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Abstract. The classical theory of electromagnetism describes the interac-
tion of electrically charged particles through electromagnetic forces, which are
carried by the electric and magnetic fields. The propagation of the electro-
magnetic fields can be described by Maxwell’s equations. Solving Maxwell’s
equations numerically is a challenging problem which appears in many dif-
ferent technical applications. Difficulties arise for instance from material
interfaces or if the geometrical features are much larger than or much smaller
than a typical wavelength. The spatial discretization needs to combine good
geometrical flexibility with a relatively high order of accuracy. The aim of
this small-scale, week-long interactive mini-workshop jointly organized by the
University of Duisburg-Essen and the University of Twente, and kindly hosted
at the MFO, is to bring together experts in non-standard and mixed finite
elements methods with experts in the field of electromagnetism.
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Introduction by the Organizers

This small-scale workshop continued the tradition of fruitful interactions between
applied mathematics and computational engineering focusing on computational
electromagnetism. A focal point of the workshop was the deep understanding of
Maxwell’s equations leading to efficient and robust simulation methods in compu-
tational electromagnetics. Several mathematical and numerical aspects of emerg-
ing methodologies in mixed finite element methods and their applications in com-
putational electromagnetism were covered.
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In particular, the general framework of variationally consistent discretization
schemes for obstacle-type problems benefited from this intense personal interac-
tion. In this framework, the constraints are weakly incorporated and lead to a
saddle-point problem. Since the Lagrange multiplier represents the surface forces
such methods play a crucial role in many applications. Optimal convergence rates
can be established using a uniform inf-sup bound, but complementarity terms have
to be taken into account, leading to a non-linear and non-differentiable formula-
tion.

The low regularity of the solution requires tailored discretizations together with
a careful analysis. Inspiring talks reviewing open problems in this field were given,
which resulted in deep discussionss about Discontinuous Galerkin methods for
Maxwell’s equations.

Further research directions were explored, ranging from frameworks for structure-
preserving discretizations to algorithms for stochastic partial differential equations
that are able to overcome the curse of dimensionality. A distinguished lecture en-
lightened us towards new approaches for stochastic partial differential equations
in electromagnetism.

In addition to these keynote lectures, fourteen talks fostered fruitful discus-
sions between mathematicians of the University of Twente and the University of
Duisburg-Essen and laid the groundwork for future collaborations. The remainder
of this report contains the extended abstracts and illustrates the wide range of
research areas tackled during this workshop.



Numerical Analysis of Electromagnetic Problems 897

Small Collaboration (hybrid meeting): Numerical Analysis of
Electromagnetic Problems

Table of Contents

Irwin Yousept, Maurice Hensel
Obstacle Problems in Electromagnetic Shielding & Numerical Analysis
for Maxwell Obstacle Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899

Agnes Lamacz-Keymling (joint with Patrizia Donato, Ben Schweizer)
Resonance phenomena and construction of metamaterials . . . . . . . . . . . . . 903

Martin Hutzenthaler (joint with Weinan E, Thomas Kruse, Arnulf Jentzen,
Tuan Ahn Nguyen, Philippe von Wurstemberger)
On the curse of dimensionality for semilinear partial differential equations 905

Jacobus J.W. van der Vegt (joint with Zhongjie Lu, Yan Xu, Aycil
Cesmelioglu, Kaifang Liu, M. Schlottbom, Devashish, Sjoerd Hack,
Lars Corbijn van Willenswaard, Marek Kozon)
Error Analysis of a Mixed Discontinuous Galerkin Discretization for
Maxwell Eigenvalue Problems in Periodic Media . . . . . . . . . . . . . . . . . . . . . 907

Kaifang Liu (joint with D. Gallistl, M. Schlottbom and J.J.W. van der Vegt)
Mixed discontinuous Galerkin discretization of the time-harmonic
Maxwell equations with minimal smoothness requirements . . . . . . . . . . . . . 911
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Abstracts

Obstacle Problems in Electromagnetic Shielding & Numerical
Analysis for Maxwell Obstacle Problems

Irwin Yousept, Maurice Hensel

Electromagnetic (EM) shielding is a physical process of canceling or redirecting
EM waves in a certain domain of interest by means of obstacles made of conduct-
ing or magnetic materials. It was first discovered by Michael Faraday in 1836, who
experimentally verified that a conductive enclosure (Faraday cage) is able to elim-
inate the effect of an external electric field by charge cancelation on the boundary
and leaving zero field inside the cage. On the other hand, a specific magnetic
material can realize shielding by diverting the external magnetic flux to another
direction. Typical materials used in Faraday shielding are conductive sheet metals
and metallic alloys, whereas ferromagnetic materials are widely used for magnetic
obstacles. Today, EM shielding is indispensable not only for high-technological
applications but also for many of our daily used electronic devices.

From the mathematical point of view, EM shielding falls into the class of ob-
stacle problems (cf. Duvaut and Lions [1]). More precisely, in the free region,
the EM waves satisfy the fundamental Maxwell equations, whereas in the shielded
area obstacle constraints are applied to the fields. To formulate the corresponding
mathematical formulation, let us denote by Ω ⊂ R3 an open set (not necessarily
connected, Lipschitz, or bounded) representing the domain of interest and set

H(curl) :=
{

q ∈ L2(Ω)
∣

∣ curl q ∈ L2(Ω)
}

, H0(curl) := C
∞
0 (Ω)

‖·‖H(curl)
.

Furthermore, let 0 ∈ K ⊂ L2(Ω)×L2(Ω) be a closed and convex subset standing
for the underlying feasible (constraint) set. Then, given initial data (E0,H0) ∈
{H0(curl)×H(curl)}∩K and an applied current source f ∈ C0,1((0, T ),L2(Ω)),
we look for (E,H) ∈ W 1,∞((0, T ),L2(Ω)×L2(Ω)) s.t.

(1)



















































∫ T

0

∫

Ω

ǫ∂tE · (v −E) + µ∂tH · (w −H)−H · curl v +E · curlw

≥
∫ T

0

∫

Ω

f · (v −E)

∀(v,w) ∈ L2((0, T ),H0(curl)×H(curl)), (v,w)(t) ∈ K a.e. t ∈ (0, T )

(E,H)(t) ∈ K for all t ∈ [0, T ]

(E,H)(0) = (E0,H0).

Here, the electric permittivity and the magnetic permeability ǫ, µ : Ω → R
3×3 are

assumed to be of class L∞(Ω)3×3, symmetric, and uniformly positive definite in
the sense that there exist positive constants ǫ, µ > 0 such that

ξT ǫ(x)ξ ≥ ǫ|ξ|2 and ξTµ(x)ξ ≥ µ|ξ|2 for a.e. x ∈ Ω and all ξ ∈ R
3.
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In [3, Theorem 1], the author proved an existence result for (1) built on [2, Theorem
3.11]. The developed result yields only existence in W 1,∞((0, T ),L2(Ω)×L2(Ω))
without the global curl regularity, i.e., (E,H) ∈ L2((0, T ),H0(curl)×H(curl))
is not guaranteed. Nonetheless, the solution is still physically reasonable as it turns
to obey the physical electromagnetic laws in the free regions. More precisely, if
we denote the electric (resp. magnetic) free region by the open (possibly empty)
subset ΩE ⊂ Ω (resp. ΩH ⊂ Ω), i.e., if

(v,w) ∈ K ⇒ (ṽ, w̃) ∈ K ∀ṽ =

{

vE in ΩE

v elsewhere
w̃ =

{

wH in ΩH

w elsewhere

holds for any (vE ,wH) ∈ L2(ΩE) × L2(ΩH), then every solution (E,H) ∈
W 1,∞((0, T ),L2(Ω) × L2(Ω)) of (1) fulfils the Maxwell-Ampère equation in ΩE

and the Faraday law in ΩH :

(2)

{

ǫ∂tE − curlH = f a.e. in ΩE × (0, T )

µ∂tH + curlE = 0 a.e. in ΩH × (0, T ).

