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ON THE COMPUTATIONAL CONTENT OF

THE THEORY OF BOREL EQUIVALENCE RELATIONS

NIKOLAY BAZHENOV, BENOIT MONIN, LUCA SAN MAURO,
AND RAFAEL ZAMORA

Abstract. This preprint offers computational insights into the theory
of Borel equivalence relations. Specifically, we classify equivalence rela-
tions on the Cantor space up to computable reductions, i.e., reductions
induced by Turing functionals. The presented results correspond to
three main research focuses: (i) the poset of degrees of equivalence rela-
tions on reals under computable reducibility; (ii) the complexity of the
equivalence relations generated by computability-theoretic reducibilities
(ďT ,ďtt,ďm,ď1); (iii) the effectivization of the notion of hyperfinite-
ness.

1. Introduction

A reduction of an equivalence relation E on a domain X to an equivalence
relation F on a domain Y is a (nice) function f : X Ñ Y such that

x E y ô fpxq F fpyq.

That is, f pushes down to an injective map on the quotient sets, X{E ÞÑ Y{F .
To assess the relative complexity of E and F , it is natural to impose a bound
on the complexity of the reduction f , as otherwise, if the size of X{E is not
larger than the size of X{F , then the Axiom of Choice alone would guarantee
the existence of a reduction from E to F .

In the literature, such a reducibility has two main interpretations:

‚ In descriptive set theory, one typically assumes that X and Y are
Polish spaces and f is Borel;

‚ In computability theory, one typically assumes that X “ Y “ ω and
f is computable.

In this preprint, we hybridize these two traditions, by classifying equiva-
lence relations on the Cantor space up to computable reductions, i.e., reduc-
tions induced by Turing functionals: for E,F Ď 2ω ˆ 2ω, E is computably
reducible to F (notation: E ď0 F ) if there exists a total Turing functional
Φe so that, for all X,Y P 2ω,

X E Y ô ΦX
e F ΦY

e .

This research was supported through the programme “Research in Pairs” by the Math-
ematisches Forschungsinstitut Oberwolfach (MFO) in 2020. We are grateful to MFO for
their hospitality.

1



2 N. BAZHENOV, B. MONIN, L. SAN MAURO, AND R. ZAMORA

Similarly, one defines d-computable reductions by allowing the oracle to
access to any D P d.

Computable reductions in Cantor space have been previously explored by
Miller [27], who focused on calibrating the complexity of reductions between
well-known combinatorial Borel equivalence relations. Here, we introduce
three parallel lines of research:

First, in Section 2, we initiate a systematic study of ERp2ωq — the poset
of degrees of equivalence relations on reals under computable reducibility. In
recent years, degree structures generated by computable reducibility (on ω)
attracted a lot of interest (see, e.g., [1, 3, 4, 6]). Here, we want to understand
to which extent information available for the countable case can be lifted to
the domain of reals. We will show that ERp2ωq is a rich (and maybe wild)
structure: we explore its maximal chains and antichains, and we prove that
it is neither an upper nor a lower semilattice. We will also offer a comparison
between our poset and ERpωq, the analogous degree structure for countable
equivalence relations [2], and we use this comparison to illustrate the failure
of the celebrated Glimm-Effros dichotomy [16] for computable reducibility.

Secondly, in Section 3, we use computable reducibility to compare equiva-
lence relations generated by the main computability-theoretic reducibilities:
i.e., Turing reducibility ďT , truth-table reducibility ďtt, many-one reducibil-
ity ďm, and one-one reducibility ď1. The complexity of such equivalence
relations is of primary importance in the theory of countable Borel equiv-
alence relations. For example, it is a long open question of Kechris [22]
whether Turing equivalence is a universal countable Borel equivalence rela-
tion; the same question is open for 1-equivalence, see Marks [26] for many
results in the vicinity of this problem. On the other hand, Turing equivalence
and 1-equivalence of c.e. sets are respectively universal Σ0

4 and universal Σ0
3

equivalence relations1 [17, 13]. In this section, we compare these equivalence
relations with respect to both 0-computable reductions and 01-computable
reductions. Finally, we investigate which oracles are able to perform reduc-
tions between Idp2ωq (the identity on reals) or E0 (eventual agreement on
reals) to ”T .

Finally, in Section 4, we study the effective content of Dougherty-Jackson-
Kechris’ theorem [10], which states that a Borel equivalence relation is hy-
perfinite if and only if it is Borel reducible to E0. We show that the ef-
fectivization of this result already fails for Σ0

2 equivalence relations, as Σ0
2

equivalence relations computably below E0 need not to have a hyperfinite
Σ0

2 presentation. On the other hand, we show that each Π0
1 equivalence

relation is smooth via a computable reduction, effectivizing a classical fact.

1.1. Preliminaries. We follow the tradition of calling elements of the Can-
tor space reals. Sometimes we also adopt the tradition of calling set of reals

1We note that the result on Σ0
3 universality of 1-equivalence (for c.e. sets) easily follows

from Proposition 5 of [31]. We are grateful to Victor Selivanov for communicating this
fact.
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mass problems. We denote reals with uppercase letters, natural numbers
with lowercase letters. We assume that the reader is familiar with basic no-
tation and terminology from computability theory and descriptive set theory
(as in [32, 15]).

1.1.1. Strings. Let σ, τ P 2ăω and A P 2ω. The concatenation of σ and
τ P 2ăω is denoted by σ"τ . If σ is an initial segment of τ , we write σ Ď τ .
The notation σ ˚A corresponds to the following real

σ ˚A “

#

σpiq for i ă |σ|

Apiq for i ě |σ|.

We say that a set of strings is prefix-free if all strings in it are pairwise
incomparable with respect to Ď. Given σ P 2ăω, we denote by rσs the
clopen subset of 2ω generated by σ, i.e., tX P 2ω : σ Ă Xu.

1.1.2. Turing functionals. We fix an enumeration tΦeuePω of Turing func-
tionals. We write ΦepX,nq for the value of the functional with oracle X P 2ω

on integer n P ω. We write ΦepX,nqrts Ó to emphasize that the computation
halts before t steps and ΦepX,nqrts Ò to emphasize the opposite. We some-
times view Turing functionals as partial function from 2N to 2N in which case
ΦpXq — if defined — denotes the set Y P 2N such that ΦpX,nqÓ “ Y pnq.

A total Turing functional Φ : 2ω Ñ 2ω can be represented by a computable
function ϕ : 2ăω Ñ 2ăω which satisfies the following requirements:

(1) if σ Ď τ , then ϕpσq Ď ϕpτq;
(2) for all n, there is m so that

|ϕpσq| ě n, for every |σ| ě m;

(3) for all X P 2ω, ΦpXq “
Ť

nPω ϕpXænq.

1.1.3. Ordinals. By O we denote the set of notations of computable ordinals.
For a P O we write |a| for the ordinal coded by a. Given X we denote by
OX the set of codes for ordinals which are computable in X. Given a P OX

we write |a|X for the ordinal coded by a, when X is used as oracle for
the computation, or sometimes |a| when there is no ambiguity. Let ωX1
denote the smallest non X-computable ordinal and by ωck1 the smallest non-
computable ordinal. For α ă ωX1 we write OXăα the set of codes for ordinals
which are computable in X and such that |a| ă α. For any α ă ωX1 the
set OXăα is ∆1

1pXq uniformly in a code for α. For every X the set OX is
Π1

1pXq-complete uniformly in X: It is a Π1
1pXq set and for any Π1

1pXq set
P Ď ω ˆ 2ω there is computable function f : ω Ñ ω such that pn, Y q P P iff
fpnq P OX‘Y .

Given an ordinal α ă ωck1 we write Xpαq for the α-th jump of X.
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1.1.4. Equivalence relations. Let E,F be equivalence relations. For x P
dompEq and A Ď dompEq, we denote by rxsE and rAsE respectively the E-
class of x and the E-saturation of A. Given a mass problem A, we denote
by EpAq the equivalence relation consisting of exactly two classes: A and
2ω rA.

The uniform join E ‘ F of equivalence relations E,F Ď 2ω ˆ 2ω is
the equivalence relation which encodes E into r0s (i.e., if X E Y , then
0"X E ‘ F 0"Y ) and F into r1s (i.e., if X F Y , then 1"X E ‘ F 1"Y ).
Fixing a uniformly computable sequence of strings pτiqiPω which is prefix-
free (e.g., see S08 below for an example), one can define the generalized
uniform join

À

iPω Ei of countably many equivalence relations by encoding
each Ei into rτis. If X Ď 2ωˆ 2ω, then E{X denotes the equivalence relation
generated by the set of pairs E Y X. In analogy with the terminology for
equivalence relations on ω, we say that E{X is a quotient of E. A quotient
G of a uniform join E ‘ F is pure if for any X P 2ω, we have:

‚ r0"XsG X r0s “ r0
"XsE‘F ,

‚ r1"XsG X r1s “ r1
"XsE‘F .

It is easy to see that any pure quotient of E ‘ F is an upper bound of E
and F .

We conclude this section with two simple but useful lemmas.

Lemma 1.1. Let X P 2ω, and let R,S be equivalence relations on reals. If
R ď0 S, then the number of R-classes containing X-computable reals is at
most the same as the number of S-classes containing X-computable reals.

Proof. If Φ is a total Turing operator and A ďT X, then the real ΦA is also
X-computable. �

Lemma 1.2. If Φ : E ď0 F and Y is a real in rangepΦq, then rΦ´1pY qsE
contains a real X which is Y 1-computable.

Proof. Construct a Y -computable tree T Ă 2ω by saying that σ P T if and
only if Φσ is an initial segment of Y . This induces, computably in Y , a
Π0

1pY q class C. Since C is Y -computably bounded, it follows that there is
X P C such that X ďT Y

1 and ΦpXq “ Y . �

2. A structural view of ERp2ωq

Here, we offer a first look into ERp2ωq, the poset of degrees of equivalence
relations on reals up to computable reducibility: in particular, we compare
this poset to known degree structures and we prove that it is not a lattice.

Remark 2.1. Note that most of the results obtained in this section apply
also to the substructure of ERp2ωq consisting of Borel equivalence relations.



ON THE COMPUTATIONAL CONTENT OF BOREL EQUIVALENCE RELATIONS 5

2.1. Chains and antichains. Some information about ERp2ωq is readily
inherited by the theory of Borel equivalence relations. For instance, Louveau
and Veličković [25] proved that the inclusion of reals modulo finite differences
p2ω,Ď˚q embeds in pE ,ďBq, the poset of Borel equivalence relations under
Borel reducibility. It follows that the latter poset has antichains of size
2ℵ0 , and thus the same holds for ERp2ωq, since computable reducibility is
a refinement of Borel reducibility. Yet, this result is not optimal; we will
ameliorate it below. Before this, let us state some simple properties of
ERp2ωq.

Proposition 2.2. ERp2ωq has a least element but no maximal element.
Furthermore, each degree of ERp2ωq is countable and it has countably many
predecessors.

Proof. Any constant Turing functional (e.g., X ÞÑ 08) reduces Id1p2
ωq to

any given equivalence relation. Thus, Id1p2
ωq is the least degree of ERp2ωq.

Next, it is clear that no finite equivalence relation can be maximal, as F ‘
Id1p2

ωq is strictly above F , if F is finite. So, suppose that F is infinite and
fix a countable F -transversal tueuePω. We build a pure quotient F ‘F{A by
diagonalizing against all potential reductions F ‘F{A to F . More precisely,

for all e, let p0"ue, 1
"ueq be in A if and only if Φep0

"ueq ��F Φep1
"ueq.

The quotient so constructed is pure, since 0- and 1-classes of F ‘ F are
never collapsed, thus F ď0 F ‘F{A. Moreover, having diagonalized against
all Φe, we obtain that F ‘ F{A ę0 F and so F is not maximal. Finally,
each reduction from E to a given F is witnessed by one of countably many
Turing functionals. Hence, each degree is at most countable and it has at
most countably many predecessors. �

Combining the countable predecessor property and the lack of maximal
elements, we immediately obtain a size bound to the chains of ERp2ωq.

