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Shape space — a paradigm for
character animation in computer
graphics

Behrend Heeren e Martin Rumpf

Nowadays 3D computer animation is increasingly re-
alistic as the models used for the characters become
more and more complex. These models are typically
represented by meshes of hundreds of thousands or
even millions of triangles. The mathematical notion
of a shape space allows us to effectively model, ma-
nipulate, and animate such meshes. Once an appro-
priate notion of dissimilarity measure between differ-
ent triangular meshes is defined, various useful tools
in character modeling and animation turn out to co-
incide with basic geometric operations derived from
this definition.

1 Introduction

Seeing artificial character animations created through advanced techniques from
computer graphics is by now an everyday experience. The artists in television
and film studios, for example, create virtual characters of dramatically increasing
complexity, and design animations whose features are almost indistinguishable
from natural figures, shapes, and motions. The development of flexible and
effective tools to support artists in these tasks is linked to the mathematics



of shape spaces. Simply speaking, a shape space is a set with a mathematical
structure whose elements are geometric shapes. In computer graphics, the most
basic representation format for these geometric shapes are triangle meshes, as
shown in Figure 1.
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Figure 1: A typical geometric model used in computer graphics in three differ-
ent poses (all represented as triangular meshes as indicated by the
enlargement).

The term mathematical structure refers to the notion of a “local” dissimi-
larity measure that quantifies small variations of a particular shape. Once a
“small variation” can be realized and quantified, one can derive more complex
mathematical operations from it. For example, one can accumulate a sequence
of small variations to describe a larger motion of the shape. The accumulated
local dissimilarity measure then provides a notion of a “length” of this motion
path. Finally, one can also define a “global” distance measure between two
arbitrary shapes by means of the shortest path length between them.
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Figure 2: Accumulating small variations to generate a complex motion or large
deformation. Here, the color encodes a measure of local variations (red
means high). The accumulated local dissimilarity measure between
consecutive shapes then leads to a global distance measure between
the two boundary shapes (leftmost and rightmost hand).

To this end the starting point for the mathematical processing of geometric
models is the following question: can we define a meaningful (local) dissimilarity
measure between “nearby” shapes in a shape space? For example, in what way
does it make sense to say that the grey shape in Figure 1 is more similar to the
blue one than to the green one?



A rich theory of the mathematics of shape spaces has been developed starting
with the work of David George Kendall (1918-2007) in the 1980s [12]. In the
last twenty years, several mathematicians have advanced the understanding of
spaces of shapes. Here, the notion of shape includes planar curves [16, 15, 1],
smooth surfaces [14, 2], images [17, 19], or triangle meshes [13].

In this snapshot, we report on a shape space calculus which is based on the
notion of a “discrete path”. Following a discrete path can be thought of as
transitioning between finitely many shapes like between frames of a movie; for
example, the sequence of hands in Figure 2 is a discrete path with nine shapes.
Furthermore, one needs a suitable quantity called the (discrete) path energy
defined on these discrete paths. This energy is defined to be the accumulated
dissimilarity of consecutive shapes along the discrete path and shall serve as
a path selection criterion, which means we will navigate between shapes by
choosing discrete paths that minimize the path energy.

To enter the mathematical theory of shape spaces we proceed as follows.
At first, guided by geometric intuition, we will study shortest discrete paths
on the surface of the Earth and motivate the notion of a discrete path energy.
Then, we will discuss the space of shapes described through potentially very
large triangular meshes with a physically meaningful definition of a dissimilarity
measure.lJ

2 Shortest paths and a discrete path energy on the surface
of the Earth

Let us consider one of the simplest curved surfaces: a two-dimensional sphere
in three dimensional space R?. The surface of the Earth, for example, can
be modelled reasonably as a sphere, depending on the application. Aircraft
undertaking long distance flights travel along shortest paths to save fuel. These
shortest paths are segments of great circles — the circles obtained as the inter-
section of the surface of the Earth with two-dimensional planes passing through
the center of the FEarth.

Now we consider a discrete path (zg,z1,...,2,) of points on the sphere,
and assume that we travel between consecutive points along great circles, see
Figure 3. Then we call the total distance traveled from the starting point z¢ to
the end point x,, the length of the path and write

We have published a series of papers on this topic which are the foundation and primary
source of contents as well as graphical results presented in this snapshot, see [10, 8, 9].