In particular, every solution to (1) enjoys the local regularity properties

curlE ∈ L∞((0, T ),L2(ΩH)) and curlH ∈ L∞((0, T ),L2(ΩE)),

and if ΩH = Ω then the electric boundary condition is fully recovered, i.e., E ∈
L∞((0, T ),H0(curl)). All these results were proven in [3, Theorem 1].

The uniqueness analysis of (1) turns out to be more challenging and requires
a careful treatment. We notice that energy arguments are not applicable due to
the poor regularity of the solution. Under a structural assumption on the feasible
set K (see [3, Assumption 1.1]), the author established a uniqueness result [3,
Theorem 2]. The proof is based on a localH(curl)-regularity analysis with respect
to the constraint set under Assumption 1.1, in particular under a separation ansatz
between the electric and magnetic obstacle sets. As shown there, the uniqueness
holds also true if ΩH = Ω (pure electric obstacle problem) or ΩE = Ω (pure
magnetic obstacle problem). As a consequence of Theorems 1 and 2 in [3], for any
given closed and convex feasible electric set 0 ∈ KE ∈ L2(Ω), the pure electric
obstacle problem

(PE)







































∫

Ω

ǫ∂tE(t) · (v −E(t)) −H(t) · curl(v −E(t)) ≥
∫

Ω

f(t) · (v −E(t))

for all v ∈ H0(curl) ∩KE and a.e. t ∈ (0, T )

µ∂tH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

E(t) ∈ KE for all t ∈ [0, T ]

(E,H)(0) = (E0,H0)

admits a unique solution

(E,H) ∈ L∞((0, T ),H0(curl)×L2(Ω)) ∩W 1,∞((0, T ),L2(Ω)×L2(Ω)).
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We note that (PE) preserves the Faraday law but modifies the Maxwell-Ampère
equation ǫ∂tE − curlH = f into a variational inequality of the first kind. Simi-
larly, for any given closed and convex feasible magnetic set 0 ∈ KH ∈ L2(Ω), the
pure magnetic obstacle problem

(PH)







































∫

Ω

µ∂tH(t) · (w −H(t)) +E(t) · curl(w −H(t)) ≥ 0

for all w ∈ H(curl) ∩KH and a.e. t ∈ (0, T )

ǫ∂tE(t)− curlH(t) = f(t) for a.e. t ∈ (0, T )

H(t) ∈ KH for all t ∈ [0, T ]

(E,H)(0) = (E0,H0)

admits a unique solution

(E,H) ∈ L∞((0, T ),L2(Ω)×H(curl)) ∩W 1,∞((0, T ),L2(Ω)×L2(Ω)).

Differently from (PE), the magnetic shielding case (PH) preserves the Maxwell-
Ampère equation and modifies the Faraday law by a variational inequality of the
first kind. The well-posedness results for (1), (PE), and (PH) serve as a basis for
further investigations, including

• finite element analysis
• ferromagnetic shielding
• shape optimal design

which have been the subject of our ongoing research. The Eddy Current approxi-
mation of (PE) is investigated in [6].

Let us next discuss the finite element analysis of (PE) for

KE = {v ∈ L2(Ω)
∣

∣ |v(x)| ≤ d for a.e. x ∈ ω}

and scalar-valued material parameters. Here, we rely on Ω ⊂ R3 and ω ⊂⊂ Ω to be
bounded and polyhedral Lipschitz domains. Denote by {Th}h>0 a quasi-uniform
family of triangulations, s.t.

Ω =
⋃

T∈Th

T, ω =
⋃

T∈T ω

h

T,

with ǫ|T , µ|T and σ|T being constant for all T ∈ Th. To obtain a fully discrete
scheme we use a mixed FEM in space. Based on this triangulation, we use the
well-known finite element spaces

ND0
h = {vh ∈ H0(curl) | vh|T = aT + bT × · for some aT , bT ∈ R

3 ∀T ∈ Th},
DGh = {wh ∈ L2(Ω) | wh|T = aT for some aT ∈ R

3 ∀T ∈ Th}.

We are interested in comparing two different discretizations in time. Starting with
the implicit Euler scheme, let us consider the canonical partition

τ =
T

N
, tn = nτ ∀n ∈ {0, . . . , N}, N ∈ N.
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Using Nédélec’s elements for the electric field E and piecewise constant elements
for the magnetic field H we invoke a standard decoupling to derive the following
fully discrete scheme:






































Find {(En
h ,H

n
h )}Nn=1 ⊂

(

KE ∩ND0
h

)

×DGh, s.t.
∫

Ω

ǫEn
h · (vh −En

h ) + τ2µ−1 curlEn
h · curl(vh −En

h )

≥
∫

Ω

(τfn +En−1
h ) · (vh −En

h ) + τHn−1
h · curl(vh −En

h ) ∀vh ∈ KE ∩NDh

Hn
h = Hn−1

h − τµ−1 curlEn
h .

The left-hand side of the variational inequality induces a coercive and bounded
bilinear form, as a result of which the well-posedness of the system follows from
a standard result by Lions & Stampacchia. Note that the above VI features a
curl curl-structure. Additionally, at every step, a non-smooth solver is required
to approximate its solution. This makes the numerical realization of this scheme
very demanding in terms of computational cost, especially when considering fine
discretizations in time. To overcome the need for a non-smooth solver, we propose
a different time discretization: Motivated by the work of Yee in 1966 (cf. [4]), we
consider the Amperé-Maxwell VI in (PE) at the intermediate time steps tn− 1

2
=

tn − τ
2 and the Faraday equation in (PE) at the time steps tn. In contrast to

the previous mixed FEM, we now use Nédélec’s elements for the magnetic field
H and piecewise constant elements for the electric field E. Approximating time
derivatives by central differences, we obtain the following fully discrete scheme:



























































Find {(En− 1
2

h ,H
n+ 1

2

h )}Nn=1 ⊂ (KE ∩DGh)×NDh, s.t.
∫

Ω

ǫδEn
h · (vh −E

n− 1
2

h )− curlH
n− 1

2

h · (vh −E
n− 1

2

h )

≥
∫

Ω

f
n− 1

2

h · (vh −E
n− 1

2

h ) ∀vh ∈ KE ∩DGh ∀n ∈ {1, . . . , N}

En
h = 2E

n− 1
2

h −En−1
h

∫

Ω

µδH
n+ 1

2

h ·wh +En
h · curlwh = 0 ∀wh ∈ NDh ∀n ∈ {1, . . . , N}.

Note that the obstacle is now discretized at tn− 1
2
rather than at tn and that the

VI admits an L2-structure. Thus, the solution is given by a projection formula
which can explicitly be stated in terms of the data. This results in the fact that,
at every step, the main effort consists of solving the linear Faraday equation,
leading to very low computation times when compared to the implicit Euler. The
convergence analysis for the (Yee-)scheme is mainly complicated due to the lack

of global L2-regularity of curlH
n− 1

2

h . Heavily related to the property (2) of the

solution to (1), the term curlH
n− 1

2

h does not admit a uniform L2-bound in Ω
- only in Ω \ ω. Inside the obstacle ω we are only able to show a weaker L1-
bound. This fact is somehow justified by the mentioned low regularity issue in
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(PE). Therefore, our first step consists of bypassing the missing boundedness by
exploiting the standard quasi-interpolation operator onto DGh for smooth and
compactly supported fields. In this way, we are able to derive a convergence result
towards a solution of a time integrated version of the variational inequality in (PE)
involving fewer test functions v ∈ KE ∩ C

∞
0 (Ω). The final step of enlarging the

test function set to KE∩H0(curl) requires us to construct a constraint preserving
mollification operator in the spirit of Ern and Guermond (cf. [5]).
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Resonance phenomena and construction of metamaterials

Agnes Lamacz-Keymling

(joint work with Patrizia Donato, Ben Schweizer)

Many modern key technologies are modeled through partial differential equations
involving multiple small scales. Such equations are often hard to treat numer-
ically, since the corresponding solutions are typically highly oscillatory and the
microstructure has to be resolved to capture the main features of the underlying
model. However under structural assumptions such as periodicity an effective large
scale behavior is observed.