Proposition 2.3. Every maximal chain of ERp2ωq has size ℵ1.

Proof. Since every degree in ERp2ωq has at most countably many prede-
cessors, ERp2ωq cannot have chains of size ą ℵ1. On the other hand, ev-
ery countable chain pEiqiPω inside ERp2ωq is extendable. Indeed, Proposi-
tion 2.2 guarantees that there is F strictly above

À

iPω Ei, and, for all i, we
have Ei ă p

À

iPω Eiq ‘ F . �

Since the cardinality of ERp2ωq as a poset is 22ℵ0 and its height is ℵ1,

it immediately follows that the width of ERp2ωq is 22ℵ0 . Examples of an-
tichains of maximum size are obtained as a consequence of the next lemma,

recalling that the Medvedev lattice embeds antichains of size 22ℵ0 [29] (the
reader is referred to [33] for more information about the Medvedev lattice)

Lemma 2.4. If X ,Y are mass problems of incomparable Medvedev degrees,
then EpX q and EpYq are incomparable by computable reducibility.
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Proof. Towards a contradiction, suppose that there are X |M Y so that
Φ : EpX q ă0 EpYq. Note that X Y Y contains no computable reals, as
otherwise there would be a Medvedev reduction from either to the other.
It follows that Φ maps X to Y and X to Y, as, by Lemma 1.1, a Turing
functional necessarily maps classes containing computable reals to classes
containing computable reals. But then Φ induces a Medvedev reduction
from Y to X , a contradiction. �

Now, we will show that every maximal antichain of ERp2ωq is uncount-
able. To this end, let us first consider minimal pairs.

Proposition 2.5. In ERp2ωq, there are 2ℵ0 degrees which form pairwise a
minimal pair.

Proof. Let X,Y be reals such that X ęT Y 1. We claim that EptXuq and
EptY uq is a minimal pair. Towards a contradiction, suppose that there is
an equivalence relation on reals F ‰ Id1p2

ωq such that ΦX : F ď0 EptXuq
and ΦY : F ď0 EptY uq. One can show that F has exactly two equivalence
classes: one closed and not open, and the other open and not closed.

By Lemma 1.2, there is Z0 ďT Y
1 such that ΦY pZ0q “ Y . By continuity,

Z0 belongs to the closed class of F and therefore ΦXpZ0q “ X. Thus,
X ďT Z0 ďT Y 1, contradicting our choice of X and Y . So, to obtain 2ℵ0

degrees of ERp2ωq which form pairwise a minimal pair, it suffices to use a
family of 2ℵ0 Turing degrees which are pairwise inequivalent w.r.t. jump-
reducibilities. �

Proposition 2.6. Every maximal antichain of ERp2ωq has size at least 2ℵ0.

Proof. Fix a family F of 2ℵ0 degrees which form pairwise a minimal pair, as
in the previous proposition. Suppose that A0 is an antichain of size ă 2ℵ0 .
Let A be the downward closure of A0 with respect to computable reducibility.
Note that, for all equivalence relation E ‰ Id1 in A, E can be bounded by
at most one equivalence relation F in F. Hence, there are continuum many
equivalence relations in Fr A which avoid the upward closure of A. So A0

can be extended and therefore it is not maximal. �

Question 1. Are there maximal antichains in ERp2ωq of different size?
Namely, is there an antichain of exactly continuum size?

2.2. Comparing ERpωq and ERp2ωq. We now move to the comparison
between ERpωq and ERp2ωq, by which we will be able to obtain a further
structural result: the poset ERp2ωq is not a lattice.

To this end, it will be often convenient to fix a suitable collection of binary
strings as follows. For a real X, let

SX “ tσ P 2ăω : p@i ă |σ| ´ 1qpσpiq “ Xpiqq & σp|σ| ´ 1q ‰ Xp|σ| ´ 1qu.

Observe that SX is prefix-free. Note that rSXs covers Cantor space with
the exception of X.
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Theorem 2.7. ERpωq embeds into ERp2ωq.

Proof. Let pτiqiPω denote a uniformly computable enumeration of S08 (i.e.,
t0n1 : n P ωu. The strategy for encoding a given equivalence relation R on
natural numbers by an equivalence relation ιpRq on reals is straightforward:
each number x is encoded by the clopen set rτxs, so that, if u R v, we could
set X ιpRq Y for all X P rτus and Y P rτvs. But for technical reasons, due to
the fact that 08 is a limit point of S and we need to preserve computable
reductions, we adopt a slightly more complicated encoding by which we
cylindrify S.

Let F0 Ď 2ω ˆ 2ω be the equivalence relation defined as

X F0 Y ô pDi, n,mqpτxi,ny Ă X & τxi,my Ă Y q.

Next, for an equivalence relation R Ď ω ˆ ω, define a collection of pairs of
reals,

AR :“ tpτxi,0y
"08, τxj,0y

"08q : i R ju.

Finally, let ι : Ppω ˆ ωq Ñ Pp2ω ˆ 2ωq be the map so that ιpRq coincides
with F0{AR

. We claim that ι induces an embedding from ERpωq to ERp2ωq.

Claim 2.8. If R ď0 S, then ιpRq ď0 ιpSq.

Proof. Given f : R ď0 S, we represent a Turing functional Φ via the com-
putable function ϕ : 2ăω Ñ 2ăω recursively defined as follows. For a P t0, 1u,
ϕpaq :“ a and

ϕpσ"aq :“

$

&

%

τxfpiq,my for the least m
so that τxfpiq,my Ě ϕpσq, if pDi, nqpσ"a “ τxi,nyq,

ϕpσq"a, otherwise.

The effectiveness of ϕ is guaranteed by the fact that S is computable. For
all X P 2ω, let ΦpXq be

Ť

σĂX ϕpσq.

We shall now prove that Φ : ιpRq ď0 ιpSq. By construction, Φ´1p08q “
t08u. So, it suffices to check that Φ is a reduction on the remaining classes.
Let X,Y be so that τxi,n0y Ă X and τxj,n1y Ă Y . By definition of ϕ, we
have that there are m0 and m1 so that ΦpXq “ τxfpiq,m0y ˚X and ΦpY q “
τxfpjq,m1y ˚ Y , where

σ ˚A “

#

σpiq for i ă |σ|

Apiq for i ě |σ|.

The following two chains of implications follow from the definitions of F0,
AR, and AS ,

(1) i R j ô τxi,0y
"08 ιpRq τxj,0y

"08 ô X ιpRq Y ,
(2) fpiq S fpjq ô τxfpiq,0y

"08 ιpSq τxfpjq,0y
"08 ô ΦpXq ιpSq ΦpY q.

Since f reduces R to S, we conclude that X ιpRq Y if and only if ΦpXq ιpSq
ΦpY q, as desired. �

Claim 2.9. If ιpRq ď0 ιpSq, then R ď0 S.
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Proof. First, observe that continuity forces any given reduction Φ : ιpRq ď0

ιpSq to map 08 to 08, as all other S-classes are open and not closed. Next,
for all i, find a binary string σ so that Φpτxi,0y

"σq Ě τxj,my for some j and
m, and define fpiq “ j. It is not hard to check that f : R ď0 S. �

Theorem 2.7 is proved. �

Our next result shows that for the embedding ι : ERpωq ãÑ ERp2ωq con-
structed in Theorem 2.7, its image rangepιq is not an initial segment of the
poset ERp2ωq.

Proposition 2.10. There exists an equivalence relation E on reals such
that:

‚ E has countably many classes,
‚ E ă0 ιpIdpωqq, and
‚ for any equivalence relation R Ď ω ˆ ω, we have E ı0 ιpRq.

Proof. We build a Turing operator Ψ, and the desired equivalence relation
E will be induced by the following natural condition:

(1) X E Y ô pΨpXq,ΨpY qq P ιpIdpωqq.

Consider disjoint c.e. sets

A “ te : ϕepeqÓ “ 0u and B “ te : ϕepeqÓ “ 1u.

Fix effective approximations pAsqsPω and pBsqsPω of these c.e. sets.
We define our operator Ψ via a computable function ψ : 2ăω Ñ 2ăω. Put

ψpεq :“ ε.
Suppose that σ P 2ăω, and for all σ1 with |σ1| ă |σ| the value ψpσ1q is

already defined. Let ξ be the parent of σ. Consider the following three
cases.

Case 1. If the string ψpξq contains ones, then put ψpσq :“ ψpξq"0.
Case 2. Suppose that ψpξq “ 0i for some i P ω, and there exists k ă |σ|

such that:

‚ either k P A|σ| and σpkq “ 1,
‚ or k P B|σ| and σpkq “ 0.

Then choose a fresh number u P ω such that |τxu,0y| ą i ` 1, and put
ψpσq “ τxu,0y.

Case 3. Otherwise, set ψpσq :“ ψpξq"0.
This concludes the description of the operator Ψ. Note the following

properties of Ψ:

(a) If a real X separates the pair pA,Bq, then ΨpXq “ 08.
(b) Otherwise, there is a number u such that ΨpXq “ τxu,0y

"08.

Consider the relation E defined via equation (1). It is not hard to show
that E has countably many equivalence classes.

Fix a real Y0, which separates the pair pA,Bq. Since the reduction Ψ is
continuous, we deduce that:
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‚ The class rY0sE “ Ψ´1p08q is a closed subset of 2ω.
‚ If X ��E Y0, then the class rXsE is the Ψ-preimage of a clopen set
rτxu,0ys; hence, rXsE is clopen.

‚ Therefore, the compactness of the Cantor space implies that the set
rY0sE is not open.

Towards a contradiction, assume that for some R Ď ω ˆ ω, we have
E ”0 ιpRq. It is clear that the relation R must have infinitely many classes.

Fix a computable reduction Φ from ιpRq to E. Define Z :“ Φp08q.
Since the set t08u “ Φ´1prZsEq is closed and not open, we deduce that
Z P rY0sE . Then the computable real Z separates the pair pA,Bq, which
gives a contradiction. Proposition 2.10 is proved. �

2.3. Lack of suprema and infima. We prove that ERp2ωq is neither an
upper nor a lower semilattice. To show that the poset is not an upper semi-
lattice, we use mutually dark equivalence relations, defined and investigated
in [6]: R,S Ď ωˆω are mutually dark if neither of the two equivalence rela-
tions Turing computes a transversal of the other. Mutually dark equivalence
relations exist and they have no least upper bound, see [6].

Theorem 2.11. ERp2ωq is not an upper semilattice.

Proof. Our reasoning is similar to the proofs of [1, 6] (we refer to them for
additional details). Let R,S Ď ω ˆ ω be mutually dark. Suppose that
F is the least upper bound of ιpRq and ιpSq. Observe that Theorem 2.7
guarantees that F cannot fall in rangepιq, up to computable reducibility.
We will prove that F cannot exist. Specifically, we will build by stages
a pure quotient E :“

Ť

sEs of ιpRq ‘ ιpSq to which F does not reduce.
This suffices, since any pure quotient of ιpRq ‘ ιpSq is an upper bound of
ιpRq, ιpSq. During the construction we will restrain some E-classes that we
do not want to collapse further on.

Choose a countable set of reals M “ tui : i P ωu such that the reals ui
are pairwise not F -equivalent.

Stage 0. Let E0 be ιpRq ‘ ιpSq. Do not restrain any equivalence classes.

Stage i` 1. We distinguish two cases.

(1) If Φi is nontotal, let Ei`1 :“ Ei.
(2) If Φi is total, search for a pair of reals pu, vq from M such that

(a) either u F v ø Φipuq Ei Φipvq,
(b) or Φipuq and Φipvq are unrestrained, Φipuq P r0s and Φipvq P r1s.
If the outcome is paq, let Ei`1 :“ Ei. If the outcome is pbq, let
Ei`1 :“ Ei{pΦipuq,Φipvqq. In both cases, restrain any real which Ei-
equivalent to Φipuq or Φipvq.

