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Octonion Polynomials with Values in a Subalgebra

Adam Chapman

Department of Computer Science, Academic College of Tel-Aviv-Yaffo, Rabenu Yeruham St., P.O.B
8401 Yaffo, 6818211, Israel

Abstract

In this paper, we prove that given an octonion algebra A over a field F, a subring
E ⊆ F and an octonion E-algebra R inside A, the set S of polynomials f (x) ∈ A[x]
satisfying f (R) ⊆ R is an octonion (S ∩ F[x])-algebra, under the assumption that
either 1

2 ∈ R or char(F) , 0, and R contains the standard generators of A and
their inverses. The project was inspired by a question raised by Werner on whether
integer-valued octonion polynomials over the reals form a nonassociative ring. We
also prove that the polynomials 1

p (xp2
− x)(xp − x) for prime p are integer-valued

in the ring of polynomials A[x] over any real nonsplit Cayley-Dickson algebra A.

Keywords: Alternative Algebras, Octonion Algebras, Ring of Polynomials,
Integer-Valued Polynomials, Cayley-Dickson Algebras
2010 MSC: primary 17A75; secondary 17A45, 17A35, 17D05

1. Introduction

Integer-valued polynomials have been the subject of research for a long time.
Polya studied polynomials f (x) in Q[x] satisfying f (Z) ⊆ Z and provided a gener-
ating set for their ring ([4]).

In [7], Werner addressed the situation of polynomials f (x) ∈ H[x] satisfying
f (R) ⊆ R where R is a subring of H containing Z ⊕ Zi ⊕ Z j ⊕ Zi j, and proved that
they form a subring of H[x]. In [8], Werner raised the question of whether the set
of polynomials f (x) ∈ O[x] satisfying f (R) ⊆ R where R = Z ⊕ Zi ⊕ Z j ⊕ Z(i j) ⊕
Z` ⊕ Zi` ⊕ Z j` ⊕ Z(i j)` is closed under multiplication.

We rephrase Werner’s question in a more general setting, with a more specified
structure: given a field F, a subring E, an octonion F-algebra A, and an octonion
E-algebra R inside A, write SubR(A[x]) for the set of polynomials f (x) ∈ A[x]
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satisfying f (R) ⊆ R. Is SubR(A[x]) an octonion algebra over SubR(A[x]) ∩ F[x]?
We answer this question affirmatively, under the assumption that either 1

2 ∈ R or
char(F) , 0, and R contains the standard generators of A and their inverses. We
also prove that for any prime integer p, the polynomial 1

p (xp2
− x)(xp − x) is in

SubR(O[x]) where R is the octonion Z-algebra inside O generated by the standard
generators i, j, ` ofO. This is in fact proven in a more general setting that addresses
the entire family of real nonsplit Cayley-Dickson algebras.

2. Preliminaries

Given a field F of char(F) , 2, an octonion algebra A over F is an algebra
admitting the structure A = Q ⊕ Q` where Q is a quaternion F-algebra, and

(q + r`)(s + t`) = qs + trγ + (rs + tq)`

for any q, r, s, t ∈ Q and a fixed γ ∈ F× and z 7→ z is the canonical (symplectic)
involution on Q. The quaternion algebra Q in turn is of the form

Q = F〈i, j : i2 = α, j2 = β, i j + ji = 0〉,

for some α, β ∈ F×. The canonical involution on Q maps a + bi + c j + di j to
a − bi − c j − di j. This involution extends to A by r + s` = r − s`. The trace map
Tr : A→ F mapping z to z + z is linear, and the norm map Norm : A→ F mapping
z to z·z is quadratic. Each z ∈ A then satisfies z2−Tr(z)z+Norm(z) = 0. The algebra
A is a composition algebra, which means that the norm map is multiplicative, i.e.,
Norm(z1z2) = Norm(z1) ·Norm(z2). The algebra A is a division algebra if and only
if its norm map is anisotropic, i.e., for each nonzero element z ∈ A, Norm(z) , 0.

