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WEAK∗-CONTINUITY OF INVARIANT MEANS ON
SPACES OF MATRIX COEFFICIENTS

TIM DE LAAT AND SAFOURA ZADEH

Abstract. With every locally compact group G, one can associate
several interesting bi-invariant subspaces X(G) of the weakly almost
periodic functions WAP(G) on G, each of which captures parts of the
representation theory of G. Under certain natural assumptions, such a
space X(G) carries a unique invariant mean and has a natural predual,
and we view the weak∗-continuity of this mean as a rigidity property of
G. Important examples of such spaces X(G), which we study explicitly,
are the algebra McbAp(G) of p-completely bounded multipliers of the
Figà-Talamanca–Herz algebra Ap(G) and the p-Fourier-Stieltjes algebra
Bp(G). In the setting of connected Lie groups G, we relate the weak∗-
continuity of the mean on these spaces to structural properties of G.
Our results generalise results of Bekka, Kaniuth, Lau and Schlichting.

1. Introduction

With every locally compact group G, which in this article we assume to
be second countable and Hausdorff, one can associate several interesting
function spaces consisting of matrix coefficients of different classes of rep-
resentations. In the setting of unitary representations, notable examples,
which were introduced by Eymard [14], are the Fourier-Stieltjes algebra
B(G), consisting of all matrix coefficients of unitary representations of G,
and the Fourier algebra A(G), consisting of all matrix coefficients of the
left-regular representation of G.

A much more general class of representations is the class of uniformly
bounded representations of G on reflexive Banach spaces. Albeit being a
very large class, these representations still have nice analytic properties.
For instance, if π : G → B(E) is such a representation, then E decomposes
as the direct sum of the closed subspace of π(G)-invariant vectors and a
canonical invariant complement [2] (see also [5], [29]). The algebra of matrix
coefficients of such representations coincides with the algebra WAP(G) of
weakly almost periodic functions on G [24] (see also [22], [4]).

As a well-known consequence of the Ryll-Nardzewski fixed point theorem,
the space WAP(G) carries a unique (two-sided) invariant mean (see e.g. [16,
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2 TIM DE LAAT AND SAFOURA ZADEH

§3.1]). In [17, Theorem 3.6], Haagerup, Knudby and the first-named author
showed that under mild conditions, a bi-invariant linear subspace X(G) of
WAP(G) has a unique invariant mean, arising as the restriction of the mean
on WAP(G). A particular case of this result, namely the case B(G), was
already known from [15]. We recall some background on weakly almost
periodic functions and invariant means in Section 2.

The Fourier-Stieltjes algebra B(G) can be identified with the dual space
of the universal group C∗-algebra C∗(G) of G. It is known that the mean
on B(G) is weak∗-continuous if and only if G has Kazhdan’s property (T)
[1], [30] (see also [17]), which is a well-known rigidity property for groups
with many applications (see [6]).

This characterisation of property (T) raises the question under which
conditions a space X(G) as above has a predual. We establish sufficient
conditions for this in Theorem 3.1 and describe an explicit predual Y (G) for
these spaces. Under the conditions that a (sufficiently large) function space
X(G) has a (unique) invariant meanmX and a natural predual Y (G), we can
study the analogue of property (T) corresponding to the weak∗-continuity of
mX . More precisely, we say that G has property (T∗X) if the invariant mean
mX onX(G) is weak∗-continuous with respect to the weak∗-topology coming
from the predual Y (G) (see also Definition 4.1). This idea generalises both
property (T), corresponding to X(G) = B(G), and property (T∗) from [17],
corresponding to X(G) being the space McbA(G) of completely bounded
Fourier multipliers.

We study property (T∗X) explicitly in the concrete cases of X(G) be-
ing the algebra McbAp(G) of p-completely bounded multipliers of the Figà-
Talamanca–Herz algebra Ap(G), and X(G) being the p-Fourier-Stieltjes al-
gebra Bp(G), with 1 < p < ∞. We recall these algebras in Section 2. For
these X(G) and connected Lie groups G, we relate property (T∗X) to the
structure of G; see Theorem 7.3 and Theorem 8.2. In these theorems, the
space X(G) ∩ C0(G) is of special interest. Indeed, as can be expected, un-
der certain natural assumptions on G, property (T∗X) is equivalent to the
fact that X(G)∩C0(G) is weak∗-closed in X(G). This follows directly from
the weak∗-continuity of the mean in combination with a very general Howe-
Moore type theorem due to Veech [32]. Note that the space X(G) ∩ C0(G)
can be viewed as a generalisation of the Rajchman algebra B(G) ∩ C0(G).

Theorem 8.2 generalises a result of Bekka, Kaniuth, Lau and Schlichting
[7, Theorem 2.7], where for connected Lie groups G, the weak∗-closedness of
the space B(G) ∩ C0(G) in B(G) was related to the structure of G. Let us
point out that the characterisation of property (T) in terms of the weak∗-
continuity of the mean on B(G) was not used there.

Our initial aim was to prove results along the lines of Theorem 7.3 and
Theorem 8.2 for more abstract classes of function spaces/algebras (of matrix
coefficients) that carry an invariant mean and have a natural predual. How-
ever, in order to relate the weak∗-continuity of the mean to the structure of
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groups, we would have needed to put too many additional assumptions on
X(G), which would not have justified the level of abstraction.

