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Finite geometries: pure
mathematics close to applications

Leo Storme

The research field of finite geometries investigates
structures with a finite number of objects. Classi-
cal examples include vector spaces, projective spaces,
and affine spaces over finite fields. Although many
of these structures are studied for their geometrical
importance, they are also of great interest in other,
more applied domains of mathematics. In this snap-
shot, finite vector spaces are introduced. We discuss
the geometrical concept of partial t-spreads together
with its implications for the “packing problem” and a
recent application in the existence of “cooling codes”.

1 Finite fields and finite vector spaces

1.1 Finite fields

A field is a mathematical structure in which addition, subtraction, multiplication,
and division between its objects are defined. The set of real numbers R equipped
with the usual arithmetic operators is one example of a field.

We are all used to performing arithmetic with real numbers. But many
people do not realise that, even from a young age, they also know how to
perform arithmetic with numbers from another field known as a “prime field”.
Before we explain the precise meaning of this term, we first recall that a prime



number is a positive integer p > 1, only divisible by 1 and itself. For example,
the first few prime numbers are 2,3,5,7, and 11.

Once a prime number p is fixed, it is possible to perform calculations within
the set of non-negative integers less than p using modulo arithmetic. The key
difference in modulo arithmetic, as compared to standard arithmetic, is that
the result of any calculation is always a non-negative integer less than p.

In order to be more precise, let us denote F, = {0,1,...,p — 1} where p is
our fixed prime number. To compute using modulo arithmetic in [F),, we first
calculate as usual in the set of integers. If the end result does not belong to Iy,
then we replace it by its remainder when divided by p. When equipped with
modulo arithmetic, the set F,, is a prime field or, more precisely, a prime field
of order p. Here “order p” refers to the size of the field F,, in the sense that it
contains p numbers.

We illustrate this via examples in F7 = {0,1,...,6}. When we want to make
it clear that calculations have been performed using modulo arithmetic in F7,
we write “mod 7” at the end of a computation.

243 = 5 (mod7)
2.3 = 6 (mod?7)
3:4 = 5 (mod?7)

In the first two examples, the result of standard integer arithmetic was
already contained in IF, and hence the final result in modulo arithmetic is the
same. We now explain the last example which is more involved. First of all,
we note that 3 -4 = 12, which is larger than 6. Since we perform calculations
modulo 7, we then divide 12 by 7, leading to 12 = 1-7 + 5. Thus, as the
remainder of 12 after division by 7 is equal to 5, we have 3-4 =15 (mod 7)
as claimed.

Note that the above examples did not rely on the non-negative integer p
being prime. One of the reasons for this requirement arises when we want to
perform division. For instance, in standard arithmetic with real numbers, an
equation of the form

2-x=1

always has exactly one solution, although it need not necessarily be an integer.
Indeed, the non-integer solution in our example is given by x = 1/2. In modulo
arithmetic, however, it is necessary for p to be prime in order for such equations
to always have a unique solution in IF,. For instance, the above equation
in F7 yields

2-2=1 (mod7) <<= z=4.



This idea of modulo arithmetic in F7 is actually more familiar than it may
first seem. In fact, everybody does it when calculating with the days of the
week. To see this, we assign an integer to each day of the week as follows:

SUNDAY = 0, MONDAY = 1, TUESDAY = 2, WEDNESDAY = 3,
THURSDAY = 4, FRIDAY = 5, SATURDAY = 6.

Suppose that today is Thursday. Which day in the week is five days later?
Five days later is Tuesday next week. How did we calculate this?

Thursday is day 4 of the week. Five days later is day 9 of the week. This is
not possible since a week has only seven days. So day 9 of the week is interpreted
as day 2 of the following week, that is, Tuesday next week. When transferring
between weeks, we add or subtract seven, since a week has seven days. This is
in fact calculating arithmetic modulo 7.

Generally, for every prime number p, there exists a unique finite field I,
of order p, in which arithmetic is performed modulo p. This is precisely the
non-negative integers less than p as described above. There also exists a unique
finite field F,, containing ¢ symbols whenever ¢ = p for some prime number p
and h > 1. However, its structure is more complicated and no longer directly
identifiable with the set of non-negative integers less than q.