The ring of (central) polynomials A[x] is defined to be A⊗F F[x], which means
that the indeterminate x is in the center. Despite this fact, a polynomial f (x) =

cnxn + · · · + c1x + c0 ∈ A[x] decomposes as f (x) = g(x)(x − λ) if and if cnλ
n +

· · · + c1λ + c0 = 0, and thus we define the substitution map S λ : A[x] → A by
cnxn + · · · + c1x + c0 7→ cnλ

n + · · · + c1λ + c0. This is why these polynomials are
often called “left polynomials”. The canonical involution extends from A to A[x]
by setting x = x, and thus A[x] is an octonion F[x]-algebra.

The notion of octonion algebras extends to algebras over rings ([3, Section 4]):
a non-associative algebra A over a commutative ring R is an octonion algebra if it is
finitely generated projective of rank 8 as an R-module, contains an identity element
and admits a norm, i.e., a quadratic form Norm : A → R uniquely determined by
the following two conditions:

(i) Norm is non-singular, so its induced symmetric bilinear form B(x, y) =

Norm(x + y) − Norm(x) − Norm(y) defines a linear isomorphism from the
R-module A onto its dual A∗ by the assignment x 7→ B(x, ).
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(ii) Norm permits composition, i.e., Norm(xy) = Norm(x) · Norm(y).

For further reading on octonion algebras over fields and rings see also [9], [2], [6].

3. General Fields and fields of characteristic not 2

Lemma 3.1. Let F be a field, E a subring of F, A an octonion F-algebra and R
an octonion E-algebra inside A. Let f (x) ∈ SubR(A[x]) and let u be a unit in R of
Tr(u) = 0. Then the polynomial h(x) = f (x) · u satisfies h(λ) = f (uλu−1)u for any
λ ∈ A, and thus h ∈ SubR(A[x]) as well.

Proof. Write f (x) =
∑n

k=0 anxn. Then h(x) =
∑n

k=0 anuxn. Let λ ∈ A. Since
Tr(u) = 0, we have u2 ∈ F×, and thus the Moufang identity gives ((au)b)u−1 =

a(ubu−1) for any a, b ∈ A. So h(λ)u−1 = (
∑n

k=0(anu)λn)u−1 =
∑n

k=0 an(uλnu−1) =∑n
k=0 an(uλu−1)n = f (uλu−1). Therefore, if λ ∈ R, then since u and u−1 are in R and

given that f (R) ⊆ R, we get h(R) ⊆ R. �

Corollary 3.2. As an immediate result of Lemma 3.1 we conclude that if we assume
in addition that R contains the standard generators of A and their inverses, then
SubR(A[x]) is a right R-module.

Proposition 3.3. Let F be a field of char(F) , 2, E a subring of F, A an octonion
F-algebra and R an octonion E-algebra inside A containing the standard gener-
ators i, j, ` of A, their inverses, and 1

2 . Then every polynomial f (x) ∈ SubR(A[x])
decomposes as f (x) = f0(x)+ f1(x)i+ f2(x) j+ f3(x)i j+ f4(x)`+ f5(x)(i`)+ f6(x)( j`)+
f7((i j)`) where f0(x), . . . , f7(x) are polynomials in SubR(A[x]) ∩ F[x].

Proof. The decomposition is obvious. It is left to explain why fm(x)(R) ⊆ R for
m = 0, . . . , 7. By Lemma 3.1, g(x) = (( f (x)i) j)(i j)−1 satisfies g(R) ⊆ R, and so
does h(x) = 1

2 (g(x) + f (x)), which is equal to f0(x) + f1(x)i + f2(x) j + f3(x)(i j).
Now, ϕ(x) = 1

2 (h(x) + ((h(x)i)`)(i`)−1) = f0(x) + f1(x)i satisfies ϕ(R) ⊆ R too.
Finally 1

2 (ϕ(x) + ((ϕ(x) j)`)( j`)−1) = f0(x) satisfies f0(R) ⊆ R, and so also f1(x) =

(ϕ(x) − f0(x))i−1 satisfies f1(R) ⊆ R. A similar argument applies for the rest of the
polynomials in the decomposition. �

Remark 3.4. Note that Proposition 3.3 is false without assuming 1
2 ∈ R. Take for

example F = R, E = Z, A = O and R the octonion Z-algebra inside O generated by
i, j, `. Then by [8, Lemma 31], f (x) = 1

2 (1 + i + j + i j + `+ i`+ j`+ (i j)`)(x2 − x) ∈
SubR(O[x]). However, f0(x) = 1

2 (x2−x) is not in SubR(O[x]) for 1
2 (i2−i) = − 1

2 (1+i).

Lemma 3.5. Let F be a field, E a subring of F, A an octonion F-algebra and R an
octonion E-algebra inside A. Let f (x) ∈ SubR(A[x]) and g(x) ∈ SubR(A[x])∩F[x].
Then f (x) · g(x) ∈ SubR(A[x]). Moreover, if f (x) is also in F[x], then f (x) · g(x) ∈
SubR(A[x]) ∩ F[x], and as a result, SubR(A[x]) ∩ F[x] is a commutative ring.
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Proof. Write f (x) = anxn + · · ·+a0 and g(x) = bmxm + · · ·+b0, and h(x) = f (x)g(x).
Then h(λ) =

∑n
k=0

∑m
r=0(akbr)λk+` for λ ∈ A, but since the br’s are central and for

each k, the elements ak and λ live in an associative subalgebra of A, we have h(λ) =∑n
k=0 akg(λ)λk = f (λ)g(λ). Therefore, h(R) ⊆ R, because f (R), g(R) ⊆ R. Hence,

f (x) · g(x) ∈ SubR(A[x]). If we assume in addition that f (x) ∈ F[x], then all the
coefficients of f (x) ∈ g(x) are in F[x], and thus f (x)·g(x) ∈ SubR(A[x])∩F[x]. As a
result, SubR(A[x])∩F[x] is closed under multiplication, and since it is commutative
and clearly closed under addition, it is a commutative ring. �

Theorem 3.6. Let F be a field of char(F) , 2, E a subring of F, A an octonion F-
algebra and R an octonion E-algebra inside A containing the standard generators
i, j, ` of A, their inverses, and 1

2 . Write S = SubR(A[x]) and C = S ∩ F[x]. Then S
is an octonion C-algebra.

Proof. It is a free C-module of rank 8 (hence, projective) by Proposition 3.3:

S = C ⊕Ci ⊕C j ⊕Ci j ⊕C` ⊕Ci` ⊕C j` ⊕C(i j)`.

The set S is clearly closed under addition. Consider two polynomials f (x) and
g(x) in the set. Then g(x) = g0(x) + · · · + g7(x)((i j)`) as in Proposition 3.3.
Now, f (x)g(x) = f (x)g0(x) + · · · + f (x)((i j)`)g7(x). Since the polynomials
f (x)i, . . . , f (x)((i j)`) are in S by Lemma 3.1, and multiplying a polynomial from
S by a polynomial from S with central coefficients is in S by Lemma 3.5, we
conclude that f (x)g(x) ∈ S , i.e., S is closed under multiplication.

Now, since in the decomposition f (x) = f0(x)+· · ·+ f7(x)(i j)`, the polynomials
f0(x), . . . , f7(x) are in C, and S is closed under multiplication, we conclude that
f (x) = f0(x) − · · · − f7(x)(i j)` is also in S , i.e., S is closed under the canonical
involution of A[x]. Moreover, Norm( f (x)) = f (x) · f (x) is thus in S , and since
its coefficients live in F, Norm( f (x)) ∈ C. Therefore S has a norm form Norm :
S → C mapping f (x) 7→ Norm( f (x)) = f (x) · f (x), which allows composition
by the embedding of S into A ⊗ F(x). The underlying symmetric bilinear form
B(x, y) = Norm(x + y)−Norm(x)−Norm(y) gives rise to the linear transformation
from S to S ∗ by the assignment x 7→ B(x, ), whose inverse maps each ϕ ∈ S ∗ to

