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Current research in statistics has taken interesting
new directions, as data collected from scientific stud-
ies has become increasingly complex. At first glance,
the number of experiments conducted by a scientist
must be fairly large in order for a statistician to draw
correct conclusions based on noisy measurements of
a large number of factors. However, statisticians may
often uncover simpler structure in the data, enabling
accurate statistical inference based on relatively few
experiments. In this snapshot, we will introduce the
concept of high-dimensional statistical estimation via
optimization, and illustrate this principle using an
example from medical imaging. We will also present
several open questions which are actively being stud-
ied by researchers in statistics.

1 This article is dedicated to Sara van de Geer on the occasion of her birthday, which was
celebrated in Oberwolfach in May 2019.
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1 The age of modern data

Many modern scientific disciplines are encountering a data revolution. Due
to advances in technology and computational power, large volumes of data
are now being acquired with unprecedented ease. This provides an unending
supply of fascinating new toys for the statistician’s playground, many of which
exceed those previously encountered in terms of sheer size and complexity. It is
thus the statistician’s favorite diversion to derive new methods to analyze these
datasets, finding ways to interpret the data and draw meaningful and relevant
conclusions.

A common characteristic of many contemporary datasets is their high-
dimensional nature, simultaneously referring to the fact that the number of data
points in the acquisition set is rather large, and the property that the number of
measurements (features) observed for each point may be larger than the number
of points in the dataset. This is partly due to the ability of scientists to collect
data on much larger scales than before. A cell biologist can run numerous
experiments in parallel, each of which would have taken many months with
older technology. An astronomer can collect telescope images of the entire night
sky for days on end, and store the data on a computer server for subsequent
analysis. However, in addition to the fact that the number of experiments
run by the biologist or the number of images collected by the astronomer is
several times larger than previously imagined, the complexity of each individual
endeavor is also magnitudes larger—the biologist might be acquiring hundreds of
measurements in each experiment, whereas the astronomer would be collecting
a high-resolution image with a very large number of pixels during a single sweep
of the night sky.

The statistician’s role is to help make sense of all this data, producing valid
conclusions regarding estimation, inference, or prediction. For instance, a statis-
tician might wish to estimate the magnitude of certain physical characteristics
in a cell or in the universe; detect changes in the heavens; or predict the effect
of an intervention on the biological function of a living organism. At the same
time, the statistician should have an eye for quantifying the uncertainty in
each of these conclusions, accounting for inherent randomness in the process of
data acquisition or fundamental scientific phenomena. Naturally, the amount of
uncertainty in the statistician’s conclusion reduces as the number of repeated
observations collected by the scientist increases—thus averaging away the errors
introduced by computing an estimate based on a random subsample—while
being inversely affected by the complexity of the data.

Although the number of independent observations may be relatively large
in comparison to previous studies, it is often still dwarfed by the marked
complexity of modern data. In the biological example, the number of subjects
with a certain abnormal condition from which tissue is extracted might be
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limited to tens or hundreds, whereas the number of measurements (e.g., genetic)
taken on an individual subject is severalfold larger. Similarly, the capacity limit
of modern data repositories is reached upon storing days or weeks of telescope
data, whereas the number of pixels in a single image of the sky is colossal. It
may therefore appear to be a hopeless endeavor to draw accurate conclusions
from datasets with such daunting complexity in truly high-dimensional settings.

Fortunately, another natural phenomenon often emerges to succor the statis-
tician: In many cases, although the ambient dimensionality of the problem
corresponding to the number of observed features may be discouragingly vast,
the fundamental scientific question under study may be answerable based on a
small handful of relevant measurements. Continuing our examples, predicting
a change in the health of an organism or a shift in a celestial body might be
determined easily by focusing on a certain smaller set of biological measurements
or the intensity of a small collection of pixels. Although it is unrealistic to
believe that a scientist would have the prescience to measure only these features
in an experimental study, a trained statistical sleuth might be able to identify
the hidden structure and make accurate predictions, despite the seemingly
overwhelming complexity of the original dataset.