The mathematical analysis of the effective properties of multiscale models be-
came possible with the development of the method of homogenization in the 1970s.
The homogenization technique was successfully applied to a variety of equations
ranging from porous media to Maxwell’s equations. In the standard situation,
the homogenization result is of the following form: Given an ε-periodic coefficient
aε and a corresponding solution sequence uε, every weak limit u of uε satisfies
the original equation with a constant effective coefficient aeff. Even though the
dependence of aeff on the microstructure is already non-trivial, its computation is
based on averaging. In particular such a standard homogenization result cannot
lead to a qualitatively different equation for the limit u.

The analysis of metamaterials eludes this standard framework. Metamaterials
are composites of ordinary materials arranged in small substructures. A smart
choice of the microscopic geometry can lead to astonishing effective properties
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of the medium that are not shared by any of its constituents. Typically such
effects are obtained by micro-structures involving a high contrast in the parameters
and/or singular geometries such as thin wires [1] or small perforations [2] whose
volume fraction vanishes in the limit ε→ 0.

In this talk we discuss two results that are based on resonance. The first result
focuses on the mathematical analysis of negative index metamaterials. An early
study of the electrodynamics of media with negative refractive index, which are
characterized through simultaneously negative values of the permittivity ε and
the magnetic permeability µ, was first provided by Veselago [7]. Since no natural
material exhibits a negative permeability µ, the result of Veselago remained purely
theoretical until in 1999 first ideas have been published on the construction of an
actual negative index metamaterial by using a periodic structure consisting of
small highly conductive split-rings and wires, see e.g. [6].

Our aim is to explain the effective behavior of this construction in the framework
of homogenization. To this end, in [4, 5] we study a scattering problem for the time
harmonic Maxwell’s equations in a complex geometry involving a small parameter
η > 0 which characterizes the typical size of the microstructure,

curlEη = iωHη,

curlHη = −iωεηEη.

The homogenization process is performed in the case that many (order η−3) small
(order η), flat (order η2) and highly conductive (order η−3) metallic split-rings
are distributed in a scattering domain Ω ⊂ R3. In addition the split-ring array is
combined with thin (order η2) highly conducting (order η−2) metallic wires. It is
important to highlight that the entire behavior of the microstructure is encoded
in a single parameter, namely the η-dependent permittivity εη, which involves a
high contrast as well as the complex geometry of the split-ring wire structure.

We determine the effective behavior of this metamaterial in the limit η → 0.
As a main feature we find that the effects of the rings and of the wires are effec-
tively decoupled. Even though both original materials (metal and void) have the
same positive magnetic permeability µ = 1, the effective Maxwell system exhibits,
depending on the frequency ω, a negative magnetic response. This effect is based
on resonances in the small split-rings which together with a careful choice of the
frequency and the geometry of the rings leads to a negative effective permeability
µeff.

The wires operate in a less sophisticated way. On the one hand, due to their
vanishing volume fraction, the wires do not affect the parameter µeff. On the other
hand, due to their particular topology (in the limit η → 0 they form connected
lines), they influence the effective permittivity εeff through an averaging process.
If the permittivity εη in the wires is negative, which is typically the case for metals,
the effective permittivity εeff inherits this feature in the homogenization limit.
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In the second setting, see [3], we analyze the Helmholtz equation

−∆uε − ω2uε = f in Ωε

∂nu
ε = 0 on ∂Ωε

in a complex domain Ωε, where a sound absorbing structure at one part of the
boundary is modeled by a periodic geometry with periodicity ε > 0. A resonator
volume of thickness ε is connected with thin channels (opening ε3) of length ε with
the main part of the macroscopic domain Ω0. We ask for the effective influence of
the small resonators to find that the weak limit u of uε is characterized through the
same Helmholtz equation in the limit domain Ω0. Hence the effect of the structure
gets lost at leading order. A deeper insight can be gained by studying the first order
corrector wε := uε−u

ε
and its weak limit w. It turns out that w satisfies an effective

Helmholtz equation with a non-homogeneous Neumann boundary condition which
is understood as a sound absorbing effect. The magnitude of the effect depends
on the frequency ω of the system and can be very large for ω close to the resonant
frequency.
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On the curse of dimensionality for semilinear partial
differential equations

Martin Hutzenthaler

(joint work with Weinan E, Thomas Kruse, Arnulf Jentzen, Tuan Ahn Nguyen,
Philippe von Wurstemberger)

High-dimensional second-order partial differential equations (PDEs) are abundant
in many important areas including financial engineering, economics, quantum me-
chanics, statistical physics, etc; see e.g. the surveys [7, 1]. Well-known examples are
the nonlinear Black-Scholes equation in financial engineering for pricing financial



906 Oberwolfach Report 16/2021

derivatives, the nonlinear Schrödinger equation in the many-body problem in quan-
tum mechanics, the Hamilton-Jacobi-Bellman equation in stochastic control prob-
lems, and the dividend maximization problem in insurance mathematics. These
PDEs are often nonlinear and high-dimensional. The challenge in the numerical
approximation of solutions of high-dimensional nonlinear PDEs lies in the possible
curse of dimensionality which means that the complexity of the problem goes
up exponentially as a function of the dimension or of the inverse prescribed accu-
racy. Recently we discovered the full history recursive multilevel Picard method
(MLP) in E et al. [6] and in Hutzenthaler et al. [11]. We extended and further
studied this method analytically and numerically in [13, 12, 3, 8, 9, 2, 5, 10, 4].
Roughly speaking, MLP approximation methods are based on the idea, first, (I)
to reformulate the PDE problem under consideration as a suitable stochastic fixed
point equation, then, (II) to approximate the fixed point of the resulting stochastic
fixed point equation through fixed point iterates, which in the context of temporal
integral equations are referred to as Picard iterations, and, finally, (III) to ap-
proximate the expectations and the integrals appearing in the fixed point iterates
through suitable multilevel Monte Carlo approximations.
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Error Analysis of a Mixed Discontinuous Galerkin Discretization for
Maxwell Eigenvalue Problems in Periodic Media

Jacobus J.W. van der Vegt

(joint work with Zhongjie Lu, Yan Xu, Aycil Cesmelioglu, Kaifang Liu, M.
Schlottbom, Devashish, Sjoerd Hack, Lars Corbijn van Willenswaard,

Marek Kozon)

Numerical discretizations for the Maxwell equations need to address a number of
important challenges: i.) the accurate computation of electromagnetic waves for
long times and in large domains with minimal numerical dispersion and dissipa-
tion errors; ii.) the ability to deal with complex geometries, often containing small
features (e.g. wires, thin layers, holes); iii.) the accurate computation of singular-
ities at sharp corners, edges and material interfaces; iv.) the need for fast solvers,
especially for the time-harmonic Maxwell equations (e.g. eigenvalue problems).
During the last two decades Discontinuous Galerkin (DG) discretizations for the
Maxwell equations have received significant interest since they present a novel way
to address these challenges and provide an alternative to the frequently used finite
difference time-domain, boundary integral and conforming finite element methods.

The use of basis functions in a DG methods that are discontinuous at element
faces offers great flexibility in the development of hp-finite element discretizations
that are well suited for mesh adaptation, e.g. to accurately compute singularities,
and the approximation of complex geometries using general unstructured meshes.
Also, parallel computing efficiency is greatly enhanced by the local element based
structure of DG discretizations. DG methods have been demonstrated on large
scale computations of electromagnetic waves, e.g. in [1, 4]. A detailed description
of DG methods, including their theoretical analysis can be found in e.g. [3, 5].
A comprehensive analysis of various aspects of finite element methods for the
Maxwell equations is presented in [8].