1
2
ϕ(1) · 1 −

1
2α
ϕ(i) · i −

1
2β
ϕ( j) · j +

1
2αβ

ϕ(i j) · i j −
1

2γ
ϕ(`) · ` +

1
2αγ

ϕ(i`) · i`

+
1

2βγ
ϕ( j`) · j` −

1
2αβγ

ϕ((i j)`) · (i j)`,

and so S is an octonion C-algebra. �

Corollary 3.7. Let F be a field of char(F) = p ≥ 3, E a subring of F, A an
octonion F-algebra and R an octonion E-algebra inside A containing the standard

4



generators i, j, ` of A and their inverses. Write S = SubR(A[x]) and C = S ∩ F[x].
Then S is an octonion C-algebra, and a free C-module or rank 8.

Proof. One only needs to stress that R contains the inverse of 2 in this case, because
R is unital and thus Fp ⊆ R, and Fp contains the inverse of 2. �

4. Fields of characteristic 2

If we want to include the possibility of char(F) = 2, the quaternion algebra
presentation takes a different form

Q = F〈i, j : i2 + i = α, j2 = β, i j + ji = j〉

for some α ∈ F and β ∈ F×. The canonical involution now maps a + bi + c j + di j
to a + b + bi + c j + di j. The octonion algebra is again defined as A = Q ⊕ Q` with
(q + r`)(s + t`) = qs + trγ + (rs + tq)` for any q, r, s, t ∈ Q and a fixed γ ∈ F×.
This involution extends to A by r + s` = r + s`, giving rise to the trace and norm
maps, which satisfy the same properties as before. Note that Lemmas 3.1 and 3.5
hold true in any characteristic.

Proposition 4.1. Let F be a field of char(F) = 2, E a subring of F, A an oc-
tonion F-algebra and R an octonion E-algebra inside A containing the standard
generators i, j, ` of A and their inverses. Then every polynomial f (x) ∈ SubR(A[x])
decomposes as f (x) = f0(x)+ f1(x)i+ f2(x) j+ f3(x)i j+ f4(x)`+ f5(x)(i`)+ f6(x)( j`)+
f7((i j)`) where f0(x), . . . , f7(x) are polynomials in SubR(A[x]) ∩ F[x].

Proof. The decomposition is obvious. It is left to explain why fm(x)(R) ⊆ R for
m = 0, . . . , 7. By Lemma 3.1, g(x) = (( f (x) j)`)( j`)−1 satisfies g(R) ⊆ R, and so
does h(x) = g(x) + f (x), which is equal to f1(x) + f3(x) j + f5(x)` + f7(x) j`. Now,
ϕ(x) = h(x) + ((h(x)(i j))`)((i j)`)−1 = f3(x) + f7(x)` satisfies ϕ(R) ⊆ R too. Finally
ϕ(x)+((ϕ(x) j)(i`))( j(i`))−1) = f7(x) satisfies f7(R) ⊆ R. A similar argument applies
for the rest of the polynomials in the decomposition. �

Then the following analogue of Theorem 3.6 holds true with the same proof:

Theorem 4.2. Let F be a field of char(F) = 2, E a subring of F, A an octonion F-
algebra and R an octonion E-algebra inside A containing the standard generators
i, j, ` of A and their inverses. Write S = SubR(A[x]) and C = S ∩ F[x]. Then S is
an octonion C-algebra.
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5. Examples

• When F = Fp(r, s, t) is the function field in three algebraically independent
variables over Fp for a prime integer p, E = Fp(s, t)[r], A = Q ⊕ Q` where
`2 = t and Q is generated over F by i and j where j2 = s and Fp(i)/Fp is
the unique quadratic field extension of Fp, and R is the octonion E-algebra
generated by i, j, `, the set S = SubR(A[x]) is an octonion (S ∩F[x])-algebra.

