriched symmetric
multicategory to serve as the target of our natural transformation, so that the main
construction is in fact a categorically-enriched multinatural transformation fitting
into the following diagram of symmetric multifunctors:

Wald

KBM
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
//

✖✖✖✖��

SMC∗

KEM
xx♣♣
♣♣
♣♣
♣♣
♣♣
♣

E∗-Cat

��

Spec(sCat)

The second refinement is to take care of the weak equivalences, which are inte-
gral to the definition of Waldhausen’s K-theory functor. We show that with this
set up, taking weak equivalences in the Waldhausen category “commutes” with
the construction of the multinatural transformation and of the Elmendorf–Mandell
version of K-theory. This allows us to prove the following result.

Theorem 2 ([4]). For any Waldhausen category C for which Waldhausen’s initial
comparison map KWald(C) → KSeg(C) is an equivalence, the component at C of
the multinatural transformation of Theorem 1 is an equivalence. In particular, this
applies when C has suitably split cofibrations.

The combination of these results implies that (commutative) ring spectra, E∞-
ring spectra and other operadically defined algebraic structures built out of Segal’s
and Waldhausen’s K-theory constructions are equivalent as structured objects.
Furthermore, spectrally-enriched categories (in the classical sense of Kelly) built
from these constructions are also equivalent. Our main motivation for pursuing
this work is in showing that Waldhausen- and Segal-type constructions of the
spectral Burnside category are equivalent.
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Generalised Lie algebras in Algebra and Topology

Lukas Brantner

We discuss different generalisations of rational differential graded Lie algebras, and
outline some recent applications to unstable homotopy theory [5][15], formal de-
formation theory [10], and the (generalised) homology of configuration spaces [7][8]
away from characteristic zero.

1. Three applications of rational differential graded Lie algebras

Given a field k of characteristic zero, we recall the following notion:

Definition 1. A (shifted) differential graded Lie algebra g over k consists of a

chain complex . . . −→ g1
d
−→ g0

d
−→ g−1 → . . . of k-vector spaces together with bilinear

maps [−,−] : gi × gj → gi+j−1 such that for all x ∈ ga, y ∈ gb, z ∈ gc, we have:

(1) Antisymmetry: [x, y] = (−1)ab[y, x];

(2) Jacobi identity: (−1)ac[[x, y], z] + (−1)cb[[z, x], y] + (−1)ba[[y, z], x] = 0;

(3) Leibniz rule: d([x, y]) = −[dx, y]− (−1)a[x, dy].

Remark 2. The shifted grading convention arises naturally from Koszul duality;
all Lie algebras appearing in this document are assumed to be shifted.

Rational differential graded Lie algebras have several classical applications:

Rational Lie models. Quillen [27] established an equivalence (S∗)Q,≥2 ≃ LieQ,≥2

between rational simply connected pointed spaces and differential graded Lie al-
gebras g over Q with πi(g) = 0 for i < 2. Under this correspondence, the rational
n-sphere SnQ corresponds to the free Lie algebra on a class in degree n.
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Rational homology of configuration spaces. Given a framed n-manifold M
and an integer m, there is a (weight-preserving) isomorphism

(1)
⊕

k

H∗ (Confk(M)⊗Σk
Sm;Q) ∼= HLie

∗

(
H−∗
c (M ;Q)⊗ FreeLieQ(xn+m)

)
.

HereHLie
∗ (−) denotes Lie algebra homology, andH∗

c (−;Q) is compactly supported
cohomology. The isomorphism (1) is due to Knudsen [18], and generalises work of
Bödigheimer–Cohen–Taylor [4], Félix–Thomas [14], Totaro [34], and others. It is

very useful in practice; for example, we can read off that H∗(Ω
2S3;Q) ∼= Q[1].

Rational deformation theory. Deformations of algebro-geometric objects over
Q are controlled by rational differential graded Lie algebras. This general paradigm
was first observed by Deligne [12], Drinfel’d [13], and Feigin, explored further by
Hinich [16], Kontsevich–Soibelman [20], and Manetti [25], and finally formulated
as an equivalence of ∞-categories by Lurie [22] and Pridham [26].

The Lurie-Pridham theorem identifies formal moduli problems over Q, which
encode deformation functors of algebro-geometric objects, with rational differential
graded Lie algebras.

Remark 3. These applications extend to general fields of characteristic zero.

2. Settings away from characteristic zero

The three classical applications presented above use rational chain complexes;
these model the ∞-category ModQ of module spectra over Q, i.e. Q-local spectra.

It is possible to extend some of these results to other settings:

Modular settings. We could also work in chain complexes over a field k of
characteristic p (e.g. Fp), or over a complete local Noetherian base (such as Zp).

Chromatic settings. For every prime p, chromatic homotopy theory constructs
infinitely many ring spectraK(0)=Q,K(1),K(2), . . . known as MoravaK-theories.
For h > 0, these satisfy K(h)∗ ∼= Fp[v

±1
h ] with |vh| = 2(ph − 1); they may be

thought of as “generalised fields” sitting in between Q and Fp. Accordingly, the
∞-category SpK(h) of K(h)-local spectra interpolates between rational and p-local
spectra. As is customary, we suppress p from our notation for Morava K-theories.

3. Generalised Lie algebras and their applications

Away from characteristic 0, differential graded Lie algebras are not homotopically
well-behaved; for example, their “free functor” fails to preserve quasi-isomorphisms.
In recent years, more adequate substitutes were introduced for different applica-
tions:
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Lie
models

Configuration
spaces

Deformation
theory

rational Differential graded Lie algebras

chromatic

Spectral Lie algebras

E∧

∗
(−)

y
Hecke Lie algebras

modular

Partition Lie algebras
(derived algebraic geometry)

Spectral partition Lie algebras
(spectral algebraic geometry)

We give a brisk outline of the definitions and applications of these generalisations.

Spectral Lie algebras. Let OComm be the commutative operad in spectra. Sal-
vatore [31] and Ching [11] have defined the spectral Lie operad as the dualised bar
construction D(Bar(OComm)); its algebras are called spectral Lie algebras. Over Q,
these are equivalent to the rational differential graded Lie algebras in Definition 1.

The free spectral Lie algebra on a spectrum X is given by

Liesk(X) =
⊕

n

D(ΣΠ⋄
n)⊗hΣn

X⊗n,

where ΣΠ⋄
n is the unreduced-reduced suspension of the nth partition poset. This

makes spectral Lie algebras susceptible to methods from combinatorial topol-
ogy [1].

Unstable chromatic homotopy theory. Spectral Lie algebras were first linked
to unstable chromatic homotopy theory by Behrens and Rezk [5] who, for each
pointed space X , constructed a comparison map cX : Φ(X) → TAQSK(h)

(SXK(h))

from the Bousfield–Kuhn functor on X to the topological André–Quillen cohomol-
ogy of the E∞-ring SXK(h) – the latter is always a spectral Lie algebra.

The map cX is an equivalence for X a sphere [3], and also for special unitary
and symplectic groups [6]. In [9], we proved (with Heuts) that cX fails to be an
equivalence on wedges of spheres and Moore spaces.

Heuts [15] later equipped the Bousfield–Kuhn functor Φ(X) with the structure
of a spectral Lie algebra, and used this to establish an equivalence between K(h)-
local spectral Lie algebras and a certain ∞-category MK(h) of periodic spaces.

Hecke Lie algebras. Lie algebras in SpK(h) are not amenable to explicit com-

putations, as their homotopy groups involve the K(h)-local homotopy groups of
spheres. However, work of Hopkins–Ravenel shows that SpK(h) is equivalent to

K(h)-local modules over a height h Morava E-theory E with action by the sta-
biliser group G.
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In [7], we introduced Hecke Lie algebras to describe the operations acting on the
homotopy groups of spectral Lie algebras in Mod∧E , the ∞-category of K(h)-local
E- modules. In particular, E∧

∗ (Φ(X)) is a Hecke Lie algebra for any pointed
space X .

Very roughly, Hecke Lie algebras are Lie algebras in E∗-modules, equipped
with an additional additive action by the cohomology of Rezk’s ring Γ [29], which
is closely related to the Hecke algebra of GLn(Zp) [30]. There is an additional
congruence at p = 2, and special care must be taken when composing operations.

These concrete algebraic structures facilitated recent computational advances:

Chromatic homotopy theory of configuration spaces. Computing the
Morava K- or E-theory of the unordered configuration spaces of a manifold M is
a hard problem.

For M = Rn, it is of particular interest as the relevant groups parametrise
Dyer–Lashof operations on En-algebras. At chromatic height h = 1, the problem
was essentially solved by Langsetmo [21]. In dimensions n = 2, 3, 4, Yamaguchi
[35] and Tamaki [32] [33] computed the Morava K-theory groups with increasingly
laborious methods. For general h and n, Ravenel stated a conjecture in [28].

Together with Hahn and Knudsen [8], we apply the theory of Hecke Lie algebras
to a spectral generalisation of (1), which was originally established in [19]. This
allows us to compute the Morava K- and E-homology groups (at a prime p) of
the configuration space of p points in Rn, for all heights h and all dimensions n.

We carry out similar computations for configuration spaces of punctured surfaces.
Letting h tend to infinity, we can read off their previously unknown Fp-homology.

One might hope to perform this computation without reference to E-theory
by using spectral Lie algebras over Fp. Their operations have been computed at
p = 2 by Antoĺın-Camarena [2]. For p odd, partial progress has been made by
Kjaer [17], but the Adem relations remain unknown. Our method from [7] does
not immediately apply, as it uses K(h)-local Tate vanishing to identify orbits with
fixed points.

However, algebraic geometry leads to two other notions of Lie algebras over Fp:

Formal moduli. Infinitesimal deformations of a given algebro-geometric object
over a field k are described by a corresponding formal moduli problem, which is
a “functor of points” defined on suitable Artin k-algebras and satisfying a gluing
axiom.

Away from characteristic 0, there are in fact two variants of formal moduli prob-
lems, as algebraic geometry can be based on simplicial commutative rings (“derived
algebraic geometry”) or on connective E∞-rings (“spectral algebraic geometry”).

Partition Lie algebras & spectral partition Lie algebras. Together with
Mathew [10], we introduce two new generalisations of Lie algebras, called partition
Lie algebras and spectral partition Lie algebras, over any base field k.
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In characteristic 0, both recover the differential graded Lie algebras in Definition
1. In characteristic p, they are distinct from previously considered generalisations
(such as spectral Lie algebras or simplicial/cosimplicial restricted Lie algebras).

We prove that our Lie algebras control formal moduli problems in derived and
spectral algebraic geometry, respectively. This generalises the Lurie–Pridham the-
orem from characteristic 0 to base fields of arbitrary characteristic (such as Fp);
we also offer a version over mixed characteristic bases (like Zp).

Even when k is a field, our new Lie algebras are not governed by operads. Instead,
they are algebras over monads Lieπk,∆ and Lieπk,E∞

acting on the ∞-category of
k-module spectra. These monads preserve filtered colimits, geometric realisations,
and are given on coconnective objects X ∈ Modk,≤0 by

Lieπk,∆(X) =
⊕

n

C̃
∗(ΣΠ⋄

n, k)⊗
Σn X

⊗n ; Lieπk,E∞
(X) =

⊕

n

C̃
∗(ΣΠ⋄

n, k)⊗
hΣn X

⊗n
.

Here, C̃∗(−, k) denotes the reduced k-valued singular cochains of a space, whereas
(−)Σn and (−)hΣn denote strict invariants and homotopy invariants, respectively.
The precise definition of strict fixed points uses the genuine equivariant topology
of partition complexes, and requires some care.

Outlook. As partition Lie algebras involve fixed points rather than orbits, one can
adapt the arguments in [7] to compute their operations and relations. Following
the strategy in [18] and [8] then leads to a new approach to the Fp-homology of
configuration spaces – a subject where many computations are yet to be done.

Two other tasks for the future are to provide a Lie algebraic description of
deformations in chromatic contexts, and to construct Lie models for the modular
homotopy type of spaces (Koszul dual to Mandell’s commutative models in [24]).
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Formality with torsion coefficients

Joana Cirici

(joint work with Geoffroy Horel)

The notion of formality makes sense for almost any algebraic structure on a
(co)chain complex, such as commutative dg-algebras, dg-Lie algebras, operads,
or any algebraic object encoded by a coloured operad: such an algebraic object is
formal if it is connected with its (co)homology by a string of morphisms preserving
the algebraic structures and inducing isomorphisms in (co)homology.
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Let R be a commutative ring. A topological space X is said to be formal over
R if its singular cochain complex C∗(X,R) with coefficients in R is formal as a
dg-algebra. Similarly, we say that an operad O in topological spaces is formal over
R if the operad C∗(O, R) is formal as a dg-operad in chain complexes.

There is also an abstract notion of functorial formality: let C be a symmetric
monoidal category and A an abelian symmetric monodidal category. Consider a
(lax) symmetric monoidal functor F : C −→ Ch∗(A) with values in the category of
chain complexes of A. Then F is said to be formal if and only if there is a string
of monoidal natural transformations from F to the composition H∗ ◦ F with the
homology functor H∗, inducing quasi-isomorphisms on every object. Note that
if F is a formal functor, then it sends algebraic structures (algebras, operads,
monoids...) in C to formal algebraic structures in Ch∗(A). This notion was first
introduced by Guillén-Navarro-Pascual-Roig in [6], who proved that the functor of
singular chains C∗(−,Q) with rational coefficients is formal when restricted to the
symmetric monoidal category of compact Kähler manifolds. In [2] we extended this
result to the symmetric monoidal category of all complex algebraic varieties whose
weight filtration in cohomology satisfies certain purity properties, providing various
applications to formality over Q of algebras and operads arising from algebraic
geometry. The results of [2] strongly depend on mixed Hodge theory and as such,
they are restricted to rational coefficients. However, via the étale counterpart of
Deligne’s theory of weights, we can obtain partial results of formality with torsion
coefficients, as we next explain.

Let K →֒ C be a p-adic field with residue field Fq. Given an algebraic vari-

ety X defined over K, we may consider its base change XK := X ×K K. By

construction, XK has an action of the absolute Galois group Gal(K/K). Then,
the étale cohomology groups H∗

et(XK ,Fℓ) carry a Frobenius automorphism ϕ∗ for
any prime ℓ 6= p. In fact, this automorphism exists at the cochain level: there
is a dg-algebra C∗

et(XK ,Fℓ) together with a multiplicative endomorphism ϕ such
that H∗(ϕ) = ϕ∗. Now, the base change XC := X ×K C has an underlying an-
alytic space Xan and its complex of singular cochains C∗(Xan,Fℓ) is naturally
quasi-isomorphic to C∗

et(XK ,Fℓ). As a consequence, to prove formality of the
topological space Xan over Fℓ it suffices to prove formality for C∗

et(XK ,Fℓ). The
advantage of using étale chains is that they are endowed with an endomorphism
which, under sufficiently nice conditions, produces useful decompositions leading
to partial formality.

By sufficiently nice conditions we mean the following: Let α ∈ Q be a positive
rational number. We say that an algebraic variety X ∈ VarK is α-pure if for all
n ≥ 0, the only eigenvalue of Hn

et(XK ,Fℓ) is q
αn.

We will need the following notion of partial formality. Let N ≥ 0 be an integer.
We say that a dg-algebra A is N -formal if there is a string of morphisms of dg-
algebras from A to its homology H∗(A) in such a way that the induced maps in
degree i-homology are isomorphisms for all i ≤ N .
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Theorem 1.1 ([3]). Let X ∈ VarK be an α-pure algebraic variety defined over K,
with H1

et(XK ,Fℓ) = 0. Then the topological space Xan is N -formal over Fℓ, where

N = ⌊h−1
α ⌋ and h is the order of q in F×

ℓ .

Let us explain some direct applications of this result:

(1) The étale cohomology of projective space PmK is concentrated in even de-
grees and the Frobenious authomorphism acts by multiplication by qi on
H2i
et (P

m
K ,Fℓ) so we have α = 1/2. Since PmK is defined over Z we can choose

K = Qp such that q generates F×
ℓ , so that h = ℓ − 1. Then the theorem

says that PmK is 2(ℓ − 2)-formal over Fℓ. In particular, if ℓ > m + 1 then
PmK is formal over Fℓ.

(2) A similar argument applies to the moduli spaces M0,n+1, giving formality
of these spaces over Fℓ for any n ≤ ℓ.