Acknowledgements
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was visiting the Westfälische Wilhelms-Universität Münster. She would like
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2. Preliminaries

2.1. Invariant means. Let G be a locally compact group and X(G) a
linear subspace of L∞(G) that is closed under complex conjugation and that
contains all constant functions. A positive linear functional m : X(G) → C
satisfying ‖m‖ = m(1) = 1 is said to be a mean on X(G).

We assume that X(G) is invariant under left and right translations, i.e. if
ϕ ∈ X(G), then for all g ∈ G, the functions Lgϕ : h 7→ ϕ(g−1h) and
Rgϕ : h 7→ ϕ(hg) lie in X(G). A mean m is called left invariant (resp. right
invariant) if m(Lgϕ) = m(ϕ) (resp. m(Rgϕ) = m(ϕ)) for all ϕ ∈ X(G) and
g ∈ G. A mean that is both left and right invariant is called two-sided in-
variant. In this article, invariant means are always assumed to be two-sided
invariant, unless explicitly mentioned otherwise.

2.2. Weakly almost periodic functions. For a locally compact group
G, a function ϕ ∈ Cb(G) is called weakly almost periodic if the left orbit
O(ϕ,L) = {Lgϕ | g ∈ G} (or equivalently, the right orbit O(ϕ,R) = {Rgϕ |
g ∈ G}) is relatively weakly compact, i.e. its closure is compact in the
weak topology on Cb(G). We denote the space of weakly almost periodic
functions by WAP(G). This space is a closed bi-invariant and inversion
invariant subalgebra of Cb(G) that contains the constants.

It is well known (see e.g. [16, §3.1]) that for every locally compact groupG,
there exists a unique left invariant mean m on WAP(G). Given an element
ϕ ∈ WAP(G), its mean m(ϕ) is explicitly given by the unique constant in
the weakly closed convex hull C(ϕ,L) of O(ϕ,L) (which equals the unique
constant in the analogously defined set C(ϕ,R)). Moreover, the mean m is
right invariant and inversion invariant. For details on weakly almost periodic
functions, see [16], [9].

2.3. An invariant mean on subspaces of WAP(G). It is known that
certain classes of subspaces of WAP(G) also carry a unique invariant mean.
The following result is [17, Theorem 3.6].

Theorem 2.1. Let G be a locally compact group and X(G) a linear sub-
space of WAP(G) that is closed under left translations and conjugation and
that contains the constants. Then X(G) carries a unique left invariant mean
mX , which is in fact the restriction of the mean on WAP(G). If additionally,
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X(G) is closed under right translations, then mX is right invariant as well.
Moreover, if X(G) is closed under inversion, then mX is also invariant under
inversion.

2.4. The space McbAp(G). For 1 < p < ∞, we denote by McbAp(G)
the space of p-completely bounded multipliers of the Figà-Talamanca–Herz
algebra Ap(G) of G. We mainly work with the following characterisation of
p-completely bounded multipliers from [13]. Let QSLp denote the class of
quotients of closed subspaces (or, equivalently, closed subspaces of quotients)
of Lp-spaces.

Proposition 2.2 ([13, Theorem 8.3]). Let G be a locally compact group
and 1 < p <∞. A function ϕ : G→ C is a p-completely bounded multiplier
of Ap(G) if there exists a space E ∈ QSLp and bounded, continuous maps
α : G→ E and β : G→ E∗ such that for all g, h ∈ G,

(1) ϕ(hg−1) = 〈β(h), α(g)〉.

Given ϕ ∈McbAp(G), its norm ‖ϕ‖McbAp(G) is given by the infimum of the
numbers ‖α‖∞‖β‖∞ over all choices of E, α and β for which (1) holds. The
spaceMcbA2(G) corresponds with the usual completely bounded multipliers
of the Fourier algebra A(G).

It is known that for 1 < p < ∞, the space McbAp(G) is a subalgebra of
WAP(G) [34] (see also [17, Proposition 3.3] for an explicit proof in the case
p = 2). Also, for 1 < p ≤ q ≤ 2 or 2 ≤ q ≤ p < ∞, the algebra McbAq(G)
embeds contractively into McbAp(G) [3, Proposition 6.1].

In general, a Fourier multiplier that is not completely bounded is not
necessarily a weakly almost periodic function (see [8]), which is why we
cannot consider the space MAp(G) of such multipliers in the setting of this
article.

2.5. The space Bp(G). For a locally compact group G and 1 < p < ∞,
let Repp(G) denote the collection of all (isometric equivalence classes of)
isometric representations of G on a QSLp-space. Examples of elements in
Repp(G) are the trivial representation (on every QSLp-space) and the left-
regular representation λp : G→ B(Lp(G)).

Let 1 < p < ∞. The p-Fourier-Stieltjes algebra Bp(G) is defined as the
space of matrix coefficients of (isometric equivalence classes of) isometric
representations on a QSLp-space, i.e. functions of the form

(2) g 7→ 〈η, π(g)ξ〉,

where π : G→ B(E) is a representation in Repp(G) and ξ ∈ E, η ∈ E∗. The
space Bp(G) carries a natural norm given by the infimum of the numbers
‖ξ‖‖η‖ over all representations π in Repp(G) and ξ ∈ E, η ∈ E∗ such that
(2) holds.

This definition of Bp(G) is due to Runde [28], who showed that Bp(G) is a
Banach algebra. However, the conventions used above are slightly different,
in order to be better suitable to the purposes of this article.
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It is known that for 1 < p ≤ q ≤ 2 or 2 ≤ q ≤ p <∞, the algebra Bq(G)
embeds contractively into Bp(G) [28].