• When F = Qp(s, t) is the function field in two algebraically independent
variables over Qp for an odd prime p, E = Zp(s, t), A = Q ⊕ Q` where
`2 = t and Q is generated over F by i and j where j2 = s and Qp(i)/Qp is
the unique quadratic field extension of Qp which is unramified with respect
to the p-adic valuation, and R is the octonion E-algebra generated by i, j, `,
the set S = SubR(A[x]) is an octonion (S ∩ F[x])-algebra. Note that 2 is
invertible in R in this case, and therefore Theorem 3.6 applies.

• When F = Q, E = Z[ 1
2 ], A = O and R is the octonion E-algebra generated

by the standard generators of O, S = SubR(A[x]) is an octonion (S ∩ F[x])-
algebra.

6. Cayley-Dickson Algebras

Given a field F, an F-algebra A with involution σ and an element δ ∈ F×, the
Cayley-Dickson doubling (A, σ, δ) gives an algebra B = A ⊕ A` whose dimension
over F is twice the dimension of A, and its multiplication is defined by

(q + r`)(s + t`) = qs + σ(t)rδ + (rσ(s) + tq)`

for any q, r, s, t ∈ A. The involution σ extends to B by σ(q + r`) = σ(q) − r`.
Starting with a separable quadratic extension K/F with the nontrivial auto-

morphism as the involution, one step would give rise to a quaternion algebra,
and another step would give an octonion algebra. Algebras that are obtained by
this process are called Cayley-Dickson algebras. In particular, such algebras are
power-associative (see [5]). Moreover, every element λ in a Cayley-Dickson al-
gebra A with involution σ over F satisfies λ2 − Tr(λ) · λ + Norm(λ) = 0 where
Tr(λ) = λ + σ(λ) ∈ F and Norm(λ) = λ · σ(λ) ∈ F.

In this section we focus on the Cayley-Dickson algebras obtained by repeating
those steps with δ always being −1, starting with the quadratic extension C/R.
We call these algebras “the real nonsplit Cayley-Dickson algebras”, because their
norm forms are the nonsplit quadratic Pfisre forms. The algebras H and O are
among those algebras.
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In what follows, let A be a real nonsplit Cayley-Dickson algebra. This algebra
has a natural R-basis provided by the process. Let R be the free Z-module spanned
by that basis. By the multiplication law, it is clear that R is closed under multiplica-
tion. Our aim in this section is to prove that for any λ ∈ R, also 1

p (λp2
−λ)(λp−λ) is

in R, thus extending this result from [7] that was stated for H only. The congruence
α ≡ β (mod p) means that α − β ∈ p · R.

Lemma 6.1. Let λ ∈ R. Write λ = y+z where y ∈ Z and Tr(z) = 0. Then λp ≡ y+zp

(mod p) for any prime integer p.

Proof. Since y commutes with z, we have (y + z)p =
∑p

n=0

(
p
n

)
ynzp−n. Since all the

coefficients, except for the initial and final coefficients, are multiples of p, we have
λp ≡ yp + zp (mod p). Now, yp ≡ y (mod p) by Fermat’s little theorem, and so
λp ≡ y + zp (mod p). �

Corollary 6.2. For any odd prime p, positive integer n and λ = y + z ∈ R where
y ∈ Z and Tr(z) = 0, λpn

≡ y + zpn
(mod p).

Proof. By induction on n. Since p is odd, zpn
= (−Norm(z))

pn−1
2 z, which means

Tr(zpn
) = 0, and so (y + zpn

)p ≡ y + zpn+1
(mod p). �

Theorem 6.3. Let p be an odd prime integer. Then (λp2
− λ)(λp − λ) ∈ p · R for

any λ ∈ R.