(3) The theorem also applies to configuration spaces Confm(Cd) of m points
in Cd, with h = ℓ − 1 and α = d/(2d − 1). Therefore these spaces are
formal over Fℓ whenever (m− 1)d ≤ ℓ− 1.

A recent approach to formality using homotopy transfer techniques has been de-
veloped by Drummond-Cole and Horel in [4]. Their theory allows to produce
formality results with coefficients in the p-adic integers.

We also have a chain-operadic version of the above result, which can be stated
abstractly as follows: consider the symmetric monoidal category Tα whose objects
are given by pairs (C,ϕ) where C is a non-negatively graded chain complex of
vector spaces over Fℓ with finite type homology and ϕ is an endomorphism of C
such that the only eigenvalue of Hn(ϕ) on Hn(C) is q

αn. Then, we have:

Theorem 1.2 ([3]). Reasonable operads in Tα are N -formal, where N = ⌊h−1
α ⌋

and h is the order of q in F×
ℓ .

The proof of the above theorem follows after showing that the forgetful functor
Tα −→ Ch∗(Fℓ) given by (C,ϕ) 7→ C is N -formal as an ∞-functor. This directly
implies formality for reasonable (more precisely: for homotopically sound) operads.
For instance, we may apply the above result to the operad of little disks. The idea
is the following: there is a model of C∗(E2,Fℓ) endowed with an action of the
Grothendieck-Teichmüller group GT. Also, there is a surjective map Xℓ : GT →
Z×. One may then choose p generating F×

ℓ and ϕ ∈ GT such that Xℓ(ϕ) = p.
Then the pair (C∗(E2,Fℓ), ϕ) is an object in Tα, with α = 1. It follows that the
operad of little discs E2 is (ℓ − 1)-formal over Fℓ.

In [1], Boavida de Brito and Horel construct a GT-action on the higher little
discs En, thus obtaining partial formality over Fℓ also in this case.

References

[1] P. Boavida de Brito and G. Horel On the formality of the little disks operads in positive
characteristic, Preprint arXiv:1903.09191, 2019.

[2] J. Cirici and G. Horel Mixed Hodge structures and formality of symmetric monoidal func-
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Atiyah duality for p-adic Lie groups

Dustin Clausen

Before doing any motiviation, set-up, or anything else, I want to describe the key
construction which goes into the proof of the main result. This is a new kind of p-
adic cospecialization map. Consider the ∞-category of Q×

p -equivariant sheaves of

spectra on Qp, or equivalently sheaves on the quotient stack Qp/Q
×
p . Here we are

viewing Qp as a topological space with an action of the topological group Q×
p , and

Sh(Qp/Q
×
p ) is defined as the inverse limit of the ∞-cateogry of sheaves of spectra

Sh(X) asX runs over the usual simplicial topological space presenting the quotient
(the nerve of the action groupoid), with respect to the pullback functoriality.

The main construction is this. Suppose given any F ∈ Sh(Qp/Q
×
p ) such that

the spectrum F0, the stalk of F at 0 ∈ Qp, satisfies:

(1) The abelian group πdF0 is torsion for all d ∈ Z;
(2) πd(F0/n) finite for all n > 0 and d ∈ Z.

Then there is a natural map
F0 → F1

from the stalk at 0 to the stalk at 1, such that if F is a constant sheaf than this
map is the natural identification.

If we were to replace Qp by R in the above, one could construct such a map
F0 → F1 in a standard way by using the fact that the topology of R is determined
by open intervals, which are contractible. But the p-adic case, where the topology
is totally disconnected, the existence of such a cospecialization map is somewhat
surprising and a more subtle construction is required.

Now, the main result is a generalization of a classic duality theorem of Lazard
and Serre in the context of p-adic Lie groups. Let us recall the definition: a p-
adic Lie group is a topological group G which admits an atlas modelled on open
subsets of some Qdp, such that the transition maps, and the group law, are locally
analytic: in a neighborhood of any point, they are given by a convergent power
series expansion. Standard examples are usual matrix groups such as GLn(Qp).
But there is also the compact open subgroup GLn(Zp), and more generally the
congruence subgroups of these,

Gm := ker(GLn(Zp) → GLn(Z/p
mZ)).

These Gm in fact form a compact open neighborhood basis of the identity in
G = GLn(Qp) consisting of p-adic Lie groups. The existence of such a system of
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neighborhood bases is completely general, and it distinguishes p-adic Lie groups
from their real cousins, which have the opposite “no small subgroups” property.
Another difference is that while the algebraic topology of a real Lie group is inter-
esting even when you forget the group structure and just think of the topological
space, the underlying topological space of a p-adic Lie group is devoid of interest;
not even the dimension of G can be recovered from it. Only in the presence of
the group structure does the theory become interesting from an algebraic topology
point of view.

The duality result of Lazard concerns the continuous group cohomology of such
a G with discrete, p-power torsion coefficients M . This cohomology, denoted

H∗(BG;M),

is defined as the cohomology of the subcomplex of the standard complex computing
group cohomology, where you require the cochains Gn → M to be continuous
functions. Also, M is to be equipped with a continuous G-action to make this
well-defined.

The Lazard-Serre theorem, which we state just with constant coefficients for
simplicity, is as follows: suppose that G is a compact and p-torsionfree p-adic Lie
group, of dimension d. Then:

(1) There is a canonical free Zp-module of rank one δBG with continuous G-
action and a canonical identification Hd(BG; δBG/p

n) = Z/pnZ for all
n ≥ 0, such that for all i ∈ Z the cup product

Hi(BG;Z/pnZ)⊗Z/pnZ H
d−i(BG; δBG) → Hd(BG, δBG/p

n) = Z/pnZ

is a perfect pairing of finite Z/pnZ-modules. (Note that Z/pnZ is injective
as a module over itself.)

(2) This δBG can be explicitly described in terms of the adjoint representation
of G on its Lie algebra: its defining character G → Z×

p ⊂ Q×
p is given by

the determinant of the adjoint representation.

Thus, the group cohomology of a suitable p-adic Lie group satisfies Poincare du-
ality, similarly to the usual cohomology of a compact real manifold. And similarly
to how the orientation local system on a real manifold is controlled by the tangent
bundle, so is δBG controlled by the adjoint representation.

Lazard proved this if you replace the p-torsionfree hypothesis with the con-
dition that G have finite p-cohomological dimension, and also showed that this
condition always holds if you shrink G sufficiently; it was Serre’s contribution to
show that, under the compactness hypothesis, p-torsionfreeness is equivalent to
finite p-cohomological dimension.

Our main result is the following generalization from abelian group cohomology
to spectrum cohomology. For G as in the Lazard-Serre theorem, define Sh(BG)
to be the ∞-category of sheaves of spectra on BG, or equivalently G-equivariant
sheaves of spectra on the point, defined as the limit of the cosimplicial diagram
given by the sheaves on the simplicial topological space describing BG, similarly
to the above discussion of Qp/Q

×
p . This Sh(BG) is one possible model for the
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∞-category of “spectra with continuous G-action”; on homotopy groups it gives
a discrete abelian group with continuous G-action. Also consider the full sub-
category Shp(BG) of p-power torsion objects. This is actually a unital symmetric
monoidal∞-category under the usual smash product, though the unit looks a little
funny (it is the derived p∞-torsion in the constant sheaf on the sphere spectrum).
Then:

(1) There is a canonical invertible object DBG ∈ Shp(BG) such that the left
adjoint and right adjoint to the pullback p∗ : Shp(∗) → Shp(BG) differ by
tensoring with DBG.

(2) DBG can be explicitly described in terms of the adjoint representation of
G on its Lie algebra g. (The proof says exactly how.)

In fact, our (1) is essentially a formal consequence of the Lazard-Serre (1). So the
main point is (2), which is by no means a formal consequence of the Lazard-Serre
(2), nor can Lazard’s proof be adapted to this more general setting.

Let us explain the outline of the proof. The crucial thing to show is that the
fiber of DBG at the basepoint ∗ → BG canonically identifies with the fiber of
DBg at the basepoint ∗ → Bg; here we are simply viewing the Lie algebra g as
an abelian p-adic Lie group under addition. An “in-families” version of the same
argument, applied to the adjoint action of G on itself, will provide the description
posited in (2).

To give this identification we use a geometric construction borrowed from alge-
braic geometry, the deformation to the normal bundle. In our setting this provides
a smooth family of p-adic Lie groups, parametrized by the topological space Qp,
whose fiber at 1 is G and whose fiber at 0 is g. Moreover there is a Q×

p -equivariant
structure on this deformation. One produces a fiberwise version of the dualiz-
ing object DBG for this family of p-adic Lie groups over Qp/Q

×
p , and then the

p-adic cospecialization map indicated at the beginning of this lecture provides a
comparison map

DBg → DBG

which one can check to be an equivalence on homology.
To produce the fiberwise dualizing object, and run the above argument “in

families”, it is necessary to have a clean and canonical formalism for relative du-
ality. We accomplish this by producing a six functor formalism in the sense of
Grothendieck. Such an approach also has other advantages; for example it pro-
duces an analog of compactly supported cohomology which allows to remove the
compact p-torsionfree hypotheses from our main theorem (at the cost of replac-
ing ordinary cohomology with its compactly supported variant, just as when one
generalizes Poincare duality for real manifolds away from the compact case.)

We note that this spectrum-level duality for p-adic Lie groups has also been
recently investigated in work of Beaudry-Goerss-Hopkins-Stojanoska. They prove
the identification of dualizing objects after restricting to certain finite subgroups
of G, and give interesting applications to chromatic homotopy theory and duality
in TMF .
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On the homotopy theory of stratified spaces

Peter Haine

Trying to understand invariants of stratified topological spaces, such as intersection
cohomology, naturally leads to the question of what the correct homotopy theory
of stratified topological spaces is. Just as in the classical setting, we would like a
‘homotopy hypothesis’ for stratified spaces

(
A homotopy theory of

stratified topological spaces

)
≃
(
Purely homotopical

objects

)
,

where

(1) The ‘purely homotopical’ side is simple to define and has excellent formal
properties (e.g., is a presentable ∞-category).

(2) The ‘topological’ side is also simple to define and captures all examples of
differential-topological interest (e.g., topologically stratified spaces in the
sense of Goresky–MacPherson [5, §1.1]).

(3) The equivalence is given by MacPherson’s exit-path construction.

Though many have attempted to construct such a homotopy theory, notably Hen-
riques [6, 7], Ayala and Francis with Rozenblyum [1] and Tanaka [2], and Nand-Lal
[11], a homotopy theory of stratified topological spaces satisfying (1)–(3) does not
yet exist. We report on our recent preprint [8] where we define a new homotopy
theory of stratified topological spaces satisfying these criteria, and show that all
existing homotopy theories of stratified topological spaces embed into ours.

Stratified topological spaces & exit-paths

Definition. The Alexandroff topology on a poset P is the topology on the under-
lying set of P in which a subset U ⊂ P is open if and only if x ∈ U and y ≥ x
implies that y ∈ U . We simply write P ∈ Top for the set P equipped with the
Alexandroff topology.

The category of P -stratified topological spaces is the overcategory Top/P . If

s : T → P is a P -stratified topological space, for each p ∈ P we write Tp := s−1(p)
for the pth stratum of T .

MacPherson had the idea that the ‘stratified homotopy type’ of a P -stratified
topological space T should be determined by its ‘exit-path ∞-category’ ExitP (T )
with:
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(0) Objects: points of T .
(1) 1-morphisms: exit-paths, that is, paths in T that flow from lower to higher

strata, and once they exit a stratum are not allowed to return.
(2) 2-morphisms: homotopies between exit-paths respecting stratifications.

...

It is difficult to make a construction of ExitP (T ) that is both precise and useful,
but the takeaway is that ExitP (T ) should be an ∞-category with a functor to the
poset P with strata ∞-groupoids. Another way of saying this is that the functor
ExitP (T ) → P is conservative. This idea informs what the ‘purely homotopical’
side of a stratified homotopy hypothesis should be:

Definition. The ∞-category of abstract P -stratified homotopy types is the ∞-
category

StrP := Catcons∞,/P ⊂ Cat∞,/P

of ∞-categories C over P with conservative structure morphism C → P .

The following ‘exit-path simplicial set’ construction due to Henriques [7] and
Lurie [9, §A.6] is an attempt to make MacPherson’s idea precise.

Construction. Let P be a poset. There is a natural stratification

πP : |N(P )| → P

of the geometric realization of the nerve N(P ) of P by the Alexandroff space P
extended from the natural [n]-stratification |∆n| → [n] of the standard topological
n-simplex defined by the assignment

(t0, . . . , tn) 7→ max {i ∈ [n] | ti 6= 0} .

If X is a simplicial set over N(P ), then we can stratify the geometric re-
alization |X | by composing the structure morphism |X | → |N(P )| with πP .
This defines a left adjoint functor |−|P : sSet/N(P ) → Top/P with right adjoint
SingP : Top/P → sSet/N(P ) computed by the pullback of simplicial sets

SingP (T ) := N(P )×Sing(P ) Sing(T ) ,

where the morphism N(P ) → Sing(P ) is adjoint to πP .

Here the stratified story diverges from the classical story: the simplicial set
SingP (T ) generally is not a quasicategory. This creates a lot of technical prob-
lems if one attempts to prove a stratified homotopy hypothesis by proving a Quillen
equivalence between a model structure on sSet/N(P ) presenting StrP and a model
structure on Top/P .

Nevertheless, when SingP (T ) is a quasicategory, it has the properties we want
out of an exit-path ∞-category. Write Topex

/P ⊂ Top/P for the full subcategory
spanned by those P -stratified topological spaces T for which the exit-path sim-
plicial set SingP (T ) is a quasicategory. Let W denote the class of morphisms
in Topex

/P that are sent to weak equivalences in the Joyal model structure under

SingP (i.e., equivalences of ∞-categories). The following is our ‘stratified homo-
topy hypothesis’, which we regard as a precise form of [1, Conjecture 0.0.4]:
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Theorem (H.). For any poset P , the induced functor

SingP : Topex
/P [W

−1] → StrP

is an equivalence of ∞-categories.

Our proof is somewhat indirect. Using the main result of Chapter 7 of Douteau’s
thesis [4], which realizes pioneering ideas of Henriques [7], we show that a ‘nerve’
functor provides an equivalence between an ∞-category obtained from Top/P
by inverting a class of weak equivalences and and a Segal space model for StrP
introduced in work with Barwick and Glasman [3, §4.2]. This immediately implies
that SingP : Topex

/P [W
−1] → StrP is fully faithful, and a bit more careful analysis

shows that it is also essentially surjective.

Comparisons to conically smooth stratified spaces

In work with Tanaka [2, §3], Ayala and Francis introduced conically smooth struc-
tures on stratified topological spaces, which they further studied in work with
Rozenblyum [1]. Their homotopy theory of P -stratified spaces is the ∞-category
obtained from the category ConP of conically smooth P -stratified spaces by in-
verting the class H of stratified homotopy equivalences. The functor SingP sends
stratified homotopy equivalences to equivalences of ∞-categories, hence descends
to a functor ConP [H

−1] → StrP . The Ayala–Francis–Rozenblyum ‘stratified
homotopy hypothesis’ states that this functor is fully faithful. Hence we have a
commutative triangle of fully faithful functors of ∞-categories

ConP [H
−1] StrP

Topex
/P [W

−1] ,

SingP

SingP

∼

where the vertical functor is induced by the functor ConP → Topex
/P forgetting

conically smooth structures.
One of the major benefits of the ∞-category Topex

/P [W
−1] over ConP [H

−1]

is that all conically stratified topological spaces fit into this framework [9, Theo-
rem A.6.4], in particular topologically stratified spaces in the sense of Goresky–
MacPherson, and even more particularly Whitney stratified spaces [10, 12], are
conically stratified. Thus the ∞-category Topex

/P [W
−1] captures most, if not all,

examples of differential-topological interest. On the other hand, it is still unknown
whether or not every Whitney stratified space admits a conically smooth structure
[1, Conjecture 0.0.7].
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Chromatic Smith theory and thick tensor-ideals of finite G-spectra

Markus Hausmann

(joint work with T. Barthel, J. Greenlees, N. Naumann, T. Nikolaus, J. Noel,
N. Stapleton)

1. Smith theory

Let G be a compact Lie group. Smith theory is a classical subject in algebraic
topology, originating in a series of papers of P. A. Smith [Smi38, Smi39], which
studies the relationship between the homology of a finite G-CW complex X and
the homology of its fixed points XG. One of the basic theorems of this theory is
the following:

Theorem (Smith). Let P be a finite p-group and X a finite P -CW complex.
Then, if (the underlying space of) X has trivial reduced mod p homology, so does
the fixed point space XP .