In this presentation we will focus on the error analysis of DG discretizations for
the Maxwell eigenvalue problem in periodic media. Important examples of this
class of problems are photonic crystals, which are lattice-like nanostructures with
periodic electric permittivity [6]. For specific geometries, photonic crystals possess
photonic band gaps in which the propagation of specific light frequencies through
the crystal is prohibited. This can be used to control light propagation and emis-
sion, thus making photonic crystals very important for a wide range of photonic
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applications [6]. However, designing and fabricating photonic crystals requires the
knowledge of the frequencies at which light waves are completely reflected, propa-
gated only in desired directions, or contained within a specified region, which asks
for the solution of the Maxwell eigenvalue problem in periodic media. Solving the
Maxwell eigenvalue problem poses, however, several challenges. In particular, one
needs to ensure that the numerical discretization of the Maxwell eigenvalue prob-
lem converges to the exact eigenvalues and with the correct multiplicity, which
questions are the main topic of this research.

In the computational modeling of photonic crystals we consider the following
Maxwell eigenproblem:

∇× (ǫ−1∇×H) = ω2H in R
d,(1a)

∇ ·H = 0 in R
d,(1b)

where the electric permittivity ǫ is periodic, and H is the magnetic field. This
periodicity can be described mathematically by primitive lattice vectors {ai, i =
1, · · · , d}, which form a maximal set of linearly independent vectors in Rd as
follows:

ǫ(x+ a) = ǫ(x), ∀x ∈ R
d,

for any a that belongs to the Bravais lattice

A :=

{

d
∑

i=1

kiai, ki ∈ Z, i = 1, · · · , d
}

.

The periodic solution is now completely determined by its values on the primitive
cell (fundamental domain), which is defined as

Ω :=

{

x ∈ R
d : x =

d
∑

i=1

xiai, xi ∈ [0, 1], i = 1, · · · , d
}

.

Here we call (H, ω2) an eigenpair of problem (1). The Bloch waves are quasi-
periodic functions satisfying

H(x) = eiα·xu(x),

where u is periodic in x, that is u(x + a) = u(x), ∀ x ∈ Rd, ∀ a ∈ A and α is in
the associated first Brillouin zone K [6].

We assume that ǫ = ǫ(x) is real and piecewise constant with respect to a
partition of Ω, and there are real positive numbers ǫ∗, ǫ

∗ > 0 such that

0 < ǫ∗ ≤ ǫ(x) ≤ ǫ∗ < +∞, ∀ x ∈ Ω.

By Bloch’s theorem, we can transform the quasi-periodic problem (1) into a peri-
odic problem. We introduce therefore the following shifted differential operators:

∇α = ∇+αiI,

where I is the identity operator and i =
√
−1. In order to explicitly enforce the

constraint ∇α ·u = 0 in the numerical discretization, we introduce a new variable
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p as a Lagrange multiplier. The eigenvalue problem (1) then can be expressed as:
for all α ∈ K, find (u, p, ω2), such that

∇α × (ǫ−1∇α × u)−∇αp = ω2u in Ω,(2a)

∇α · u = 0 in Ω,(2b)

on the unit cell Ω with periodic boundary conditions u(x+ a) = u(x) and p(x+
a) = p(x) for all x ∈ Rd and a ∈ A.

The Maxwell eigenvalue problem (2) in a unit cell Ω is solved using a mixed
discontinuous Galerkin discretization. Given a finite element tessellation Th, we
introduce the following finite element spaces:

Qα

h = {φ ∈ L2(Ω) : φK = e−iα·xφ̃ for some φ̃ ∈ Pk+1(K) ∀K ∈ Th},
Vα

h = {v ∈ L2(Ω) : vK = e−iα·xṽ for some ṽ ∈ Sk(K) ∀K ∈ Th},

where L2(Ω) is the space of square integral functions on Ω, Pk(K) is the set local
polynomials of degree less than or equal to k on K; the elements in Sk(K) have
the form a(x) + b(x)× x, with a,b ∈ Pk(K)3.

Let Th be a periodic, shape-regular, conformal mesh on Ω aligned with the
possible discontinuities of ǫ. We denote the set of all faces of Th by Fh, the set of
boundary faces Fb

h = Fh ∩ ∂Ω and the set of interior faces F i
h = Fh\Fb

h.
For functions that are discontinuous on element faces, we define jumps and

averages across a face f ∈ Fh as follows: If f ∈ Fh is shared by tetrahedraK± ∈ Th
with unit outward normal vectors n±, we define, respectively, the tangential and
normal jumps and the average of v across the interior face f ∈ F i

h as:

[[v]]T := n+×v++n−×v−, [[v]]N := n+ := v++n− := v−, {{v}} :=
1

2
(v++v−),

and we define the normal jump and average of q as:

[[q]]N = n+q+ + n−q−, {{q}} =
1

2
(q+ + q−),

where v± denote the traces of v taken from within K±. At the boundary, we
define the jumps and means in a periodic way.

For α ∈ K, with α 6= 0, we introduce the following mixed DG method: find
(uh, ph, ω

2
h) ∈ Vα

h ×Qα

h × C with (uh, ph) 6= (0, 0), such that

ah(uh,v) + bh(v, ph) = ω2
h(uh,v),

bh(uh, q)− ch(ph, q) = 0,
(3)
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for all (v, q) ∈ Vα

h × Qα

h , where the discrete forms ah, bh and ch are defined as
follows:

ah(u,v) :=

∫

Ω

ǫ−1∇α,h × u · ∇α,h × vdx−
∫

Fh

[[u]]T · {{ǫ−1∇α,hv}}ds

−
∫

Fh

[[v]]T · {{ǫ−1∇α,h × u}}ds+
∫

Fh

aF [[u]]T · [[v]]Tds

+

∫

Fh

bF [[u]]N [[v]]Nds,

bh(v, p) :=−
∫

Ω

v · ∇α,hpdx+

∫

Fh

{{v}} · [[p]]Nds,

ch(p, q) :=

∫

Fh

cF [[p]]N · [[q]]Nds.

The main steps in the error analysis can now be summarised as:

(1) Proof continuity and semi-ellipticity of ah(·, ·).
(2) Rewrite the eigenvalue problem in the standard form for mixed methods

and proof an inf-sup condition for the mixed formulation.
(3) Derive an a priori error bound and proof uniform convergence of the nu-

merical solution operator.
(4) Use the spectral approximation theory in [2] and the results from step (3)

to obtain bounds on the error in the eigenvalues and eigenfunctions.

The result of this analysis is that

|ω2 − ω2
h| ≤ Ch2min{s,k+1},

with k the polynomial order of the basis functions and s the regularity of the
solution. The error in the eigenfunctions is proportional to hmin{s,k+1}. For the
full details of the analysis we refer to [7].
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Mixed discontinuous Galerkin discretization of the time-harmonic
Maxwell equations with minimal smoothness requirements

Kaifang Liu

(joint work with D. Gallistl, M. Schlottbom and J.J.W. van der Vegt)

Problems. We consider the analysis of mixed discontinuous Galerkin approxima-
tions for the time-harmonic Maxwell equations with low regularity solutions: find
u, p such that

∇× (µ−1∇× u)− k2εu− ε∇p = j in Ω,(1a)

∇ · (εu) = 0 in Ω,(1b)

n× u = 0 on Γ,(1c)

p = 0 on Γ.(1d)

Here, u represents the electrical field, p the Lagrange multiplier used to enforce the
divergence constraint (1b), k is the wave number and j ∈ L2(Ω)3 is the source term.
The piecewise constant coefficients µ and ε are the magnetic permeability and
electrical permittivity of the media, respectively. We assume that Ω ⊂ Rd, d = 2, 3
is a simply connected Lipschitz domain with connected boundary Γ and n is the
external unit normal vector. In general, problem (1) admits solutions with u s.t.
u,∇ × u ∈ Hs(Ω), where s > 0 could be arbitrarily close to zero, which causes
difficulties for nonconforming discretizations and error analysis.