2 Solving a minimizat ion problem

How might one endeavor to perform such a challenging task? An approach
which has recently become popular among statisticians is to use optimization.
The idea is to minimize the quantity

Loss(β) + λ · Penalty(β), (1)

where β is a variable that represents the quantity one wishes to estimate. In a
classical statistical setting, one would simply take the approach of minimizing
the quantity Loss(β), which computes the amount of error (“loss”) incurred
by a certain choice of β. The Penalty(β) function is included in formula (1)
for the express purpose of discovering unknown structure when the dataset is
highly complex, so that searching for the value of β that minimizes Loss(β)
alone would lead to a highly inaccurate result based on the relatively small
number of experiments. The function Penalty(β) thus “penalizes” assignments
of β that are overly complex. Finally, the quantity λ is a positive number that
determines the relative importance of minimizing the loss and penalty criteria,
so that values of λ which are close to 0 place little importance on minimizing
complexity, whereas larger values of λ place a higher emphasis on simplicity in
relation to accuracy.

As a concrete example, suppose the goal is to predict whether a tissue sample
has been excised from a healthy or diseased individual. In this case, β might
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correspond to a particular method for combining the measurements from a
tissue sample into a statistician’s predictive model, for instance, β = (β1, β2, β3),
while Loss(β) is the fraction of incorrectly classified samples when the prediction
is computed as a function of the weighted sum

β1 × (feature 1) + β2 × (feature 2) + β3 × (feature 3). (2)

Due to the unwieldy complexity of the data, the scientist might wish to identify
a prediction method which makes a decision based on only a small subset of
features. The Penalty(β) function would therefore be chosen to produce a
larger value whenever β corresponds to a prediction method that involves a
large number of features, perhaps by returning a number between 0 and 3
which simply counts the number of nonzero components of β. The solution
to the minimization problem (1) would therefore be a value of β which is
simultaneously accurate (making Loss(β) small) and simple (making Penalty(β)
small).

The primary interest of the statistician is not to devise a method for mini-
mizing the expression (1), per se—although when the problem in question is
highly complex, the set of possible assignments for β is likewise very large, and
clever algorithms are needed for finding the optimal value of β in a matter of
seconds rather than days. Instead, the role of the statistician is to determine
the “best” ways to quantify the loss and penalty of an assignment of β so that
the optimal value corresponds most closely to the desired scientific outcome.
Furthermore, the accuracy of the outcome depends on the amount of data
provided by the scientist, since the expression (1) is of course computed using
a randomly sampled dataset. Thus, a statistician strives to determine how
many replicated experiments must be performed to achieve a certain desirable
accuracy; characterize the best choices of the functions Loss(β) and Penalty(β);
and assess the proper value of λ that will result in the best possible scientific
conclusion for a given dataset. Additionally, the statistician’s sensitivities are
attuned to sources of uncertainty in the data acquisition process, and he or she
may draw a variety of conclusions by modeling different forms of uncertainty in
the statistical model, all of which may be valuable to the scientist.

3 A diversion on medical imaging

Having described the general framework under which complex problems and
their underlying structure are studied, we now explain a particular scientific
example taken from the field of radiology. Routine imaging procedures such
as X-ray, magnetic resonance imaging (MRI), or computed tomography (CT)
translate measurements from electromagnetic fields in the scanning device into a
2D or 3D image that is then examined by the radiologist. The precise method for
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converting these digital signals into images is based on mathematical optimiza-
tion procedures such as the one described above, where the goal is to “estimate”
the physical structure of a patient’s internal functions based on inherently noisy
observations. Quantifying the number of replicated measurements necessary to
attain a desired level of accuracy in the reconstructed image is then critical for
minimizing time and cost. Furthermore, as in pediatric or abdominal imaging,
it may be impossible for a patient to remain immobile for long periods of time,
thus necessitating scans of shorter duration which do not compromise accuracy.

thresholding and interference cancellation at each iteration, so
there is a close connection between our exposition and more
formal approaches [25], [27], [29].