This talk dealt with the question of whether there are similar statements when
reduced mod p homology is replaced by generalized homology theories. Specifically,
given two generalized reduced homology theories h∗ and h′∗ and a compact Lie
group G, we study the following question:

Question 1. Does there exist a finite based G-CW complex X with h∗(X) = 0
but h′∗(X

G) 6= 0?

Every reduced homology theory extends uniquely to a homology theory on
finite spectra (which we denote by the same name). The answer to Question 1
then only depends on the kernels ker(h∗) and ker(h′∗), i.e., the full subcategory of
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those finite spectra on which h∗ respectively h′∗ vanish. This perspective is useful,
because such kernels always form a thick subcategory of finite spectra (they are
closed under taking cofibers, desuspensions and retracts) and these were classified
by Mike Hopkins and Jeff Smith [HS98]. For simplicity we from now on localize
at a fixed prime p, where their result says the following: The thick subcategories
of finite p-local spectra form a descending chain

C0 ⊃ C1 ⊃ . . . ⊃ Cn ⊃ . . . ⊃ C∞,

where Cn can be defined as the kernel of the (n− 1)-st Morava K-theory K(n− 1)
(or, equivalently, the kernel of (n − 1)-st Lubin-Tate theory En−1), C0 is the
category of all p-local finite spectra and C∞ is the kernel of mod p homology.

Hence, given any finite p-local spectrum X , the set of all n ∈ N ∪ {∞} such
that X ∈ Cn has a maximal element, and this number is called the type of n.
For a finite CW-complex, the type is defined to be that of (the p-localization of)
its suspension spectrum. Question 1 can therefore be rephrased as: Given a finite
based G-CW complex X whose underlying space has type n, what are the possible
values of the type of the fixed points XG?

2. Type functions and thick tensor-ideals of finite G-spectra

More generally, given a finite based G-CW complex X , one can consider the fol-
lowing function, where Sub(G) denotes the set of closed subgroups of G:

typeX : Sub(G) → N ∪ {∞}

H 7→ type(XH)

We call typeX the type function of X . These functions make sense more generally
for finite genuine G-spectra using geometric fixed points ΦH(X) in place of the
point set level fixed points. This way the type function of a finite based G-CW
complex agrees with the type function of its suspension spectrum. We obtain the
following generalized version of Question 1:

Question 2. Which functions Sub(G) → N ∪ {∞} can be realized as the type
function of a finite p-local G-spectrum?

This question also turns out to be interesting from the perspective of tensor-
triangular geometry. We recall that given a triangulated category C with a com-
patible symmetric monoidal structure ⊗ (in our case the homotopy category of
finite p-local G-spectra equipped with the smash product), a thick tensor-ideal is
a thick subcategory I with the additional property that if X ∈ I and Y ∈ C, then
also X ⊗ Y ∈ I. Then we have the following, proved in [BS17] for finite groups
and in [BGH] for compact Lie groups.

Proposition. Let X,Y be two finite p-local G-spectra. Then X and Y generate
the same thick tensor-ideal if and only if their type functions agree.

Hence, Question 2 is equivalent to the classification of (finitely-generated) thick
tensor-ideals of the category of finite p-local G-spectra.
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3. The abelian case

The main result presented in this talk is the answer to Question 2 in the case
where the compact Lie group is abelian. It was proved for Z/p in [BS17], for
finite abelian groups in [BHN+19], and for higher dimensional abelian compact
Lie groups in [BGH].

Theorem 1. Let A be an abelian compact Lie group, and f : Sub(A) → N∪ {∞}
a function. Then the following are equivalent:

(1) There exists a finite p-local A-spectrum X such that f = typeX.
(2) The following two conditions are satisfied:

(a) For every inclusion of closed subgroups K ⊂ H of G such that
π0(H/K) is a p-group, the inequality

f(H) ≥ f(K)− rankp(π0(H/K))

is satisfied.
(b) The function f is locally constant for the Hausdorff topology on

Sub(A).

Here, rankp(−) denotes the p-rank of an abelian p-group, i.e., its minimal number
of generators. For the definition of the Hausdorff topology on the set of closed
subgroups, which is discrete for finite groups, see [tD79, Sec. 5.6]. The following
examples illustrate special cases of the theorem:

Example 1 (Tori). If X is a finite p-local Tr-spectrum, then the type of the
geometric fixed points ΦTr

(X) is at least the type of the underlying spectrum
of X . In other words, if K(n)∗(X) is trivial, then so is K(n)∗(Φ

Tr

(X)).

Example 2 (Cyclic p-groups). If X is a finite p-local Cpk -spectrum, then the

type of the geometric fixed points ΦCpk (X) is at least the type of the underlying
spectrum of X minus 1. In other words, if K(n)∗(X) is trivial, then so is K(n−

1)∗(Φ
C

pk (X)).

Example 3 (Elementary abelian groups). For every n ∈ N there exists a finite
p-local (Z/p)×n-spectrum X such that

type(ΦH(X)) = n− k

for every subgroup H of rank k. In particular, the type of the underlying spectrum
is n and the type of the (Z/p)×n-geometric fixed points is 0.

4. Chromatic blueshift of Tate constructions

The tool for showing the implication (1) =⇒ (2) in Theorem 1 or the statements of
Examples 1 and 2 is to determine the blueshift for generalized Tate constructions.
To define this, let E be a non-equivariant spectrum. We can turn E into a genuine
G-spectrum E by giving it the trivial action and forming the associated Borel-
spectrum. We then define a new non-equivariant spectrum ϕG(E) as the geometric
fixed points of this genuine G-spectrum, i.e.,

ϕG(E) = ΦG(E).
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When G = Cp is a cyclic group of prime order, ϕCp(E) is the usual Tate spectrum
EtCp of G, and in general there is always a map EtG → ϕG(E). When E is
complex orientable one can also obtain ϕG(E) by inverting all Euler classes of
non-trivial irreducible G-representations in the function spectrum F (BG+, E).

The following was first observed by Strickland in unpublished work and later
refined in [BS17, Sec. 9]. Here, ker(−) denotes the kernel of a homology theory
on finite p-local spectra:

Proposition. Assume there exists a spectrum E such that ker(E∗) = Cn and
ker(ϕG(E)∗) = Cm. Then every finite p-local G-spectrum X whose underlying
spectrum is of type at least n has geometric fixed points ΦG(X) of type at leastm.

The proof follows from formal properties of the geometric fixed point functor.
Making use of this proposition, one main ingredient in the proof of Theorem

1 is the computation of ker(ϕG(E)∗) in the case where E is a Lubin-Tate spec-
trum En−1.

Theorem 2 ([BHN+19]). Let A be a finite abelian p-group. Then

ker(ϕA(En−1)) = Cmax(n−rankp(A),0).

The phenomenon that Tate constructions lower chromatic height is known as
‘blueshift’ and has been studied in various forms, for example in [GS96, HS96,
AMS98].

5. Examples for elementary abelian groups

In order to obtain finite (Z/p)n-spectra (in fact finite based (Z/p)n-CW complexes)
with the properties of Example 3, one can make use of constructions involving par-
tition complexes that have been studied previously in connection to the Goodwillie
tower of the identity. Given k ∈ N, let |πk|⋄ denote the unreduced suspension of
the geometric realization of the poset of non-trivial proper partitions of the set
{1, . . . , k}, equipped with its natural Σk-action. Furthermore, let Sρk denote the
sphere associated to the reduced standard real Σk-representation. Then we define

X(n) = U(pn − 1)+ ∧Σpn
(|πpn |

⋄ ∧ Sρpn ),

where we view Σpn as a subgroup of U(pn − 1) via the reduced standard com-
plex representation. By definition, X(n) carries a U(pn − 1)-action by multi-
plication from the left, which we pull back to a (Z/p)n-action via the reduced
regular complex representation. The following is then a combination of results of
[AD01, AL17, AM99, Aro98, Mit85]:

Theorem 3 (Arone, Dwyer, Lesh, Mahowald, Mitchell). The finite (Z/p)n-CW
complexes X(n) satisfy the properties of Example 3, i.e., for every subgroup H of
rank k the type of the fixed points X(n)H equals n− k.

On-going work of Kuhn and Lloyd gives a different construction of finite p-local
(Z/p)n-spectra with these properties, using machinery first described by Jeff Smith
in his proof that finite spectra allow vn-self maps. Their method also produces
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new equivariant spectra which provide an answer to Question 2 for the dihedral
group with eight elements, but as of today the answer for general compact Lie
groups remains open.
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Stratification for spaces with Noetherian mod p cohomology

Drew Heard

(joint work with Tobias Barthel, Natalia Castellana, and Gabriel Valenzuela)

This is a report on the two papers [1, 2], joint with Tobias Barthel, Natalia Castel-
lana, and Gabriel Vanezuela. In these, we study the following question:

Question. Given a commutative Noetherian ring spectrum R (that is, π∗R graded
Noetherian), can we give a classification of the thick subcategories of compact
objects in ModR, or even a classification of the localizing subcategories of ModR?

A very general approach for answering this question has been developed in a
series of papers by Benson, Iyengar, and Krause [4], who have used it to classify
the localizing subcategories of the stable module category of a finite group.
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Specialized to our case, their approach relies on the construction of certain local
cohomology functors Γp : ModR → ModR for each homogeneous prime ideal p ∈

Spech(π∗R). The essential image Γp ModR forms a non-zero localizing subcategory
of ModR, and we have the following definition.

Definition 1. We say that ModR is stratified by π∗R if each ΓpModR is a minimal
localizing subcategory of ModR.

The support of an R-module M is defined to be

suppR(M) = {p ∈ Spech(π∗R) | ΓpM 6= 0},

and we have the following result.

Theorem 1 ([4]). If ModR is stratified by π∗R, then there is a one-to-one cor-

respondence between localizing subcategories of ModR and subsets of Spech(π∗R).
The map giving this correspondence sends a localizing subcategory U ⊆ ModR to
the set ∪M∈U suppR(M), with inverse that sends a subset S ⊆ Spech(π∗R) to
{M ∈ ModR | suppR(M) ⊆ S}.

If R = C∗(BG;Fp) is the commutative ring spectrum of mod p cochains
on a connected compact Lie group, then Benson and Greenlees [3] showed that
ModC∗(BG;Fp) is stratified by H∗(BG;Fp). The proof follows the general strategy
of Benson, Iyengar, and Krause: one knows that the theorem is true when G is an
elementary abelian group, and then one tries to use descent to deduce the result
for an arbitrary connected compact Lie group. The crucial properties that make
the descent work are the following:

(1) The map

φG : C∗(BG;Fp) →
∏

E<G

C∗(BE;Fp)

induced by the inclusion of elementary abelian p-subgroups E < G is
biconservative; induction and coinduction along it detect trivial modules.

(2) The map φG is finite, that is
∏
E<GC

∗(BE;Fp) is a compact C∗(BG;Fp)-
module.

(3) Quillen’s stratification theorem, which tells us how Spech(H∗(BG;Fp) can
be decomposed in terms of the variety associated to its elementary abelian
p-subgroups.

It is clear how to generalize condition (1) above to an arbitrary morphism f : R →
S of commutative ring spectra. We are interested in not-necessarily finite mor-
phisms of ring spectra, and so we want to remove condition (2) above. In order
to state the generalization of condition (3), we note that dual to the theory of
support, there is a theory of cosupport.

Definition 2 ([2]). Let f : R → S be a morphism of commutative Noetherian ring

spectra, and let resf : Spech(π∗S) → Spech(π∗R). We say that f satisfies simple
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Quillen lifting if for any M ∈ ModR:

res−1
f resf suppS(Ind

S
RM) = suppS(Ind

S
RM) and

res−1
f resf cosuppS(Coind

S
RM) = cosuppR(Coind

S
RM).

We then have the following.

Theorem 2 ([1, 2]). Suppose that f : R → S is a biconservative morphism of
commutative Noetherian ring spectra satisfying simple Quillen lifting. If ModS is
stratified by π∗S, then ModR is stratified by π∗R.

For example, Quillen’s stratification implies that φG satisfies simple Quillen
lifting, and so we can immediately extend the result of Benson and Greenlees to
all compact Lie groups.

In [7], Broto, Levi, and Oliver introduced the concept of p-local compact groups
as a common generalization of the notions of compact Lie groups, p-compact group
[8] as well as fusion systems F on a finite group [6]. The data of a p-local compact
group can be specified as a pair (S,F) consisting of a discrete p-toral group S, and
a saturated fusion system F on S. To such a pair, we can associate a classifying
space BF , and then we can consider the ring spectrum R = C∗(BF ;Fp). In order
to apply our theory, we need the following.

Theorem 3 ([1]). Let (S,F) be a p-local compact group. Then:

(1) The mod p cohomology ring H∗(BF ;Fp) is Noetherian.

(2) A form of Quillen’s stratification theorem holds for Spech(H∗(BF ;Fp)).

Part (2) is the key input into the following.

Theorem 4 ([1]). Let (F , S) be a p-local compact group, then the canonical mor-
phism

f : C∗(BF ;Fp) →
∏

E∈E(F)

C∗(BE;Fp)

satisfies Quillen lifting. Here E(F) denotes a set of representatives of F-iso-
morphism classes of elementary abelian subgroups of S.

We do not know that f is biconservative in general, however we have shown it
when (S,F) models a connected p-compact group, or when S is a finite p-group.
In these cases, we deduce that ModC∗(BF ;Fp) is stratified by H∗(BF ;Fp).

In [2] we considered the more general situation when R = C∗(X ;Fp) for a space
X such that H∗(X ;Fp) is Noetherian. One is immediately confronted with the
problem of finding the elementary abelian ’subgroups’ of X . Fortunately, work of
Rector applies here [10]. Namely, one considers the category R(X) whose objects
are pairs (E, f) where E is an elementary abelian group, and f : H∗(X ;Fp) →
H∗(BE;Fp) is a morphism of unstable algebras over the Steenrod algebra, such
that H∗(BE;Fp) is a finitely-generated H∗(X ;Fp)-module. These assemble into
a morphism

H∗(X ;Fp) →
∏

R(X)

H∗(BE;Fp).
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If X is connected and p-good, then Lannes’ theory applies [9], and shows that this
can be realized as a morphism of commutative Noetherian ring spectra:

φX : C∗(X ;Fp) →
∏

R(X)

C∗(BE;Fp).

Using Rector’s work, we prove that φX always satisfies simple Quillen lifting, and
deduce the following.

Theorem 5 ([2]). Let X be a connected p-good space with Noetherian mod p
cohomology, then ModC∗(C;Fp) is stratified by H∗(X ;Fp) if and only if φX is bi-
conservative.

Using a structure theorem for connected H-spaces due to Broto, Crespo, and
Saumell [5], we deduce that if X is a connected H-space with Noetherian mod p
cohomology ring, then ModC∗(X;Fp) is stratified by H∗(X ;Fp).
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Bökstedt periodicity and quotients of DVRs

Achim Krause

(joint work with Thomas Nikolaus)

This talk discusses an approach to compute THH(R) for R a quotient of a discrete
valuation ring, following [6]. While the result in this generality is new, we also
recover Brun’s description [3] of THH(Z/pn) quite elegantly. On the way, we also
review Bökstedt’s classical result [2] on THH(Fp) as well as Lindenstrauss-Madsens
result [8] on THH(A) for A a complete discrete valuation ring.
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Throughout these notes, we frequently consider an ordinary ring R as a E∞ ring
spectrum (i.e., the corresponding Eilenberg-MacLane spectrum) without distin-
guishing between them notationally. This is justified because the full subcategory
of E∞ ring spectra on those objects with homotopy groups concentrated in degree
0 is equivalent to the category of rings. We will thus freely write things such as
Fp ⊗S Fp (which more classically would be written HFp ∧HFp). If the base is an
ordinary ring, we will however write −⊗L

R− to avoid confusion with the underived
tensor product. Since the Dold-Kan correspondence yields a symmetric-monoidal
equivalence D(R) → ModZ(Sp), there is no essential difference between forming
− ⊗L

R − as the tensor product of the associated spectra, or classically in chain
complexes.

1. Bökstedt periodicity

Recall that, for a ring spectrum R, its topological Hochschild homology is defined
as

THH(R) = R⊗R⊗SRop R ≃ BarR(R⊗S R
op).