Proof. Write λ = y + z where y ∈ Z and Tr(z) = 0. Then λp ≡ y + zp (mod d). By
the previous corollary, λp2

− λ ≡ zp2
− z (mod p). If p - Norm(z), then zp2

− z =

z · (((−Norm(z))
p+1

2 )p−1 −1). Since Norm(z)
p+1

2 ∈ Z \ pZ, by Fermat’s little theorem
we conclude that ((−Norm(z))

p+1
2 )p−1−1 ≡ 0 (mod p), and so λp2

−λ ≡ 0 (mod p).
Suppose now that p | Norm(z). Then (λp2

− λ)(λp − λ) ≡ (zp2
− z)(zp − z) =

zp2+p − zp2+1 − zp+1 + z2. Since the powers p2 + p, p2 + 1, p + 1 and 2 are all even
integers, the latter is an integer multiple of Norm(z), and therefore a multiple of p.
Consequently, (λp2

− λ)(λp − λ) ≡ 0 (mod p) in all cases. �

Theorem 6.4. For any λ ∈ R, we have (λ4 − λ)(λ2 − λ) ∈ 2 · R.

Proof. Write λ = y+z where y ∈ Z and Tr(z) = 0. Then λ2 ≡ y+z2 (mod 2). Since
z2 is also in Z, we have (y+ z2)2 ≡ y2 + z4 (mod 2). The latter is congruent to y+ z2

(mod 2). Hence, λ4 ≡ y+z2 ≡ λ2 (mod 2). Now (λ4−λ)(λ2−λ) = λ6−λ5−λ3+λ2,
and λ6 = λ2 · λ4 ≡ λ2 · λ2 = λ4 ≡ λ2 (mod 2) and λ5 = λ · λ4 ≡ λ · λ2 = λ3, and so
λ6 − λ5 − λ3 + λ2 ≡ 2λ2 − 2λ3 ≡ 0 (mod 2). Consequently, (λ4 − λ)(λ2 − λ) ≡ 0
(mod 2). �
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Corollary 6.5. Setting R = Z ⊕ Zi ⊕ Z j ⊕ Zi j ⊕ Z` ⊕ Zi` ⊕ Z j` ⊕ Z(i j)`, for any
prime integer p, the polynomial 1

p (xp2
− x)(xp − x) is in SubR(O[x]).

As already mentioned, in addition to the polynomials of the form 1
p (xp2

−x)(xp−

x), by [8, Lemma 31], we also have 1
2 (1 + i + j + i j + ` + i` + j` + (i j)`)(x2 − x) in

SubR(O[x]). Apparently, this extends to arbitrary Cayley-Dickson algebras too.

Theorem 6.6. Let A be a real nonsplit Cayley-Dickson algebra of degree 2n, {sm :
1 ≤ m ≤ 2n} its natural R-basis, and R = ⊕2n

m=1Zsm. Then for any λ ∈ R, we have
(
∑2n

m=1 sm)(λ2 − λ) ∈ 2 · R.

Proof. The set Qn = {sm,−sm : 1 ≤ m ≤ 2n} studied in [1] forms a loop, and right-
multiplication by any basis element induces a permutation on Qn. Consequently,
right-multiplication by a basis element acts transitively on the mod 2 classes of Qn,
and therefore

(
2n∑

m=1

sm)st ≡

2n∑
m=1

sm (mod 2), for any t ∈ {1, . . . , 2n}. (1)

Moreover, (
∑2n

m=1 amsm)2 = a2
1 +

∑2n

m=2(a2
ms2

m + 2a1amsm), for s1 = 1 and all the
other basis elements anti-commute in pairs, and so (

∑2n

m=1 amsm)2 ≡
∑2n

m=1 a2
ms2

m ≡∑2n

m=1 a2
m ≡

∑2n

m=1 am (mod 2). Write λ =
∑2n

m=1 amsm. Then λ2 ≡
∑2n

m=1 am

(mod 2), and so (
∑2n

m=1 sn)λ2 ≡
∑2n

m=1(
∑2n

t=1 at)sm (mod 2). By (1) we conclude that
(
∑2n

m=1 sm)λ ≡
∑2m

m=1(
∑2n

t=1 st)am ≡ (
∑2n

m=1 sm)λ2 (mod 2). Therefore, (
∑2n

m=1 sn)(λ2−

λ) ≡ 0 (mod 2). �
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