Backgrounds and difficulties. The key difficulty in the error analysis of non-
conforming FEMs for non-smooth problems is that the classical trace theorems
are not applicable, i.e., the exact solution does not have a sufficiently regular trace
on mesh faces. Until now, only a few techniques have been developed to overcome
this difficulty. One technique for the Maxwell equations relies on the definition
of generalized traces [3, Proposition 7.3 and Assumption 4]. In the spirit of [3],
[4] proposed an interior-penalty method with C0 finite elements for the Maxwell
equations with minimal smoothness requirements. Recently, [6] analyzed a non-
conforming approximation of elliptic PDEs with minimal regularity by introducing
a generalized normal derivative of the exact solution at the mesh faces. They
also showed that this idea can be extended to solve the time-harmonic Maxwell
equations with low regularity solutions by introducing a more general concept for
the tangential trace. Another technique that avoids the definition of generalized
traces, which has been proposed by [7] in the context of elliptic PDEs, is to use
an enriching map to transform a non-conforming function into a conforming one.
It is well-known that stabilization of interior-penalty discontinuous Galerkin meth-
ods, in general, requires a sufficiently large penalty parameter, while there is no
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explicit formula for computing the parameter and this causes some trouble in ap-
plications. A remedy follows from the idea of DG for turbomachinery flows and
elliptic problems, see, e.g. [1, 2], where the lifting operator is used to replace the
integral on faces by an integral on volumes and get the stabilization of DG for an
explicit and computable parameter.

Aims and techniques. In this work, we analyse a mixed DG formulation for the
Maxwell equations with low regularity solutions, which modifies the method of [8]
by using lifting operator [2] and we aim to obtain

• an explicit expression for stabilization parameters;
• A priori error estimates of mixed DG method under low regularity:

εu ∈ Hr(Th)3, µ−1∇× u ∈ Hr(Th)3

with exponent r > 0, which could be arbitrarily close to zero;
• A quantitative convergence statement of the mixed DG approximation for
low regularity solutions.

The main objective is to generalize the error analysis of [8] to the non-smooth
case and to present optimal a priori error estimates for the low regularity solution
in the broken Sobolev space Hs(Th), s ≥ 0 with Th the finite element partition.
The proof of our a priori error analysis is different from [3, 6] in that, first, it em-
ploys a lifting operator that allows us to replace integrals over faces by integrals
over volumes and, thus, avoids the definition of a generalized tangential trace on
mesh faces. A further major benefit of using the lifting operator is that we ob-
tain an explicit expression for stabilization parameters, which, compared to [8],
facilitates the implementation considerably. Secondly, we use smoothed interpo-
lations [5], which map low regularity solutions to corresponding conforming finite
element spaces, and generalize the residual equations for low regularity solutions,
and finally, combined with the best approximation obtained by a newly defined
quasi-interpolation, to prove optimal convergence rates.
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Toward accurate and efficient boundary integral equation methods for
metasurface design

Carlos Pérez-Arancibia

(joint work with Raphaël Pestourie, Rodrigo Arrieta, and Steven G. Johnson)

We consider a class of electromagnetic scattering problems arising in the design
of optical metasurfaces. Metasurfaces are planar metamaterial slabs of subwave-
length thickness consisting of a pattern made up of a large number of subwave-
length optical elements (typically, nanorods or nanopillars), that are engineered
to manipulate the direction, amplitude, phase, and polarization of light [1]. The
massive size and multiple-scale complexity of the computational domains involved
in these problems pose major challenges to general-purpose PDE solvers, hence
opening up exciting research opportunities for the development of efficient physics-
informed numerical approximations and/or for the improvement of specialized
Maxwell/Helmholtz solvers.

In the first part of our talk, we present a PDE-constrained adjoint-based op-
timization framework for metasurface inverse design [2] that relies on a fast but
low-order scattering approximation—known as the locally-periodic approximation
(LPA)—which is used to avoid fully solving the governing Maxwell equations at
each step of the iterative optimization solver. The LPA, which can be cast as an
embarrassingly parallel domain decomposition method, leverages the often slow
variation of the design parameters (e.g., cross-section radius, semi-axis length)
that define the shape of the optical elements, to reduce the full solution to a small
number of independent unit-cell periodic problems. The scattered field LPA is
then constructed via a Chebyshev surrogate model and a suitable Green’s integral
representation formula that suitably combines the local near fields to produce the
far-field at the desired locations. We present a variety of examples that demon-
strate both the capabilities and the limitations of the LPA. Indeed, examples of
metasurfaces are shown in which the LPA fails to provide accurate enough solutions
and where difficult-to-compute higher-order corrections are needed to properly ac-
count for the relevant physics [3]. These examples reveal, in part, that despite
the success of the LPA in some settings, provably accurate full-wave solutions are
still very valuable either for validation of optimized designs, for the training of
surrogate models, or for optimization (provided an appropriate balance between
accuracy and speed is considered).

In the second part of our talk, we present an efficient high-order boundary in-
tegral equation (BIE) method for the full-wave numerical solution of metasurface
scattering problems. We first frame them as classical locally perturbed two-layer
media scattering problems for which well-posedness has been established in [4], and
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we justify the use of BIE methods for their solution over finite difference and finite
element methods. Emphasis is given on the salient limitations of standard layered
media BIE methods based on Sommerfeld integrals (see, e.g., [5]) that (arguably)
render metasurface scattering problems intractable by them. We then introduce
a fast, flexible, and easy-to-implement BIE method based on the windowed Green
function (WGF) method [6, 7, 8, 9]. Unlike standard approaches, the proposed
methodology does not involve the evaluation of computationally expensive Som-
merfeld integrals as it leverages a BIE formulation given in terms of free-space
Green functions that involves integration over the entire unbounded penetrable
boundary. The unbounded BIE domain is effectively reduced to a small-area sur-
face using the WGF method, which exhibits high-order (super-algebraic) conver-
gence as the size of the truncated surface increases. The resulting (second-kind)
windowed integral equation can be numerically solved by means of off-the-shelf
BIE methods. A variety of examples demonstrate the applicability, accuracy,
and efficiency (as compared to the Sommerfeld-integral approach) of the proposed
methodology based on both spectrally-accurate Nyström and boundary element
methods. Promising results are shown, where, to the best of the author’s knowl-
edge, a full-wave 3D BIE solver has for the first time been used to compute the
electromagnetic scattering off of a small-size light-focusing all-dielectric metasur-
face [10].
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Least-Squares and dPG methods with edge finite elements for the
approximation of eigenvalues

Henrik Schneider

(joint work with Fleurianne Bertrand)

Edge finite elements are the natural choice for the approximation of the Maxwell
eigenvalues. In the framework of mixed methods, they allow for rotation-based
variational formulations involving the rotation as an independent variable approx-
imated in a suitable H(curl)-conforming finite element spaces. Such approaches
may either lead to a saddle-point problem or to a symmetric positive definite
system. The approximation of eigenvalue with saddle-point problems have been
intensively studied and we refer to [2] for an overview. This talk, therefore, fo-
cuses on methods leading to symmetric positive definite systems. This includes the
Least-Squares method (see [3] for a comprehensive overview) and the discontinuous
Petrov-Galerkin method, introduced in a series of papers [4, 5, 6].

1. Computation of the eigenvalues with the Least-Squares method

The recently published articles [1, 7, 8] investigate the Least-Squares finite element
approximation of the eigensolutions of operators associated with second-order el-
liptic equations. Given f ∈ L2(Ω), the simplest Least-Squares formulation for the
source problem −curl curl u = f with boundary conditions curl u × n = 0, is
given by the minimization of the functional

F(τ , v) = ‖τ − curl v‖2 + ‖curl τ + f‖2.