We write THH(R;Zp) for the p-completion of the spectrum THH(R).
Classical (derived) Hochschild homology of an ordinary ring R is defined simi-

larly to THH, as the derived tensor product

HH(R) = R⊗L
R⊗L

Z
Rop R.

For R = Fp, one can directly compute Fp ⊗
L
Z Fp by resolving Fp, and one obtains

an exterior algebra ΛFp
(ε) over Fp on a generator of degree 1. One thus sees

HH(Fp) = Fp ⊗
L
Fp⊗

L
Z
Fp

Fp ∼= BarFp
(ΛFp

(ε))

to be a divided power algebra on a generator in degree 2. Explicitly, as rings,

HH∗(Fp) ∼= Fp[x, x
[p], x[p

2], . . .]/(xp, (x[p])p, . . .).

Since this is already quite complicated, one would expect that THH(Fp), where
we replace the base ring Z by the sphere spectrum S, becomes quite unwiedly. In
fact, while Fp ⊗L

Z Fp is an exterior algebra, Fp ⊗S Fp has homotopy given by the
entire dual Steenrod algebra. It therefore comes as a surprise that THH(Fp) is
simpler than HH(Fp):

Theorem 1 (Bökstedt periodicity).

THH∗(Fp) ∼= Fp[x]

with x of degree 2.

We give a somewhat streamlined proof here. The essential observation is the
following:

Lemma 2. As an E2-algebra over Fp, Fp⊗S Fp is free on a generator in degree 1,
i.e.

Fp ⊗S Fp ∼= Fp[Ω
2S3].
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Proof. We have π1(Fp ⊗S Fp) ∼= Fp. Choosing a generator, we obtain an E2-map

Fp[Ω
2S3] → Fp ⊗S Fp

which is an isomorphism in degree 1. One then checks that under the action of
E2 power operations, the homotopy of both sides is generated by an element in
degree 1, and both sides have the same structure. For the left hand side, this is
due to Araki-Kudo [7] and Dyer-Lashof [5], for the right-hand side this is due to
Milnor [9] and Steinberger [4]. It follows that the map is an equivalence. �

Proof of Bökstedt’s theorem. Using Lemma 2, we see

THH(Fp) ≃ BarFp
(Fp[Ω

2S3]) ≃ Fp[BarS(Ω
2S3)] ≃ Fp[ΩS

3],

from which the claim follows. �

One can actually reverse the logic and check that Theorem 1 implies 2 as well.
Thus, any proof of Bökstedt’s theorem also determines the structure of the dual
Steenrod algebra (as an algebra together with E2-power operations).

Bökstedt’s theorem holds more generally for k a perfect field of characteristic
p, in the sense that

THH∗(k) ∼= k[x],

with x in degree 2, and can be deduced from the Fp version above by a basechange
argument.

2. Bökstedt periodicity for DVRs

We let A be a complete mixed-characteristic discrete valuation ring with perfect
residue field k. Let π ∈ A denote a uniformizer. For example, we could consider
A = Zp, π = p, or Zp[ζp], π = ζp − 1.

THH(A) is complicated. However, we understand THH of A/π ∼= k by Bökstedt
periodicity. We thus want to consider THH “relative” π.

Definition 3. Define the E∞ ring spectrum

S[z] := S[N] = Σ∞
+ N.

For A, π as above, we obtain a map S[z] → A sending z 7→ π, and set

THH(A/S[z]) := A⊗A⊗S[z]A A.

Theorem 4.

THH∗(A/S[z];Zp) ∼= A[x],

with x of degree 2.

Proof. As a p-complete A-module, THH∗(A/S[z];Zp) is also π-complete, since as
ideals, (π)e = (p), where e is the ramification index of A. We have that

THH(A/S[z])⊗A A/π ≃ THH(A/S[z])⊗S[z] S ≃ THH(k),

and so the cofiber of THH(A/S[z])
π
−→ THH(A/S[z]) has homotopy groups given

by k in each even degree. Completeness now implies the claim. �
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This idea of working relative to the uniformizer S[z] to obtain a mixed character-
istic version of Bökstedt periodicity goes back to Lurie and Scholze. The above
version of Theorem 4 appeared first in [1].

For A′ = A/πk a quotient of a complete DVR, we have a similarly nice descrip-
tion:

Proposition 5.
THH∗(A

′/S[z]) ≃ A′[x]〈y〉,

with x and y generators in degree 2, and the notation R〈y〉 denoting the free divided
power algebra over R on one generator.

Proof. We can write
A′ = A⊗S[z] (S[z]/z

k),

and thus

THH(A′/S[z]) ≃ THH(A/S[z])⊗S[z] THH((S[z]/zk)/S[z])

≃ THH(A/S[z])⊗A HH((A/πk)/A)

≃ THH(A/S[z];Zp)⊗A HH((A/πk)/A).

By Theorem 4, the homotopy groups of the left factor are given by A in each even
degree. In particular, they are flat over A, by a Künneth argument THH∗(A

′/S[z])
is just the tensor product of A[x] and HH∗((A/π

k)/A). The latter is easily seen to
be a divided power algebra over A/πk = A′, since A′ ⊗L

A A
′ is an exterior algebra

ΛA′(ε) on a generator in degree 1. �

3. Getting back to absolute THH

For an algebra R over S[z], given THH(R), one can recover THH(R/S[z]) by the
formula

THH(R/S[z]) ≃ THH(R)⊗THH(S[z]) S[z].

If R is in addition a Z-algebra (e.g. an ordinary ring), one can write this further
as

(1) THH(R/S[z]) ≃ THH(R)⊗Z⊗STHH(S[z]) (Z⊗S S[z]).

We want to reverse this:

Proposition 6. For a Z[z]-algebra R, there is a multiplicative spectral sequence

THH∗(R/S[z])⊗ Λ(dz) ⇒ THH∗(R),

with dz of degree 1. Similarly, we have a p-completed version of this spectral
sequence.

Proof. This is obtained from observing that

Z⊗S THH(S[z]) ≃ HH(Z[z])

has homotopy groups Z[z]⊗Λ(dz), i.e. π0 = π1 = Z[z]. If we apply the Postnikov
filtration to the right factor in

THH(R) ≃ THH(R)⊗Z⊗STHH(S[z]) (Z⊗S THH(S[z])),
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we thus obtain two copies of THH(R/S[z]) by equation (1), suitably shifted. The
associated spectral sequence has the desired form. �

The resulting spectral sequence has two lines only, both of the form
THH∗(R/S[z]). One could equivalently work with the fiber sequence

ΣTHH(R/S[z]) → THH(R) → THH(R/S[z]).

Example 7 (Lindenstrauss-Madsen [8]). For A a complete mixed-characteristic
DVR with perfect residue field k and uniformizer π, we obtain a spectral sequence
of the form

A[x]⊗ Λ(dz) ⇒ THH∗(A;Zp).

A A{x} A{x2} . . .

A{dz} A{xdz} . . .

0

0

0

0

0 0 0 . . .

...

We have THH1(A;Zp) ∼= HH1(A;Zp), and one can further compute HH1(A;Zp)
to be Ω1

A/W (k), where W (k) ⊆ A denotes the p-typical Witt vectors of the residue

field k = A/π. One can choose a minimal polynomial E for π over W (k), such
that A = W (k)[z]/E(z), and then Ω1

A/W (k) = A{dz}/E′(π)dz. We thus get that

d2(x) = E′(π)dz up to units, and we can choose our generator x such that this
holds on the nose. By multiplicativity we get d2(x

n) = nE′(π)dz · xn−1, and from
the spectral sequence we recover

THH∗(A;Zp) ∼=





A for ∗ = 0,

A/nE′(π) for ∗ = 2n− 1,

0 otherwise.

Example 8. For A′ = A/πk a quotient of a DVR, the spectral sequence takes the
form

A′[x]〈y〉 ⊗ Λ(dz) ⇒ THH∗(A/π
k).

A′ A′{x, y} A′{x2, xy, y[2]} . . .

A′{dz} A′{xdz, ydz} . . .

0

0

0

0

0 0 0 . . .

...

Here, one can determine the differentials to be given by

d2(x) = E′(π)dz

d2(y) = kπk−1dz,
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together with multiplicativity and the fact that the differentials are compatible
with the divided power structure, i.e. d2(y

[i]) = d2(y) · y[i−1].
Again, since there is one nonzero entry only per total degree, the E∞ page

completely determines THH∗(A
′) multiplicatively. Thus, we obtain a description

of THH∗(A
′) as the homology of an explicit dga. This does not seem to have

a general closed-form expression, but there are interesting special cases. If k is
small enough compared to the valuation of E′(π), one can split off a polynomial
generator. For A = Zp, this happens exactly if k = 1, in the Bökstedt case.
If k is large enough, one can split off a divided power generator, recovering a
generalisation of Brun’s result on THH(Z/pk). For highly ramified A, there are
“in between” cases which have a more complicated structure.

Theorem 9. We have

THH∗(A
′) = H∗(A

′[x]〈y〉 ⊗ Λ(dz); ∂),

with ∂x = E′(z)dz, ∂y[i] = kπk−1y[i−1]dz.
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New results about the equivariant stable homotopy Balmer spectrum

Nicholas J. Kuhn

(joint work with Chris Lloyd)

1. The K(n) Smith Theory Problem

In [1], Balmer and Sanders study tensor triangulated ideals in the homotopy cat-
egory of finite G–spectra for a finite group G. The general classification problem
is reduced to a problem about finite p–groups as we now describe.

Let all spectra be localized at a prime p. By finite G–spectra we mean retracts
of (p-local) finite G–CW spectra. If H < G is a subgroup, we let XφH denote
the geometric fixed point spectrum of a G–spectrum X . Let K(n) denote the nth
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Morava K–theory ring spectrum (at p), with K(0) = HQ and K(∞) = HFp.
Recall that X is of type n if K(n)∗(X) 6= 0, while K(n− 1)∗(X) = 0.

K(n) Smith Theory Problem Let H be a subgroup of a finite p–group G. For
what pairs (m,n) is it true that K(m)∗(X

φH) = 0 ⇒ K(n)∗(X
φG) = 0?

Example 1.1. This is true for all H < G when (m,n) = (∞,∞): this is the

theorem that H̃∗(Z
H ;Fp) = 0 ⇒ H̃∗(Z

G;Fp) = 0, when Z is a retract of a finite
G–CW complex. This was proved by P.A.Smith in the 1940s.

2. The Realization Problem

The K(n) Smith Theory Problem can be recast as follows.

Realization Problem Given H < G, for what pairs (m,n) does there exist a
finite G–spectrum X with XφG of type n and XφH of type m?

Lemma 2.1. Given H < G, if (m,n) can be realized, then one can also realize
(m′, n) for all m′ < m, and (m,n′) for all n′ > n.

Definition 2.2. Given n and H < G, let rn(H,G) denote the maximal r such
that there exists a finite G–spectrum with XφG of type n and XφH of type n+ r.

Realization Problem Restated Given H < G, compute rn(H,G) for all n.

3. Some reductions and a general upper bound

The next lemma includes some ways of reducing this problem to easier cases.

Lemma 3.1. Let H be a subgroup of a finite p–group G.
(a) If α : G

∼
−→ G is an automorphism, then rn(α(H), G) = rn(H,G).

(b) Given N ⊳ G, rn(H,G) ≥ rn(HN,G) = rn(HN/N,G/N).
(c) Given H < L < G, if, for all n, rn(H,L) ≤ s and rn(L,G) ≤ t, then
rn(H,G) ≤ s+ t.

To get a general upper bound on rn(H,G), the authors of [2] prove the following
‘Blue Shift Theorem’. (The k = 1 case was proved first in [1].)

Theorem 3.2. rn(e, Cpk) ≤ 1 for all n.

When combined with the previous lemma, this has a nice corollary.

Definition 3.3. Given a finite p–group G and H < G, let r(H,G) be the minimal
r such that there exists a chain of subgroups H = L0 ⊳ L1 ⊳ · · · ⊳ Lr = G with
Li/Li−1 cyclic for all i.

Corollary 3.4. rn(H,G) ≤ r(H,G) for all n.

The following question is unresolved in general.

Question Does rn(H,G) = r(H,G) for all H < G and n?
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4. Previously known lower bounds

One way to get lower bounds on rn(H,G) is to find examples. In [2] it is observed
that examples in the literature constructed by Arone (channeling Mitchell), and
analyzed by Arone and Lesh, have the following properties.

Example 4.1. There exist a finite (Cp)
r–spectrum X of type r with Xφ(Cp)

r

of
type 0. Thus r ≤ r0(e, (Cp)

r).

Combined with previous results, one can deduce the next theorem from this.

Theorem 4.2. [2] rn(H,G) = r(H,G) for all n for H ⊳ G and G/H abelian.

5. A new result

From [2], one can also already deduce that rn(H,G) = r(H,G) for some other
cases too. The first pair (H,G) not determined by previous work is (C,D8) where
C is any noncentral subgroup of order 2 in D8, the dihedral group of order 8.

Theorem 5.1. For all n, there exists a finite D8–spectrum Yn such that Y φD8
n

has type n and Y φCn has type n+ 2. Thus rn(C,D8) = 2 = r(C,D8).

To show this, and to resolve the general question for more groups, we need a
source of new examples!

6. How to construct a type n complex

For simplicity, we will assume that p = 2 from now on.
Let kn(X) be the dimension of K(n)∗(X) as a K(n)∗–vector space. Ravenel

showed that k0(X) ≤ k1(X) ≤ · · · ≤ k∞(X).
Here is a sneaky idea used by Jeff Smith in the 1980’s.
Suppose given N , and an idempotent e ∈ Z(2)[ΣN ] (so e = e2). Given a a vector

space V over a (possibly graded) field of characteristic 2, the vector space eV ⊗N

will be a direct summand of the tensor product V ⊗N .
Similarly, if X is a finite spectrum, eX∧N will be a wedge summand of the

smash product X∧N , and K(n)∗(eX
∧N) = eK(n)∗(X)⊗N .

Proposition 6.1. [3, Appendix C] For each d, there exists Nd and an idempotent
ed ∈ Z(2)[ΣNd

] such that edV
⊗Nd 6= 0 ⇔ dimV ≥ d.

Corollary 6.2. If kn−1(X) < d ≤ kn(X), and Y = edX
∧Nd, then Y has type n.

Smash products play well with geometric fixed points, so we get an equivariant
version of this corollary.

Theorem 6.3. Given H < G, suppose there exists a finite G–spectrum X and d
such that

♣ max{km−1(X
φH), kn−1(X

φG)} < d ≤ min{km(X
φH), kn(X

φG)}.

If we let Y = edX
∧Nd, Y will be a finite G–spectrum such that Y φG has type n

and Y φH has type m.
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7. Examples from representation theory

Let V be a real representation of G. Then V =
⊕

λ Vλ, where λ runs through the
irreducible representations, and Vλ is the corresponding isotypical summand of V .
Let RP(V ) be the G–space of lines in V .

Lemma 7.1. RP(V )G+ =
∨
λRP(Vλ)+, where the wedge is over the one dimen-

sional irreducibles.

Example 7.2. The group D8 has 5 irreducible real representations: four of di-
mension 1 – call them σ1, . . . , σ4 – and a two dimensional irreducible τ . Let
V0 = 2σ1 ⊕ 2σ2 ⊕ 2σ3 ⊕ 2σ4 ⊕ τ . By the lemma, RP(V0)

D8
+ =

∨
4 RP

1
+, so

k0(RP(V0)
D8
+ ) = 8. Now let C < D8 be a noncentral subgroup of order 2. Re-

stricted to C, V0 ≃ 5(triv)⊕5(sign), so that RP(V0)
C
+ =

∨
2 RP

4
+. Easy calculations

show that k2(RP(V0)
C
+) = 8 and k1(RP(V0)

C
+) = 4. Thus we have

♦ k1(RP(V0)
C
+)} < 5 ≤ min{k2(RP(V0)

C
+), k0(RP(V0)

D8
+ )}.

N5 = 15, and we conclude that if Y0 = e5RP(V0)
∧15, then Y0 is a finite D8–

spectrum with Y φD8

0 of type 0 and Y φC0 of type 2.
The spectra Yn as in Theorem 5.1 are similarly constructed for other n, using

the representations Vn = 2n+1σ1 ⊕ 2n+1σ2 ⊕ 2n+1σ3 ⊕ 2n+1σ4 ⊕ τ .
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Weight decompositions and automorphism groups of manifolds

Alexander Kupers

(joint work with Manuel Krannich)

We are interested in the classifying spaces BDiff∂(Wg,1) of the topological group of
diffeomorphisms of the manifoldsWg,1 = D2n#(Sn×Sn)#g fixing a neighborhood
of ∂Wg,1 pointwise. These classify smooth manifold bundles with fiber Wg,1 and
trivialised boundary bundle, so their cohomology ring is the ring of characteristic
classes of such bundles.