APPLICATIONS OF COMPRESSED SENSING TO MRI
We now describe four potential applications of CS in MRI. The
three requirements for successful CS come together differently
in different applications. Of partic-
ular interest is the way in which
different applications face differ-
ent constraints, imposed by MRI
scanning hardware or by patient
considerations, and how the
inherent freedom of CS to choose
sampling trajectories and sparsify-
ing transforms plays a key role in
matching the constraints.

RAPID 3-D ANGIOGRAPHY
Angiography is important for diagnosis of vascular disease.
Often, a contrast agent is injected, significantly increasing
the blood signal compared to the background tissue. In
angiography, important diagnostic information is contained
in the dynamics of the contrast agent bolus. Capturing the
dynamics requires high spatial and temporal resolution of a
large FOV, obviously a very difficult task. Today MR angiogra-
phy scans are often undersampled [3], [11], obtaining
improved spatial resolution and temporal resolution at the
expense of undersampling artifacts.

CS is particularly suitable for angiography. As shown in
Figure 3, angiograms are are inherently sparse in the pixel repre-
sentation and by spatial finite differencing. The need for high
temporal and spatial resolution strongly encourages undersam-
pling. CS improves current strategies by significantly reducing
the artifacts that result from undersampling.

In this example, we apply CS to 3-D Cartesian contrast-
enhanced angiography, which is the most common scheme
in clinical practice. Figure 8 illustrates the collection
scheme, acquiring equispaced parallel lines in k-space.

Choosing a pseudorandom subset with variable k-space den-
sity of 10% of those lines combines undersampling with low
coherence. Figure 8 shows a maximum intensity projection
(MIP) through the 3-D volume of several reconstructions. CS
is able to significantly accelerate MR angiography, enabling
better temporal resolution or alternatively improving the res-
olution of current imagery without compromising scan time.

The nonlinear reconstruction in
CS avoids most of the artifacts
that appear in linear reconstruc-
tion from undersampled data.

WHOLE-HEART
CORONARY IMAGING
X-ray coronary angiography is the
gold standard for evaluating coro-
nary artery disease, but it is inva-

sive. Multislice X-ray CT is a noninvasive alternative but
requires high doses of ionizing radiation. MRI is emerging as a
noninvasive, nonionizing alternative.

Coronary arteries are constantly in motion, making
high-resolution imaging a challenging task. The effects of
heart motion can be minimized by synchronizing acquisi-
tions to the cardiac cycle. The effect of breathing can be
minimized by tracking and compensating for respiratory
motion or by simply imaging during a short breath-held
interval. However, breath-held cardiac-triggered approaches
face strict timing constraints and very short imaging win-
dows. The number of acquisitions is limited to the number
of cardiac cycles in the breath-hold period. The number of
heart-beats per period is itself limited—sick patients cannot
be expected to hold their breath for long! Also, each acquisi-
tion must be very short to avoid motion blurring. In addi-
tion, many slices must be collected to cover the entire
heart. These constraints on breath-held cardiac triggered
acquisitions traditionally resulted in limited spatial resolu-
tion with partial coverage of the heart. Compressed sensing
can accelerate data acquisition, allowing the entire heart to
be imaged in a single held breath [30].

[FIG8] 3-D Contrast enhanced angiography. Right: Even with 10-fold undersampling CS can recover most blood vessel information
revealed by Nyquist sampling; there is significant artifact reduction compared to linear reconstruction; and a significant resolution
improvement compared to a low-resolution centric k-space acquisition. Left: The 3-D Cartesian random undersampling configuration.
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thresholding and interference cancellation at each iteration, so
there is a close connection between our exposition and more
formal approaches [25], [27], [29].