The rotation σ = curl u belongs to the space H0(curl; Ω) consisting of the func-
tions τ in L2(Ω)2 with curl τ ∈ L2(Ω) and τ × n = 0 on ∂Ω. The corresponding
variational formulation can be used in a natural way to consider the following
eigenvalue problem: find λ ∈ C and u ∈ H1(Ω) with u 6= 0 and (u, 1) = 0 such
that for some σ ∈ H0(curl; Ω) it holds
{

(σ, τ ) + (curlσ, curl τ )− (curl u, τ ) = −λ(u, curl τ ) ∀τ ∈ H0(curl; Ω)

− (σ, curl v) + (curl u, curl v) = 0 ∀v ∈ H1(Ω), (v, 1) = 0

Let Σh ⊂ H0(curl; Ω) and Uh ⊂ H1(Ω) be conforming finite element spaces. The
discretization of (1) reads: find λh ∈ R and uh ∈ Uh with uh 6= 0 and (uh, 1) = 0
such that for some σh ∈ Σh it holds
{

(σh, τ ) + (curlσh, curl τ )− (curl uh, τ ) = −λh(uh, curl τ ) ∀τ ∈ Σh

− (σh, curl v) + (curl uh, curl v) = 0 ∀v ∈ Uh, (vh, 1) = 0

Regarding the source problem, the choice of finite element spaces for the approx-
imation of the different variables is not restricted by compatibility conditions.
However, for the eigenvalue problem, our framework is restricted to finite element
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spaces Σh and Uh satisfying the following approximation properties

inf
τ∈Σh

‖χ− τ‖H0(curl;Ω) ≤ Chs
(

‖χ‖Hs(Ω) + ‖ divχ‖H1+s(Ω)

)

inf
v∈Uh

‖p− v‖H1(Ω) ≤ Chs‖p‖H1+s(Ω)

Using duality arguments, we are then able to derive refined L2-estimates that
directly imply the uniform convergence of the discrete solution operator to the
continuous one and thus, the convergence of the eigenvalues.

Figure 1. Approximation of the first eigenfunction on the L-
shape with edge finite elements

2. Computation of the eigenvalues with the discontinuous

Petrov-Galerkin method

The discontinuous Petrov-Galerkin method was originally constructed to find op-
timal discrete test functions to get optimal stability constants. The method can
be charaterised as a mixed and Least-Squares method. Since it is not pratical
to compute the optimal test functions for every class of problems the practical
dPG formulation [9] was introduced, with easily computable test-spaces which are
arbitrary close to the optimal ones. The mixed formulation of the dPG method
comes also with a residual error estimator, that can be used for an hp adaptive
scheme. Normally, the trial space U can be split into two parts, where the first
one U0 represents the volumetric part and the second U1 the remaining compo-
nents. Usually, U1 contains functions that are defined on the hole domain Ω, as
well as those which are only defined on the skeleton of the triangulation T . So the
continuous eigenvalue problem reads: find eigenvalues λ ∈ C and eigenfunctions
u = (u0, u1) ∈ U = U0 × U1 with u0 6= 0 such that

b(u, v) = λm(u0, v) ∀v ∈ V.

In general the two space U and V are not the same. Since the mixed formulation
is suitable for computation, we use this form to present the discrete problem. Let
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Uh ⊂ U and V ⊂ Vh, then the problem reads: find λh ∈ C such that for some
uh = (u0,h, u1,h) ∈ Uh = U0,h × U1,h with u0,h 6= 0 and some εh ∈ Vh it holds

{

(εh, vh)V + b(uh, vh) = λhm(u0,h, vh) ∀vh ∈ Vh

b(zh, εh) = 0 ∀zh ∈ Uh.

By using the Babǔska–Osborn theory [10] and the known convergence results
for the source problem we can prove the uniform convergence of the eigenvalues for
a primal and ultra-weak formulation. The included error estimator is connected
with the energy residual ‖εh‖. For this estimator, we can prove global efficiency
and reliability, where these estimates are dependent on the usually higher-order
term λu0 − λhu0,h. In Figure 2 the results of the computation of the first ten
eigenvalues are presented. The computation of the eigenvalues was performed by
an iterative solver and so all eigenvalues have and complex part in the range of
the machine epsilon. The chosen mesh a criss-cross triangulation of the square, at
which for some methods so-called spurious eigenfunction occurs which is not the
case here.

Exact Computed
1 1.31601 1.08121 1.02034 1.00509
1 1.31601 1.08121 1.02034 1.00509
2 2.69169 2.18003 2.04501 2.01125
4 5.1988 4.74426 4.18535 4.04613
4 5.1988 4.74426 4.18535 4.04613
5 6.87823 5.90737 5.22378 5.05556
5 6.87823 5.90737 5.22378 5.05556
8 - 9.84221 8.44574 8.10981
9 - 12.0643 9.8114 9.2009
9 - 12.0643 9.81144 9.20122

DoF 147 567 2223 8799

Figure 2. Real part of the computed eigenvalues with the primal
formulation
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[10] Babuška, I. and Osborn, J., Eigenvalue problems, Handbook of numerical analysis, Vol. II
(1991), 641–787.

[11] Carstensen, C. and Demkowicz, L. and Gopalakrishnan,J., A posteriori error control for
DPG methods, SIAM J. Numer. Anal. 52 (2014), 1335–1353.

Towards a metriplectic structure for radiative transfer equations

Matthias Schlottbom

(joint work with Michael Kraus)

Transport of electromagnetic radiation has many important applications, such as
medical imaging [1], climate sciences [2] and in geosciences [10]. In these ap-
plications, the high complexity of the scattering media in terms of number and
geometry of scatterers does not allow to directly simulate Maxwell’s equations [7],

∂E

∂t
=

1

ε
∇×H,

∂H

∂t
= − 1

µ
∇×E.

Here, ε(x) denotes the spatially varying dielectric permittivity, µ(x) the relative
magnetic permeability, and E and H are the electric and magnetic field, respec-
tively. Instead, the radiative transfer equation (RTE) has been established as a
sound physical model by a rigorous derivation from Maxwell’s equations [3, 9].

In the following, we discuss the case without polarization, which leaves us with
the following radiative transfer equation for the specific intensity ρ(x,k, t),

∂ρ

∂t
= ∇xω · ∇kρ−∇kω · ∇xρ+

∫

|k′|=|k|

σ(.,k′ · k)ρ(.,k′, .)dS(k′)− Σρ(1)

for the phase space variables (x,k) ∈ R3×R3 and dS denoting surface integration.

The dispersion relation is ω(x,k) = v(x)|k|, with v(x) = 1/
√

ε(x)µ(x) denoting
the speed of light. The differential scattering cross section σ(x,k′ · k) > 0, which
describes the probability of post-collisional direction k given pre-collisional direc-
tion k′, satisfies the normalization condition

∫

|k′|=|k|

σ(x,k′ · k)dS(k′) = Σ(x, |k|).(2)

Scattering is introduced by random fluctuations of the medium. Without these
fluctuations, σ = 0 and (1) is the Liouville equation of geometric optics.
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Abstract metriplectic dynamics. Metriplectic dynamics are a formalism to
describe dynamical systems that contain Hamiltonian and dissipative dynamics
[4, 5, 8]. The evolution of a functional F of the dynamical variables is given by

dF
dt

= {F ,G}+ (F ,G) ,(3)

where G = H + S is a free energy functional with total energy H and entropy
S. The most important properties for our discussion are that the Poisson bracket
{·, ·} is bilinear and anti-symmetric, while the metric bracket (·, ·) is bilinear,
symmetric negative semi-definite. Employing the basic assumptions that {A,S} =
0 and (A,H) = 0 for all functionals A, that is S and H are Casimirs of the
respective brackets, the first and second law of thermodynamics are guaranteed,
i.e., conservation of energy and dissipation of entropy

dH
dt

= {H,G}+ (H,G) = 0,
dS
dt

= {S,G} + (S,G) ≤ 0.