For fixed p, we have the following norm-decreasing inclusions among the
aforementioned spaces:

Ap(G) ⊂ Bp(G) ⊂McbAp(G) ⊂WAP(G) ⊂ L∞(G).

3. A predual of X(G)

Let G be a locally compact group, and let WAP(G) be the algebra of
weakly almost periodic functions on G. In what follows, let X(G) be a
bi-invariant linear subspace of WAP(G) that is closed under complex con-
jugation and that contains the constants. Suppose that X(G) has a natural
norm ‖ · ‖X , that the Fourier-Stieltjes algebra B(G) embeds contractively
intoX(G) and that ‖·‖∞ ≤ ‖·‖X ≤ ‖·‖B. The assumption that B(G) is con-
tained in X(G) guarantees that X(G) “contains the unitary representation
theory of G” and that it is sufficiently large for our purposes. In particular,
X(G) is σ(L∞(G), L1(G))-dense in L∞(G) (i.e. weak∗-dense with respect to
the weak∗-topology on L∞(G)).

For f ∈ L1(G), set

‖f‖Y := sup
{ ∣∣∣∣ ∫

G
f(g)ϕ(g)dg

∣∣∣∣ ∣∣ ϕ ∈ X(G), ‖ϕ‖X ≤ 1
}
.

Then ‖·‖Y defines a norm on L1(G), and we denote by Y (G) the completion
of L1(G) with respect to ‖ · ‖Y . The following result provides a criterion for
X(G) to have a predual.

Theorem 3.1. Let X(G) be as above. Then the following are equivalent:
(i) The spaces X(G) and Y (G)∗ are isometrically isomorphic.
(ii) The unit ball (X(G))1 of X(G) is σ(L∞(G), L1(G))-closed.
Moreover, in this case, every bounded linear functional α : Y (G) → C is

of the form

(3) α(f) =
∫

G
f(g)ϕ(g)dg, f ∈ L1(G),

for some ϕ ∈ X(G), and ‖α‖ = ‖ϕ‖X .

Proof. (i) =⇒ (ii): Suppose that Y (G)∗ and X(G) are isometrically
isomorphic. There is a contractive map ι : L1(G) → Y (G). Its adjoint
ι∗ : X(G)→ L∞(G) is the inclusion map, which is weak∗-weak∗-continuous.
Hence, it maps the unit ball of X(G) to a weak∗-compact subset of L∞(G).

(ii) =⇒ (i): First note that for every ϕ ∈ X(G), the linear functional

αϕ : L1(G)→ C, f 7→
∫

G
f(g)ϕ(g)dg

uniquely extends to a bounded linear functional on Y (G), and we have that
‖αϕ‖ ≤ ‖ϕ‖X . Let Ψ : X(G) → Y (G)∗ denote the contractive linear map
given by Ψ(ϕ) = αϕ. We show that Ψ is, in fact, a surjective isometry.
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Let α ∈ Y (G)∗ with ‖α‖ = 1. Since X(G) embeds contractively into
L∞(G), we observe that for every f ∈ L1(G), we have ‖f‖Y ≤ ‖f‖1, and
therefore, α′ := α

∣∣
L1(G) is a bounded linear functional on L1(G). Hence,

there exists a ϕ ∈ L∞(G) such that

α′(f) =
∫

G
f(g)ϕ(g)dg, f ∈ L1(G).

We now show that ϕ ∈ (X(G))1, by means of a version of the bipolar
theorem. We consider (X(G))1 as a subset of L∞(G) equipped with the
σ(L∞(G), L1(G))-topology. By definition of ‖ · ‖Y , we observe that the
prepolar ◦(X(G))1 of (X(G))1 is given by

◦(X(G))1 = {f ∈ L1(G) | ‖f‖Y ≤ 1}.

Since ‖α‖ = 1, we have that for every f ∈ ◦(X(G))1,∣∣∣∣ ∫ f(g)ϕ(g)dg
∣∣∣∣ = |α′(f)| = |α(f)| ≤ 1.

Therefore, ϕ belongs to the polar of ◦(X(G))1. Since (X(G))1 is a convex
balanced subset of L∞(G) that is σ(L∞(G), L1(G))-closed by assumption,
the polar of ◦(X(G))1 coincides with (X(G))1 by the bipolar theorem (see
[11, Corollary V.1.9]), so ϕ belongs to (X(G))1. Moreover, Ψ(ϕ) = α and
‖Ψ(ϕ)‖ ≤ ‖ϕ‖X ≤ 1 = ‖α‖. This implies that Ψ is a surjective isometry, as
desired. �

Remark 3.2.
(i) Note that in Theorem 3.1, the existence of a predual does not come

for free. For example, WAP(G) itself does not have a predual in
general. Indeed, the algebra WAP(G) is a C∗-algebra. If it would
have a predual, then by Sakai’s theorem, it would be a von Neumann
algebra, which is in general not the case.

(ii) A subspace X(G) as in Theorem 3.1 may have several preduals that
are not isometrically isomorphic. An easy example of this is the
Fourier-Stieltjes algebra B(T) of the circle group T, which in fact
coincides with the completely bounded Fourier multipliersMcbA(T).
It is known that

B(T) ∼= C∗(T)∗ ∼= c0(Z)∗ ∼= `1(Z).