Claim 2.12. For all i, the action described at stage i` 1 terminates.

Proof. We only need to check that, if we execute action p2q, the search
terminates. Suppose otherwise. This means that Φi is total and it reduces
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F to Ei. Furthermore, rangepΦiq cannot hit infinitely many equivalence
classes of both Eiær0s and Eiær1s, as otherwise we would reach outcome
pbq. Without loss of generality, assume that rangepΦiq hits infinitely many
Eiær0s-classes and finitely many Eiær1s-classes. Since Eiær0s encodes ιpRq,
we have that the image through F and Φi of any transversal of ιpSq gives,
with at most finitely many exceptions, a transversal of ιpRq. But observe
that any S-transversal pxeqePω computes a ιpSq-transversal (e.g., via the map
xe ÞÑ τxe,0y

"08) and any ιpRq-transversal pXeqePω computes a R-transversal
(e.g., as ti : pDn, eqpτxi,ny Ď Xequ. Hence, the Turing degree of S (which
obviously computes some S-transversal) would compute a R-transversal,
contradicting mutual darkness. �

The last claim ensures that, for all i, the diagonalization against Φi ter-
minates by disproving that Φi is a reduction from F to Ei. The restraints
and the fact that E is a quotient of Ei guarantee that Φi : F ę0 E, showing
that F is not a least upper bound of ιpRq and ιpSq. �

Now we show that not every pair of degrees from ERp2ωq has an infimum.

Theorem 2.13. ERp2ωq is not a lower semilattice.

Proof. Let X be a real. Fix an X-computable 1–1 enumeration pτiqiPω of
the set SX . We define an equivalence relation RpXq as follows: reals Y and
Z are RpXq-equivalent if and only if either Y “ Z, or there is i P ω such
that Y, Z P rτis.

Let X0 be a real such that X0 ęT 01. We will prove that the relations
RpX0q and Rp08q do not have the greatest lower bound with respect to
computable reducibility.

Lemma 2.14. If an equivalence relation E is computably reducible to both
RpX0q and Rp08q, then E has only finitely many classes.

Proof. Towards a contradiction, assume that E has infinitely many classes,
and fix a computable reduction Φ from E to Rp08q. The continuity of Φ
implies that all E-classes are closed subsets of 2ω. In addition, one of the
following two cases holds.

(1) Suppose that all E-classes are clopen. Then the compactness of the
Cantor space implies that E has only finitely many classes, which
contradicts the choice of E.

(2) There is a class rY0sE , which is not open, and all other E-classes are
clopen. Notice that ΦpY0q “ 08.

In this case, by Lemma 1.2, we obtain that rY0sE contains a 01-
computable real. Without loss of generality, we assume that Y “ Y0.
Consider a computable reduction Ψ from E to RpX0q. Since the class
rY0sE is not open, we deduce that ΨpY0q “ X0 and X0 ďT Y0 ďT 01,
which contradicts the choice of the real X0.

Both cases above lead to a contradiction. Lemma 2.14 is proved. �
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By Lemma 2.14, any lower bound E of RpX0q and Rp08q has only finitely
many equivalence classes. Suppose that E has precisely N classes, and Φ
is a computable reduction from E to RpX0q. Choose a number i0 P ω such
that rangepΦq X rτi0s “ H. Then the operator Ψ defined as

Ψp0"Y q “ ΦpY q, Ψp1"Y q “ τ"
i0 08,

provides a computable reduction from E ‘ Id1 to RpX0q.
Therefore, if E is a lower bound of RpX0q and Rp08q, then the relation

E‘ Id1 is also a lower bound for these equivalences. We deduce that RpX0q

and Rp08q do not have an infimum with respect to computable reducibility.
Theorem 2.13 is proved. �

2.4. Further comparison with ERpωq. As is clear, ERpωq and ERp2ωq
are quite different structures, e.g., the former poset has cardinality 2ℵ0 ,

while the latter has cardinality 22ℵ0 . By the next proposition, we exhibit a
first-order difference between the two posets. Such a difference showcases
an interesting property of ERp2ωq: the least element is the only one which
is comparable with any other element.

Proposition 2.15. ERpωq and ERp2ωq are elementarily inequivalent.

Proof. Inside ERpωq, there are two degrees that are comparable with any
other degree: Id1 and Id2. We show that this property, which is clearly
expressible by first-order logic, fails in ERp2ωq. Specifically, we prove the
following,

(:) E ‰ Id1p2
ωq ñ there is F incomparable with E.

So, let E ‰ Id1p2
ωq and take X0 ��E X1. Let pYeqePω be a list of all sets

Turing equivalent to pX0 ‘X1q
1. Define the following mass problems:

(1) A0 :“ tA : A ďT X0 ‘X1u;
(2) A1 :“ tY2e : ΦepY2eq E ΦepY2e`1quYtY2e, Y2e`1 : ΦepY2eq��E ΦepY2e`1qu.

Let F be EpA0 Y A1q. We claim that F incomparable with E. On one
hand, Lemma 1.1 ensures that E ę0 F : this is because there are two E-
classes but only one F -class containing pX0 ‘X1q-computable sets. On the
other hand, for all e,

Y2e F Y2e`1 ô ΦepY2eq��E ΦepY2e`1q.

Hence, F ę0 E. So, (:) is proved, and therefore ERpωq and ERp2ωq are
not elementarily equivalent. �

2.5. Breaking Glimm-Effros dichotomy. We conclude this section by
focusing on an interesting local structure of ERp2ωq: the interval rIdp2ωq,E0s.
In the Borel case, the celebrated Glimm-Effros dichotomy [16] states that
such an interval has precisely two elements. In fact, for any Borel equiva-
lence relation R, either R is Borel reducible to Idp2ωq, or E0 Borel reduces to
R. Miller [27] proved that the analogue fails for computable reducibility, by
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constructing an equivalence relation which is above Idp2ωq but is incompa-
rable with E0, up to computable reductions. The next theorem pushes this
result forward, by proving that in fact the interval rIdp2ωq,E0s (with respect
to computable reducibility) has a very rich structure: e.g., any countable
partial order embeds into it. Denote by ∆0

2ers the poset of computable
reducibility degrees of ∆0

2 equivalence relations on natural numbers.

Theorem 2.16. ∆0
2ers embeds in in the interval rIdp2ωq,E0s.

Proof. By reasoning as in the proof of Theorem 2.7, it is not hard to see
that the map R ÞÑ ιpRq ‘ Idp2ωq is an embedding from ERpωq to ERp2ωq
whose image is contained in the upper cone of Idp2ωq. Indeed, if f : R ď0

S, then one can build a Turing functional Φ which reduces ιpRq ‘ Idp2ωq
to ιpSq ‘ Idp2ωq by mapping any real in r1s to itself and use the same
reduction offered in Claim 2.8 for the reals in r0s. On the other hand, if
Φ : ιpRq‘ Idp2ωq ď0 ιpSq‘ Idp2ωq, then by continuity, Φ must map a closed
equivalence class r1"XsιpRq‘Idp2ωq either to the class r08sιpSq‘Idp2ωq or to
the class r1"Y sιpSq‘Idp2ωq for some Y . So, that one can retrieve a reduction
f : R ď0 S by focusing on the reals in r0sr t08u, as in Claim 2.9.

So, it remains to be proved that, if R is ∆0
2, then there is a Turing

functional Φ which reduces R‘Idp2ωq to E0. For sake of exposition, we begin
by describing the behaviour of Φ on the transversal pXeqePω of R ‘ Idp2ωq,
where Xe denotes the real 0"τxe,0y

"08.
At any given stage s of the construction, if we say that ΦpXeq is hooked to

Y , for some real Y , we mean that, on further stages t ą s, unless something
different is prescribed, we set ΦpXeqæt :“ Y æt. Similarly, if we say that
ΦpXiq is hooked to ΦpXjq, we recursively mean that ΦpXiq is hooked to real
to which ΦpXjq is hooked.

Fix an E0-transversal pYeqePω such that Ye ��E0 08 and for every e and i,
we have Yep2iq “ 0.

Fix also a ∆0
2 approximation

Ť

sRæs “ R. Without loss of generality, we
also assume that Ræ0 is Idpωq and, for all s, Ræs is closed by symmetry and
transitivity.

Stage 0. For all e, let ΦpXeq be hooked to Ye.

Stage s ` 1 “ xi, ny. Let k be the least number in risRæs`1. Let ΦpXiq be
hooked to ΦpXkq.

Observe that i R j if and only ΦpXiq E0 ΦpXjq. Indeed, if i R j holds
with i ă j, then there is a stage s such that for all s1 ě s, we have i Ræs1 j
and for some k ď i, minrisRæs1 “ minrisR “ k. By construction, at all
stages xi, ny and xj, ny bigger than s, we have that ΦpXiq and ΦpXjq are
hooked to ΦpXkq. Thus, ΦpXiq E0 ΦpXjq. On the other hand, if i��R j, let
k0 “ minrisR and k1 “ minrjsR. By construction, ΦpXiq will be eventually
hooked to ΦpXk0q and ΦpXjq will be eventually hooked to ΦpXk1q. Note
that, for a P t0, 1u, ΦpXkaq is E0-equivalent to Yka . Therefore, since pYeqePω
is an E0-transversal, we conclude that ΦpXiq��E0 ΦpXjq.
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Finally, the partial Turing functional Φ so defined can be readily extended
to all Cantor space as follows:

(a) a real X from r1s is mapped to the real Y such that Y p2iq “ 1 and
Y p2xi, ky ` 1q “ Xpiq, for i, k P ω;

(b) the real 08 is mapped to itself,
(c) for all e and n such that 0"τxe,ny Ď A, put ΦpAq :“ ΦpXeq.

Theorem 2.16 is proved. �

3. Measuring the complexity of computability-theoretic
equivalence relations

In this section, we move from the structural analysis of ERp2ωq to the
application of computable reducibility to calibrate the strength of the equiv-
alence relations induced by familiar reducibilities on reals. As a case-study,
we concentrate on computability-theoretic reducibilities: 1-reducibility ď1,
m-reducibility ďm, truth-table reducibility ďtt, and Turing reducibility ďT .

3.1. First observations. By applying Lemma 1.1 for X “ H, one obtains
the following:

Proposition 3.1. Each of the following relations R is neither computably
reducible to ”tt nor computably reducible to ”T :

(1) Idp2ωq,
(2) E0,
(3) ”1,
(4) ”m.

We can now recover the whole picture for four equivalences: ”1, ”m, ”tt,
and ”T .

Proposition 3.2. ”tt ă0 ”m ă0 ”1.

Proof. The cylindrification of a set X Ď ω is the set Xˆω. It is well-known
(see, e.g., §7.6 of [30]) that for all sets X,Y Ď ω, we have

X ďm Y ô X ˆ ω ď1 Y ˆ ω.

Sets X so that X ”1 X ˆ ω are called cylinders. So, the operator Φ: X ÞÑ

X ˆ ω induces a computable reduction from ”m to ”1.
Next, the tt-cylindrification of a set X is the set

Xtt :“ ti : X |ù αiu,

where pαiqiPω is an effective enumeration of all propositional formulas build
from the atomic ones pn P Y qnPω, and X |ù αi means that αi is true when
Y is interpreted as X. It is known that

X ďtt Y ô Xtt ď1 Y
tt.

Sets X so that X ”1 X
tt are called tt-cylinders. So, the operator Ψ : X ÞÑ

Xtt induces a computable reduction from ”tt to ”1. Moreover, since any tt-
cylinder is a cylinder (see §8.4 of [30]) and the 1-degree of a cylinder coincides
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with its m-degree, we have that Ψ induces also a computable reduction from
”tt to ”m.