The RTE as a metriplectic system. Denoting the canonical Poisson bracket
by [f, g] = ∇xf · ∇kg −∇kf · ∇xg and the L2-gradient of a functional A by δA

δρ
,

we define a Poisson and a metric bracket for functionals as follows

{A,B} =

∫

R3

∫

R3

ρ

[

δA
δρ
,
δB
δρ

]

dkdx,

(A,B) =
∫

R3

∫

R3

∫

|k′|=|k|

σ(x,k′ · k)δA
δρ′

(δB
δρ

− δB
δρ′

)

dS(k′) dkdx.

Here, δA
δρ′

means that δA
δρ

is evaluated at k′. Clearly, the Poisson bracket is bilinear

and antisymmetric. Moreover, the particular form of σ(x,k′ · k) implies that the
metric bracket is symmetric. Using (2) and the Cauchy-Schwarz inequality, one
can show that the metric bracket is negative semi-definite. Therefore, these two
brackets fit the metriplectic framework outlined above.

The total energy is described by the Hamiltonian functional

H[ρ](t) =

∫

R3

∫

R3

ρ(x,k, t)v(x)|k| dkdx.

It is straight-forward to verify that H is a Casimir of the metric bracket. Any
smooth function f : R → R defines a Casimir for the Poisson bracket via

C[ρ](t) =
∫

R3

∫

R3

f(ρ(x,k, t)) dkdx.

We define an entropy functional S by the choice f(ρ) = ρ2/2. The dynamics em-
bodied in (1) can then be recovered from the abstract evolution (3) by considering
functionals of the form

F [ρ](t) =

∫

R3

∫

R3

ψ(x,k) ρ(x,k, t) dkdx for arbitrary test functions ψ.

As a next step, the metriplectic formalism allows to systematically discretise the
radiative transfer equation such that the first two laws of thermodynamics hold
also for the discrete formulation, cf. [6].
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Conforming finite element divdiv complexes and the application for
the linearized Einstein-Bianchi system

Rui Ma

(joint work with Jun Hu, Yizhou Liang)

This talk presents the first family of conforming finite element divdiv complexes on
tetrahedral grids in three dimensions. In these complexes, finite element spaces of
H(divdiv,Ω; S) are from a current preprint [Chen and Huang, arXiv: 2007.12399,
2020] while finite element spaces of bothH(symcurl,Ω;T) andH1(Ω;R3) are newly
constructed here. It is proved that these finite element complexes are exact. As a
result, they can be used to discretize the linearized Einstein-Bianchi system within
the dual formulation.
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Introduction to port-Hamiltonian systems

Hans Zwart

Starting with the standard Hamiltonian system given as
[

q̇
ṗ

]

=

[

0 I
−I 0

]

∂H

∂(q, p)
(q, p),

we show that there are two generalisations possible. Namely, replacing the matrix
[

0 I
−I 0

]

by a general skew-symmetric matrix J , and secondly by allowing variables
which model the connection with the environment, i.e., the ports. This led to the
concept of a Dirac structure.

Let E and F be two linear spaces (effort and flow space, respectively) which are
dual to each other with duality product 〈f | e〉. On the product space B := F ×E
we define the symmetric bilinear form

〈[

f1
e1

]

,

[

f2
e2

]〉

B

= 〈f2 | e1〉+ 〈f1 | e2〉.

The linear subspace D ⊂ B is a Dirac structure if

D = D⊥,

where the ⊥ is taken with respect to the bilinear form 〈·, ·〉B.
It is easy to see that for any Dirac structure there holds that 〈f, e〉B = 0 for

[

f1
e1

]

∈ D.
These Dirac structures might have external ports which can be coupled. A

typical element of DI looks like (f1, fc, e1, ec) and a typical element of DII looks

like (f2, f̃c, e2, ẽc). Then

DI◦II := {f2, f1, e2, e1) ∈ F2 ×F1 × E2 × E1 |
there exist fc ∈ Fc and ec ∈ Ec such that

(f1, fc, e1, ec) ∈ DI and (f2, fc, e2,−ec) ∈ DII}.
is a Dirac structure.

DI

(f1, e1)

+

−
fc

ec

DII

(f2, e2)

Figure 1. Coupling of two Dirac structures

There is a rich literature dealing with Dirac structures and port-Hamiltonian
systems on finite-dimensional effort/flow spaces, see e.g. [1, 4, 5].

For infinite-dimensional flow and effort spaces, the theory can be extended. The
start was given in [6]. The systems become partial differential equations, and thus
the effort and flow spaces become function spaces. The J matrix is replaced by a
(formally) skew-symmetric operator. For J given by J = P1

∂
∂ζ

+ P0 the following
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defines a Dirac structure on F = E = L2(a, b;Rn) ⊕ Rn with the standard inner
product, see e.g. [3, 7]

D = {(f, f∂ , e, e∂) | e ∈ H1(a, b;Rn), f ∈ L2(a, b;Rn), f∂ , e∂ ∈ R
n,

f = Je and
(

f∂
e∂

)

=
1√
2

(

P1 −P1

I I

)(

e(b)
e(a)

)}

.

P.d.e.’s associated to this Dirac structure have nice analytic and systems theoretic
properties, see e.g [2, 3, 7]. The variables f∂ and e∂ may represent control and
observations at the boundary of the spatial domain, but they can also be used
to as interconnection variables. For instance when the differential operator J is
replaced by a skew-symmetric matrix, as happens in numerical approximation of
the p.d.e., the approximate Dirac structure only represents a small part of the
total p.d.e.. By using many copies of this Dirac structure, and connecting them
via the variables f∂ and e∂ , see Figure 2, a numerical approximation of the total
p.d.e. is constructed while maintaining the Hamiltonian structure.

D1

(f1, e1)

+

+

D2

(f2, e2)

+

+

D3

(f3, e3)
(f∂, e∂)(f̃∂ , ẽ∂)

Figure 2. Coupling of Dirac structures via boundary effort
and flow
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Adaptive boundary control for PDEs by Funnel Control

Felix L. Schwenninger

(joint work with Marc Puche, Timo Reis)

Boundary control for evolution equations is a classical topic in the control of
infinite-dimensional systems and naturally appears when measurements and con-
trol inputs enter via interfaces of the spatial domain. Subtleties usually arise when
identifying the respective boundary spaces. In the case of feedback control, this
results in an implicit equation for which wellposedness needs to be investigated.
Here, we consider an abstract class of linear boundary control systems of the form

ż(t) = Az(t), z(0) = z0,

Bz(t) = u(t),

Cz(t) = y(t), t > 0,

with unbounded linear operators A,B,C, representing the open loop with input u,
output y and state variable z. The nonlinear feedback law

u = F(y)

is designed such that y, in the resulting implicit system, is arbitrarily close to
a pre-given reference trajectory yref. This is achieved by penalizing the error
between y and yref through a higher control gain. The considered approach follows
the philosophy of funnel control, a well-studied methodology for nonlinear ODE
systems [3], which recently has attracted growing interest in the context of infinite-
dimensional system theory [1, 2, 5]. The structural assumptions on the system
class allows for classical methods from nonlinear semigroup theory for showing
wellposedness and feasibility of the control objective. These conditions involve
dissipativity of the boundary control system and existence of solutions to certain
associated elliptic problems. In particular, these abstract assumptions allow for
hyperbolic as well as parabolic examples. Furthermore, the techniques also suggest
extensions to nonlinear and non-autonomous open-loop systems.