1.2 Finite vector spaces

A wector space V over a field F is a mathematical structure consisting of a set
of “vectors” which can be added to one another, and multiplied by elements of
the field F. A familiar example of a vector space over R is the Cartesian plane.
In mathematical notation, this is the vector space

V= R? = {(.Il,xg) 1 T1,T2 € R},
with addition and scalar multiplication given by

e (addition)
(x1,22) + (Y1, Y2) = (1 + y1, 22 + Y2)

e (scalar multiplication)
a-(x1,22) = (a1, - x9), for a € R.

In this section, we define a vector space over the finite field F, where ¢ = .
p is a prime number, and h > 1. That is, we consider vectors whose coordinates
are elements of the finite field F,. In mathematical notation, this is the finite
vector space V given by

V:F;L:{($1,...7$n)le,...,,fn EFq}.



In this vector space, addition and scalar multiplication are given coordinate-wise
by the corresponding operations in the underlying field F,:

e (addition)

(1, Zn) + W1y Yn) = (@1 + Y1,y T + Yn)
e (scalar multiplication)

a-(x1,...,2n) = (- 21,...,0-2,), for a € F,.

The “size” of a vector space can be measured using the concept of dimension
which represents the number of degrees of freedom in its vectors. For instance,
the vector space V' = Fy has dimension n since each coordinate represents a
degree of freedom. Furthermore, the vector space V contains 1-dimensional
vector spaces (called “vector lines”), 2-dimensional vector spaces (called “vector
planes”), ..., i-dimensional vector spaces, ..., (n—1)-dimensional vector spaces.
An i-dimensional vector space over F, contains ¢’ vectors from Fy. This is
because its vectors have ¢ degrees of freedom, and each degree of freedom has ¢
possible values.

2 A packing problem for a cube

Consider a 3-dimensional cube with sides of length x metres (Figure 1).

Figure 1: Packing smaller cubes into a larger cube.

Suppose a person is asked to fill the larger cube with smaller cubes having
sides of length y metres such that the amount of empty space is minimised.

If the length y of the sides of the smaller cube is a divisor of the length z,
then d = #/y is a positive integer. In this case, the larger cube can be completely
filled by d® smaller cubes whose sides have length y. An example of this is
illustrated in Figure 1 which shows a smaller cube whose sides have length y = 1
inside a larger cube whose sides have length x = 3. The larger cube can be
filled completely by cubes whose sides have length 1 metre.



However, if the length y of the sides of the smaller cube is not a divisor of
the length x of the sides of the larger cube, then the larger cube cannot be
completely filled by these smaller cubes. In this case, the smaller cubes can
only fill part of the larger cube. One could instead try to fill the larger cube as
much as possible by using smaller cubes whose sides have length y. This type
of problem is called a packing problem, and whether or not the larger cube can
be completed filled is determined by whether y divides .

In finite geometry, it is also possible to consider an analogous packing
problem in the finite vector space Fy. In this context, the goal is to pack as
many ¢-dimensional subspaces of Fy which pairwise share only the zero vector
into the finite vector space Fy. This packing problem is analogous in the sense
that the finite vector space Fy plays the same role as the larger cube in Figure 1,
and the t-dimensional subspaces play the same role as the smaller cubes.

The packing problem in Fy is equivalent to the mathematical problem of
constructing “t-spreads” and large “partial t-spreads” in finite vector spaces.
The nice fact about studying (partial) t-spreads in finite vector spaces is that
the same mathematical object also arises in other seemingly unrelated problems.
For instance, we will discuss another application of partial t-spreads arising in
computer science in Section 4.

We now present important results on t-spreads and partial ¢-spreads in finite
vector spaces.

3 t-Spreads and partial t-spreads in finite vector spaces

Consider the vector space V' = [ of dimension n over the finite field IF, where
q = p" for a prime number p and h > 1.

A geometrical question that can be posed is whether the non-zero vectors
of V' can be partitioned into t-dimensional subspaces. In the field of finite
geometry, this question has lead to the study of “t-spreads”. A t-spread of
V =Ty is a set of {-dimensional subspaces of V' with the property that each
non-zero vector is contained in precisely one subspace.

It turns out that, in some cases, questions about the existence of t-spreads
of V' can be answered by considering the relationships between the values of n, g
and t. If a t-spread exists, then ¢ — 1 must divide ¢" — 1 since a ¢-dimensional
subspace contains ¢* — 1 non-zero vectors and V itself contains ¢" — 1 non-zero
vectors. Elementary number theory then leads to the condition that ¢ must
divide n. Hence, the condition that ¢ divides n is a necessary condition for a
t-spread to exist in V' = Fj. Conversely, a very nice geometrical result proves
that it is also sufficient. Indeed, when t divides n, Hirschfeld showed how to
construct a t-spread in V = F} [7].