These characteristic classes were determined in a range depending on g
by Galatius and Randal-Williams in terms of stable homotopy theory
[GRW14, GRW18]. Rationally, their work shows that for ∗ ≤ g−3

2 the
ring H∗(BDiff∂(Wg,1);Q) is a free polynomial algebra on classes κc of degree
|c| − 2n, where c runs over a homogeneous basis of H∗>2n(BO(2n)〈n〉;Q). In low
degrees with respect to g, however, very little is known.
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Question. What is H∗(BDiff∂(Wg,1);Q) for 2n ≥ 6 but g small, for instance
g = 1?

We provide a complete answer to this question in degrees ∗ < 2n− 5 in terms
of the cohomology of arithmetic groups (see Theorem 1.1). In degrees ∗ ≥ 2n− 5,
we still construct nontrivial classes, but unlike in the range ∗ < 2n − 5, these
probably do not exhaust all of H∗(BDiff∂(Wg,1;Q). Our results admit several
generalisations, for instance to manifolds other than Wg,1.

1. The strategy

The diffeomorphism group of Wg,1 acts on the Q-vector space Hn := Hn(Wg,1;Q)
through its image G′

g in the automorphisms of Hn(Wg,1;Q) preserving the inter-
section product,

G′
g =





Og,g(Z) if n is even

Sp2g(Z) if n = 1, 3, 7,

Spq2g(Z) otherwise,

where Spq2g(Z) is the subgroup of Sp2g(Z) preserving the standard quadratic re-
finement with vanishing Arf invariant.

Let us fix some notation. We consider Hn as a graded Q-vector space concen-
trated in degree 0. For a general graded Q-vector space V we denote the k-fold
grading shift by V [k]; for example, Hn[−n] is concentrated in degree −n. Fi-
nally V>0 denotes the truncation to strictly positive degrees, and S∗(V ) the free
graded-commutative algebra on V .

Theorem 1.1 (Krannich–K.). For 2n ≥ 6 and ∗ < 2n − 5, there is a canonical
isomorphism

H∗(BDiff∂(Wg,1);Q) ∼= H∗
(
G′
g;W

∗ ⊗ S∗(Hn[−n]⊗ (π∗(BO) ⊗Q))>0

)
,

where W ∗ = Q[0] ⊕ S3(Hn[n])[−2n]. The total degree of the right hand side is
given as the sum of the cohomological degree and the degree of the coefficients.

As indicated above, we also prove that some of the classes of the right hand side
still contribute nontrivially to H∗(BDiff∂(Wg,1);Q) in the larger range ∗ ≥ 2n−5.

Example 1.2. Let us take g = 1 and n = 7. In this case Sp2(Z) = SL2(Z) and
S3(Hn[n]) = 0. The free graded commutative algebra

S∗(Hn[−n]⊗ (π∗(BO) ⊗Q))>0

decomposes into a direct sum of symmetric powers SymkH withH ∼= Hn the defin-
ing representation. The multiplicities of these representations can be determined
by standard representation theory, so the computation of the right hand side of
Theorem 1.1 reduces to the calculation of the cohomology H∗(SL2(Z); Sym

kH).
These groups vanish in degrees ∗ 6= 1, which one can see by using vcd(SL2(Z)) = 1
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and some invariant theory. Moreover, by the Eichler–Shimura isomorphism, we
have that

dimH1(SL2(Z), Sym
kH) =

{
dimMk/2 + dimSk/2 if k is even,

0 otherwise,

with Mk/2 the C-vector space of level 1 modular forms of weight k/2, and Sk/2
the subspace of cusp forms. The dimensions of both of these spaces are known
[Shi94, Chapter 8].

Remark 1.3. Theorem 1.1 implies that H∗(BDiff∂(Wg,1);Q) has many nontrivial
contributions from automorphic forms forG′

g. For instance, combined with a result
of Faltings [Fal83, Theorem 10] on Siegel modular forms, it shows that for n odd
and g(g + 1)/2 < 2n− 5, the group Hg(g+1)/2(BDiff∂(Wg,1);Q) is often non-zero.

1.1. The strategy. Every relative manifold bundle with fibre (Wg,1, ∂Wg,1) is in
particular a relative fibration, together with a stable vector bundle trivialised over a
section, with monodromy given by homotopy classes realisable by diffeomorphisms.
Denoting by BhAut∗∂(T

sWg,1) the space classifying this data, our characteristic
classes are pulled back along the natural map

BDiff∂(Wg,1) −→ BhAut∗,Diff
∂ (T sWg,1) ≃ hAutDiff

∂ (Wg,1) �Map∗(Wg,1, BO)0.

Thus, we need to solve two problems:

(1) compute the rational cohomology of BhAut∗,Diff
∂ (T sWg,1) and

(2) guarantee that some cohomology classes remain non-zero in BDiff∂(Wg,1).

1.2. Step (1): a weight decomposition. Our strategy for Step (1) relies on
the common principle that spaces admit more endomorphisms after rationalising.

In order to compute the cohomology of hAutDiff
∂ (Wg,1) �Map∗(Wg,1, BO)0, we

may rationalise BO to get a space

hAut∂(Wg,1) �Map∗(Wg,1, BOQ)0

with the same rational cohomology. The space Map∗(Wg,1, BOQ) has an action of
the space of endomorphisms Map∗(BOQ, BOQ) which commutes with the action

of hAutDiff
∂ (Wg,1). As BOQ splits as a product of Eilenberg–Mac Lane spaces∏

K(Q{pi}; 4i), there are pointed self-maps of BOQ which on homotopy groups
have the effect of sending pi to ai · pi for ai ∈ Q. These make Serre spectral
sequence

E2
p,q = Hp(BhAutDiff

∂ (Wg,1);H
q(Map∗(Wg,1, BOQ)0;Q)

⇒ Hp+q(BhAut∗,Diff
∂ (T sWg,1);Q)

into a spectral sequence of Q[End(π∗(BOQ))]-algebras.
There is an isomorphism of Q[End(π∗(BOQ))]-algebras

H∗(Map∗(Wg,1, BOQ)0) ∼= S∗(Hn[−n]⊗ π∗(BOQ))>0,

where End(π∗(BOQ)) acts via π∗(BOQ) on the right hand side. This decomposes
as a direct sum of weight spaces indexed by sequences µ = (µ1, µ2, . . .) of integers
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which are eventually zero: on the µ-weight space the endomorphism determined
by pi 7→ ai · pi acts by scaling with

∏
i a
µi

i . Since the reduced cohomology of Wg,1

is concentrated in a single degree, for each weight µ = (µ1, µ2, . . .) a non-zero
µ-weight space only occurs in one degree. This has the consequence that there are
no nontrivial differentials in the above spectral sequence and moreover solves all
extension problems, resulting in a canonical isomorphism of the form

H∗(BhAut∗,Diff
∂ (T sWg,1);Q)

∼= H∗
(
BhAutDiff

∂ (Wg,1);S
∗(Hn[−n]⊗ π∗(BOQ))>0;Q

)
.

The right hand side can be studied using the Serre spectral sequence for

BhAutDiff
∂ (Wg,1) → BG′

g ,

one weight at a time, combined with work of Berglund–Madsen [BM14] who

showed that the classifying space of the identity component BhAutid∂ (Wg,1) is

coformal with homotopy Lie algebra π∗+1(BhAutid∂ (Wg,1))⊗Q the graded Lie al-
gebra of symplectic derivations of the free Lie algebra on Hn[n − 1]. In degrees
∗ < 2n− 2, this Lie algebra of derivations is non-zero only in degree n− 1, where
it is given by S3(Hn[n])[−2n].

1.3. Step (2): Morlet disjunction and embedding calculus. We have two
approaches for Step (2). In degrees ∗ < 2n− 5, the map

BDiff∂(Wg,1) → BhAut∗,Diff
∂ (T sWg,1)

can be seen to be a rational cohomology isomorphism by factoring it through the
classifying space for block bundles,

BDiff∂(Wg,1) −→ BD̃iff∂(Wg,1) −→ BhAut∗,Diff
∂ (T sWg,1)

and combining the following three results, all under the assumption 2n ≥ 6.

Theorem 1.4 (Morlet, [BLR75]). D̃iff∂(D
2n)

Diff∂(D2n) →
D̃iff∂(Wg,1)
Diff∂(Wg,1)

is (2n− 5)-connected.

Theorem 1.5 (Randal-Williams, [RW17]). D̃iff∂(D
2n)

Diff∂(D2n) is rationally (2n − 5) -

connected.

Theorem 1.6 (Berglund–Madsen, [BM14]). BD̃iff∂(Wg,1) → BhAut∗,Diff
∂ (T sWg,1)

induces an isomorphism on rational cohomology.

The second, harder approach for Step (2), which we do not discuss in this re-
port, is based on approximating diffeomorphisms by self-embeddings and applying
embedding calculus to show that some cohomology classes remain non-zero even
in the larger range ∗ ≥ 2n− 5.
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Chromatically localized algebraic K-theory

Markus Land

(joint work with L. Meier and G. Tamme)

For a ring R, we will consider its (non-connective) algebraic K-theory spectrum
K(R). As a “global object” it is hard to compute, but nevertheless it satisfies some
nice properties. The main goal of this talk is to extend some of these known nice
properties to the chromatic context. One particular such property, which is the
main motivation for our results, is the following proposition due to Waldhausen [4].

Proposition 1. Let f : A → B be an n-connective map between connective ring
spectra, with n ≥ 1. Then the map K(f) : K(A) → K(B) is (n + 1)-connective.
If furthermore f is an equivalence after tensoring with HQ, S[ 1ℓ ], or S/ℓ, then the
same is true for the map K(f).

We recall from [2, Definition 3.1] that a localizing invariant E : Catperf∞ → Sp
is called truncating, if for all connective E1-ring spectra A, the canonical map
E(A) → E(π0(A)) is an equivalence. Here, we write E(Perf(A)) simply as E(A).
Likewise, we say that E is truncating on a class T of connective ring spectra if the
previous property holds for all E1-rings contained in this class.

From Waldhausen’s result, one deduces for instance that rational K-theory is
truncating on rationally discrete ring spectra, and likewise that ℓ-adic K-theory
is truncating on S/ℓ acyclic ring spectra. This says that arithmetically localized
K-theory, by which we mean ℓ-adic K-theory K(−)ℓ for ℓ a prime, or rational
K-theory K(−)Q, is more accessible than the full K-theory spectrum.
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We recall from [2, Corollary 3.5] that any truncating invariant in nilinvariant on
discrete rings. We can then consider the following example

Example 1. For all primes ℓ 6= p (including 0), the arithmetic localizations of
K(Z/pn) are explicitly known.

Proof. We observe that Z/pn → Fp is a surjection with nilpotent kernel. Thus
the above observation implies that K(Z/pn)Q ≃ K(Fp)Q and K(Z/pn)ℓ ≃ K(Fp)ℓ.
Quillen computed the K-theory of all finite fields explicitly, so we can conclude
the claim. �

However, the p-adic K-theory of Z/pn is not fully understood. At this point,
we make use of the new family of primes lying over the prime p, which appear in
stable homotopy theory, i.e. in algebra over the sphere spectrum S: The family of
Morava K-theories K(m) for 0 ≤ m ≤ ∞. Here, we interpret K(0) = HQ and
K(∞) = HFp. We recall here that π∗(K(m)) = Fp[v

±1
m ] with |vm| = 2pm − 2.

We will need to following companions to K(m), namely the telescopes T (m) =
V (m)[v−1

m ] where V (m) is a finite p-local type m spectrum equipped with a vm-
self map vm. The main motivation for us was to find a new proof of the following
theorem of Bhatt–Clausen–Mathew.

Theorem 1. For every n ≥ 1, LK(1)K(Z/pn) vanishes.

Bhatt–Clausen–Mathew prove this using descent results inK(1)-localK-theory
to pass to a perfectoid situation, and then perform a prismatic cohomology calcu-
lation. One might wonder whether one can give a proof of this result by showing
that K(1)-local K-theory is truncating on a suitable class of E1-rings, and it is
this approach that we will take here.

Our first main result in this direction is the following chromatic analog of Wald-
hausen’s result above. Its proof relies on unstable chromatic homotopy theory, we
briefly sketch it here.

Theorem 2. Let f : A → B be an n-connective map between connective ring
spectra which is a T (i)-local equivalence for all 0 ≤ i ≤ n. Then the map
K(f) : K(A) → K(B) is a again a T (i)-local equivalence.

Proof. The assumptions imply that the fibre F of the map of spaces BGL(A) →
BGL(B) is n-connected and has vanishing vi-periodic homotopy groups. A re-
sult of Bousfield together with calculations of Ravenel–Wilson can be used to
show that F is in fact T (i)-acyclic for 0 ≤ i ≤ n. One then finds that the map
Σ∞Ω∞K(A)≥1 → Σ∞Ω∞K(B)≥1 is a T (i)-local equivalence for 0 ≤ i ≤ n. Mak-
ing use of the Bousfield–Kuhn functor and an adjunction triangle identity, we find
that the K(A)≥1 → K(B)≥1 is T (i)-locally a retract of the above map, and hence
also an equivalence. Combining Waldhausen’s result (for the case i = 0) with the
fact that bounded above spectra are T (i)-acyclic for i ≥ 1, the theorem follows. �

The rest of the talk was about collecting consequences of this result.

Corollary 1. Let 0 < n < m be natural numbers. Then LT (n)K(K(m)) = 0.
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Proof. There is a fibre sequence

K(Fp) → K(k(m)) → K(K(m))

where k(m) is the connective cover of K(m). The map k(m) → Fp is highly
connected and a T (i)-equivalence for i < m, so we may apply the main theorem.

�

Using a little trick which was explained in the talk, one can deduce the following
lemma from Theorem 2 and [2, Main Theorem].

Lemma 1. Let f : A → B be an (n + 1)-connective map which is a T (i)-local
equivalence for all 1 ≤ i ≤ n. Then the map K(f) : K(A) → K(B) is also a
T (i)-local equivalence for 1 ≤ i ≤ n.

From this and [2] we find the following results:

Theorem 3. K(1)-local K-theory is truncating on K(1)-acyclic ring spectra. In
particular, K(1)-local K-theory satisfies excision, nilinvariance and cdh-descent
on ordinary discrete rings.

Corollary 2. The canonical map LK(1)K(Z/pn) → LK(1)K(Fp) is an equivalence.

It follows immediately from Quillen’s calculations that LK(1)K(Fp) vanishes, so
we reproduce the above mentioned theorem of Bhatt–Clausen–Mathew. Similarly,
we obtain the following result.

Corollary 3. The canonical map LK(1)K(ku/βn) → LK(1)K(Z) is an equiva-
lence.

We recall that p is the implicit prime present in the chromatic localizations.

Theorem 4. Let 4p−4 ≥ n ≥ 2. Then for any m ≥ 1 we have that LT (n)K(τ≤mS)
vanishes. In particular, the same vanishing holds true for any ring spectrum A
which is an algebra over τ≤mS, such as ku/βn.

This allows to prove the following generalization of Theorem 3 in higher chro-
matic heights. The corresponding results for n = 0 and n = ∞ hold without any
assumption on the implicit prime.

Corollary 4. For 4p− 4 ≥ n, we find that T (n)-local K-theory is truncating on
T (1)⊕ · · · ⊕ T (n)-acyclic ring spectra.

We remark that T (n)-localK-theory is not truncating on T (n)-acylic ring spec-
tra: ku is T (2)-acyclic, and LT (2)K(ku) 6= 0 by calculations of Ausoni–Rognes [1],
whereas LT (2)K(Z) = 0 by a result of Mitchell’s [3]. We also remark that the
conditions in Corollary 4 are not necessary in the following sense. By Mitchell’s
results one can rephrase Corollary 4 for n ≥ 2 as to say that T (n)-local K-theory
vanishes on T (1) ⊕ · · · ⊕ T (n)-acyclic rings. From the work of Ausoni–Rognes
and unpublished results of Clausen–Mathew–Naumann–Noel, it is known that
LT (3)K(ku) = 0, but ku is not T (1)-acyclic. This might lead to the following
question:

Question. Is T (3)-local K-theory truncating on T (2)⊕ T (3)-acyclic rings?
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Decomposing C2-equivariant spectra

Clover May

(joint work with Daniel Dugger, Christy Hazel)

Computations in RO(G)-graded Bredon cohomology can be challenging and are
not well understood, even for G = C2, the cyclic group of order two. A recent
structure theorem for RO(C2)-graded cohomology with coefficients in the constant
Mackey functor F2 substantially simplifies computations. The structure theorem
says the cohomology of any finite C2-CW complex decomposes as a direct sum
of two basic pieces: cohomologies of representation spheres and cohomologies of
spheres with the antipodal action. This decomposition lifts to a splitting at the
spectrum level. In joint work with Dan Dugger and Christy Hazel we extend this
result to a classification of compact modules over the Eilenberg-MacLane spectrum
HF2.