APPLICATIONS OF COMPRESSED SENSING TO MRI
We now describe four potential applications of CS in MRI. The
three requirements for successful CS come together differently
in different applications. Of partic-
ular interest is the way in which
different applications face differ-
ent constraints, imposed by MRI
scanning hardware or by patient
considerations, and how the
inherent freedom of CS to choose
sampling trajectories and sparsify-
ing transforms plays a key role in
matching the constraints.
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Angiography is important for diagnosis of vascular disease.
Often, a contrast agent is injected, significantly increasing
the blood signal compared to the background tissue. In
angiography, important diagnostic information is contained
in the dynamics of the contrast agent bolus. Capturing the
dynamics requires high spatial and temporal resolution of a
large FOV, obviously a very difficult task. Today MR angiogra-
phy scans are often undersampled [3], [11], obtaining
improved spatial resolution and temporal resolution at the
expense of undersampling artifacts.

CS is particularly suitable for angiography. As shown in
Figure 3, angiograms are are inherently sparse in the pixel repre-
sentation and by spatial finite differencing. The need for high
temporal and spatial resolution strongly encourages undersam-
pling. CS improves current strategies by significantly reducing
the artifacts that result from undersampling.

In this example, we apply CS to 3-D Cartesian contrast-
enhanced angiography, which is the most common scheme
in clinical practice. Figure 8 illustrates the collection
scheme, acquiring equispaced parallel lines in k-space.

Choosing a pseudorandom subset with variable k-space den-
sity of 10% of those lines combines undersampling with low
coherence. Figure 8 shows a maximum intensity projection
(MIP) through the 3-D volume of several reconstructions. CS
is able to significantly accelerate MR angiography, enabling
better temporal resolution or alternatively improving the res-
olution of current imagery without compromising scan time.

The nonlinear reconstruction in
CS avoids most of the artifacts
that appear in linear reconstruc-
tion from undersampled data.

WHOLE-HEART
CORONARY IMAGING
X-ray coronary angiography is the
gold standard for evaluating coro-
nary artery disease, but it is inva-

sive. Multislice X-ray CT is a noninvasive alternative but
requires high doses of ionizing radiation. MRI is emerging as a
noninvasive, nonionizing alternative.

Coronary arteries are constantly in motion, making
high-resolution imaging a challenging task. The effects of
heart motion can be minimized by synchronizing acquisi-
tions to the cardiac cycle. The effect of breathing can be
minimized by tracking and compensating for respiratory
motion or by simply imaging during a short breath-held
interval. However, breath-held cardiac-triggered approaches
face strict timing constraints and very short imaging win-
dows. The number of acquisitions is limited to the number
of cardiac cycles in the breath-hold period. The number of
heart-beats per period is itself limited—sick patients cannot
be expected to hold their breath for long! Also, each acquisi-
tion must be very short to avoid motion blurring. In addi-
tion, many slices must be collected to cover the entire
heart. These constraints on breath-held cardiac triggered
acquisitions traditionally resulted in limited spatial resolu-
tion with partial coverage of the heart. Compressed sensing
can accelerate data acquisition, allowing the entire heart to
be imaged in a single held breath [30].

[FIG8] 3-D Contrast enhanced angiography. Right: Even with 10-fold undersampling CS can recover most blood vessel information
revealed by Nyquist sampling; there is significant artifact reduction compared to linear reconstruction; and a significant resolution
improvement compared to a low-resolution centric k-space acquisition. Left: The 3-D Cartesian random undersampling configuration.
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Figure 1: Angiograms showing the location of blood vessels in human tissue.
Relatively few pixels in the image are relevant to a physician who
wishes to assess the configuration of the patient’s blood vessels.
Modern statistical methods lead to the relatively clear reconstruction
in the right image, based on collecting data for 10% of the time
previously required for clinical scans.