On the other hand, just note that ”1 has infinitely many classes with
computable reals, ”m has three such classes, and ”tt has only one such
class. By Lemma 1.1, we have ”1 ę0 ”m and ”m ę0 ”tt. �

Proposition 3.3. Turing equivalence ”T is ď0-incomparable with ”1, ”m,
and ”tt

Proof. Thomas (see Corollary 1.2 of [34]) proved that ”T is not contin-
uously reducible to ”1. By Proposition 3.2, this implies that ”T is not
computably reducible to any of the other three equivalence relations. Then
Proposition 3.1 ensures that ”T is incomparable with both ”m and ”1.

It remains to be proven that ”tt is not computably reducible to ”T . To
see this, we rely on Jockusch’s result [19] that each Turing degree which is
not hyperimmune-free contains infinitely many tt-degrees. Let d be a min-
imal Turing degree below 01. It is well-known that d is not hyperimmune-
free. So, let X,Y, Z P d be from three different tt-degrees. Suppose that
there is a Turing functional Φ which induces a reduction from ”tt to ”T . By
Lemma 1.1 and the minimality of d, we have that the set tΦpXq,ΦpY q,ΦpZqu
must be contained in 0 Y d. In particular, since Φ is a reduction, without
loss of generality, we can assume that both ΦpXq and ΦpY q are in d. But
then, ΦpXq ”T ΦpY q while X ıtt Y , a contradiction. �

3.2. Versus Idp2ωq and E0. Here we collect further results, which clar-
ify the location of our computability-theoretic equivalences relative to the
degrees of Idp2ωq and E0. Recall that Idp2ωq ă0 E0.

Proposition 3.4. ”T ę0 E0. Consequently, ”T ę0 Idp2ωq.

Proof. Towards a contradiction, assume that a total Turing operator Φ pro-
vides a reduction from ”T to E0.

Consider the standard enumeration pWeqePω of all c.e. sets. Then we have

Wi ”T Wj ô Dx0p@x ě x0qrΦ
Wipxq “ ΦWj pxqs.

This implies that the equivalence relation

E :“ tpi, jq P ω ˆ ω : Wi ”T Wju

is Σ0
3. On the other hand, Theorem 5.1 of [17] proves that the relation

E is Σ0
4-complete among equivalence relations on ω. Thus, we obtain a

contradiction. We deduce that ”T ę0 E0. �

Proposition 3.5. ”tt ę0 E0. Consequently, by Proposition 3.2, ”m ę0 E0

and ”1 ę0 E0.

Proof. Assume that a total Turing operator Φe gives a reduction from ”tt
to E0.

For a string σ P 2ăω, let `pσq be maximal x ď |σ| such that for every
y ă x, the value Φσ

e,|σ|pyq is defined. We put outpσq :“ Φσ
e æ `pσq.



ON THE COMPUTATIONAL CONTENT OF BOREL EQUIVALENCE RELATIONS 15

Since Φe reduces ”tt to E0, it is not hard to show the following: for a given
string σ, one can effectively find two strings τ0 ‰ τ1 such that |τ0| “ |τ1|,
and the outputs outpσ"τ0q and outpσ"τ1q differ in the k-th bit for some
k ă minp`pσ"τ0q, `pσ

"τ1qq.
We construct two computable reals X and Y . At stage 0, we put X0 “

Y 0 “ ε.
Stage s` 1. Find a number m ě 1 such that there are strings σ, τ0, τ1 of

length m with the following property:

the strings outpY s"τ0q and outpY s"τ1q differ in the k-th bit for
some k ă minp`pXs"σq, `pY s"τ0q, `pY

s"τ1qq.

Fix these strings σ, τ0, τ1 and the index k. We put Xs`1 :“ Xs"σ.
If the strings outpXs`1q and outpY s"τ0q differ in the k-th bit, then set
Y s`1 :“ Y s"τ0. Otherwise, set Y s`1 :“ Y s"τ1.

We define X “
Ť

sX
s and Y “

Ť

s Y
s. The reals X and Y satisfy the

following properties:

(a) Both of them are computable, thus, X ”tt Y .
(b) There are infinitely many k P ω such that ΦX

e pkq ‰ ΦY
e pkq.

These properties contradict our assumption that Φe is a reduction from ”tt
to E0. Proposition 3.5 is proved. �

Proposition 3.6. Idp2ωq ę0 ”1. Consequently, E0 ę0 ”1 and, by Propo-
sition 3.2, neither Idp2ωq nor E0 is computably reducible to ”m or ”tt.

Proof. Assume that a total Turing operator Φe provides a reduction from
Idp2ωq to ”1. We use the same notations `pσq and outpσq as in Proposi-
tion 3.5.

We construct two computable reals X0 and X1. At stage 0, put X0
0 “ 0

and X0
1 “ 1.

Stage s ` 1. For each i P t0, 1u, we proceed as follows. If s is an even
number, then find a non-empty string σ such that:

the number of zeros in outpXs
i

"σq is strictly greater than the number
of zeros in outpXs

i q.

Notice that such a string σ exists. Indeed, assume otherwise. Then for any
computable real Y Ą Xs

i , the number of zeros inside ΦY
e is the same as the

number of zeros in outpXs
i q. This shows that Φe maps all these Y into the

same ”1-class, which contradicts our assumptions.
We define Xs`1

i :“ Xs
i

"σ.
If s is odd, then find a non-empty string τ such that:

the number of ones in outpXs
i

"τq is strictly greater than the number
of ones in outpXs

i q.

Put Xs`1
i :“ Xs

i
"τ .

We define Xi “
Ť

sX
s
i . It is clear that the real ΦXi

e , i P t0, 1u, encodes
a computable, infinite and coinfinite set. Therefore, we have X0 ‰ X1 and
ΦX0
e ”1 ΦX1

e , which gives a contradiction. Proposition 3.6 is proved. �
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≡1

≡m

≡tt

E0

Id(2ω)

≡T

Figure 1. Relative to computable reducibility

Figure 1 summarizes the results obtained so far.

3.3. Turing equivalence is not minimal. Here we prove the following
result:

Theorem 3.7. There is an equivalence relation E such that E ă0 ”T and
E has continuum many equivalence classes.

Proof. Before proceeding to the construction, we discuss some conventions.
As usual, the relation E is defined on 2ω, but the desired computable re-
duction from E to ”T will be treated as an operator Ψ: 2ω Ñ 3ω. To set
the meaning of Turing equivalence on the space 3ω, we use the following
convention. Consider an operator Θ: 3ω Ñ 2ω, which acts as follows. Given
an infinite ternary string α, it replaces every symbol of α according to the
following rules:

0 ÞÑ 00, 1 ÞÑ 01, 2 ÞÑ 10.

Then for α, β P 3ω, we say that α ďT β if and only if Θpαq ďT Θpβq.
It is not hard to show that a computable reduction from E to ”T , de-

fined on 3ω, induces a computable reduction from E to the standard Turing
equivalence.

We define our equivalence relation E. Fix a non-computable c.e. set W
and its effective approximation pW sqsPω. Consider a set of reals

M “ tX : X “ 0e1"X1, where e P ω, such that W “ ΦX1
e u.

We say that pX E Y q if and only if one of the following holds:

(1) X,Y PM and X ”T Y , or
(2) X,Y RM .

First, we show that E has continuum many classes. Let Y and Z be reals
such that W ďT Y , W ďT Z, and Y ıT Z. Fix indices i and j such that
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W “ ΦY
i and W “ ΦZ

j . Then it is clear that the reals 0i1"Y and 0j1"Z

are not E-equivalent. This argument implies that E possesses 2ℵ0 classes.

We build a computable reduction Ψ from E to ”T (on the space 3ω).
Let X be a real. At a stage s, we define the agreement length `s as follows.

(i) If the string X æ s does not contain ones, then set `s :“ ´1.
(ii) Otherwise, we already know that X “ 0e1"X1 for some e P ω and

X1 P 2ω. Then `s is defined as the greatest number ` ď s such that

(2) ΦX1æps´e´1q
e,s pxqÓ “

#

1, if x PW s,

0, if x RW s,

for all x ă `.

The ternary sequence ΨpXq is constructed as follows. Put ΨpXqp0q :“ 2.
At the beginning, we say that every bit of X is not marked.

Stage s` 1. If `s`1 ď maxt`t : t ď su, then set ΨpXqps` 1q :“ 2.
Suppose that `s`1 ą maxt`t : t ď su. Then we already know that X “

0e1"X1. In this case, we copy a fresh portion of the bits of X1 into the
output. More formally, we proceed as follows. If there exists the least k
such that e` 1 ď k ď s and the k-th bit of X is not marked, then we mark
the k-th bit and set ΨpXqps`1q :“ Xpkq. Otherwise, put ΨpXqps`1q :“ 2.

This concludes the description of the operator Ψ. It is not hard to show
that Ψ is computable. We prove that Ψ provides a reduction from E to ”T .
For X P 2ω, consider the following three cases.

Case 1. If X “ 08, then `s “ ´1 for all s, and ΨpXq “ 28. Note that
the element ΨpXq is computable.

Case 2. Suppose that X RM Yt08u. Then X “ 0e1"X1 and W ‰ ΦX1
e .

This implies that either ΦX1
e px0q is undefined for some x0 P ω, or the

function ΦX1
e is total and there is y0 P ω with

py0 PW and ΦX1
e py0q ‰ 1q or py0 RW and ΦX1

e py0q ‰ 0q.

Thus, by (2), there is `˚ P ω such that `s ď `˚ for all s. This implies that
pΨpXq E0 28q, — again, ΨpXq is computable.

Case 3. Suppose that X PM . Then X “ 0e1"X1 and W “ ΦX1
e .

By (2), we have lims `
s “ 8. Our construction ensures that there is a

sequence pσiqiPω of finite non-empty strings from 2ăω such that:

X “ σ0
"σ1

"σ2
" . . . , and

ΨpXq “ 2k0"σ0
"2k1"σ1

"2k2"σ2
" . . . , where ki P ω.

It is clear that X ďT ΨpXq. On the other hand, a not difficult analysis of
the construction shows that ΨpXq ďT X. Thus, we have ΨpXq ”T X.

These three cases show that Ψ is a reduction from E to ”T .
Choose a non-computable c.e. set V ăT W . Then ”T has infinitely

many classes containing V -computable reals, and E has only one class with
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a V -computable real (the class r08sE). Thus, by Lemma 1.1, ”T is not
computably reducible to E. Theorem 3.7 is proved. �

3.4. Zero-jump reductions. In this subsection, we investigate the behav-
ior of our computability-theoretic equivalences with respect to a weaker
reducibility, which allows to use 01 as an oracle. Comparing with the case
of computable reducibility, the picture changes quite significantly.

Proposition 3.8. There is a 01-computable reduction from Idp2ωq to ”T .

Proof. Recall that a Π0
1 class C is computably bounded if there is a com-

putable, finite branching tree T Ď ωăω such that C “ rT s (i.e. C is the set
of all infinite paths through T ), and the branching function bT : T Ñ ω, i.e.

bT pσq “ cardptn P ω : σ"n P T uq,

is partial computable.
Jockusch and Soare (Theorem 4.7 of [21]) constructed an infinite, com-

putably bounded Π0
1 class C such all its members are pairwise Turing incom-

parable. Since C does not contain computable members, it is known that the
class C is perfect (see, e.g., p. 649 in [7]). Fix a computable tree T , which
witnesses the computable boundedness of C. Without loss of generality, one
may assume that T Ď 2ăω.

Recall that a node σ P T is extendible if there is X P rT s such that σ Ă X.
Consider a 01-computable tree T ext, which consists of all extendible nodes
from T .

We define a 01-computable sequence pασqσP2ăω of binary strings with the
following properties:

‚ every ασ is an extendible node from T ,
‚ ασ Ď ατ if and only if σ Ď τ ,
‚ if |σ| “ |τ |, then |ασ| “ |ατ |.

Set αε :“ ε. Suppose that for all σ with |σ| “ s, the nodes ασ are already
defined.