The space `1(Z) is known to have many preduals different from c0(Z).
(iii) In the case that X(G) is McbA(G), the predual from Theorem 3.1

coincides with the predual described for this space in [10, Proposition
1.10]. Miao generalised this to the p-completely bounded multipliers
McbAp(G) [25], [26], [27]. Indeed, he proved that the space Qp,cb(G)
defined as the completion of L1(G) with respect to the norm

‖f‖Qp,cb = sup
{∣∣∣∣ ∫

G
f(g)ϕ(g)dg

∣∣∣∣ | ϕ ∈ (McbAp(G))1

}
is a predual of McbAp(G).
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As a matter of fact, the predual of McbAp(G) already occurred
earlier in the literature. To see this, note that in [13, Theorem 8.6],
Daws establishes an isometric isomorphism

(4) HSp(G) ∼= McbAp(G),

where HSp(G) is the Banach space of “p-Herz-Schur multipliers” as
defined by Herz in [21]. (In the notation of [21], however, the space
HSp(G) is denoted by Bp(G).) For the space HSp(G), Herz had
already constructed a predual. Indeed, in [21], Herz introduces a
Banach space QFp(G) and a contractive map Q : L1(G) → QFp(G)
with dense range [21, Proposition 1]. Then, in [21, Proposition 2],
he shows that HSp(G) coincides with the range of the adjoint map
Q∗, and that Q∗ induces an isometric isomorphism

HSp(G) ∼= QFp(G)∗.

Combined with (4), this yields the desired predual.
(iv) For Bp(G), the predual of Theorem 3.1 coincides with the predual

of this space described in [28, Theorem 6.6].

4. Property (T∗X)

In this section, we study rigidity properties formulated in terms of the
weak∗-continuity of invariant means on appropriate function spaces of G.

Let G be a locally compact group, and let X(G) be as in Theorem 3.1.
In particular, X(G) has a unique invariant mean mX and the space Y (G)
as defined in Theorem 3.1 is a predual of X(G).

Definition 4.1. A locally compact group G has property (T∗X) if mX is
σ(X(G), Y (G))-continuous.

When it is clear which space X(G) we consider, we often just use the ter-
minology “weak∗-topology” instead of σ(X(G), Y (G))-topology. Note that
this topology depends on the chosen predual Y (G). Unless explicitly stated
otherwise, we always consider the natural predual from Theorem 3.1.

As mentioned in Section 1, for X(G) = B(G), this property corresponds
to Kazhdan’s property (T) (see [1], [30]), and for X(G) = McbA(G), this
property corresponds to property (T∗) of Haagerup, Knudby and the first-
named author (see [17]).

The following proposition shows that if X(G) is as in Theorem 3.1 (in
particular we assume that X(G) “includes the unitary representation the-
ory” of G, in the sense that B(G) embeds contractively into X(G)), then
property (T∗X) is a strengthening of property (T).

Proposition 4.2. Let X(G) be a subspace of WAP(G) satisfying the con-
ditions of Theorem 3.1. If G has property (T∗X), then G has property (T).
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Proof. The identity map id: L1(G)→ L1(G) extends to a linear contraction
Y (G)→ C∗(G). Its adjoint is the inclusion map ι : B(G)→ X(G), and the
map ι is weak∗-weak∗-continuous.

Suppose that the mean mX on X(G) is σ(X(G), Y (G))-continuous. Since
the mean mB on B(G) coincides with the composition mX ◦ ι, the mean mB

is σ(B(G), C∗(G))-continuous. �

Remark 4.3. By the results recalled in Section 2, we know that for every
1 < p < ∞, the space B(G) embeds contractively into Bp(G), and Bp(G)
embeds contractively intoMcbAp(G). Hence, the assumptions of Proposition
4.2 hold for the spaces X(G) = Bp(G) and X(G) = McbAp(G).

It is clear that if X(G) is as in Theorem 3.1 and G is a compact group,
then G has property (T∗X). Indeed, the map ϕ 7→ 〈ϕ, 1〉 defines the weak∗-
continuous unique invariant mean on X(G).

In case G is a non-compact group, it is in general difficult to show that
the invariant mean on X(G) is weak∗-continuous. Indeed, establishing (a
strengthening) of property (T) for a group G is usually hard. We study
specific cases of X(G) in the setting of Lie groups G in the next sections.

5. The mean on McbAp(G) and property (T∗McbAp
)

In this section, we consider the case of X(G) being the space McbAp(G)
of p-completely bounded multipliers of Ap(G) (with 1 < p < ∞), and we
study property (T∗McbAp

) and its permanence properties. We write Qp,cb(G)
for the predual of McbAp(G) as described in Theorem 3.1. Some of the
arguments in this section are modifications of results from [17].

The following generalises [17, Lemma 5.8]. The proof follows mutatis
mutandis from the proof given there.

Lemma 5.1. Let G and H be locally compact groups and ρ : H → G a
continuous group homomorphism, and let 1 < p <∞. If u ∈ Cc(G) is a non-
negative function with ‖u‖1 = 1 and u∗ = u (where u∗(g) = u(g−1)∆(g−1)),
then the linear map T : McbAp(G)→McbAp(H) defined by ϕ 7→ (u ∗ ϕ) ◦ ρ
is weak∗-weak∗-continuous.

Proposition 5.2. Let ρ : H → G be a continuous group homomorphism
with dense image, and let 1 < p <∞. If H has property (T∗McbAp

), then so
has G.

Proof. Let u ∈ Cc(G) be a non-negative function with ‖u‖1 and u∗ = u, and
let T : McbAp(G)→McbAp(H) be as in Lemma 5.1. In particular, the map
T is weak∗-weak∗-continuous. Let m denote the (unique) invariant mean on
McbAp(H). Then m′(ϕ) = m(Tϕ) defines a linear functional on McbAp(G).
In the same way as in the proof of [17, Proposition 5.9], we can show that
m′ is the (unique) invariant mean on McbAp(G). If m is weak∗-continuous,
then m′ is weak∗-continuous as well by the weak∗-weak∗-continuity of T . �
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Corollary 5.3. If G is a locally compact group with property (T∗McbAp
) and

N is a closed normal subgroup of G, then G/N has property (T∗McbAp
).