Now a new research problem arises: for ¢t not a divisor of n, what are the
largest partial ¢-spreads in V' = Fp? A partial t-spread in V = Fy is a set
of t-dimensional subspaces of V' with the property that each non-zero vector
is contained in at most one subspace. This has proven to be a very difficult
mathematical problem. In the 1970s, Beutelspacher discovered a construction
of large partial t-spreads of V' = I} [3] which leads to the following theorem.

Theorem 3.1 (Beutelspacher) Let r = n (mod t). Then, for all q, Fy
a"—q'(¢"-1)~1
qt ’

contains a partial t-spread of size —

The question arose whether this was the largest possible size for a partial
t-spread in V' = Fg, when t does not divide n. Beutelspacher succeeded in
proving this when n = 1 (mod t) [1, 2]. It was generally believed that this
indeed was the largest possible size for a partial {-spread in V' = Fy for all n.
But El-Zanati, Jordon, Seelinger, Sissokho and Spence found a larger example
for g =2and t =3 [5].

Theorem 3.2 (El-Zanati et al) Let r =n (mod 3). Then the largest partial

3-spreads of F5 have size equal to 2n;2r

—T.

The most recent breakthrough came when Nastase and Sissokho were able
to prove that Beutelspacher’s construction has the largest possible size under
the following condition [12].

Theorem 3.3 (Nastase and Sissokho) Let » = n (mod t). For all g, if
a"=q'(¢"=1)~1
a"=a (@’ —1)=1

t > qu:11 , then the largest partial t-spreads of Fy have size equal to T

Similarly, Kurz succeeded in finding the largest size of partial t-spreads in
the following case [11].

Theorem 3.4 (Kurz) Let 2 =n (mod t). Then, fort >4, n > 2t + 2, the

largest partial t-spreads of Iy have a size equal to 23137_2;71

4 Cooling codes

Inside a computer, information encoded as zeros and ones is transferred along
wires. A wire with electrical current passing through it represents a one, and
a wire with no electrical current represents a zero. To transfer information
between one another, two components inside a computer communicate using
a system known as a “bus”. A bus consists of an “encoder” and a “decoder”
connected by multiple wires. The encoder converts a message to a vector of
zeros and ones, which is transmitted as electrical current along the wires, before
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Figure 2: A schematic of a bus for two computer components consisting of an
encoder and a decoder connected by wires.

being converted back to the original message by the decoder. Note that vectors
with n entries of zeros and ones are precisely the elements of the finite vector
space Fy. The rules for how the encoder and decoder convert between messages
and vectors of zeros and ones are called a coding scheme.

When electrical current passes through a wire inside a bus, the temperature
of that wire increases. If the temperature of a wire becomes too high, then
its ability to transmit current deteriorates leading to communication errors in
the bus. One way to overcome this issue is by using a special type of coding
scheme known as a “cooling code” [4]. In a basic coding scheme, a given message
is always encoded and transmitted along the same wires every time, even if
those wires are hot. In a cooling code, there are multiple ways to encode and
transmit each given message. When presented with a message to transmit, the
bus checks which wires are the hottest and then determines an encoding of
the message which avoids using said wires, thus allowing them to cool back to
normal operating temperatures.

Consider a bus with n wires which wants to avoid transmitting along its
hottest t wires where ¢ < n. Mathematically, an (n,t)-cooling code of size M
consists of disjoint subsets C1,...,Chy of Fy, known as “codesets”, with the
following property: for any set of wires S C {1,...,n} of size |S| =t and any
i €{1,..., M}, there exists € C; which does not use the wires in S. Each
message that could be sent across the bus corresponds to exactly one codeset
and the elements of this codeset represent the different possible encodings of
the message.

To transmit a message represented by a binary vector in 5, the bus:

1. Determines the codeset C;, corresponding to the message, and the set S,
corresponding to the ¢ hottest wires.

2. Encodes the message by selecting a vector x € C; which does not use the
wires in S (i.e., x; =01if j € 5).

3. Sends the encoded message x across the wires to the decoder.



4. Since the codesets C1,...,C)s are disjoint, the decoder determines that the
codeset C; was used based on the property that x € C;.
5. The decoder recovers the original message from the codeset C;.