This talk had two parts: RO(C2)-graded cohomology and the classification
of HF2-modules. I began with a crash course in RO(C2)-graded cohomology,
mainly setting some notation. This a bigraded theory and throughout the talk
the coefficients were the constant Mackey functor F2. The theory is represented
by the genuine equivariant Eilenberg–MacLane spectrum HF2.

The first important computation is the cohomology of a pointM2 = H∗,∗(pt;F2).
It was presented in the talk as described in [6] and later in [4] and [3], though the
computation precedes these. Building on unpublished work of Stong, the com-
putation has been reproduced several times and appears in [2] and [5]. It turns
out that M2 is made up of a bigraded polynomial algebra in elements τ and ρ
and has an element θ that is infinitely divisible by τ and ρ. This makes M2 a
non-Noetherian ring.

The bigraded cohomology of any C2-space is a module overM2 and algebraically
there are many M2-modules. The cohomology of any representation sphere is
just a shift H̃∗,∗(Sp,q;F2) ∼= Σp,qM2 due to the suspension isomorphism. The
cohomology of the n-dimensional sphere with the antipodal action Sna is not just
a shift and can be written as

An = H∗,∗(Sna ;F2) ∼= F2[τ, τ
−1, ρ]/(ρn+1).
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Surprisingly, the structure theorem for RO(C2)-graded cohomology from [3] says
these are actually the only two types of modules needed to describe the cohomology
of finite C2-spaces. Thus the cohomology of a finite C2-space depends only on
representation spheres and antipodal spheres.

Theorem 1 (M. 2018 [3]). If X is a finite C2-CW complex then as an M2-module
H∗,∗(X ;F2) decomposes as

H∗,∗(X ;F2) ∼= (⊕iΣ
pi,qiM2)⊕ (⊕jΣ

rj ,0Anj
).

The proof uses some interesting new facts. The first is that M2 is self-injective.
The second is a Toda bracket, specifically 〈τ, θ, ρ〉 = 1 with zero indeterminacy.

I recently showed this decomposition lifts to the spectrum level.

Theorem 2 (M. 2019 [3]). If X is a finite C2-CW spectrum there is a decompo-
sition of X ∧HF2 into a wedge as follows

X ∧HF2 ≃

(
∨

i

Spi,qi ∧HF2

)
∨


∨

j

Srj ,0 ∧ Snj
a + ∧HF2


 .

Now a question: does this decomposition describe more general HF2-modules?
Not quite. We can describe all finite HF2-modules, but we need one more piece.
The last piece is the cofiber of τ .

Theorem 3 (Dugger–Hazel–M. in progress). If Y is a finite HF2-module then

Y ≃

(
∨

i

Spi,qi ∧HF2

)
∨


∨

j

Srj ,0 ∧ Snj
a + ∧HF2


 ∧

(
∨

k

Sak,bk ∧ cof(τnk)

)
.

The proof uses very different techniques. It relies on the following Quillen
equivalence.

Theorem 4 (Schwede–Shipley 2003 [7]). There is a Quillen equivalence

HF2 −Mod ≃ Ch(F2).

We prove the splitting of HF2-modules by splitting all finite chain complexes
of projective F2-modules.

We are also able to describe the Balmer spectrum as defined in [1] for the
compact objects in the derived category of Ch(F2). There are three prime ideals,
two of which are closed points. The first closed point contains direct sums of the
chain complexes that correspond to An for all n ≥ 0. The second contains direct
sums of the chain complexes that correspond to cof(τn) for all n ≥ 0. The third
prime ideal contains both types and its closure is the whole space.
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Calculations for equivariant topological modular forms

Lennart Meier

(joint work with David Gepner)

Every even periodic cohomology theory h gives rise to a formal group, which
can be defined as the formal spectrum Spf h0(CP∞). In case of K-theory, this

formal group is isomorphic to the formal completion Ĝm of the multiplicative
group scheme Gm = Spec[t±1]. In classical language, this corresponds to the
formal group law x+ y + xy.

In general, every commutative group scheme that is smooth of relative dimen-
sion 1 gives rise to a formal group by completion at the unit. Besides Gm es-
sentially the only other examples of such group schemes are the additive group
(corresponding to ordinary homology) and elliptic curves. An elliptic cohomology
theory consists of an even-periodic cohomology theory h, an elliptic curve C over

h0(pt) and an isomorphism of formal groups between Spf h0(CP∞) and Ĉ.
A natural demand is to extend elliptic cohomology theories to equivariant the-

ories. Going one step back to K-theory, we observe that S1-equivariant K-theory
of a point is isomorphic to the representation ring R(S1) ∼= Z[t±1], where t cor-
responds to the tautological representation of S1 = U(1). Thus K0

S1(X) becomes
for every S1-space a module over Z[t±1]. As this is the coordinate ring of Gm, the
module K0

S1(X) defines a quasi-coherent sheaf on Gm.
Thus it becomes natural to expect that S1-equivariant elliptic cohomology takes

values in sheaves on the corresponding elliptic curve, an idea already present in
the original work of Grojnowski [2] over the complex numbers and Greenlees over
the rationals [1]. An idea of Lurie [3] [4] was to work fully derived and only pass to
homotopy groups at the end. This relies heavily on spectral algebraic geometry;
in particular Lurie had to define elliptic curves and formal groups over E∞-rings.
We will assume these in the following to represent functors valued in commutative
topological groups instead of just E∞-spaces. The following definition is a derived
analogue of the notion of an elliptic cohomology theory:

Definition. An oriented elliptic curve consists of an E∞ ring spectrum R, an el-
liptic curve C over R and an equivalence over R of formal groups between SpfECP∞

and Ĉ.
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Given now an oriented elliptic curve (R,C), we want following Lurie to define a
contravariant functor

Rshv
S1 : (Sfin

G )op → QCoh(C,OC)

from the ∞-category Sfin
G of finite S1-CW complexes to the ∞-category of quasi-

coherent OC -modules. By Elmendorf’s theorem, Sfin
G embeds into space-valued

presheaves on the orbit-category OrbS1 as the sub-∞-category generated by finite
colimits from the orbits S1/H for closed subgroups H ⊂ S1. Thus it suffices
to specify Rshv

S1 on these orbits (with appropriate functoriality) if we demand that

Rshv
S1 sends finite colimits in Sfin

G to finite limits. We set Rshv
S1 (S1/S1) to be OC and

Rshv
S1/Cn

= (in)∗OC[n], where in : C[n] →֒ C is the inclusion of the n-torsion. This

is again in line with K-theory as KS1(S1/Cn) ∼= R(Cn) and SpecR(Cn) = Gm[n].
There are two methods to obtain more classical invariants from Rshv

S1 . The first
is to apply (sheafified) homotopy groups to obtain sheaves of abelian groups on
the underlying classical elliptic curve of C, resulting in a Grojnowski style version
of elliptic cohomology. The other is to take global sections, resulting in a functor

RS1 : (finite S1-spaces)op → Spectra

Taking homotopy groups results in an S1-equivariant cohomology theory

R∗
S1 : (finite S1-spaces)op → graded abelian groups

Actually, this is represented by an S1-spectrum R with RS
1

= RS1(pt).
This abstract theory leaves the question open how to calculate these objects,

which we answer in the simplest case.

Theorem (Gepner–M.). There is an equivalence RS
1

= RS1(pt) ≃ R⊕ΣR. The

map R → RS
1

is given by restriction along S1 → {e} and ΣR → RS
1

by a transfer.

While there is just one multiplicative groups, there are a lot of elliptic curves,
resulting in many elliptic cohomology theories. There is one universal theory,
called topological modular forms TMF associated with the moduli stack of all
elliptic curves. While itself not an elliptic cohomology theory, it maps to all elliptic
cohomology theories (associated with an oriented elliptic curve) and supports an
equivariant theory as well. The naturality in the previous theorem implies:

Corollary. We have an equivalence TMFS
1

≃ TMF ⊕ ΣTMF .

Note that the homotopy groups of TMF are completely known and thus we
obtain a complete calculation of TMF ∗

S1(pt). Note moreover that (in contrast to

KS1

) the TMF -module TMFS
1

is dualizable, with dual Σ−1TMFS
1

.
Actually, equivariant TMF can be defined for all compact Lie groups G, in

particular resulting in fixed points TMFG. Our results together with work of
Lurie suggest the following conjecture.

Conjecture. Let G be a compact Lie group and L its adjoint representation. Then
TMFG is a dualizable TMF -module with dual (Σ−LTMF )G.
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The case of G finite is a consequence of tempered ambidexterity, one of the main
results of [4]. The case G = S1 (and actually G = (S1)r) follows from the corollary
above.

In particular, Lurie’s result implies that TMFCn is a self-dual TMF -module.

Question. Can one explicitly calculate TMFCn or at least its homotopy groups?

Much of the difficulty lies in understanding explicitly the n-torsion points in
the universal elliptic curve. This simplifies significantly if we invert n in the basis
or even p-complete away from n. The following is one of the main results from [5].

Theorem (M.). For p not dividing n, the TMF -module TMFCn splits after p-
completion into shifted copies of TMF , TMF1(2) (if p = 3) and TMF1(3) (if
p = 2).
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Descent property of (co)sheaves on manifolds via Thurston’s
fragmentation

Sam Nariman

Let F : (Mfld
∂
n)
op → S be a presheaf from the category of smooth n-manifolds

(possibly with nonempty boundary) with smooth embeddings as morphisms to
a convenient category of spaces S. For our purpose, it is enough to consider the
category of simplicial sets or compactly generated Hausdorff spaces. Let Fh be the
homotopy sheafification of F with respect to 1-good covers meaning contractible
open sets whose nontrivial intersections are also contractible. One can describe the
value of Fh(M) as the space of sections of the bundle Fr(M)×GLn(R)F (R

n) →M ,
where Fr(M) is the frame bundle of M . We say F satisfies an h-principle if the
natural map from the functor to its homotopy sheafification

j : F (M) → Fh(M),

induces a weak equivalence and we say it satisfies c-principle if the above map
is a homology isomorphism. Some important examples of such presheaf in the
manifold topology are the space of generalized Morse functions [Igu84], space of
framed functions [Igu87], space of smooth functions on Mn that avoid singular-
ities of codimension n + 2 (this is in general a c-principle, see [Vas92]), space of
configuration of points with labels in a connected space [McD75], etc.
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Given a fixed element of s0 ∈ F (M), one could also consider the compactly sup-
ported versions (precosheaf) Fc(M, s0) of these examples and still the natural map
between Fc and F

h
c satisfies h-principle or c-principle. Proving that geometrically

defined functorx of interest have nice homotopical properties (being homotopy
(co)sheaf) is usually hard and it is the main step in proving h-principle theorems.
Different techniques were developed [Gro86, EM02] to prove homotopical proper-
ties for certain geometric functors. But in the above examples, the known proofs
are not “local to global” argument. In particular, they do not approach it by
proving that Fc and F

h
c have descent property with respect to certain covers.

One common feature of the above examples is that F (Rn) is at least (n − 1)-
connected. So the fiber of the bundle whose compactly supported section space
recovers Fhc (M) is at least (n − 1)-connected. For such section spaces, there is a
descent property known as non-abelian Poincare duality [Lur16, Theorem 5.5.6.6].
So it is expected that if F (Rn) is at least (n−1)-connected, proving h(c)-principle
is equivalent to a descent property for Fc(M). Inspired by Thurston’s work in
foliation theory, we introduce the notion of fragmentation for Fc as a way to
prove a descent property for geometrically defined cosheaves. We talk about how
fragmentation implies the known version of the non-abelian Poincare duality for
space of sections and how it can be generalized when the connectivity of the
hypothesis is relaxed.

1.1. Non-abelian Poincare duality via fragmentation. To state fragmenta-
tion property for the space of sections, let π : E →M be a Serre fibration over the
manifold M . Let s0 be a base section. By the support of a section s, we mean the
closure of the points on which s differs from the base section s0. Let Sectc(π) be
the space of compactly supported sections of the fiber bundle π : E →M equipped
with the compact-open topology. Let Sectǫ(π) denote the subspace of sections s
such that the support of s can be covered by k geodesically convex balls of radius
2−kǫ for some positive integer k.

Theorem 1.1 (Fragmentation property). If the fiber of π is at least (n − 1)-
connected, the inclusion

Sectǫ(π) →֒ Sectc(π),

is a weak homotopy equivalence.

Remark 1.2. Thurston proved this property with the hypothesis that the fiber of
π is at least n-connected.

One can improve on the same ideas to relax the connectivity hypothesis even
more. For example, if the fiber of π is at least (n − 2)-connected, one can show
that

Sectgraphǫ (π) →֒ Sectc(π),

is a weak homotopy equivalence where Sectgraphǫ (π) is the subspace of sections
whose support is in a 2−kǫ-neighborhood of a graph with k vertices. Using
Thurston’s ideas in the foliation theory, one could prove the following c-principle
theorem.
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Definition 1.3. We say F is good, if it satisfies

• The subspace of elements with empty support in F (M) is contractible.
• Let U and V be open disks. All embeddings U →֒ V induces a homology

isomorphism between Fc(U) and Fc(V ).
• For an open subset U of a manifold M , the inclusion Fc(U) → Fc(M) is

an open embedding.
• Let ∂1 be the northern-hemisphere boundary of Dn. Let F (Dn, ∂1) be the

subspace of F (Dn) that restricts to the base element in a germ of ∂1 inside
Dn. We assume F (Dn, ∂1) is contractible.

Theorem 1.4 (N). Let F be a good presheaf on manifolds such that

• F (Rn) is at least (n− 1)-connected.
• It has the fragmentation property.

Then F satisfies the c-principle.

Proving fragmentation property instead of descent property with respect to
good covers for geometrically defined functors Fc is approachable using Thurston’s
ideas in foliation theory. For example one could prove Vassiliev c-principle theorem
[Vas92] for space of smooth functions not having certain singularity via fragmen-
tation technique.

1.2. Relating two c-principle theorems in foliation theory. Let Vect(M)
denote the Lie algebra of smooth vector fields on a manifold M with its C∞-
topology and let C∗

GF (Vect(M)) denote the Gelfand-Fuks cochains (continuous
Chevalley-Eilenberg cochains). Bott and Segal showed that C∗

GF (Vect(−)) has a
descent property and used a local to global argument to find a zig-zag of quasi-
isomorphism between C∗

GF (Vect(M)) and real cochains of the space of sections
of Fr(M) ×GLn(R) F → M where F is a 2n-connected GLn(R)-space whose real
cohomology H∗(F ;R) is isomorphic to the cohomology of C∗

GF (Vect(R
n)).

On the other hand, Thurston studied space of foliated trivialM -bundles [Thu74]
and proved a c-principle for such a functor. More formally, one can represent this
functor using the Lie algebra of vector fields as follows. Let

MC•(Vect(M)) := MC(ΩdR(∆
•)⊗Vect(M)),

be the simplicial set given by smooth Maurer-Cartan elements of dgla ΩdR(∆
•)⊗

Vect(M).
He showed that |MC•(Vect(M))| has the fragmentation property and proved

it is homology isomorphic to a section space. For simplicity, suppose that M
is parallelizable. (this assumption is to express the section space as a mapping
space). Then the Thurston theorem states that there is a map

(1) |MC•(Vect(M))| → Map(M, |MC•(Vect0(R
n))|),

where Vect0(R
n) is the formal vector fields on Rn (i.e. germs of vector fields

at the origin). Thurston’s theorem implies that the above map is a homol-
ogy isomorphism. Inspired by rational homotopy theory, the mapping space
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Map(W, |MC•(Vect(R
n))| can be modeled by the Maurer-Cartan element of the

dgla ΩdR(M)⊗Vect0(R
n).