Figure 3: Left: A sketch of a discrete path on the sphere (points of the path are
connected with segments of great circles in green. The dotted lines in
red show the corresponding straight line segments through the inte-
rior of the ball). Right: A shortest discrete path with six intermediate
points (orange) connecting two given end points (black).

where d; = dist(z;_1, ;) is the distance along the segment on a great circle
from x;_1 to x;. We can also define the corresponding path energy to be

E = nzn:df
i=1

It can be shown® that we always have the inequality
L<VE.

From this we deduce that a discrete path between fixed end points xzg and x,,
is of minimal path energy E if it already is of minimal length L with L = V/E.
In particular, all points x; must lie on a common great circle. Note that the
length does not change if we move the intermediate points x1,...,x,_1 along
that great circle (while keeping the order fixed), thus the terms d; may change
while the sum L stays the same. On the other hand we havel L = VE , that
is, the energy is minimal, if and only if d; = L/n, that is, if the points are
distributed with equal distances along the discrete path. In summary, this
means a discrete path having minimal path energy consists of equally distributed

This inequality can be proven using the Cauchy—Schwarz inegquality (X,Y) < || X]| - ||Y||
between the inner product (X,Y’) of of two vectors X and Y in R™ and the product of their
lengths, taking X = (1,1,...,1) and Y = (d1,d2,...,dn).

In the Cauchy—Schwarz inequality, equality holds if and only if X and Y differ by a
constant factor.



points, whereas this might not be the case for a discrete path having minimal
length. To this end, minimizing the path energy turns out to be a more suitable
objective since in applications one is interested in uniformly distributed points
(which correspond to a smooth transition).

However, from a computational point of view the evaluation of the squared
length dist? (z,Z) of the great circle segment between points z and & is very
costly. Fortunately, we can use a suitable approximation W of dist?, such
as the squared Euclidean norm W(z,#) = ||z — Z||? of the vector that joins
and Z in space (compare the dotted red lines in Figure 3). In fact, the closer
two points get, the better the Euclidean distance approximates the length of
the segment on the corresponding great circle. Replacing dist? by W in the
definition of the path energy E, we arrive at a new discrete path energy

E= nZW(Jsi_l,xi) .
i=1

In the case of two-dimensional surfaces embedded in three-dimensional space,
the definition of the approximation W is quite intuitive. However, in general
shape spaces (where single points x; represent geometric shapes), the definition
of W is a challenging task. This W is exactly what we call a dissimilarity

measure .

3 From the surface of the Earth to the space of shapes

Let us now move from points on the two-dimensional sphere in R3 to shapes
viewed as points in a very high-dimensional space of shapes. We think of a shape
as a triangular mesh, which is a widespread and computationally very practical
notion in computer graphics applications. Each shape is then described by a
large vector X gathering the three-dimensional coordinate vectors x; € R3 of
all N vertices (that is, j = 1,..., N) of the mesh:

X =(z1,...,2N).

Given a mesh with N vertices, it follows that X is a vector in R?*Y. We assume
here that any other shape X in the particular shape space under consideration
can be obtained via a deformation of the shape X, where the positions of the
vertices can be changed, but not the connectivity, that is, the way they are
connected to each other.

For each evaluation of dist? (z, &) one has to solve an optimization problem by first finding
the shortest path connecting x and & and then returning its squared length.
Mathematically, a dissimilarity measure W is an approximation to a squared distance
measure but with fewer properties. For example, VW does not have to be symmetric.



If we want to quantify the dissimilarity between two triangular meshes
represented by vectors X = (z1,...,zx) and X = (Z1,...,%y), respectively,
then the squared Euclidean norm Zjvzl |lz; — &;]|?, which measures the sum
of the squared distances of all pairs of vertices, is not a suitable dissimilarity
measure. For example, if X is obtained from X by a rigid rotation in space, the
Euclidean distance between X and X can be very large, although the actual
shape of the mesh has not changed. In particular, the notion of “shape” should
be independent of rotations and translations.

In our setup, we want W(X, X ) to quantify the “physical distortion” caused
by a change of the vertex positions. In fact, we envision two different types of
distortion: the first caused by stretching or compressing of the triangular facets
(called membrane distortion) and the second induced by “bending”. Stretching
and compressing of a triangular mesh can be quantified in terms of the change
of edge lengths, while bending (for example of two adjacent triangles) can be
measured via the change of the dihedral angle between the triangle facets at
the common edge. With this in mind, we split W into two components

W = Wmeln + Wbend

and define each of them as a sum over all edges of the underlying mesh to
quantify a distinct local dissimilarity of the shapes X and X.