With this idea in mind, the question of how to construct cooling codes arises.
As the following theorem shows, partial spreads provide a way to do so.

Theorem 4.1 Let Vi,..., Vi be a partial (t + 1)-spread of FY, and denote
V= Vi\ {0} for alli. Then Vi*,...,V} is an (n,t)-cooling code of size M.

The preceding theorem is a very nice example of how a purely mathematical
concept that has been studied since the 1970s suddenly becomes relevant for a
practical problem. This often happens with substructures in finite geometry. It
proves that finite geometry is pure mathematics, close to practical applications.

For readers interested in finite geometry, we refer to the standard volumes
of Hirschfeld [6, 7] and to the standard volume of Hirschfeld and Thas [10] for
elaborate information on finite geometries. For specific results on the packing
problem in finite geometries, coding theory, and statistics, we refer to the two
survey articles by Hirschfeld and Storme [8, 9].



References

1]

2]

3]

[4]

A. Beutelspacher, Partial spreads in finite projective spaces and partial
designs, Mathematische Zeitschrift 145 (1975), no. 3, 211-229.

, Correction to: Partial spreads in finite projective spaces and partial
designs, Mathematische Zeitschrift 147 (1976), no. 3, 303.

, On t-covers in finite projective spaces, Journal of Geometry 12
(1979), no. 1, 10-16.

Y. M. Chee, T. Etzion, H. M. Kiah, and A. Vardy, Cooling codes: Thermal-
management coding for high-performance interconnects, IEEE Transactions
on Information Theory 64 (2018), no. 4, 3062-3085.

S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho, and L. Spence, The
mazimum size of a partial 3-spread in a finite vector space over GF(2),
Designs, Codes and Cryptography 54 (2010), no. 2, 101-107.

J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford
Mathematical Monographs, Clarendon Press, 1985.

, Projective geometries over finite fields, second ed., Oxford Mathe-
matical Monographs, Clarendon Press, 1998.

J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding
theory and finite projective spaces, vol. 72, 1998, R. C. Bose Memorial
Conference (Fort Collins, CO, 1995), pp. 355-380.

, The packing problem in statistics, coding theory and finite projective
spaces: update 2001, Finite geometries, vol. 3, Kluwer Academic Publishers,
2001, pp. 201-246.

J. W. P. Hirschfeld and J. A. Thas, General Galois geometries, Springer
Monographs in Mathematics, Springer, 2016.

S. Kurz, Improved upper bounds for partial spreads, Designs, Codes and
Cryptography 85 (2017), no. 1, 97-106.

E. L. Nastase and P. A. Sissokho, The maximum size of a partial spread in
a finite projective space, Journal of Combinatorial Theory, Series A 152
(2017), 353-362.



Leo Storme is a professor of pure Connections to other fields

mathematics at Ghent University, Computer Science, Engineering and
Belgium. Technology

Mathematical subjects License

Algebra and Number Theory, Discrete Creative Commons BY-SA 4.0
Mathematics and Foundations, Geometry

and Topology Dol

10.14760/SNAP-2021-010-EN

Snapshots of modern mathematics from Oberwolfach provide exciting insights into
current mathematical research. They are written by participants in the scientific
program of the Mathematisches Forschungsinstitut Oberwolfach (MFO). The
snapshot project is designed to promote the understanding and appreciation of
modern mathematics and mathematical research in the interested public worldwide.
All snapshots are published in cooperation with the IMAGINARY platform and
can be found on www.imaginary.org/snapshots and on www.mfo.de/snapshots.

ISSN 2626-1995

Junior Editors Mathematisches Forschungsinstitut
Matthew K. Tam, Anja Randecker Oberwolfach gGmbH
junior-editors@mfo.de Schwarzwaldstr. 9 —-11

77709 Oberwolfach
Senior Editor Germany
Sophia Jahns
senior-editor@mfo.de Director

Gerhard Huisken

Oberwolfach Kociation open mathematics

@ T et zﬁ@ IMAGINARY


https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.14760/SNAP-2021-010-EN
https://www.imaginary.org/snapshots
https://www.mfo.de/snapshots
mailto:junior-editors@mfo.de
mailto:senior-editor@mfo.de

	Finite geometries: pure mathematics close to applications
	Finite fields and finite vector spaces
	Finite fields
	Finite vector spaces

	A packing problem for a cube
	Spreads and partial spreads
	Cooling codes