Lemma 5.4. Let G1 and G2 be locally compact groups, let 1 < p <∞, and
let f1 ∈ Qp,cb(G1) and f2 ∈ Qp,cb(G2). The function f1 × f2 : G1 ×G2 → C
given by

f1 × f2(g1, g2) = f1(g1)f2(g2)
is an element of Qp,cb(G1 ×G2) and

‖f1 × f2‖Qp,cb(G1×G2) ≤ ‖f1‖Qp,cb(G1)‖f2‖Qp,cb(G2).(5)

Proof. The proof is a simple modification of the proof of [12, Lemma 1.4]
up to the following changes. Let p′ = p

p−1 . The tensor product space T (G)
in the proof of [12, Lemma 1.4] is replaced by

Tp(G) =
(
Lp(G)⊗̂Lp′(G)

)
⊗̂
(
Lp′⊗̌Lp(G)

)
(as is the case in Herz [21]). Use the fact that when L : Lp(G1) → Lp(G1)
and M : Lp(G2)→ Lp(G2) are bounded operators,

L⊗M : Lp(G1 ×G2)→ Lp(G1 ×G2)

is also a bounded operator with ‖L⊗M‖ = ‖L‖‖M‖. �

The following lemma generalises [17, Lemma 5.11] with the same proof.

Lemma 5.5. Let G be a locally compact group with property (T∗McbAp
),

and let m ∈ Qp,cb(G) denote the (unique) invariant mean on McbAp(G).
Then there exists a sequence fn ∈ L1(G) of non-negative functions with
‖fn‖1 = 1 for all n ∈ N such that ‖fn −m‖Qp,cb(G) → 0.

Proposition 5.6. Let G1 and G2 be two locally compact groups. The direct
product G = G1 ×G2 has property (T∗McbAp

) if and only if G1 and G2 have
property (T∗McbAp

).

Proof. Suppose that G1 and G2 have property (T∗McbAp
). For i = 1, 2, let

mi be the invariant mean on McbAp(Gi). For i = 1, 2, by Lemma 5.5,
there are sequences (f (i)

n ) in L1(Gi)≥0 with ‖f (i)
n ‖1 = 1 for all n such that

‖f (i)
n −mi‖Qp,cb(Gi) → 0 as n→∞. For all gi ∈ Gi, we have

‖Lgif
(i)
n − f (i)

n ‖Qp,cb(Gi) → 0,

because mi is left invariant. By Lemma 5.4, the sequence f (1)
n × f (2)

n is a
Cauchy sequence in Qp,cb(G), and its limit M is a weak∗-continuous mean
on McbAp(G). It follows that

‖Lg(f (1)
n × f (2)

n )− f (1)
n × f (2)

n ‖Qp,cb(G) → 0 for all g ∈ G.

Therefore, the mean M is left invariant, so G has property (T∗McbAp
).

The other direction follows directly from Corollary 5.3. �

The proof of the following result is a modification of [17, Proposition 5.13].
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Proposition 5.7. LetG be a locally compact group, and letK be a compact
closed normal subgroup of G. Then G has property (T∗McbAp

) if and only if
G/K has property (T∗McbAp

).

To conclude this section, we establish a relation between property (T∗McbAp
)

and property (T∗McbAq
) for different p and q.

Proposition 5.8. Let G be a locally compact group and 1 < p ≤ q ≤ 2 or
2 ≤ q ≤ p <∞. If G has property (T∗McbAp

), then it has property (T∗McbAq
).

Proof. Let 1 < p ≤ q ≤ 2 or 2 ≤ q ≤ p < ∞. Suppose that G has property
(T∗McbAp

). By [3, Proposition 6.1], the inclusion map

ι : McbAq(G)→McbAp(G)

is a contraction. Its adjoint ι∗ : McbAp(G)∗ → McbAq(G)∗, also a con-
traction, maps Qp,cb(G) to Qq,cb(G) (see [33, Proposition 2.1]). Therefore,
ι : McbAq(G) → McbAp(G) is weak∗-weak∗-continuous. Let m denote the
(unique) invariant mean on McbAp(G). Since m

∣∣
McbAq(G) = m ◦ ι is the

invariant mean on McbAq(G) and m and ι are weak∗-continuous, we obtain
that G has property (T∗McbAq

). �

6. Simple Lie groups with property (T∗McbAp
)

In this section, we determine exactly which connected simple Lie groups
with finite center have property (T∗McbAp

) for 1 < p <∞.
Recall that a (connected) Lie group is called simple if its Lie algebra is

simple and that it is called semisimple if its Lie algebra is a direct sum of
simple Lie algebras. Let G be a connected semisimple Lie group with finite
center, and let g denote its Lie algebra. Then g has a Cartan decomposition
g = k + p, where k is the Lie algebra of a maximal compact subgroup K of
G. Furthermore, the Lie group G has a decomposition G = KAK, where A
is an abelian Lie group, whose Lie algebra a is a maximal abelian subspace
of p. The real rank of G is defined as the dimension of a. For details, see
e.g. [31]. The real rank is an important invariant for our purposes.