Since the class C is perfect, one can find nodes ασ"0, ασ"1 P T
ext, for

|σ| “ s, such that:

‚ ασ"i extends ασ,
‚ ασ"0 and ασ"1 are incomparable, and
‚ the lengths of all ατ"j , where |τ | “ s and j P t0, 1u, are equal.

This concludes the description of the sequence pασqσP2ăω .

We define a 01-computable operator Ψ. Suppose that X P 2ω. The output
ΨpXq is defined as

ΨpXq “
ď

sPω

αXæs.

Notice that ΨpXq is a member of the Π0
1 class C.

Consider two reals X and Y . It is clear that X “ Y if and only if
ΨpXq “ ΨpY q. If X ‰ Y , then by the choice of the class C, we have
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ΨpXq ıT ΨpY q. We deduce that Ψ induces a 01-computable reduction from
Idp2ωq to ”T . Proposition 3.8 is proved. �

Proposition 3.9. There is a 01-computable reduction from E0 to ”T .

Proof. The idea of the proof is similar to that of Proposition 3.8. Jockusch
and Soare (Theorem 4.6 of [21]) constructed disjoint c.e. sets A and B such
that:

‚ AYB is coinfinite,
‚ if each of two sets X,Y Ă ω separates the pair pA,Bq and the sym-

metric difference X4Y is infinite, then X and Y are Turing incom-
parable.

Suppose that the complement AYB equals tm0 ă m1 ă m2 ă . . . u.
We define a 01-computable operator Ψ: 2ω Ñ 2ω. Given a real X and a

natural number k, we set:

ΨpXqpkq :“

$

’

&

’

%

0, if k P A,

1, if k P B,

Xpiq, if k “ mi for some i P ω.

The choice of the sets A and B implies that for all X,Y P 2ω, we have

pX E0 Y q ô pΨpXq E0 ΨpY qq ô pΨpXq ”T ΨpY qq.

Hence, we deduce that Ψ is a reduction from E0 to ”T . Proposition 3.9 is
proved. �

Observe that the last proof can be readily adapted to show that E0 is
01-computably reducible to ”tt. Indeed, the operator Ψ defined in the
proof maps E0-equivalent reals to reals that differ only finitely (and thus
tt-equivalent), and E0-inequivalent reals to reals that are T -inequivalent
(and thus tt-inequivalent).

Figure 2 summarizes the results about the relative complexity of compu-
tability-theoretic equivalences, with respect to 01-computable reductions.

Note that we leave open the following problem:

Question 2. (1) Let E P t”tt,”m,”1u. Is there a 01-computable re-
duction from E to ”T ?

(2) Are the arrows for t”tt,”m,”1u in Figure 2 non-reversible? For
example, is there a 01-computable reduction from ”1 to ”m?

3.5. Degree spectra of reductions. Previously we proved that, even
though there is no computable reduction from Idp2ωq to ”T , such a reduc-
tion is computable in 01. Then, it is natural to ask whether there are oracles
d ğ 01 so that Idp2ωq ďd ”T . More generally, given equivalence relations E
and F on reals, a nice measure of the complexity of computing reductions
from E to F is provided by the following spectra of degrees, which lift to 2ω

the definition given in [14] for countable equivalence relations.
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≡T

Id(2ω)

E0

≡m

≡1

≡tt

Figure 2. Relative to 01-jump reducibility

Definition 3.10. The reducibility spectrum of equivalence relations E,F Ď
2ω ˆ 2ω is the collection of Turing degrees td : E ďd F u.

3.5.1. PA degrees in the spectrum of td : Idp2ωq ďd ”T u.

Theorem 3.11. Any PA degree computes a reduction from Idp2ωq to ”T ,
that is, a perfect tree whose any pair of paths are Turing incomparable.

Lemma 3.12 (Kučera [23]). Let P be a closed set and let σ be a string such
that λpP | rσsq ą 2´c. Then there exists two distinct strings τ0, τ1 ľ σ such
that |τ0| “ |τ1| “ |σ| ` c` 1 and such that λpP | rτisq ą 2´c´1.

Definition 3.13. Let f : ω Ñ ω be an order function. An f -tree is a set
T Ď 2ăω such that every node of T is of length fpnq for some n and such
that for every σ of T of length fpnq there are exactly two extensions of σ in
T of length fpn` 1q.

Lemma 3.14. Let P be a closed set of measure greater than 2´c. There
exists a computable order function f : ω Ñ ω, and an f -tree T (not neces-
sarily computable) such that rT s Ď P. The computation of f is uniform in
c and does not depend on P.

Proof. By a direct application of Kučera, the function f being given by
fp0q “ 0 and fpn` 1q “ fpnq ` c` n` 1. �

Lemma 3.15. Let T1 be an f1-tree and Let T2 be an f2-tree for computable
functions f1, f2. Let Φe be a functional. One can compute a function g1 ě f1

such that for any σ P T2 there is a g1-tree Q1 Ď T1 and some immediate
extension τ of σ in T2 for which ΦepXq ń τ . The computation of g1 is
uniform in f1.
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Proof. Let T ˚1 : 2ăω Ñ 2ăω be the bijection associated with T1, that is, for
each σ P 2ăω, T ˚1 pσ0q and T ˚1 pσ1q are respectively the leftmost and rightmost
extensions of T ˚1 pσq in T1. For X P 2ω we write T ˚1 pXq for the corresponding
path of T1.

Let τ0, τ1 be any two incomparable extensions of σ. For i P t0, 1u, let Ui
be the open set consisting in the union of cylinders rρs for strings ρ such
that ΦepT

˚
1 pρqq ľ τi.

If the measure of U0 is smaller than 1{2 we let P be its complement and
τ be τ0. Otherwise we let P be the complement of U1 and τ be τ1. Note
that as U0 X U1 “ H we must have λpPq ě 1{2. Also for any X P P we
have ΦepT

˚
1 pXqq ń τ . By Lemma 3.14 we have a computable function g and

a g-tree P such that rP s Ď P. We can then pull the tree P inside T1 by
letting Q1 be the set of strings T ˚1 pσq for σ P P . From f1 and g one easily
compute the function f2 such that Q1 is and f2-tree. �

Lemma 3.16. There exists an f -tree T for some computable function f such
that for any distinct paths X,Y P rT s and any e we have ΦepXq č Y æ fpeq.

Proof. We build T and f step by step. At each step s we have our function
f specified on 0, . . . , s and a finite f -tree Ts of level s. We also have a
computable function gs such that for each leaf σ of Ts we have a g-tree Qσ
whose first branching node is σ. We will in particular have σ ĺ τ implies
Qτ Ď Qσ. Note that in this process, each gs will be computable uniformly in
s, but Qσ may not be computable, and Ts will not be computable uniformly
in s.

We start with T0 to be ε, the empty string and Qε to be the whole space
and thus f0 to be the identity function. Suppose a finite complete tree Ts
of level s is defined at step s, together with all its corresponding elements
mentioned in the above paragraph. Let tσiuiP2s`1 be a list of the first left
and right extension of each leaf σ of Ts, within their respective subtree Tσ.
For each i ă 2s`1, letting σ ă σi be the leaf of Ts that σi extends, we let
Qi Ď Qσ be the pn ÞÑ gpn ` 1qq-tree below σi, obtained by restricting the
g-tree Qσ to extensions of σi.

We will extend each string σi in finitely many substeps, restricting in
the same time their associated trees. The extension of σi at step t will be
denoted by σi,t, so that σi “ σi,0 ĺ σi,1 ĺ . . . . We will also build theirs
corresponding gt-tree Qi,t whose first branching node is σi,t. Each gt will
also be a computable function, uniformly in t.

At step 0 we let σi,0 “ σi, g0 “ n ÞÑ gpn` 1q and Qi,0 “ Qi. The number
of substep t corresponds to the number of ordered pair of distinct integers
smaller than 2s`1. Suppose all the mentioned elements are defined at step t.
Let pi, jq be the pair corresponding at the step t` 1. We apply Lemma 3.15
on Qi,t and Qj,t, to find the leftmost or rightmost extension σ1j,t`1 of σj,t
in Qj,t, and a gt`1-tree Q1i,t`1 Ď Qi,t (where gt`1 ě gt is computable) such

that ΦspXq ń σ1j,t`1 for any X P rQ1i,t`1s. Then for any k ‰ i we defined

Q1k,t`1 Ď Qk,t so that Q1k,t`1 is a gt`1-tree, making sure that for k “ j the
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tree contains extensions of σ1j,t`1. Then we define σj,t`1 ľ σ1j,t`1 as the first

branching extension of σ1j,t`1 in Q1j,t`1. For any k ‰ j we define an extension

σk,t`1 ľ σk,t as the leftmost node of Q1k,t`1 of length |σj,t`1|. Finally, we

define for any k the tree Qk,t`1 Ď Q1k,t`1 as the restriction of Q1k,t`1 to nodes
extending σk,t`1. The function gt`1 is then computed accordingy.

Let m be the last of these substeps. Once we have dealt with each pair
of leaves, we put each σi,m in Ts`1 for i ď 2s`1, we define the computable
function gs`1 “ gm and we define the gs`1-trees Qσi “ Qi,m. The value
fps ` 1q is defined as the length of each σi,m, which can be computably
obtained from the whole process. �

Proof of Theorem 3.11. Using Lemma 3.16, there is a computable order
function f : ω Ñ ω such that the Π0

1 class

$

’

’

&

’

’

%

T Ď 2ăω :

T is an f -tree and for all e P ω
for all σ P T with |σ| “ fpeq
for all τ P T incomparable with σ,
for all t P ω, Φepτqrts ń σ

,

/

/

.

/

/

-

is non-empty. �

Question 3. If X is of PA degree, can it compute a reduction from E0 to
”T .

3.5.2. ANR degrees in the spectrum of td : E0 ďd”T u. We now show that
any sufficiently hyperimmune degree computes a reduction from E0 to the
Turing degrees.

Definition 3.17. A set X is array non-computable, if for every function
f ďwtt ∅1, there exists an X-computable function g ďT X such that gpnq ą
fpnq for infinitely many n.

Definition 3.18. Let g : ω Ñ ω be a computable order function. A function
f : 2ăω Ñ 2ăω is g-approximable if there is a computable function h :
2ăω ˆ ω Ñ 2ăω such that fpσq “ limsÑ8 hpσ, sq and such that |ts P ω :
hpσ, sq ‰ hσ,s`1u| ď gp|σ|q.

Definition 3.19. Let g : ω Ñ ω be a computable order function. A g-
approximable dense set of strings is the image of a g-approximable function
f : 2ăω Ñ 2ăω with σ ĺ fpσq.

Theorem 3.20 (Downey, Jockusch, and Stob [12]). Suppose X is array
non-computable. Then for every computable order function g : ω Ñ ω, X
computes a set Y which meets every g-approximable dense set of strings.

Theorem 3.21. If X is array non-computable, it computes a reduction from
E0 to ”T :

Proof. We work in 3ω and we consider elements X P 3ω as encoding for
strongly uniform trees, where the digit 2 in X represent a splitting in the
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corresponding tree. For instance 012110201 corresponds to the finite tree
with 01 as first branching node, then 010110 and 011110 as leftmost and
rightmost extensions of 01, with then 010110001, 010110101 and 011110001,
011110101 as the nodes of next levels in the tree.

Equivalently the tree consists of all the possible completions of X where
the digit 2 is seen as empty with the possibility to fill it with 0 or 1. We
show that if G P 3ω is 2n-approximable generic then its corresponding tree
TG has the property that any path which differ on infinitely many bits are
on distinct Turing degrees.

Given e P ω, let fe : 3ăω Ñ 3ăω be the 2n-approximable function defined
as follow: given a string σ P 3ăω, the function starts by outputting as a first
version of its answer the string σ itself. Then it computes the finite tree Tσ
coded by σ. Note that Tσ has at most 2|σ| leaves. Then for any leaf τ P Tσ,
the function f searches for a string ρ such that Φepτρq is incomparable with
τ 1ρ for some leaf τ 1 P Tσ. Whenever f finds such a string ρ it outputs an
extension of σ corresponding to the tree Tσ where every leaf is extended by
ρ, then f restart the search for the new leaves of the tree, except for the
extension of the ones on which the search was already conclusive. Note that
fepσq may change at most 2n times, because there are at most 2n leaves.