This talk is based on the recent joint work [4] with Marc Puche and Timo Reis.
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Stress Approximation and Stress Equilibration in (Electro-)Elasticity

Gerhard Starke

(joint work with Fleurianne Bertrand, Marcel Moldenhauer)

Our point of departure is the approximation uh satisfying the discretized optimal-
ity condition

(∂Fψ(B(uh),∇vh)L2(Ω) = (f ,vh)L2(Ω) + 〈t,vh〉Γ for all vh ∈ Vh

in some finite element space Vh. Here, ψ(B) is some free energy function, B =
FFT denotes the left Cauchy-Green strain tensor and F = F(u) = I + ∇u the
deformation gradient, while f and t are prescribe volume and traction forces,
respectively. For the Piola-Kirchhoff stress tensor S = ∂Fψ(B(u)), an approxi-
mation SR

h satisfying exactly the equilibrium of momentum div SR
h + f = 0 is of

interest. Such an equilibrated stress reconstruction may be computed as a correc-
tion SR

h = ∂Fψ(B(uh)) + S∆
h which may be localized to vertex patches using the

corresponding partition of unity. The construction in [1], based upon our earlier
investigation in [2], uses broken Raviart-Thomas spaces of next-to-lowest order
and enforces the symmetry condition for the associated Cauchy stress S∆

h F(uh)
T

weakly in the spirit of the stress finite element approach suggested in [3].
The structure of the local problems is studied in detail in [1] leading to the result

that, for interior vertex patches, the null space of the adjoint operator (leading
to linearly dependent constraints) is given by rigid body modes on the deformed
configuration (id+ uh)(Ω).

The mathematical modelling of electro-elasticity is of interest, for example, in
the context of dielectric elastomer actuators. Due to the large size of the associated
strains, nonlinear elasticity formulations need to be used. The electromagnetic
phenomena are described via the so-called electrostatic Maxwell stress

Sm = D⊗E− 1

2
ε(E · E) I ,

where curl E = 0 holds for the electric field E and the electric displacement D
satisfies div D = ρ, the density of free charges. The coupling to the hyperelastic
material model occurs in the modified equilibrium equation

div(S+ Sm) + f = 0

(cf. [4]).
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Figure 1. Bragg stack. Each unit cell has length a and con-
sists of two materials material with permittivities ε1 and ε2. This
unit cell is periodically repeated several times to create the pho-
tonic crystal Ωcr. This structure is surrounded by a homogeneous
medium with permittivity εext. The infinite computational do-
main is truncated to the interval Ω = Ωcr ∪ Ωext = [Γ−,Γ+].

Multiscale FEM for light propagation in realistic photonic crystals

Marek Kozon

(joint work with Lars J. Corbijn van Willenswaard, Willem L. Vos, Matthias
Schlottbom, Jacobus J. W. van der Vegt)

Photonic crystals are media with periodic spatial dependence of electric permit-
tivity ε. This periodicity is responsible for highly nontrivial optical response to
light passing through such a crystal. If properly designed, photonic crystals allow
for manipulation of light, which leads to various applications [1], such as in optical
components, solar cells, lasers, or quantum computing.

Due to the inherent complexity of these materials, numerical computations are
a crucial tool in order to understand their interaction with light. Nevertheless,
full three-dimensional (3D) models of light propagation through photonic crystals
turn out to be extremely computationally demanding. This is mostly due to the
multiscale character of the problem: The micro-scale is here represented by the
unit-cell, i.e., the smallest periodically repeated domain. On this domain, the
electro-magnetic-field profile needs to be resolved with a sufficiently high accu-
racy. On the other hand, realistic photonic crystals used in the state-of-the-art
experiments contain between 103 and 104 unit cells. This represents the macro-
scale, over which the resolution needs to be maintained. In order to alleviate this
issue, we aim to develop a size-robust method, i.e., a method with computational
complexity independent of the size of the crystal.

We illustrate our method on a one-dimensional photonic crystal, also known as
a Bragg stack. The schematic of our computational domain is illustrated in Fig. 1.
To compute the electromagnetic field profile in Ω, we solve the Helmholtz equation

(1) ∂2zu(z) +
(ω

c

)2

ε(z)u(z) = 0, for all z ∈ Ω,
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where u is the electric field to be found, ω and c are the frequency and the speed
of light, respectively. We employ the non-reflecting boundary conditions

(2) ∓∂zu(Γ∓)− ikextu(Γ∓) = ∓∂zuinc(Γ∓)− ikextu
inc(Γ∓),

where we assume an incident plane wave uinc(z) = eikextz coming from the left.
To solve (1), we employ Discontinuous Galerkin FEM in the Symmetric interior
penalty framework [2]. By properly choosing the space V gfem of our trial and test
functions, we are able to achieve computational size robustness. In the following,
we will motivate and describe our definition of this space.

In order to motivate our choice of V gfem, let us briefly look at a so-called unit-
cell problem. This corresponds to solving the Helmholtz equation (1) in a setting
with no external medium, i.e., we assume that the Bragg stack extends to the
infinity and the whole structure is thus globally periodic. From Bloch’s theorem
[3], it follows that the solutions of the unit-cell problem have the form of so-called
Bloch modes:

(3) uBloch(z) = uper(z)e
ikz,

where uper(z) = uper(z + a) has the same periodicity as the medium and k is the
wave vector corresponding to ω.

Bloch modes are therefore solutions for an idealized infinite photonic crystal.
Based on this, one can expect that, for a finite but large crystal, they will still
approximate the true solution to a very good extent. Indeed, it has been proposed
by Brandsmeier et al. [4, 5] that Bloch modes could be used to construct the FEM
basis functions to solve the problem (1). In their work, they modulate the Bloch
modes by Lagrange polynomials of degree pmac to construct the multiscale basis
functions within the crystal. Using the character of these multiscale functions,
they have developed an essentially size robust quadrature, with computational
complexity scaling as O(logNcr), with Ncr being the number of unit cells in the
crystal. Nevertheless, in order to maintain continuity on the interfaces, they are
forced to introduce overlap elements at the boundary of the crystal which contain
both multiscale functions and pure Lagrange polynomials. It turns out that in
order to achieve sufficient resolution in these overlap elements, the required value
of pmac grows very fast with the frequency ω.

Instead, we propose to construct the trial and test space V gfem as follows (for
illustration, see Fig. 2). In the external medium, we define a mesh with Lagrange
basis functions of order pext discontinuously coupled over the element interfaces.
Inside the crystal, we treat the whole crystal as one element, using nBloch Bloch
modes as basis functions. In the language of functional spaces, we define our trial
and test space as

(4) V gfem(Ω) = V Bloch(Ωcr) + P
pext(Ωext),

where V Bloch is the space of nBloch Bloch modes and Ppext is the standard broken
polynomial space.

Because our basis functions within the crystal are pure, unmodulated, Bloch
modes, the quadrature of [5] becomes truly size robust, i.e., independent of the
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Figure 2. Schematic of the V gfem basis functions of our method.
Each color represents a separate function.

crystal size Ncr. Moreover, our method does not require overlap elements at the
crystal boundary, which means that the accuracy decrease w.r.t. the frequency ω
is significantly alleviated.

We finalize by outlining our method in four simple steps:
Micro-scale:

(1) Compute the Bloch modes by solving the unit-cell problem.

Macro-scale:

(2) Use Bloch modes as DG basis functions inside the crystal.
(3) Assemble the stiffness matrix using the size-robust quadrature.
(4) Solve the resulting linear system of equations.

Next step in out research is to develop a proper theoretical analysis of conver-
gence of our method. Afterwards, we aim for implementation in two and three
dimensional problems, also obtaining physically relevant results.

References

[1] S. Noda Two decades of progress for photonic crystals: from the realization of complete 3D
crystals to the state of the art for society 5.0, Proc. SPIE 10927 (2019)

[2] D. A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer
(2012)

[3] J. A. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic crystals, Princeton
University Press (2008)

[4] H. Brandsmeier, K. Schmidt, Ch. Schwab, A multiscale hp-FEM for 2D photonic crystal
bands, J. Comput. Phys. 230 (2011), 349–374.

[5] H. Brandsmeier, Standard and Generalized hp-Finite Element Discretizations for Periodic
Structures, PhD Thesis, ETH Zürich (2013).
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