Let us first recall two examples of simple Lie groups and show that they
satisfy property (T∗McbAp

).
First, let SL(3,R) denote the special linear group, i.e. the group of 3× 3-

matrices with real entries and determinant 1. The special orthogonal group
SO(3) is the natural maximal compact subgroup of SL(3,R).

For the second example, let J be the matrix defined by

J =
(

0 I2
−I2 0

)
,

where I2 is the identity 2 × 2-matrix. The symplectic group Sp(2,R) is
defined as

Sp(2,R) = {g ∈ GL(4,R) | gtJg = J},
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where gt denotes the transpose of g. The group

K =
{(

A −B
B A

)
∈ Mat4(R)

∣∣∣∣ A+ iB ∈ U(2)
}
∼= U(2)

is a maximal compact subgroup of Sp(2,R).

Proposition 6.1. For 1 < p <∞, the groups SL(3,R) and Sp(2,R) satisfy
property (T∗McbAp

).

The proposition essentially follows from [33, Theorem 1.3 and Theorem
1.4]. Indeed, in these theorems, Vergara proves that the groups SL(3,R) and
Sp(2,R) do not satisfy the p-AP for 1 < p <∞. The p-AP was introduced
in [3] as a p-analogue of the Approximation Property of Haagerup and Kraus
(AP), which goes back to [18]. It was proved by Lafforgue and de la Salle that
SL(3,R) does not have the AP [23]. This was generalised to all connected
simple Lie groups with real rank at least 2, including the group Sp(2,R), by
Haagerup and the first-named author in [19], [20].

We now present a brief proof sketch of Proposition 6.1, relying on Ver-
gara’s work.

Proof sketch of Proposition 6.1. In fact, what is proved in [33, Theorem 1.3
and Theorem 1.4] is stronger than the fact that the groups SL(3,R) and
Sp(2,R) do not have the p-AP for 1 < p <∞. We explain this for the group
SL(3,R). The case Sp(2,R) follows analogously.

Let G = SL(3,R), and let K = SO(3) (its maximal compact subgroup).
For g ∈ G, let mg be the measure defined by∫

G
fdmg =

∫
K

∫
K
f(k1gk2)dk1dk2

Vergara shows that (mg) is a Cauchy net in McbAp(G)∗, which converges
to a mean m on McbAp(G). Additionally, he proves that m is actually an
element of Qp,cb(G), i.e. the mean m is weak∗-continuous. What remains
to be shown is the fact that m is actually an invariant mean, which is
straightforward. �

Remark 6.2. Note that the fact that SL(3,R) and Sp(2,R) have prop-
erty (T∗) (which is exactly property (T∗McbAp

) for p = 2) was proved in
[17]. Alternative to the proof sketch of Proposition 6.1 given above, one
can modify the proofs from [17] to the p-setting. This would require some
straightforward technical modifications.

Before we can characterise the connected simple Lie groups with property
(T∗McbAp

), we recall the following powerful result of Veech [32, Theorem 1.4],
which can be seen as a strong version of the Howe-Moore property. First,
we recall some additional structure theory for Lie groups. Recall that a
Lie group G is semisimple if its Lie algebra g decomposes as a direct sum
g = s1⊕ . . .⊕ sn, where the algebras si are simple Lie algebras. We say that
a connected semisimple Lie group does not have compact simple factors if
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for all i = 1, . . . , n, the analytic subgroup Si of G corresponding to the Lie
algebra si is not compact.

Theorem 6.3 (Veech). Let G be a connected semisimple Lie group with
finite center and without compact simple factors. Then

WAP(G) = C0(G)⊕ C1

and for every ϕ ∈WAP(G), we have

m(ϕ) = lim
g→∞

ϕ(g),

where m is the unique invariant mean on WAP(G).

We are now ready to prove the main result of this section.

Theorem 6.4. Let G be a connected simple Lie group with finite center,
and let 1 < p < ∞. Then G has property (T∗McbAp

) if and only if the real
rank of G is 0 or at least 2.

Proof. Let G be a connected simple Lie group with finite center. Then G

has real rank 0 if and only if it is compact, in which case it has property
(T∗McbAp

) (see Section 4). If G has real rank 1, then it is well known that G
is weakly amenable [12], and hence it has the AP of Haagerup and Kraus, so
it cannot have property (T∗), since by[17, Proposition 5.5] a locally compact
group having the AP and property (T∗) has to be compact. By Proposition
5.8, the group G cannot have property (T∗McbAp

) for any p ∈ (1,∞).
Hence, it only remains to consider the case of real rank at least 2, which

follows in the same way as [17, Theorem D]. Let us give a brief argument.
Let G be a connected simple Lie group with finite center and real rank at
least 2. It is well known that G contains a closed subgroup H that is locally
isomorphic to SL(3,R) or Sp(2,R) (i.e. the Lie algebra of H is isomorphic to
the Lie algebra of SL(3,R) or to the Lie algebra of Sp(2,R)). Let mH denote
the invariant mean on WAP(H), the restriction of which to McbAp(H) is
weak∗-continuous by Proposition 6.1.

We define a map from WAP(G) to WAP(H) in the following way, similar
to Lemma 5.1. Let u ∈ Cc(G) be a non-negative function such that ‖u‖1 = 1
and u∗ = u. Define the map T : WAP(G) → WAP(H) by Tϕ = (u ∗ ϕ)

∣∣
H
.