Now if G is a 2n-approximable generic set, for every e there exists σ such
that fepσq ă G. In particular if we let Tf,σ be the encoded by fepσq, by
assumption, for any leaves τ1, τ2 P Tf,σ, either Φepτ1q is incomparable with
τ2, or for any possible extension ρ ľ τ1, we will have Φepτ1ρq comparable
with Φepτ2ρq. In this case for any X ľ τ1, if ΦpXq “ Y then X and Y differ
only by a finite prefix. In particular for any X,Y extending leaves of Tf,σ
and such that pX,Y q R E0, then ΦepXq ‰ Y .

As it is the case for every e, if G is 2n-approximable generic, any two
path of the tree coded by G which differ on infinitely many bits are Turing
incomparable. �

Corollary 3.22. The class of reals computing a reduction from Idp2ωq to
”T is co-meager.

We now see classes of reals which cannot compute a reduction from Idp2ωq
to ”T :

Theorem 3.23. The following class of degrees do not compute a reduction
from Idp2ωq to ”T :

(1) The 2-random degrees
(2) The computably dominated and not DNC degrees

Proof. Barmpalias and Lewis [5], and Lewis [24] proved that for any set X
in this class and any perfect X-computable tree T , there exists a perfect
X-computable subtree Q Ď T such that any path of Q computes X. It
follows that T contains many paths in the degree of X. �

Corollary 3.24. The class of reals computing a reduction from Idp2ωq to
”T is of measure 0.
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3.5.3. Computable Vitali. We define a computable version of the Vitali re-
lation. Recall that ∆ is defined on sets of integers as pX∆Y qpnq equals 1 if
Xpnq ‰ Y pnq and pX∆Y qpnq equals 0 otherwise .

Definition 3.25. Let Vc be the equivalence relation defined by XVcY iff
X∆Y is computable.

We shall now show that Vc is continuously reducible to E0 : in fact Z
can compute a reduction from Vc to E0 iff Z is of high degree, that is,
equivalently :

‚ Z 1 ěT ∅2
‚ Z can compute a function eventually above any computable function
‚ Z can uniformly list all the computable sets (possibly with repeti-

tions).

Theorem 3.26. A set Z is of high degree iff there is a Z-computable re-
duction from Vc to E0.

We split the theorem in two lemmas.

Lemma 3.27. Suppose Z is of high degree. Then there is a Z-computable
reduction from Vc to E0.

Proof. By Lemma 4.21 (see below) it is enough to give a Z-computable
hyperfinite presentation of Vc. Using Z we can list the computable elements
of 2ω : C0, C1, C2, . . . .

Given n let An be the set of all possible combinations of the form

Ci0∆Ci1 . . .∆Cik

for 1 ď k ď n and i0, i1, . . . , ik ď n. Note that each An is the smallest set
containing C0, . . . , Cn and closed by symmetric difference of its elements.
Let

Fn “ tpX,Y q : X∆Y “ Cn,i for some Cn,i P Anu

Suppose X∆Y “ Cn,i and Y∆Z “ Cn,j . Then X∆Z “ X∆0∆Z “

X∆Y∆Y∆Z “ Cn,i∆Cn,j . Thus X∆Z P Fn.
For eachX and each C there exists exactly one set Y such thatX∆Y “ C.

It follows that each Fn is finite as each An is finite.
Also it is clear that Fn Ď Fn`1. Furthermore each Fn can be described

by a computable pruned tree, uniformly in Z : For every X,Y,C we have
X∆Y “ C iff for every n we have X æ n∆Y æ n “ C æ n. Also whenever
σ∆τ “ C æ n, there exist extensions σ1 ą σ, τ 1 ą τ of length n` 1 such that
σ1∆τ 1 “ C æ n` 1. �

Lemma 3.28. Let
Ť

nFn be a Σ0
2pZq class containing exactly the computable

points. Then Z is of high degree.

Proof. We elaborate on a trick used by Jockusch [20] to show that any
listing of all the computable sets is of high degree. Consider any Π0

2 set
A “ te : @n Dm Φpn,m, equ where Φ is a computable predicate. Let us
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show that A is Σ0
2pZq. Let us define a total computable function f with the

following properties :

(1) If e P A then n ÞÑ gpe, nq is a total computable function
(2) If e R A then n ÞÑ gpe, nq is a partial computable function, which

has no computable completion.

Let e be fixed. We describe a process uniform in e : At stage t, for every
value n smaller than t such that g has not halted yet, we do the following : If
Φnpnqrts Ó‰ 0 we set gpnq “ 0. Otherwise if Φnpnqrts Ó‰ 1 we set gpnq “ 1.
Otherwise if for every k ď n there exists mk ď t such that Φpk,mk, eq holds,
then we set gpnq “ 0.

The process is clearly computable. Let us show (1). Suppose e P A. Then
for any n there exists a smallest t such that for every k ď n there exists
mk ď t for which Φpk,mk, eq holds. When this happens then gpnq takes a
value at stage t if it did not take one before. It follows that g is total. Let
us show (2). Suppose e R A. Let n be the largest such that for every k ď n
there exists mk for which Φpk,mk, eq holds. For any m ą n we have that
gpmq halts iff Φmpmq halts, in which case gpmq ‰ Φmpmq.

Suppose for contradiction that g has a computable completion. Then it
has a computable completion with code a ą n. In this case gpaq “ Φapaq
which contradicts the definition of g. Therefore we have (2).

Let us now give a Σ0
2pZq definition of A. For each n let Tn be a Z-

computable tree whose infinite paths are the elements of Fn. Recall that
g is the computable function such that for each e the function n ÞÑ gpe, nq
has property (1) and (2) above. In what follows let us denote the function
n ÞÑ gpe, nq by gpe, .q.

Let P peq be the Σ0
2pZq statement:

Dn @m @t Dσ P Tn with |σ| “ m s.t. σ is a completion of gpe, .q æ m

at stage t.

We claim that e P A iff P peq. Let us suppose e P A. Then by (1) gpe, .q
is a total computable t0, 1u-valued function. It follows that it belongs to
some Fn and therefore P peq is true. Let us suppose P peq. Note that if σ
is a completion of gpe, .q æ m at stage t then for k ď m we also have that
σ æ k is a completion of gpe, .q æ k at stage t. It follows that by compactness,
there is an infinite path X in some rTns such that for every m and every t
we have that X æ m is a completion of gpe, .q æ m at stage t. It follows that
X is a completion of gpe, .q. As X is computable, it must be that gpe, .q is
computable and thus it must be that e P A. �

We now turn to the proof of Theorem 3.26.

Proof of Theorem 3.26. If Z is of high degree then using Lemma 3.27 there
is a Z-computable reduction from Vc to E0. Suppose now that there is a
Z-computable function f such that pX,Y q P Vc iff pfpXq, fpY qq P E0.
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Let f0 “ fp08q, f1, f2, . . . be a Z computable list of all finite modifications
of fp08q. Note that each set f´1pfnq is a Π0

1pZq class uniformly in n,
containing only computable points, and that

Ť

nPω f
´1pfnq is a Σ0

2pZq class
containing exactly the computable points. We conclude using Lemma 3.28.

�

4. How effective is Dougherty-Jackson-Kechris’ theorem

In this section, we will focus on checking the computable complexity of
some classical results related to hyperfiniteness and similar notions.

Recall that an equivalence relation is finite if all of its equivalence clases
are finite. An equivalence relation is hyperfinte if it is the increasing union of
finite equivalence relations. By a theorem of Dougherty-Jackson-Kechris [10],
a Borel equivalence relation is hyperfinite if and only if it is reduced by E0.
To explore how effective is this notion, we need to re-prove some well known
results first.

4.1. Luzin-Novikov. The purpose of this subsection is to re-prove the
Luzin-Novikov theorem, which is essential in the study of countable Borel
equivalence relation. A different proof can be found in [28].

Theorem 4.1 (Recursion theoretic Luzin-Novikov). Let R Ď 2ω ˆ 2ω be a
∆1

1 relation such that for all X the class tY P 2N : pX,Y q P Ru is countable
(possibly empty). Then there exists a computable ordinal α such that for

every X, if pX,Y q P R then Y ďT X
pαq.

In what way has 4.1 anything to do with Luzin-Novikov? Well, we
can easily obtain a Borel uniformization of R by considering the function
f0 : 2ω Ñ 2ω which to X associates ΦepX

pαqq for the smallest e such that

ΦepX
pαqq is defined and such that pX,ΦepX

pαqqq P R (if no such e exists the
value f0pXq is undefined). We can then inductively define fn`1 : 2ω Ñ 2ω

which to X associates ΦepX
pαqq for the smallest e ą fnpXq such that

ΦepX
pαqq is defined and such that pX,ΦepX

pαqqq P R (if no such e exists
or if fnpXq is undefined then the value fn`1pXq is undefined). In the end
we have R “

Ť

n Pn where Pn is the graph of fn.
The proof of 4.1 is a consequence of the following technical lemma:

Lemma 4.2. Let A Ď ω ˆ 2ω be a Π1
1 set. Suppose

@X Da P OX pa,Xq P A
Then there exists a computable ordinal β such that:

@X Da P OXăβ pa,Xq P A

Proof. Suppose @X Da P OX pa,Xq P A. Suppose also for contradiction the
lemma is false, that is, @β ă ωck1 DX @a P OXăβ pa,Xq R A. Then we can

give a Σ1
1 description of Kleene’s O, which is a contradiction. We pretend

that b P O iff

(*) DX @a P ω pa R OX _ pa,Xq R A_ b P Oă|a|X q
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Suppose b P O. Then by hypothesis there exists X such that @a P
OX
ă|b|`1 pa,Xq R A. Thus for all a P ω either a R OX or a P OX in which

case either |b| ă |a|X and then b P Oă|a|X or we have |a|X ď |b| and we have

a P OX
ă|b|`1 in which case pa,Xq R A. Thus (*) is true.

Suppose b R O. Let X P 2ω. By assumption there exists a P OX such
that pa,Xq P A. In particular we have pa P OX ^ pa,Xq P A^ b R Oă|a|X q.
Thus (*) is false.

Then b P O iff (*) is true, which gives a Σ1
1 description of O, which is a

contradiction. �

We are now ready to prove our recursion theoretic version of Luzin-
Novikov.

Proof of 4.1. For any X the class tY P 2ω : pX,Y q P Ru is a countable
∆1

1pXq set which then contains only elements which are ∆1
1pXq. In particular

for any Y such that pX,Y q P R there is an ordinal α ă ωX1 such that

Y ďT X
pαq. We thus have

@X @Y pX,Y q R R_ Dα ă ωX1 Xpαq ěT Y

and thus
@X @Y Dα ă ωX1 pX,Y q R R_Xpαq ěT Y

By 4.2 we have a computable ordinal β such that :

@X @Y Dα ă β pX,Y q R R_Xpαq ěT Y
�

Corollary 4.3. Let E Ď 2ω ˆ 2ω be a countable ∆1
1 equivalence relation.

Then there exists a computable ordinal α such that the equivalence classes of
E are a refinement of the α-degrees, that is, pX,Y q P E implies X ďT Y

pαq

and Y ďT X
pαq.

Proof. A direct application of 4.1 �

4.2. Π0
1 Equivalence relations. We show here that Π0

1 equivalence rela-
tions are as simple as they can be: always smooth. This is a known result
(see for example [15]). However, we obtain a computable refinement. We
make a strong use of compactness here, and this result would not be true
for any Polish space.

Lemma 4.4. Let F be a Π0
1 equivalence relation on 2ω. Then there is a

code e of a functional Φe such that :

(1) For every X P domF , ΦepXq codes for tree whose infinite paths are
the elements in relation with X.