Our goal is to enhance Thurston’s theorem to a statement about the comparison
betweenMC•(ΩdR(W )⊗Vect0(R

n)) andMC•(Vect(W )) that implies homology iso-
morphism after realization. This is inspired by the work of Haefliger on differential
cohomology [Hae10] to relate these two theorems locally.
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Beilinson’s fibre sequence in K-Theory via topological cyclic homology

Thomas Nikolaus

We will review several approximations to algebraic K-Theory: Hochschild ho-
mology, negative cyclic homology and topological cyclic homology. We review the
results of Goodwillie, Dundas–McCarthy and Clausen–Mathew–Morrow which ba-
sically say that for nilpotent or henselian ideals, the difference between K-Theory
and these approximations vanishes.

The main new result of this talk is a p-adic version of Goodwillie’s result: for a
commutative ring R, henselian along p, there is a fibre sequence

ΣHC(R;Qp) → K(R;Qp) → K(R/p;Qp)

This result is originally due to Beilinson under some additional assumptions on
R. If time permits, we will discuss the proof using TC and applications.
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The η-periodic motivic sphere spectrum and the connective
Witt-theoretic J-spectrum

Kyle Ormsby

(joint work with Oliver Röndigs)

Infamously, the motivic Hopf map η is non-nilpotent in the motivic stable homo-
topy groups of the sphere spectrum. This is proved over any base field by Morel [4],
but is easily seen over R since the real points of the unstable map η : A2 r 0 → P1

are homotopy equivalent to the degree −2 map S1 → S1. This is a first example
of exotic behavior in motivic stable stems, and hints at the additional complexity
necessary in any successful description of motivic nilpotence.

We may detect motivic homotopy classes on which η acts non-nilpotently by
forming the η-periodic sphere spectrum

η−1S := hocolim
(
S

η
−→ S−α

η
−→ S−2α η

−→ · · ·
)
.

(Here we are using the “equivariant grading” in which Sm+nα ≃ (S1)∧m ∧ (A1 r

0)∧n.) Following work over specific base fields by Andrews–Miller [1], Guillou–
Isaksen [2, 3], and Wilson [8], we undertake the computation of the homotopy
groups of η−1S over an arbitrary base field via the slice spectral sequence. Our
efforts are successful for a broad class of fields, as exhibited by the following
theorem. Let kM∗ (k) denote the mod 2 Milnor K-theory of k, let ρ = [−1] ∈
kM1 (k), let W (k) denote the Witt ring of regular quadratic forms over k modulo
the hyperbolic plane, and let sc denote slice completion as in [7].

Theorem 1 ([6, Theorem 4.8]). Suppose that k is not of characteristic 2 and that
−1 is a sum of four squares in k. Then, as a ring,

π⋆ sc(η
−1S) ∼=W (k)[η±1, σ, µ]/(σ2)

where |η| = α, |σ| = 3 + 4α, and |µ| = 4 + 5α. If additionally cd k < ∞, then
sc(η−1S) ≃ η−1S and this is a computation of the η-periodic homotopy groups of
the motivic sphere spectrum.

The proof begins with the known computation of the E1-page of the η-periodic
slice spectral sequence [7]:

E∗,⋆
1

∼= HF2[η
±1, α3, α4]/(α

2
4).

Here H denotes the motivic Eilenberg-MacLane functor, |η| = (1, α), |α3| = (3, 2+
3α), and |α4| = (4, 4 + 5α).

We then determine the d1 differentials as an elaborate pattern of motivic Steen-
rod operations depicted in Figure 1. Some of these are detected by the unit map to
connective Witt K-theory, kw, while others depend on a map σ∞ : Σ3kw → η−1S
that we construct over C via a cell presentation of kw.

This leads to an E2-page of the form

E∗,⋆
2

∼= kM∗ (k)[η±1, α4, α5]/(α
2
4)
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Figure 1. The first page of the η-periodic slice spectral sequence
with its differentials. A � in position (m,n) represents a copy of
π⋆Σ

m+nαHF2
∼= Σm+nαkM∗ (k)[τ ] in slice degree n. The black por-

tions of the diagram are detected by the unit map η−1S → kw,
and the red portions are induced by σ∞ : Σ3kw → η−1S over C.
Arrows with slope −1/2 represent τ , arrows with slope −1 repre-
sent ρ, solid vertical arrows represent Sq2, dashed vertical arrows
represent Sq2+ρSq1, arrows with slope 1 represent Sq2Sq1+Sq3,
and arrows with slope 1/2 represent Sq3Sq1.

in which |kMn (k)| = (0,−nα) and |α5| = (5, 4 + 5α). In particular, this E2-
page is concentrated in nonnegative simplicial degrees congruent to 0 or 3 modulo
4. Moreover, we clearly have that the spectral sequence collapses at E2 when
kM>1(k) = 0. In particular, we get collapse for k = Fp. A base change trick then
proves the odd characteristic case of Theorem 1.

We then turn to the general characteristic 0 case, where we first show that d2 = 0
over k = Q via a Hilbert reciprocity argument. This in turn allows us to prove
that there is a nondecreasing sequence of extended integers rk ∈ Z≥3∪{∞}, k ≥ 2,

such that differentials drkα2k+1 = ρrkα2kα
rk−1
1 and the Leibniz rule determine the

spectral sequence. Over a general field k, we call such a sequence (if it exists) the
profile of the η-periodic slice spectral sequence over k.
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Theorem 2 ([6, Theorem 4.5]). Let k denote a characteristic 0 field. The η-
periodic slice spectral sequence over k is determined by the same profile as the
η-periodic slice spectral sequence over Q.

The proof again relies on base change, but the details are more subtle. In
particular, we invoke a deep theorem of Orlov–Vishik–Voevodsky [5, Theorem 3.3]
to guarantee that the ρrk -torsion in kM∗ (k)[η±1]{α2k+1} supports no differentials.

This essentially completes the proof of Theorem 1, but leaves open the question
of determining the profile of a characteristic 0 field in which ρ is non-nilpotent.
Inspired by the computations of [3], we make the following conjecture.

Conjecture 1 ([6, Conjecture 4.10]). The profile of the η-periodic slice spectral
sequence over R (and hence over every characteristic 0 field) is rk = k + 1.

We are not able to directly apply the results of [3] to prove this conjecture
because the target of the η-periodic motivic Adams spectral sequence is not (nec-
essarily) the same as π⋆ sc(η

−1S).
If Conjecture 1 is true, then the homotopy groups of sc(η−1S) exhibit a “Witt-

theoretic image of J pattern.” Indeed, we would get

πm sc(η−1S) ∼=





W (k) if m = 0,

W (k)/2ν2(4ℓ)+1 if m = 4ℓ− 1 > 0,

2ν2(4ℓ)+1W (k) if m = 4ℓ > 0,

0 otherwise.

This leads to the speculation that there is a short resolution of η−1Ŝ2 via connective
Witt K-theory.

Let kw denote the connective cover of KW = η−1KQ, where KQ is the mo-
tivic Hermitian K-theory spectrum. One can show that kŵ

2 admits an action of
Z×
2 /{±1} by Adams operations when the virtual cohomological dimension of k is

finite. Furthermore, for any g ∈ Z×
2 /{±1}, ψg − 1 factors through Σ4kŵ

2. Define
the connective Witt-theoretic J-spectrum jw via the fiber sequence

jw −→ kŵ

2
ψ3−1
−−−→ Σ4kŵ

2.

If true, the following conjecture easily implies Conjecture 1.

Conjecture 2 ([6, Conjecture 4.10]). The Adams operations act on π⋆kw ∼=
W (k)[β], |β| = 4 + 4α, via ψg(βk) = g2kβk, and if k has finite virtual coho-
mological dimension, then

η−1Ŝ2 ≃ jw.

Tom Bachmann has sketched a proof of Conjecture 2 via the effect of Adams op-
erations on HW∗kw. Work in progress of Bachmann and Mike Hopkins addresses
precisely this question.

In one sense, a positive resolution of Conjecture 2 (that does not depend on slice
techniques) will supersede the results explained above. Nonetheless, the η-periodic
slice differentials which we have discovered should prove useful in more detailed
analyses of the slice spectral sequence for the motivic sphere building on [7].
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Homotopy Theory of 2-categories

Viktoriya Ozornova

(joint work with Martina Rovelli)

The long-term goal of this project joint with Julie Bergner and Martina Rovelli
is understanding stratified simplicial sets as a model for (∞, n)-categories and
comparing it with already existing models. We would like to report on first steps
in this direction.

The theory of (∞, 1)-categories, in particular in form of quasi-categories by
Joyal and Lurie, has become ubiquitous in homotopy theory. Many further mod-
els of (∞, 1)-categories are available, all of them are known to be equivalent and the
equivalences between them are well-understood. However, the situation changes
when we turn to (∞, n)-categories. The need for studying (∞, 2)-categories, for
example, arises when trying to incorporate analogs for non-invertible natural trans-
formations in the context and in particular when looking at the totality of (∞, 1)-
categories.

The motivation for our desired model for (∞, n)-categories arises from the fol-
lowing classical consideration. If we consider ordinary categories, the nerve functor
N exhibits a fully faithful embedding from small categories Cat into simplicial sets
sSet. The essential image can be characterized in two different ways. A maybe
more familiar way is using Segal condition: A simplicial set X is isomorphic to
a nerve of a category if and only if the map Xn → X1 ×X0 X1 ×X0 · · · ×X0 X1

induced by maps (i, i+ 1): [1] → [n] is an isomorphism for any n ≥ 2. Less well-
known is maybe the description via inner horns: A simplicial set X is isomorphic
to a nerve of a category if and only if it has unique right lifting property with
respect to all inner horn inclusions Λk[n] →֒ ∆[n], for 0 < k < n and n ≥ 2. The
weakening of the former condition leads to the notion of complete Segal spaces,
and the weakening of the latter leads to the notion of quasi-categories.



2242 Oberwolfach Report 36/2019

If one wants to mimick this approach for (∞, 2)-categories, the first question to
answer is what the analog of the nerve functor is. The variant we want to use is a
version of Street nerve [Str87], due to Roberts–Street in the general case and also
studied by Duskin and Gurski for 2-categories.

Similar to the usual nerve, the Duskin nerve of a strict 2-category is a simplicial
set which is 3-coskeletal. The 0-simplices are precisely the objects, the 1-simplices
are 1-morphisms. For the 2-morphisms, the situation becomes somewhat more
complicated: Note that a 2-morphism in a 2-category has one 1-morphism as a
source and one 1-morphism as a target. In contrast, a 2-simplex has to have three
1-simplices as its boundary. This is achieved by demanding one 2-simplex for every

2-morphism h
α
⇒ h′ and every decomposition h′ = gf :

x

y z

gf

h

α

The 3-simplices incorporate to a certain extent the composition of 2-morphisms.
The first surprise about Duskin nerve is that it is not fully faithful if we consider

only strict 2-morphisms between strict 2-categories, and we will address this point
in more detail in a moment. On a different note, Duskin nerve turns out to be
complicated even for simple-looking 2-categories. For example, the 2-cell

• •

has no non-trivial compositions. However, we were able to show the following, as
a part of a larger class of examples:

Theorem 1 (O.–Rovelli). The Duskin nerve of the 2-cell has exactly 2 non-
degenerate simplices in every dimension.

As a remedy for the lack of fullness, Roberts–Street have introduced an addi-
tional structure on simplicial sets to make the nerve fully faithful. This leads to
a notion of a stratified simplicial set, which is a simplicial set X together with
subsets tXk ⊂ Xk of thin simplices containing all degenerate simplices. The idea
behind the thin simplices is to remember the simplices inhabited by an identity.
This notion turns out to be well-suited for categorical purposes:

Theorem 2 (Roberts–Street, Verity [Ver08a], Gurski [Gur09]). The nerve
NRS : 2Cat → Strat taking values in stratified simplicial sets and having thin sim-
plices coming from the identities is fully faithful. Moreover, the essential image
can be characterized in terms of strict horn lifting properties.

Weakening the horn lifting condition leads to a proposed definition of a notion
of (∞, 2)-category (which also generalizes for n > 2) based on stratified simplicial
sets by Riehl–Verity. However, Roberts–Street-stratification is too rigid for the
purposes of homotopy theory, and that here, taking equivalences as thin simplices
instead turns out to be the homotopically meaningful. As a first step showing the
good properties of this definition, we were able to show:
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Theorem 3 ([OR19]). The nerve with the equivalence stratification defines a ho-
motopically fully faithful embedding N ♮ : 2Cat → Strat(∞,2).

Here, Strat(∞,2) denotes the category of stratified simplicial sets equipped with
the homotopy theory for (∞, 2)-categories.
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Chromatic homotopy theory is algebraic when p > n2 + n + 1

Piotr Pstragowski

A common theme in homotopy theory is to prove that certain classes of topological
objects can be described by purely algebraic data. A famous example of this result
is Quillen’s rational homotopy theory, which describes simply connected rational
spaces in terms of dg-Lie algebras [5].

Non-stable results are hard to come by, but in the stable context there is an
extensive family of examples of homotopy theories which admit an algebraic model
(that is, an equivalent triangulated category of algebraic nature), as well as exam-
ples of homotopy theories which are known to have no models of this type (such
as the category of spectra, as proven by Schwede [6]).

In chromatic homotopy theory, one stratifies p-local homotopy theory by height
n, and a common theme in this context is that answers turn out to be algebraic
when the prime is much larger then the height. An example of this phenomena is
a theorem of Bousfield, which shows that the E(1)-local homotopy theory admits
an algebraic model for all p > 2 [2].

In this talk, we generalize Bousfield’s result to all heights by showing that if
p > n2 + n+1, then the homotopy category of E(n)-local spectra is equivalent to
the derived category of E(n)∗E(n). This gives a precise sense in which chromatic
homotopy is algebraic at large primes, and implies that the corresponding K(n)-
local Picard groups are algebraic [1].

Our methods are different from the ones traditionally used to prove algebraicity
results, as developed by Franke [3], and are instead based on Goerss-Hopkins
theory [4]. The general nature of the latter thus suggests that algebraicity results
should be now also possible in other contexts, for example for modules over certain
ring spectra.

A question left open by this work is what happens when p ≤ n2 + n + 1. At
p = 2, it is known by the work of Roitzheim that the E(1)-local homotopy category
does not admit algebraic models [7], and one expects that the same is true at all
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heights when the prime is sufficiently small. A result of this type would give some
measure of the ”fundamental non-algebraicity” of homotopy theory predicted by
Mahowald’s principle.
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Duality for topological modular forms

John Rognes

(joint work with Robert Bruner)

In joint work with Robert Bruner we have recovered a calculation of π∗(tmf),
originally due to Hopkins and Mahowald [1], with enough precision to define a
map

a : Σ20tmf∧
2 −→ I(tmf/(2∞, B∞,M∞))

of tmf -modules, where B ∈ π8(tmf) is a Bott element, M ∈ π192(tmf) is a Ma-
howald element, tmf/(2∞, B∞,M∞) is the iterated homotopy cofiber of a cube
of 2-, B- and M -localizations of tmf , and I(−) denotes the Brown–Comenetz
dual. Using descent along a map tmf → tmf1(3) ≃ BP 〈2〉 we deduce that a is an
equivalence. At the homotopy group level this implies a Pontryagin duality

ΘNi ∼= Hom(ΘN170−i,Q/Z)

where N∗ is the Z[B]-submodule of π∗(tmf) generated by the classes in degrees
0 ≤ ∗ < 192, π∗(tmf) ∼= N∗ ⊗ Z[M ], and ΘN∗ ⊂ ΓBN∗ is the part of the Bott
torsion in N∗ that is not in degrees ∗ ≡ 3 mod 24.

As a consequence we obtain Stojanoska’s theorem [2] that Σ21Tmf ≃ IZ(Tmf),
where IZ(−) denotes Anderson duality, also at the prime 2. Furthermore, we
show that the image of the Hurewicz homomorphism π∗(S) → π∗(tmf) (when
restricted to the cokernel of J) lies in the part Θπ∗(tmf) of ΓBπ∗(tmf) that is not
in degrees ∗ ≡ 3 mod 24. A conjecture of Mahowald asserts that this is precisely
the Hurewicz image.
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Ambidexterity in Chromatic Homotopy Theory

Lior Yanovski

Background and Main Results. Given an abelian group A with an action of
a finite group G, one has the classical norm map from the co-invariants to the
invariants

NmG : AG → AG,

which is given by summation along the orbit NmG ([a]) =
∑
g∈G

ga. Similarly, one

can define the norm map for an action of a finite group on any object of an
abelian (or even semiadditive) category, but the behavior of the norm map strongly
depends on the category in question. Two fundamental examples to keep in mind:

• For C = VecQ, the norm map is always an isomorphism (essentially because
|G| is invertible).