Since T (C0(G)) ⊂ C0(H), we have (mH ◦ T )|C0(G) ≡ 0. Using Theorem
6.3, it follows that the mean mG on WAP(G) is given by mG = mH ◦ T .
By Lemma 5.1, we see that the restriction of the map T to McbAp(G) is
weak∗-weak∗-continuous, and the result follows. �

7. Property (T∗McbAp
) for connected Lie groups

In this section, we study property (T∗McbAp
) for connected Lie groups. Let

us first recall some structure theory for connected Lie groups, additional to
the structure theory for semisimple Lie groups which we recalled before.

Let G be a connected Lie group with Lie algebra g. If r is the solvable
radical (i.e. the largest solvable ideal) of g, then the Lie algebra g can be
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written as g = r o s, where s is a semisimple Lie subalgebra. This decom-
position is called the Levi decomposition. Furthermore, as was recalled at
the beginning of Section 6, we can decompose s as s = s1 ⊕ · · · ⊕ sn, where
the si’s, with i = 1, . . . , n, are simple Lie algebras. Let R, S and Si, with
i = 1, . . . , n, be the analytic subgroups of G corresponding to the Lie alge-
bras r, s and si, respectively. Thus, R is a solvable closed normal subgroup
of G, and S is a (maximal) semisimple analytic subgroup of G. However, S
is not necessarily a closed subgroup, and in general, we have G = RS, but
R∩S can consist of more than one element. However, for simply connected
G, the subgroup S is, in fact, closed, and the Levi decomposition becomes
a semidirect product G = Ro S. For details, see [31, Section 3.18].

Before we get to the main theorem, we prove some auxiliary results.

Lemma 7.1. Let G be a locally compact group with a compact normal
subgroup K. Then McbAp(G) ∩ C0(G) is weak∗-closed in McbAp(G) if and
only if McbAp(G/K) ∩ C0(G/K) is weak∗-closed in McbAp(G/K).

Proof. Suppose that McbAp(G) ∩ C0(G) is weak∗-closed in McbAp(G). Let
(ϕi) be a net inMcbAp(G/K)∩C0(G/K) that converges to ϕ ∈McbAp(G/K)
in the weak∗-topology on McbAp(G/K). Let q : G→ G/K be the canonical
quotient map. From the proof of [33, Proposition 5.1], it follows that the
operator

T : McbAp(G/K)→McbAp(G), ψ 7→ ψ ◦ q

is weak∗-weak∗-continuous. Therefore, (T (ϕi)) is a net in McbAp(G) ∩
C0(G) that converges in the weak∗-topology to T (ϕ) ∈ McbAp(G). Since
McbAp(G) ∩ C0(G) is weak∗-closed in McbAp(G), we have T (ϕ) ∈ C0(G).
Hence, ϕ belongs to C0(G/K).

For the converse, let (ϕi) be a net inMcbAp(G)∩C0(G) that converges to
ϕ in McbAp(G) in the weak∗-topology of McbAp(G). Again, it follows from
the proof of [33, Proposition 5.1] that the operator

T̃ : McbAp(G)→McbAp(G/K),

defined by T̃ (ψ)(gK) =
∫

K ψ(gk)dk for ψ ∈McbAp(G) and g ∈ G, is weak∗-
weak∗-continuous. Hence, the net (T̃ (ϕi)) in McbAp(G/K)∩C0(G/K) con-
verges in the weak∗-topology to T̃ (ϕ) in McbAp(G/K). By assumption,
T̃ (ϕ) belongs to C0(G/K). Hence, ϕ ∈ C0(G). �

The following is a generalisation of [7, Lemma 2.5].

Lemma 7.2. Let G be a connected Lie group with connected closed normal
subgroup N . Suppose thatMcbAp(G)∩C0(G) is weak∗-closed inMcbAp(G).
Then the center Z(N) of N is compact and N/Z(N) is semisimple.

Proof. Since the identity map L1(G) → L1(G) extends to a contraction
Qp,cb(G) → C∗(G), its Banach adjoint is a weak∗-weak∗-continuous con-
traction B(G) → McbAp(G) that is easily verified to be the inclusion map.
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Hence, B(G) ∩ C0(G) is weak∗-closed in B(G). The claim now directly
follows from [7, Lemma 2.5]. �

We can now state and prove the main theorem. For the purpose of this
article, a connected (real) Lie group G is said to be reductive if the solvable
radical R of G is abelian. (The definition of reductive Lie group is subject
to conventions, which we will not further discuss here.) The proof of this
theorem is inspired by [7, Section 2].

Theorem 7.3. LetG be a connected Lie group, and let 1 < p <∞. Suppose
that the semisimple part S of the Levi decomposition of G has finite center.
Then the following are equivalent:
(i) The group G is a reductive Lie group with compact center satisfying

property (T∗McbAp
).

(ii) The space McbAp(G) ∩ C0(G) is closed in McbAp(G) in the
σ(McbAp(G), Qp,cb(G))-topology.

(iii) The group G is a reductive Lie group with compact centre, in which
every simple factor has real rank 0 or at least 2.

Proof of Theorem 7.3. (i) =⇒ (ii): Suppose that G is a reductive Lie
group with compact center satisfying property (T∗McbAp

). Using that the
center Z(G) is a compact normal subgroup of G, it is enough to show
that McbAp(G/Z(G))∩C0(G/Z(G)) is weak∗-closed in McbAp(G/Z(G)) by
Lemma 7.1. To this end, let (ϕi) be a net inMcbAp(G/Z(G))∩C0(G/Z(G))
that converges to ϕ ∈ McbAp(G/Z(G)) in the weak∗-topology. By assump-
tion, the group G/Z(G) is semisimple. From Theorem 6.3, it follows that

m(ϕ) = lim
g→∞

ϕ(g) and m(ϕi) = lim
g→∞

ϕi(g) for all i,

where m denotes the unique invariant mean on McbAp(G/Z(G)). Since
ϕi belongs to C0(G/Z(G)), we have m(ϕi) = 0 for all i. Since property
(T∗McbAp

) passes to quotients by Proposition 5.7, the quotient group G/Z(G)
also has property (T∗McbAp

), and hence, we also havem(ϕ) = limim(ϕi) = 0,
so ϕ belongs to C0(G/Z(G)).