(2) Whenever pX,Y q P F then ΦepXq and ΦepY q code for the exact
same tree.

Proof. Let T be the computable tree of 2ăω ˆ 2ăω describing F . We can
assume without loss of generality that
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a For every σ P 2ăω we have pσ, σq P T
b For any σ, τ P 2ăω, we have pσ, τq P T iff pτ, σq P T .

Let Φpσ1, σ2,mq be the statement :

Dpτ1, τ2q ľ pσ1, σ2q with pτ1, τ2q P T and |τ1| “ |τ2| “ m

Given n let mn “ 0 and mn`1 be the smallest integer strictly bigger than
maxpmn, nq such that for all σ1, σ2, σ3 of length n we have Φpσ1, σ2,mn`1q

and Φpσ2, σ3,mn`1q implies Φpσ1, σ3,mn`1q.
Let us argue that n ÞÑ mn is well-defined : suppose there exists n such

that for infinitely many m we have three strings σ1, σ2, σ3 of length n with
Φpσ1, σ2,mq and Φpσ2, σ3,mq but not Φpσ1, σ3,mq. As the set of strings of
length n is finite, then by the pigeonhole principle, we have three strings
σ1, σ2, σ3 of length n such that for infinitely many m we have Φpσ1, σ2,mq
and Φpσ2, σ3,mq but not Φpσ1, σ3,mq. Let m˚ be the smallest such m. By
König’s lemma it follows that we have three elements X1, X2, X3 such that
pX1, X2q, pX2, X3q P T , but such that we don’t have ΦpX1 æ n,X3 æ n,m˚q.
It follows that for no extension τ1 ľ X1 æ n and no extension τ3 ľ X3 æ n
with |τ1| “ |τ3| “ m˚ we have pτ1, τ3q P T . It follows that pX1, X3q R T .
Therefore F is not an equivalence relation. Thus, for every n for almost every
m for all strings σ1, σ2, σ3 of length n, we have Φpσ1, σ2,mq and Φpσ2, σ3,mq
implies Φpσ1, σ3,mq. Thus, n ÞÑ mn is well-defined.

We define the relation An on elements of 2n (the set of strings of length
n) by An “ tpσ1, σ2q : Φpσ1, σ2,mnqu. We claim that An is an equivalence
relation. By (a) and (b) above we have reflexivity and symmetry. By the
choice of mn we have transitivity.

A set X P domF now computes the tree whose nodes of length n are the
nodes τ such that pX æ n, τq P An (and such that every prefix of τ is already
in the tree). In order to show (1) and (2), let us argue that

pX,Y q P F iff @n pX æ n, Y æ nq P An

Suppose pX,Y q P F . Then for any n and any m ě n we have ΦpX æ n,X æ

n,mnq and then for any n we have pX æ n, Y æ nq P An. Suppose now
pX,Y q R F . Thus there must be some n such that pX æ n, Y æ nq R T and
therefore such that  ΦpX æ n,X æ n,mnq.

Let us now show (2). Suppose pX,Y q P F . Then for any n we have
pX æ n, Y æ nq P An and therefore by the fact that An is an equivalence
relation, X and Y will always output the same nodes of levels n. Thus we
have (2). Let us now show (1). If pX,Y q P F then @n pX æ n, Y æ nq P An
and thus Y will be in the tree computed by X. If pX,Y q R F then Dn pX æ

n, Y æ nq R An and thus Y will not be in the tree computed by X. Thus we
have (1). �

Corollary 4.5. Every Π0
1 equivalence relation on 2ω is smooth via some

computable function.
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Proof. We use the code e of the previous lemma so that every X computes
a tree whose infinite paths are the elements in relation with X. Note that
if X is not in relation with Y the trees must be different as one contains all
prefixes of X and not the other one. �

Corollary 4.6. Every Π0
1 equivalence relation on 2ω has a ∆0

2 selector.

Proof. We use the code e of the previous lemma so that every X computes
a tree whose infinite paths are the elements in relation with X. Using X 1

we then output the leftmost path of every such tree. �

The previous corollary is optimal : Π0
1 equivalence relation does not always

have a continuous selector:

Proposition 4.7. There is a Π0
1 equivalence relation on 2ω with no contin-

uous selector.

Proof. In the following, given a string σ P 2ăω we write #σ to denote the
number of 1’s in σ. Let C Ď 2ω ˆ 2ω be defined by

tpX,Y q : @n #X æ n ą n{2^#Y æ n ą n{2u

Let R Ď 2ωˆ 2ω be the Π0
1 equivalence relation on 2ω defined by CY Idp2ωq

: there is one equivalence class containing all elements of C, and outside of
this equivalence class we have equality.

Suppose we have a continuous selector f . Let X be the element selected
in C. Let Y P C with Y ‰ X. As f is continuous it must be that some prefix
σ of Y is sent to a prefix of X sufficiently long to be incomparable with σ.
It follows that σ08 is not sent to σ08 and therefore f is not a selector. �

4.3. Reducible to E0 implies hyperfinite. By Dougherty–Jackson–Ke-
chris a relation E is hyperfinite iff E is Borel reducible to E0. The purpose
of the following subsections is to study how effective is this equivalence.
We restrict for now to Σ0

2 equivalence relations and lower, as the question
is already interesting at this level. In this section we focus on one of the
directions, while in the next subsection we will focus on the other one.

Let us introduce for the purpose of this study the following definition:

Definition 4.8. An hyperfinite Σ0
2 presentation

Ť

nFn of some equivalence
relation is a uniform increasing countable union of finite Π0

1 equivalence
relations.

Definition 4.9. An hyperfinite computable presentation
Ť

nFn of some
equivalence relation is a uniform increasing countable union of finite Π0

1

equivalence relations such that each of them is uniformly presented as the
infinite paths of a computable pruned tree (a tree with no dead end).

Note that Π0
1 classes of the Cantor space can always be represented as

the infinite paths of computable trees, but it is in general not the case that
these trees can be computably pruned.

We use here Luzin-Novikov to show that a countable equivalence relation
which is ∆1

1 reducible to E0 is hyperfinite as a uniform union of ∆1
1 sets.
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Theorem 4.10 (Dougherty–Jackson–Kechris). Let E be a countable equiv-
alence relation on 2ω such that pX,Y q P E iff pfpXq, fpY qq P E0 for some
∆1

1 function f . Then E is hyperfinite as a uniform union of ∆1
1 sets.

Proof. Given an element X we write σX ä|σ| for the sequence X with the
|σ| first bits replaced by σ.

Consider the ∆1
1 relation R Ď 2ω ˆ 2ω defined by pX,Y q P R iff Y P

f´1p
Ť

σ σX ä|σ|q. Note that given any X the class tY : pX,Y q P Ru is
at most countable. Thus from 4.1 there is a computable ordinal α such
that for every X, if pX,Y q P R then Y ďT X

pαq. It follows that whenever

pX,Y q P E then both X,Y ďT fpXq
pαq and X,Y ďT fpY q

pαq. Let
Ť

nDn

be the canonical hyperfinite presentation of E0 and let Fn be the set:
$

&

%

pX,Y q : X “ Y or pfpXq, fpY qq P Dn and DZ P rfpXqsDn

and Da, b ď n s.t.

ΦapZ
pαqq “ X and ΦbpZ

pαqq “ Y

,

.

-

Note that the set rfpXqsDn is the equivalence class of fpXq in Dn and thus
that the quantification DZ P rfpXqsDn is merely ∆0

1pfpXqq.
Let us show that each Fn is an equivalence class. For every X we have

by definition pX,Xq P Fn. It is also clear that pX,Y q P Fn iff pY,Xq P Fn.
Suppose pX1, X2q P Fn and pX2, X3q P Fn. Then by transitivity of Dn we

have pfpX1q, fpX3qq P Dn. Furthermore, we also have ΦapZ
pαqq “ X1 ^

ΦbpZ
pαqq “ X3 for some a, b ď n. Thus Fn is an equivalence relation. It is

clear that each Fn is finite and that Fn Ď Fn`1. �

One can ask how effective is 4.10. The proof itself uses quite powerful
tools. Also, even if the reduction from E to E0 is computable, the set
f´1pfpXqq, as a countable Π0

1pXq closed set, may contain points of arbitrar-
ily high complexity in the X-hyperarithmetic Turing degrees. The intuition
is then that the argument used in the proof of 4.10 cannot be simplified,
and that we need the power of Xpαq for arbitrarily large α.

But let us start simple. Suppose E is Σ0
2 and suppose the reduction

f : E Ñ E0 is computable (resp. continuous). In this case does E necessarily
has a Σ0

2 hyperfinite presentation? We shall now see that this is not the case.
We start with the following:

Proposition 4.11. Let F “
Ť

nFn be a hyperfinite Σ0
2pZq presentation

of the equivalence relation F . Then the equivalence classes of F are a re-
finement of the Turing degrees relative to Z, that is, pX,Y q P F implies
X ‘ Z ”T Y ‘ Z.

Proof. Suppose pX,Y q P F . Let n be the smallest such that pX,Y q P Fn.
Then the class tW P 2ω : pX,W q P Fnu is a finite Π0

1pX ‘ Zq class
containing Y and the class tW : pY,W q P Fnu is a finite Π0

1pY ‘ Zq class
containing X. It follows that Y is computable from X ‘ Z and that X is
computable from Y ‘ Z. �
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We now use the knowledge of countable Π0
1 classes of the Cantor space.

These have been extensively studied by various authors [18, 11, 8, 9]. Among
what is known, it is worth mentioning that elements of countable Π0

1 classes
can be arbitrarily high in the hyperarithmetic Turing degrees. However,
being a member of a countable Π0

1 class is not a degree invariant notion and
not every hyperarithmetic Turing degree has a member in a countable Π0

1

class.
We reprove here a very small part of the results we just mentioned, the

one needed for our argument:

Lemma 4.12. There is a code e such that for any X, ΦepXq codes for a
tree T Ď 2ăω with countably many infinite paths and such that one path is
Turing equivalent to X 1.

Proof. Let us first show that there is a code e such that for any X P 2ω,
ΦepXq codes for a tree T Ď ωăω (in the Baire space, bit the Cantor space)
which contains exactly one path, and this path is Turing equivalent to X 1.

We define T by σ P T iff for all n ă |σ| we have:

pσpnq “ 0 and ΦnpX,nqr|σ|s Òq or pΦnpX,nqrσpnqs Ó

and @t ă σpnq ΦnpX,nqrts Òq

The tree T is clearly computable. It also contains one unique infinite
path f such that fpnq “ 0 iff ΦnpX,nq Ò and fpnq is the smallest t such
that ΦnpX,nqrts Ó otherwise. We clearly have f ”T X

1.
From a tree T of the Baire space we compute a tree S of the Cantor

space whose paths encode the paths in T : σ P S for σ “ 0n010n11 . . . 10nk

iff there is a string σ P T of length k such that σpiq “ ni for each i ă k

: it is clear that for f P rT s we have 0fp0q10fp1q1 . . . in rSs. Due to the
compactness of 2ω we also of course add unwanted infinite paths in S, but
we claim that there are all finite sets : suppose X P S contains infinitely
many 1’s. Thus for any prefix σk “ 0n010n11 . . . 10nk with σk ă X, there
exists τ ľ σk which has been added in S as an encoding of some string in T .
Thus it means that there is a string σk P T with σkpiq “ ni for every i ă k.
As we have σ0 ă σ1 ă . . . we then have an infinite path in T corresponding
to X.

It follows that S is countable: it contains finite sets together with a path
encoding for X 1. �

We are now ready to show that Σ0
2 sets computably below E0 need not

to have a hyperfinite Σ0
2 presentation. In fact not even a Σ0

2 one.

Theorem 4.13. There a countable Π0
1 equivalence relations which does not

have a hyperfinite Σ0
2 presentation.