The complexity of the image reconstruction problem is naturally determined
by the dimensions of the image; for 3D images, the number of pixels can
be fairly large even for small physical regions. Nonetheless, medical images
possess inherent structure that may be leveraged though careful statistical
analysis. For instance, in the angiogram image in Figure 1, the intensities
of only a small number of pixels corresponding to locations of blood vessels
are relevant for reconstructing the image. Although this is not the case for
the brain image in Figure 2, it is nonetheless possible to express the image in
terms of a small number of standard “building block” images known as wavelets,
corresponding to the underlying simplified structure. This brings us back to
the optimization problem (1), where β represents the unknown image, Loss(β)
is the error of the MRI signal measurements assuming the image is β, and
Penalty(β) records the complexity of the image (which is large when the number
of non-blank pixels or wavelets used to represent the image is large). More
precisely, a single point in the dataset corresponds to a (measurement, readout)
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pair, where the features are computed based on the acquisition frequencies
set by the imaging technician within the imaging machine. During a scanning
session, data will be collected by repeatedly scanning the object under different
acquisition frequencies, corresponding to different (measurement, readout) pairs.
The function Loss(β) is then obtained by aggregating the differences between
predicted readout signals and observed readout signals over all data acquired
during the scan:

Loss(β) = (prediction 1 − observation 1)2

+ (prediction 2 − observation 2)2 + · · · ,

where the predicted readout signals are a function of β computed using the
same weighted sum expression given in Equation (2) above.

Most MR images are sparse in an
appropriate transform domain. To
begin with, consider Figure 3.
Angiograms, which are images of
blood vessels, contain primarily con-
trast-enhanced blood vessels in a sea
of void and already look sparse in the
pixel representation. They can be
made even sparser by spatial finite-
differencing. More complex imagery,
such as brain images, can be sparsi-
fied in more sophisticated domains,
such as the wavelet domain. Sparse
representation is not limited to still
imagery. Often videos can safely be
compressed much more heavily. This
is demonstrated by the success of
MPEG. Dynamic MR images are
highly compressible as well. For
example, the quasi-periodicity of
heart images has a sparse temporal
Fourier transform. 

THE NATURAL FIT
BETWEEN CS AND MRI
The transform sparsity of MR images
and the coded nature of MR acquisi-
tion are two key properties enabling
CS in MRI. Figure 4 illustrates these
elements, making MRI a natural CS
system. We now give a more formal
discussion of the requirements.

COMPRESSED SENSING THEORY
CS emerged in the literature of information theory and approxi-
mation theory as an abstract mathematical idea [15]–[17]. One
measures a relatively small number of “random” linear combi-
nations of the signal values—much smaller than the number of
signal samples nominally defining it. However, because the
underlying signal is compressible, the nominal number of signal
samples is a gross overestimate of the “effective” number of
“degrees of freedom” of the signal. As a result, the signal can be
reconstructed with good accuracy from relatively few measure-
ments by a nonlinear procedure.

In MRI, we look at a special case of CS where the sampled
linear combinations are simply individual Fourier coefficients
(k-space samples). In that setting, CS is claimed to be able to
make accurate reconstructions from a small subset of k-space,
rather than an entire k-space grid. The original paper by Candès,
Romberg, and Tao [15] was motivated in large part by MRI since
it looked at random undersampling of Fourier coefficients.

Theoretical and technical aspects of CS are discussed else-
where in this special issue. However, the key points can be
reduced to nontechnical language. A successful application of
CS has three requirements: 

[FIG3] Transform sparsity of MR images. (a) Fully sampled images are mapped by a
sparsifying transform to a (b) transform domain; the several largest coefficients are preserved
while all others are set to zero; the transform is inverted forming a (c) reconstructed image.
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the gradient and RF waveforms that, in turn, control the phase
of the pixels/voxels in the image. An RF coil receives the signal in
an encoded form—samples in k-space. Careful crafting of the
gradient waveforms allows for incoherent measurements of k-
space. With an appropriate nonlinear reconstruction enforcing
sparsity, an image can be reconstructed.
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Figure 2: Images of the human brain. The leftmost image shows a brain image
from a standard MRI scan. The center image shows some of the
simpler wavelet images that can be combined to represent the full
brain image. The right image has been reconstructed using 10% of
the data, based on the statistical methods discussed in the text.