More precisely, let € be the set of edges of the triangulation, [.[X] denote
the length of the edge e of the triangular mesh X, 6,[X] be the dihedral angle
between the two triangular facets meeting at the edge e, and a.[X] be the area
of one third of these two triangles (marked in dark orange, see Figure 4 below).

Figure 4: Hlustration of the area a. (in dark orange) and the dihedral angle 6,
for an edge e used in the definitions of W, and W, .4, respectively.
The triangles are subdivided at their respective barycenters.

Furthermore, having a length [.[X] and an area a.[X] associated with
an edge e, we can formally associate a “height” to every edge via h.[X]| =



a.[X]/1.[X] and set
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Both terms can be interpreted as a numerical integration over the mesh X,
where a.[X] is the integration weight (or discrete area element) and the squared
term measures a relative change of the objective quantities, that is, change
of edge length and dihedral angle, respectively. In fact, W,.... quantifies the
stretching or compression of each triangle when changing the vertex positions
from X to X , while W\, measures the bending of the triangle mesh, which
gets larger as the angle between two adjacent triangles changes‘@ See Figure 5
for an illustrative example.
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Figure 5: Two different kind of deformations of a flat reference stencil given by
two adjacent triangles in the plane (left, with transparency): pure
membrane distortion by compressing the common edge in the plane
(middle; Waem = 1/9, Whena = 0) vs. pure bending distortion by a
rotation about the common edge (right; Waem = 0, Wyena = 72/9).

An example of a shortest discrete path of deformations of a triangular mesh,
which minimizes the discrete path energy E and is based on the definition of W
that we have just given, has already been presented in Figure 2. In detail, we
have computed a morphing/blending between two given end shapes X4 and Xp
by computing a shortest discrete path (Xo,...,X,) having (n+1) shapes with
Xo = X4 and X,, = Xp being fixed.

6 fact, the bending term is an approximation of a quantity called the “Willmore energy”,
which measures differences in mean curvature. For a formal derivation and a convergence
analysis we refer to [3, 7].



0.0 1.0 20 t
Figure 6: “Morphing” or blending from time ¢ = 0 to time ¢ = 1 between two
different poses of an elephant and a face, respectively, by computing
shortest (discrete) paths. This motion is then extended (for ¢ < 0 and
t > 1) such that the resulting total path is still a shortest (discrete)
path between the two new end shapes. The color encoding (second
row) represents the amount of local distortion.

4 Beyond shape morphing — more than just shortest paths

So far we have discussed (discrete) shortest paths between two given shapes,
which can be computed via a minimization of the (discrete) path energy. Once
such a path is obtained we can also extend it beyond its initial and final shapes
whilst preserving the shortest path property, as shown in Figure 6.

Furthermore, there is a natural way of transferring geometric variations from
one pose of a shape to another pose. Let us assume that a (discrete) animation
path has already been computed which represents for example the blending
of a neutral face expression to an expression of disgust as in Figure 7 (green
shapes). Additionally, we have another smiling face (top left in Figure 7) which
we consider to be a variation of the neutral face. Now, using an extension of the
techniques presented here, one can “transport” this “smiling variation” along
the given (green) path leading to a different (discrete) animation path (shown
in orange).

As a final result, we obtain a smiling face on top of the disgust expression
(top right in Figure 7). In practice, this technique is primarily used to transport
small variations. Imagine an artist wants his character to have a slightly longer
nose. He realizes this variation manually only on the neutral face expression and
can then use the transportation tool to apply this change to all other expressions
in a consistent and automated way.

By means of the discrete path energy we are able to compute a smooth

transition between two fixed end shapes — which can be seen as given keyframes.
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Figure 7: The face variation given by the difference between a smiling (upper
left) and a neutral face (lower left) is transported along a given path
(bottom row) towards a disgusted face (bottom right), resulting in a
smile with a frown (upper right).