Proof. Let e be a code such that for any X, ΦepXq codes for a computable
tree TX Ď 2ăω with countably many infinite paths and such that one path
is Turing equivalent to X 1.
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We define the Π0
1 equivalence relation E as

pX0 ‘X1, Y0 ‘ Y1q P E iff X0 “ Y0 and pX1 “ Y1 or X1, Y1 P T
X0q

Suppose now E has an hyperfinite Σ0
2pZ0q presentation for some Z0. Con-

sider the infinite path Z1 in TZ0 Turing equivalent to Z 10. Consider also some
finite path Y P TZ0 . Then we have pZ0 ‘ Z1, Z0 ‘ Y q P E. But we cannot
have Z0 ‘ Z1 ”T Z0 ‘ Y as Z0 ‘ Y ”T Z0 and as Z0 ‘ Z1 ” Z 10. We then
have a contradiction with 4.11. �

Corollary 4.14. There is a (Π0
1) hyperfinite equivalence relations which is

computably reducible to E0 but which does not have a hyperfinite Σ0
2 presen-

tation.

Proof. From 4.5 every Π0
1 equivalence relation is smooth via a computable

function and thus computably reducible to E0. �

Note that 4.13 has in fact little to do with hyperfiniteness in itself : in
particular, it has no importance if our presentation is increasing or not.
Using Luzin–Novikov (4.1) it is possible to show that every countable ∆1

1

equivalence relation can be described as a ∆1
1 set of the form

Ť

nAn where
the equivalence classes of each An contains exactly two elements. The union
is of course not increasing. Also, what 4.13 really shows is that some Π0

1

equivalence relation cannot be described as a union of closed set, every
equivalence class of which is finite (even if we don’t care about them being
increasing).

Can this be iterated? How about a relation which is computably reducible
to E0 but which does not have a Σ0

3 presentation? Here again this is pos-
sible to do, but the argument needs to be different: 4.11 works because Π0

1

singletons of the Cantor space are computable. But already Π0
2 singletons

can be arbitrarily high in the hyperarithmetic Turing degrees. Let us start
with an iteration of 4.11 through the computable ordinals. By singleton we
means subset of 2ω containing exactly one element.

Proposition 4.15. Let F “
Ť

nFn be a hyperfinite Σ0
α`1pZq presentation

of the equivalence relation F . If pX,Y q P F then X is a Π0
αpY ‘Zq singleton

and Y is a Π0
αpX ‘ Zq singleton.

Proof. Suppose pX,Y q P F . Let n be the smallest such that pX,Y q P Fn.
Then the class tW P 2ω : pX,W q P Fnu is a finite Π0

αpX ‘ Zq class
containing Y and the class tW P 2ω : pY,W q P Fnu is a finite Π0

αpY ‘ Zq
containing X. Also there must be prefixes σY ă Y and σX ă X such that
Y and X are the only elements extending their respective prefixes in each
class. Thus, by restricting each class to element extending their respective
prefixes we have that Y is a Π0

αpX ‘Zq singleton and that X is Π0
αpY ‘Zq

singleton. �

In order to repeat the previous argument with Σ0
3 in place of Σ0

2, we
need to uniformly have countable Π0

1pXq classes containing elements which
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cannot be Π0
2pXq singletons. It turns out that this is possible to build, using

a result of Downey [11]. We first need the following lemma:

Lemma 4.16. Suppose X is a Π0
2pZq singleton which is not Z computable.

Then X ‘ Z is not computably dominated relative to Z, that is, X ‘ Z
computes a function bounded by no Z-computable function.

Proof. The function is simply given by the time at which X enters the
Π0

2pZq class
Ş

n Un : fpnq “ min t s.t. X P Unrts. Suppose now that there
exists a Z-computable function g bounding f . Thus

Ş

n Unrgpnqs is a Π0
1pZq

singleton containing X. Thus X is Z-computable. �

Theorem 4.17 (Downey). There is a code e such that for any Z, ΦepZq
codes for a Z-computable tree T Ď 2ăω with countably many infinite paths,
such that one path X of rT s is not Z-computable and such that Z ‘ X is
computably dominated relative to Z.

Downey’s result is a very complex and intricate infinite injury priority
argument. We use it in the form of the following corollary:

Corollary 4.18. There is a code e such that for any Z, ΦepZq codes for
an Z-computable tree T Ď 2ăω with countably many infinite paths and such
that one path X is not a Π0

2pZq singleton.

Proof. By combining it with 4.16. �

Theorem 4.19. There a countable Π0
1 equivalence relations which does not

have a hyperfinite Σ0
3 presentation.

Proof. It is merely a repetition of the proof of 4.13, but using the Π0
1 classes

TX Ď 2ăω with countably many infinite paths and such that one path is not
a Π0

2pZq singleton. �

Corollary 4.20. There is a (Π0
1) hyperfinite equivalence relations which is

computably reducible to E0 but which does not have a hyperfinite Σ0
3 presen-

tation.

Is it possible to iterate the argument? All we would need to do at step
α is to uniformly find a countable Π0

1pXq class containing a point which is
not a Π0

α singleton. However given the complexity of building such a class
for Π0

2 singleton, the argument might be very hard to iterate. We however
conjecture that this is true:

Conjecture 4.1. For any computable ordinal α, uniformly in X there a
countable Π0

1pXq class containing a non-Π0
αpXq singleton. Therefore for

any computable α there is a equivalence relation computably reducible to E0

but which does not have a hyperfinite Σ0
α presentation.

4.4. Hyperfinite implies reducible to E0. The proof of this direction is
also highly non-trivial. We proceed in two steps: first we show the result for
hyperfinite computable presentations. Then we show how the general result
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follows from the one for computable presentation. Recall that a computable
presentation of a hyperfinite equivalence relation is given by a Σ0

2 set
Ť

n Fn
such that each Fn is finite, such that Fn Ď Fn`1 and such that each Fn can
be uniformly described as the paths of a computable pruned tree.

Lemma 4.21. Let
Ť

n Fn be a computable hyperfinite presentation of some
equivalence relation E on 2ω. Then there is a computable reduction from E
to E0.

Proof. Each Fn is given as a computable pruned tree Tn. For any X let TXn
be the tree given by tσ P 2ăω : pX æ |σ|, σq P Tnu. Note that each TXn
is also pruned and that pX,Y q P Fn implies TXn “ T Yn . Furthermore each
rTXn s is finite and TXn Ď TXn`1 for every X and every n.

For every X and every n we define a computable set AXn`1 as follows: For

every m ď n` 1, for every string σ P TXn of length m we put pσ, 0q P AXn`1.

For every m P ω, and for every string σj P TXn`1 of length m for j P t0, 1u if

σ P TXn and σj R TXn , we put pσj, 1q P AXn`1. The reduction from E to E0 is

given by gpXq “ ‘nA
X
n , the disjoint union of each AXn .

Let us first show that each AXn`1 is finite. We have that pσj, 1q P AXn`1

for a string σj of length bigger than n ` 1 iff σ P TXn and σ is a splitting
point in TXn`1 but not in TXn . As TXn`1 is pruned and contains finitely many

elements, there is a longest splitting point in TXn`1 and thus AXn`1 is finite.
Let us now show pX,Y q P E iff pgpXq, gpY qq P E0. Suppose pX,Y q P E.

Then there exists n such that for every m ě n we have pX,Y q P Fm and
thus TXm “ T Ym . It follows that for every m ě n we have AXm`1 “ AYm`1. As

each AXi and AYi is finite for i ď n we have pgpXq, gpY qq P E0.
Suppose now pX,Y q R E. For every n we have X P rTXn s and X P rTXn`1s.

It follows that for every n and every prefix σ of X we have σ P TXn and σ P
TXn`1. Therefore for every n and every prefix σ of X we have pσ, 1q R AXn`1.
Furthermore, for every prefix σ of X of length smaller than n ` 1 we have
pσ, 0q P AXn`1.

Suppose now that for infinitely many prefixes σ of X we have pσ, 1q P AYn`1

for some n. Then pgpXq, gpY qq R E0. Suppose now that for only finitely
many prefixes σ of X we have pσ, 1q P AYn`1 for some n. Let us show that
there exists m such that for every n ě m and every prefix σ of X we have
pσ, iq P AYn`1 implies i “ 0. Fix k such that for every prefix σ of X of length

bigger than k we have pσ, iq P AYn`1 for some n implies i “ 0. As T Yn Ď T Yn`1

there is a smallest m such that for every n1, n2 ě m the trees T Yn1
and T Yn2

have the same strings of length smaller than or equal to k. It follows that
for n ě m, whenever pσ, iq P AYn`1, either |σ| ď k and thus σ P T Yn and thus
i “ 0, or |σ| ą k and thus i “ 0 by the choice of k.

Let us then fix m such that for every n ě m and every prefix σ of X we
have pσ, iq P AYn`1 implies i “ 0. Let us show that for every n ě m if some

prefix of X belongs to T Yn`1 it also belongs to T Yn . Suppose some prefix σ

of X belongs to T Yn`1 but not to T Yn . Then there is a largest τj ĺ σ (where
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j P t0, 1u) such that τ P T Yn and τj R T Yn . It follows that pτj, 1q P AXn`1 for
n ě m, whereas τj ă X, which contradicts the choice of m. By induction,
it follows that for every n ą m if some prefix of X belongs to T Yn , then it
belongs to T Ym .

Suppose now for contradiction that for infinitely many prefixes σ of X we
have pσ, 0q P AYn`1 for some n. As only strings of length smaller than n` 1

are such that pσ, 0q P AYn`1, it follow that for infinitely many prefixes σ of

X we have pσ, 0q P AYn`1 for some n ą m. It follows that infinitely many

prefixes σ of X belongs to T Yn for some n ą m. It follows that infinitely
many prefixes σ of X belongs to T Ym . It follows that X P rT Ym s and thus that
pX,Y q P E which is a contradiction. Thus for only finitely many prefixes
σ of X we have pσ, 0q P AYn`1 for some n. Thus ‘nA

X
n ‰ ‘nA

Y
n and thus

pgpXq, gpY qq R E0. �

We now iterate for any hyperfinite relation. We first make a special case
for Σ0

2 hyperfinite presentation, as the situation seems a little different than
for the general case.

Lemma 4.22. Let
Ť

n Fn be a Σ0
2 hyperfinite presentation of some equiva-

lence relation E. Then there is a ∆0
2 reduction from E to E0.

Proof. Each Fn is a finite Π0
1 equivalence relation. From 4.4 there are com-

putable functions fn such that for every X the set fnpXq codes for a tree
whose infinite path are the elements in relation with X and such that when-
ever pX,Y q P Fn then fnpXq and fnpY q codes for the exact same tree.

Using X 1 we can compute TnpXq, a pruned version of fnpXq. We can
then repeat the argument of 4.21 to get the reduction. �

It seems that the jump is needed for Σ0
2 hyperfinite presentation. We

however could not find counterexemple, and therefore address the following
question:

Question 4. Does there exists a Σ0
2 hyperfinite presentation of some equiv-

alence relation E for which there is no continuous (computable?) reduction
from E to E0?

We now turn to the proof in the general case, where due to the fact that Π0
2

finite sets can already contains elements of arbitrarily large hyperarithmetic
Turing degrees, there is certainly no hope to find a bound on the complexity
of the reduction, given the complexity of the hyperfinite presentation.

Theorem 4.23. Let
Ť

n Fn be a ∆1
1 hyperfinite presentation of some equiv-

alence relation E. Then there is a ∆1
1 reduction from E to E0.

Proof. From Lusin-Novikov (4.1) there exists a computable ordinal α such

that whenever pX,Y q P E we have Xpαq ě Y and Y pαq ě X. Given X

one can compute with Xpα`2q a pruned tree TXn whose infinite path are

exactly the elements in relation with X in Fn: Xpα`2q puts τ in the tree
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if there exists e such that ΦepX
pαqq is total, if pX,ΦepX

pαqqq P Fn and if

τ ă ΦepX
pαqq.

We can then repeat the argument of 4.21 to get the reduction. �
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