Reconstructed images based on this procedure are shown in the rightmost
panels of Figures 1 and 2. In both cases, the number of measured signals used to
create the images is ten times smaller than the number of measurements required
by methods that do not take advantage of underlying structure. In practical
terms, this means a tenfold reduction in the amount of time required for a clinical
scan, which can have substantial consequences on the quality of healthcare for
a patient! The method we have described is known as “compressed sensing,”
since the method operates by compressing the complexity of the problem into
one that becomes tractable for accurate reconstruction.
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4 Current fascinat ions

The examples and applications described above only provide a glimpse of
the many interesting data-analytic problems encountered by contemporary
statisticians. We now mention, in broad strokes, an additional assortment of
problems that are active topics of discussion among researchers in statistics.

4.1 The problem of inference

Confidence intervals are a commonly used statistical tool for quantifying the
uncertainty of estimates with respect to noise in generating or acquiring data.
The intervals are often centered around an estimate, with wider intervals
indicating more uncertainty. However, the methods for constructing confidence
intervals can be fairly complicated in complex data settings, since one incurs
additional uncertainty while locating the underlying structure that enables
accurate estimation. More concretely, if one wished to quantify the uncertainty
in reconstructing the pixel intensities in an angiogram, the level of uncertainty
would be larger than for a method which focused on accurately estimating the
intensities of a small number of pixels known a priori to contain blood vessels.
Although these ideas are very natural and intuitive, it is an ongoing challenge
for statisticians to quantify exactly how much the level of uncertainty inflates
in different scientific settings and for different types of statistical procedures [8,
3, 29].

4.2 Network data

In some datasets, the measurements collected from one experiment may have
relationships that can be extracted via a careful statistical analysis of the data.
For example, based on surveying a population of individuals for their opinions
and interests, one may be able to infer the pattern of friendships between pairs
of people, thus constructing the “social network” of the population. Statistical
tools have been developed in recent years to reconstruct such networks from
indirect observations as in the example previously described [7, 20, 22, 38].
If the network structure were known, an important task might be to infer
the clusters of communities in the network based on the relative density of
connections between groups of individuals [4, 5], or use the network structure
to guide subsequent predictions [28]. As a final example, some statistical work
has been conducted on inferring properties of a dynamic process on a dataset
collected over a network, to try to locate the source of an epidemic spread based
on partial information [21].
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4.3 Deep learning

The last few years have seen a flurry of attention focused on a machine learning
tool known as deep learning. This comprises a class of algorithms that have been
extremely useful for a plethora of tasks, including automatic object detection
in photographs, voice recognition, and image editing. On the other hand,
although the success of deep learning is widely recognized, many opportunities
remain for further investigation. Deep learning methods have often exceeded
the performance that might be expected by theoreticians; thus, it remains
important to understand the circumstances under which deep learning can be
relied upon to succeed, and also the limitations of deep learning in comparison
to other preexisting methods [10, 16, 17, 23]. In addition, since much flexibility
is given in choosing a deep learning method, statisticians wish to understand
which models lead to more robust decisions with less overall uncertainty. For an
interesting introduction to deep learning, see Snapshot 15/2019 Deep Learning
and Inverse Problems by Arridge et al.

4.4 Fur ther topics

The aforementioned sampling of topics is by no means comprehensive, and
we now mention several additional areas that are currently being explored
by statisticians in the international community. These include causality [9],
optimal transport [2, 25, 30, 34], privacy [6, 14], dimension reduction [12, 24,
31, 35, 37], online learning [32, 36], differential equations [1, 11, 15, 27, 33], and
regression [13, 18, 19, 26]. Each of these areas is very interesting in their own
right, and all share the common theme of uncovering an appropriate type of
structure in complex data. The interested reader is encouraged to explore the
writings of these authors to gain additional exposure to modern research in
statistics.

Image credi ts

Figure 1 and Figure 2 M. Lustig, D. L. Donoho, J. Santos, and J. Pauly,
Compressed sensing MRI, IEEE Signal Processing Magazine, March 2008.
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