However, in applications one often has a sequence of (more than two) keyframes
and aims at an interpolation, that is, a smooth transition path going through all
of the keyframes. A straight-forward solution might be to compute a sequence
of shortest discrete path between pairs of consecutive keyframes and then
concatenate all segments. Although this piecewise approach realizes smooth
transitions between the keyframes, it leads to visible discontinuities at the
keyframes. A corresponding example on the sphere can be seen in Figure 8
(left), where keyframes are denoted by black dots. The solution we are looking

Figure 8: Piecewise (green) vs. spline (orange) interpolation on the sphere.
Notice the discontinuities at the keyframes on the left.



for is shown in Figure 8 on the right and is known as spline interpolation.
Physically, a spline of a prescribed length connecting two fixed end points is
given by the connecting curve with minimal bending or curvature. In contrast,
the rapid change of direction of the green curve in Figure 8 visible at the
keyframes leads to high local curvature. The crucial point is that the green
curve is based on a (piecewise) minimization of the path energy — which we
have learned is related to minimizing the length of the curve.d To minimize the
accumulated curvature along the curve, instead of the path energy, we work to
minimize what is called the “spline energy”. This allows the creation of smooth
paths through a number of keyframes. A corresponding example in the space
of geometric shapes (representing a body performing a periodic gym exercise)
is shown in Figure 9.

Figure 9: Piecewise (green) vs. spline (orange) interpolation in shape space.
Prescribed keyframes are shown in gray (left). Notice the disconti-
nuities at the keyframes for the green curve (middle), whereas the
orange curve is globally smooth (right).

Finally, let us briefly comment on two more applications in the shape space
of triangle meshes that are based on the techniques presented here. First, being
able to compute shortest (discrete) paths between any two different shapes by
minimizing the discrete path energy also provides a notion of a global distance,
which is simply the length of that optimal path. Having the notion of a distance
measure opens the door for many statistical applications. For example, the
empirical mean X of a collection of points X1, ..., Xs in Euclidean space is
simply defined to be
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The green curve in Figure 8 is actually shorter than the orange curve.
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On the other hand, X can be obtained as the unique minimizer of the function

1 M
X §;W(Xi,X),

with the squared Euclidean distance W(X;, X) = || X; — X||?. Having now a
collection of geometric shapes X1,..., X/, we can compute the corresponding
mean shape X by simply replacing W in the formula above by our dissimilarity
measure in shape space. This leads the way to more sophisticated statistical
analysis; we refer the interested reader to [21, 11] for corresponding examples
in shape space.

Second, the notion of parallel transportation (as seen in Figure 7) might
be used to investigate the curvature of the underlying mathematical space.
For example, if we transport a variation along a closed loop, the resulting
transported variation will only match the original variation if the underlying
mathematical space is flat, that is, has no curvature. Any Euclidean space
is flat, whereas the sphere has a constant positive curvature. This leads to a
measurable gap when transporting a variation in a loop on the sphere which
(after some normalization) in turn encodes curvature information. We have
used this approach, among others, to investigate the curvature of shape spaces,
see [8, 4].

5 Current research and future works

In the last decade, we have investigated various applications in the shape space
of triangle meshes. As outlined in this snapshot, we have always represented
shapes as their vector of vertex positions since we assumed that the connectivity
of the mesh does not change. Recently, we have been starting to work on two
generalizations of this approach.

First, we aim at releasing the constraint of fixed connectivity. To this
end, we will be able to deal with pairs of arbitrary shapes (only subject to
some topological restrictions). This is an important feature for real-world
applications, since faces (as shown in Figure 6), for example, often stem from
sensors measuring point clouds. These point clouds are then transformed into
triangle meshes. However, when transforming two measured point clouds of
two different faces one obtains two different triangulations in general. As a first
step in this direction, we investigated “shape matching” between two triangle
meshes with different connectivities in [5].

Second, we are currently investigating different representations of geometric
shapes, that is, triangle meshes are no longer represented by their vertex
positions. Recall that the definition of the membrane and bending dissimilarity
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measure above is based on the change of edge lengths and dihedral angles,
respectively. Hence it is a promising approach to consider these quantities as
primary variables — see [6, 20, 18]. To this end, all optimization happens in
terms of these quantities and once we have obtained a set of optimal lengths
and angles one has to reconstruct an (embedded) triangle mesh from these
values. Using lengths and angles as variables has two immediate advantages:
on the one hand, the dissimilarity measures become easier (note that they are
quadratic in I,[X] and 6.[X] while being highly nonlinear in X), and on the
other hand this formulation is inherently invariant to global translations or
rotations, which was a desired feature of our model.
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