• For C = VecFp
the norm is usually not an isomorphism. E.g. for the trivial

action of Cp on any vector space V , the norm map is identically zero.

Thus, the property that the norm map is an isomorphism seems to be a character-
istic zero phenomena. Moving to homotopy theory and replacing abelian groups
with spectra, we have more “prime fields”. fixing a prime p, Morava K-theories
provide in a sense an interpolation between characteristic 0 and characteristic p:

HQ = K (0) , K (1) , . . . ,K (n) , ...,K (∞) = HFp.

For any spectrum E, we denote by SpE ⊆ Sp the ∞-category of E-local spectra.
Even though p is never invertible on an object of SpK(n) for n > 0, we have the
following remarkable result:

Theorem 1.1. (Greenlees-Hovey-Sadofsky 1996) For n <∞ and any E ∈ SpK(n)

and an action of a finite group G on E, the norm map

Nm : EhG → EhG

is an equivalence in SpK(n).

Another formulation is that the Tate construction XtG, given as the cofiber of
Nm in Sp, is K (n)-acyclic. Hence, the result is also known as “Tate vanishing”.
An action of G on E is a functor F : BG→ SpK(n), and the norm is a map:

Nm : colimF → limF.

In this form, Hopkins and Lurie gave a strengthening of 1.1. Recall that a space
A is called m-finite if all sets πn(A, a0) are finite and A is m-truncated. A π-finite
space is a space that is m-finite for some m.
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Theorem 1.2. (Hopkins-Lurie 2013) Let A be any π-finite space, n < ∞ and
F : A→ SpK(n). There is a canonical (natural) equivalence

NmA : colimF
∼
−→ limF

Namely, they construct higher norms maps generalizing the usual ones and
prove they are equivalences.

Remark 1.3. A 1-finite space is a finite disjoint union of BG-s for finite G-s and
the norm map is the sum of the classical norm maps. Thus, 1.2 generalizes 1.1.

The K (n)-local categories have a close relative. Denote T (n) = v−1
n X (n),

where X (n) is some finite type n spectrum. There is a sequence of inclusions

SpK(n) ⊆ SpT (n) ⊆ Sp

and a factorization of the localization functors LK(n) = LK(n)LT (n). Thus, the
following is a strengthening of 1.1

Theorem 1.4. (Kuhn 2003) 1.1 is true when we replace SpK(n) with SpT (n).

Our first main result is:

Theorem 1.5. (Carmeli, Schlank, Y) 1.2 is true when we replace SpK(n) with
SpT (n).

The proof of this theorem is inevitably different from the proof given by Hopkins
and Lurie for the K (n)-local version. In particular, we start with a more elaborate
analysis of 1-semiadditivity, and show that quite generally 1-semiadditivity can be
bootstrapped to ∞-semiadditivity under relatively mild assumptions. In fact, we
show more generally:

Theorem 1.6. (Carmeli, Schlank, Y) Let R be a non-zero homotopy ring spec-
trum. The following are equivalent:

(1) SpR is 1-semiadditive.
(2) SpR is ∞-semiadditive.
(3) There exists 0 ≤ n <∞, such that SpK(n) ⊆ SpR ⊆ SpT (n) .

Higher Semiadditivity. The higher norms are constructed inductively on the
truncatendness m of the space A. The main point is that in order to define the
norm for an m-finite space A, one needs not only the existence of norm maps for
(m− 1)-truncated spaces, but the fact that they are equivalences. In particular,
to even define the norm for 2-finite spaces, one needs the Tate vanishing result for
group actions.

The best way to get a feeling for how the norm map is generalized upwards, is
to actually unwind the definition of the usual map downwards. Recall that the
usual norm map

NmBG : EhG → EhG

is defined roughly by summing over the orbit. The fact that we can sum maps is
because of the canonical isomorphism from a co-product to the product:

E1 ⊔ E2 ⊔ · · · ⊔ En
∼
−→ E1 × E2 × · · · × En.
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This map itself is a norm map with respect to a finite discrete space with n points
(0-truncated) and is constructed by identities on the diagonal and zeros of the
diagonal. The zero map Ei → Ej for i 6= j, exists because the unique map 0 → 1
from the initial object to the terminal object is an isomorphism. This map in turn
is a norm for the empty space ((−1)-truncated).

Hopkins and Lurie organize this into a general categorical pattern, such that
given a norm map for m-finite spaces, if it is an isomorphism we can use its inverse
to construct a norm map for (m+ 1)-finite spaces.

Definition 1.7. An ∞-category C is m-semiadditive if it is (m− 1)-semiadditive
and for all the norm maps for all m-finite spaces are equivalences. Every C is
(−2)-semiadditive.

Being 0-semiadditive is just being semiadditive and being (−1)-semiadditive is
being pointed (having a zero object). With this terminology one can say:

• Greenlees-Hovey-Sadofsky: SpK(n) is 1-semiadditive.
• Hopkins-Lurie: SpK(n) is ∞-semiadditive.
• Kuhn: SpT (n) is 1-semiadditive.
• Carmeli-Schlank-Y: SpT (n) is ∞-semiadditive.

Just like the property of 0-semiadditivity (i.e. ordinary semiadditivity) of C induces
a canonical operation of summation of finite sets of morphisms between a pair of
objects of C, so does higher semiadditivity induces an operation of summation (or
“integration”) of families of morphisms indexed by more general π-finite spaces.
More explicitly, given object X and Y in an m-semiadditive ∞-category C and
a map ϕ : A → Map (X,Y ) where A is an m-finite space, one can define a new
morphism

∫
A
ϕ ∈ Map (X,Y ) as the composition

X
∆
−→ lim

A
X

ϕ
−→ lim

A
Y

Nm−1
A−−−−→

∼
colimY

∇
−→ Y.

An important special case is where ϕ is constant on IdX , in which case we denote∫
A IdX by [A]X (those are actually the components of a natural endomorphism of
the identity functor of C).

Proof Sketch. As said above, the proof proceeds by induction on the level of
semiadditivitym starting withm = 1. The inductive step is based on the following
easy argument:

Lemma 1.8 (Transfer Principal). Given a fiber sequence

A→ E → B

with B connected, such that A and E are m-finite and [A] is an isomorphism, then
NmB is an isomorphism.

By the formal part of HL it is enough to show that the norm of K (Cp,m+ 1)
is an isomorphism.

Definition 1.9. We call a space A good if it is a connected m-finite p-space with
πm (A) 6= 0.
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For every good space A, there is a fiber sequence

A→ E → K (Cp,m+ 1) .

Thus, if we can find any good space A with [A] ∈ π0
(
ST (n)

)
invertible, we are

done. The next observation is that we can check whether [A] is invertible using
Morava E-theory. Namely, the Hurewicz map

f : π0ST (n) → π0 (En) ≃ Zp [[u1, . . . , un−1]]

detects invertibility. This follows from the following

Lemma 1.10 (Conservativity Principal). The localization functor SpT (n) →
SpK(n) is conservative on dualizable objects.

In fact, the image of f is contained in the constants Zp, so the question becomes
how to find a good space A, such that f ([A]) has zero p-adic valuation? The
rough idea is that by the results of Ravenel and Wilson, f ([K (Cp,m)]) is non
zero, so it has finite p-adic valuation and using 1-semiadditivity we can construct
an operation which reduces p-adic valuation.

1-Semiadditivity. Let C be a 1-semiadditive stable p-local symmetric monoidal
∞-category and R an E∞-ring object in C. An element x ∈ π0R is by definition a
map x : 1 → R up to homotopy. Using the E∞-structure, we get a new element
xp : BCp → Map (1, R) and we can define

δ (x) =

∫

BCp

(x− xp) ∈ π0R.

The resulting function δ : π0R → π0R is an additive p-derivation. That is, it
satisfies:

(1) δ (0) = δ (1) = 0.
(2) For all x, y ∈ R:

δ (x+ y) = δ (x) + δ (y) +
xp + yp − (x+ y)

p

p
.

(This implies that x 7→ xp + pδ (x) is additive).

In other words, it behaves very much like the operation δ0 (x) = x−xp

p on Zp.

Recall the map

f : π0ST (n) → Zp ⊆ π0 (En) .

The key properties of δ that are needed to complete the proof sketch above are:

• f (δ (x)) = δ0 (f (x))
• For a good space A, the element δ ([A]) is of the form [A′]− [A′′] for good
spaces A′ and A′′.

Thus, starting with A = K (Cp,m), if [A] is not invertible, we can replace A with a
good space A′ or A′′ from above, with a smaller p-adic valuation. This procedure
stops after a finite number of steps producing a good space A such that [A] is
invertible and thus completing the proof of the (m+ 1)-semiadditivity of SpT (n).
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Real cobordism, Morava E-theories and the dual Steenrod algebra

Mingcong Zeng

(joint work with Lennart Meier)

If one wish to understand stable homotopy groups of sphere π∗(S) from the chro-
matic perspective, Morava E-theories and their homotopy fixed points cannot be
avoided. Fix a height n, its crucial to understand the K(n)-local sphere LK(n)S.

By [2], LK(n)S ≃ EhGn
n , where the right hand side is the homotopy fixed point

spectrum of Morava En by the big Morava stabilizer group Gn. Theoretically one
can approach the computation using the homotopy fixed point spectral sequence,
but it is very difficult in practice. The situation becomes more reasonable if one
replace G by one of its finite subgroups F and consider EhFn . When the height
n = 1, 2, one can recover EhGn

n from various EhFn using finite resolutions and EhFn
are much more computable.

Now assume that p = 2, we know that there is a finite subgroup C2k ⊂ Gn
if and only if 2k−1|n. For n = 1, 2, EhC2

1 and EhC4
2 are well-understood. In

general, when either the height and the order of subgroup grows, the computation
becomes more difficult. A new approach to this computation through equivariant
stable homotopy theory is given in [3]. Let MUR be the C2-spectrum obtained
by the complex cobordism MU with complex conjugate, then it is shown that all
En treated as C2-ring spectra receive orientations from MUR. Furthermore, let

N2k

2 : SpC2 → SpC2k be the Hill-Hopkins-Ravenel norm functor in [4], then by the
norm-forget adjunction in commutative rings, we have

Theorem 1.1 ([3]). There is a C2k -equivariant homotopy ring map

N2k

2 MUR → En.

If En supports a C2k -action.

Localizing at 2, MUR splits into wedge of suspensions of BPR, the real Brown-

Peterson spectrum. Let BP ((C
2k

)) := N2k

2 BPR, one can build versions of Morava
E-theories from them by truncation, inverting a suitable element and then K(n)-
localization. Therefore one can apply computations of BP ((C

2k
) to Morava E-

theories. In general, a thorough understanding of the C2k -spectrum BP ((C
2k

)) can

tell us a lot about E
hC

2k
n for all heights n that supports a C2k -action.

The main tool of computation aroundBP ((C
2k

)) is the equivariant slice filtration
[4], which is an analog of the motivic very effective slice filtration in the category of
C2k -spectra. Let H ⊂ G = C2k , ρH be the regular representation R[H ] and SρH be
its one point compactification. A slice cell is a G-space of the form G/H+∧S

iρH for
i ∈ Z. S>n, the slice n-positive category is the subcategory of G-spcetra generated
by slice cells of underlying dimension larger than n under weak equivalence, wedge
and cofibre. Let Pn(−) be the Bousfield localization with respect to S>n, we have

Definition 1.2. The slice tower of a G-spectrum X is the tower Pn(X) →
Pn−1(X). The fibre Pnn (X) → Pn(X) → Pn−1(X) is called the n-th slice of
X.
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The corresponding RO(G)-graded spectral sequence of Mackey functors E2 =
π⋆P

n
n (X) ⇒ π⋆(X) is the slice spectral sequence(SSS) of X.

One of the main theorem of Hill-Hopkins-Ravenel determines the slices of BP ((G)).

Theorem 1.3 ([4]).

P ii (BP
((G))) =





∗ i < 0 or i is odd
HZ i = 0
Wi ∧HZ i > 0 and i is even

Where Wi is a wedge of slice cells of dimension i.

Therefore, the E2-page of the slice spectral sequence can be read off from π⋆HZ.
One very important trick of computing differentials in the slice spectral sequence

is localizing the whole spectral sequence at the Euler class of some representation
spheres. Let σ be the sign representation of G and λi be the G-representation on

R2 by rotating e
2i

2n 2πi and aV : S0 → SV be the embedding of north and south
pole. We have

Proposition 1.4. a−1
λi
SSS(BP ((G))) computes π⋆(a−1

λi
BP ((G))).

The first example is inverting aσ. (a
−1
σ BP ((G)))G is its G-geometric fixed point

ΦG(BP ((G))) ≃ HF2. One the other hand, a−1
σ SSS(BP ((G))) is nontrivial and

in fact, there is only one pattern of differential that can give the correct answer.
When we invert aλi

, the smaller i is, the closer a−1
λi
SSS(BP ((G))) looks like to

SSS(BP ((G))). In fact,

Proposition 1.5. In the integral page, the map

SSS(BP ((G))) → a−1
λ0
SSS(BP ((G)))

is an isomorphism in positive filtration and in filtration 0 it is a surjection and its
kernel consists of permanent cycles.

This means that in non-negative filtration SSS(BP ((G))) and its aλ0 -localization
contains exactly the same information. But what does a−1

λ0
SSS(BP ((G))) com-

pute?

Theorem 1.6.

(a−1
λ0
BP ((G)))G ≃ (N2k−1

1 HF2)
C

2k−1 ≃ (N2k−1

1 HF2)
hC

2k−1 .

The second equivalence is the main theorem of [1].
Specialize to G = C4, we see that a−1

λ0
SSS(BP ((C4))) computes (N2

1HF2)
hC2 .

What is special in this case is that if we consider the Tate fixed point instead of
homotopy fixed point, we have

Theorem 1.7 ([5]).

(N2
1HF2)

tC2 ≃ HF2.
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The homotopy fixed point and Tate spectral sequence for N2
1HF2 has input the

dual Steenrod algebra A∗ with conjugate action. The above theorem means
that in both spectral sequence, there are a lot of nontrivial differentials. Us-
ing a−1

λ0
SSS(BP ((C4))), we can understand these differentials and π∗(N

2
1HF2)

hC2

in a range.

Theorem 1.8. The first 6 homotopy groups of (N2
1HF2)

hC2 are

i 0 1 2 3 4 5 6

πi(N
2
1HF2)

hC2 Z/4 Z/2 Z/4 Z/2⊕ Z/2 Z/2 Z/2 Z/4⊕ Z/2

Where the black summands are from transfers of permutation submodules in A∗

and the red summands are the interesting parts.

By comparing the spectral sequences, we can also translate the family of slice
differentials in [4] into the Tate spectral sequence.

Theorem 1.9. Let x ∈ H̃−1(C2;F2) be the generator of Tate cohomology and

k > 0. Then in the Tate spectral sequence of N2
1HF2, di(x

2k) = 0 when i < 2k+1−1
and

d2k+1−1(x
2k ) = ξkξkx

−2k+1.

In the current statues, we can understand N2
1HF2 by understanding

a−1
λ0
SSS(BP ((C4))). However, if one has a different way of computing N2

1HF2,

then it should tell us a lot of information about a−1
λ0
SSS(BP ((C4))), thus BP ((C4))

itself, and EhC4
2n for all n.

References

[1] Bökstedt, Marcel and Bruner, Robert R. and Lunøe-Nielsen, Sverre and Rognes, John, On
cyclic fixed points of spectra, Math. Z., 276 (2014), 81–91.

[2] Devinatz, Ethan S. and Hopkins, Michael J., Homotopy fixed point spectra for closed sub-
groups of the Morava stabilizer groups, Topology 43 (2004), 1–47.

[3] Jeremy Hahn and XiaoLin Danny Shi, Real Orientations of Morava E-theories,
https://arxiv.org/abs/1707.03413.

[4] Hill, M. A. and Hopkins, M. J. and Ravenel, D. C., On the nonexistence of elements of
Kervaire invariant one, Ann. of Math. (2) 184 (2016), 1–262.

[5] Lunøe-Nielsen, Sverre and Rognes, John, The topological Singer construction, Doc. Math.
17 (2012), 861–909.

Reporter: Benjamin Böhme
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