(ii) =⇒ (i): Suppose thatMcbAp(G)∩C0(G) is weak∗-closed inMcbAp(G).
By Lemma 7.2, we know that Z(G) is compact (abelian) and G/Z(G) is
semisimple. Hence, G is a reductive Lie group with compact center, and
by Lemma 7.1, the space McbAp(G/Z(G))∩C0(G/Z(G)) is weak∗-closed in
McbAp(G/Z(G)).

By the fact that G/Z(G) is semisimple, the kernel of the unique invariant
mean onMcbAp(G/Z(G)) coincides withMcbAp(G/Z(G))∩C0(G/Z(G)) by
Theorem 6.3. Since this kernel is weak∗-closed, the mean onMcbAp(G/Z(G))
is weak∗-continuous, so the group G/Z(G) has property (T∗McbAp

). Hence,
by Proposition 5.7, the group G has property (T∗McbAp

) as well.
(i) ⇐⇒ (iii): Let G̃ = Rn× S̃1× . . .× S̃n be the universal covering group

of G, where S̃1, . . . , S̃n are simply connected simple Lie groups. There exists
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a discrete subgroup Γ of the center Z(G̃) = Rn × Z(S̃1)× . . .× Z(S̃n) of G̃
such that G = G̃/Γ. Hence, we have

G/Z(G) = G̃/Z(G̃) =
(
S̃1/Z(S̃1)

)
× . . .×

(
S̃n/Z(S̃n)

)
.

Since Z(G) is compact, the group G has property (T∗McbAp
) if and only if

G/Z(G) has property (T∗McbAp
), by Proposition 5.7. It follows from Proposi-

tion 5.6 that G/Z(G) has property (T∗McbAp
) if and only if each S̃i/Z(S̃i) has

property (T∗McbAp
). From Theorem 6.4, we know that S̃i/Z(S̃i) has property

(T∗McbAp
) if and only if S̃i/Z(S̃i), which is a simple Lie group with trivial

center, has real rank 0 or real rank at least 2. �

Remark 7.4. It is an open question whether there exists a group with
property (T∗), but without property (T∗McbAp

) for some p 6= 2.

8. Property (T∗Bp
) for connected Lie groups

In this section, we study property (T∗Bp
) for connected Lie groups, and we

prove Theorem 8.2, which is analogous to (but less explicit than) Theorem
7.3. Indeed, we prove the equivalence of the analogues of the first two
equivalent assertions of Theorem 7.3.

First, we establish the following lemma.

Lemma 8.1. Let G be a locally compact group with a compact normal
subgroup K. Then Bp(G) ∩ C0(G) is weak∗-closed in Bp(G) if and only if
Bp(G/K) ∩ C0(G/K) is weak∗-closed in Bp(G/K).

Proof. By the same arguments as given in the proof of [33, Proposition
5.1], the operator T : Bp(G/K) → Bp(G), ψ 7→ ψ ◦ q and the operator
T̃ : Bp(G) → Bp(G/K) defined by T̃ (ψ)(gK) =

∫
K ψ(gk)dk are weak∗-

weak∗-continuous. �

We have now established the right structural properties for Bp(G) and
permanence properties for property (T∗Bp

). The proof of the following the-
orem is similar to the corresponding parts of the proof of Theorem 7.3. We
only explain the relevant points of the proof.

Theorem 8.2. LetG be a connected Lie group, and let 1 < p <∞. Suppose
that the semisimple part S of the Levi decomposition of G has finite center.
Then the following are equivalent:
(i) The group G is a reductive Lie group with compact center satisfying

property (T∗Bp
).

(ii) The space Bp(G)∩C0(G) is closed in Bp(G) in the σ(Bp(G), Bp(G)∗)-
topology.

The proof of this theorem follows mutatis mutandis from the proof of
Theorem 7.3.
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Remark 8.3. Theorem 8.2 generalises [7, Theorem 2.7]. An important
difference with the situation of property (T), as covered in [7], however, is
that it is known exactly which simple Lie groups have property (T). Indeed,
let G be a connected simple Lie group. Then G has property (T) if and
only if G has real rank 0, real rank at least 2 or if G is locally isomorphic to
Sp(n, 1) (with n ≥ 2) or to F4(−20) (in the latter two cases, G has real rank
1).

It is clear that ifG has real rank 0 or at least 2, thenG has property (T∗Bp
),

which follows from the fact that in these cases, G has property (T∗McbAp
) (see

Theorem 6.4), because property (T∗McbAp
) is stronger than property (T∗Bp

).
However, if G is locally isomorphic to Sp(n, 1) (with n ≥ 2) or to F4(−20),

we do not know what happens, although we expect that these groups have
property (T∗Bp

) for 1 < p <∞. In the remaining cases of simple Lie groups
with real rank 1, i.e. groups locally isomorphic to SO0(n, 1) or SU(n, 1) (with
n ≥ 2), we know that these groups have the Haagerup property, in which
case they cannot have property (T∗Bp

) for 1 < p <∞.
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