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Applications of Nijenhuis geometry III: Frobenius
pencils and compatible non-homogeneous Poisson

structures
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Abstract

We consider multicomponent local Poisson structures of the form P3 +P1, under
the assumption that the third order term P3 is Darboux-Poisson and non-degenerate,
and study the Poisson compatibility of two such structures. We give an algebraic
interpretation of this problem in terms of Frobenius algebras and reduce it to clas-
sification of Frobenius pencils, i.e. of linear families of Frobenius algebras. Then,
we completely describe and classify Frobenius pencils under minor genericity con-
ditions. In particular we show that each such Frobenuis pencil is a subpencil of a
certain maximal pencil. These maximal pencils are uniquely determined by some
combinatorial object, a directed rooted in-forest with vertices labeled by natural
numbers whose sum is the dimension of the manifold. These pencils are naturally
related to certain (polynomial, in the most nondegenerate case) pencils of Nijenhuis
operators. We show that common Frobenius coordinate systems admit an elegant
invariant description in terms of the Nijenhuis pencil.
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1 Introduction

1.1 Foreword

Nijenhuis operator is a (1,1)-tensor field L = Lij on a manifold M of dimension n such
that its Nijenhuis torsion vanishes. Nijenhuis geometry as initiated in [6] (where also all
necessary definitions can be found) and further developped in [7, 8, 23] studies Nijenhuis
operators and their applications. There are many topics in mathematics and mathematical
physics where Nijenhuis operators appear naturally; this paper is devoted to the study of
∞-dimensional compatible Poisson brackets of type P3 + P1, where the lower index i
indicates the order of the homogeneous bracket Pi (the necessary definitions will be given
in Section 1.2). Nijenhuis geometry allows us to reformulate the initial problem, originated
from mathematical physics, first into the language of algebra and then into the language
of differential geometry and finally solve it using the machinery of differential geometry in
combination with that of algebra. Translating back the results gives a full description of
(nongenerate) compatible Poisson brackes of type P3 + P1 such that the 3-component is
Darboux-Poisson.

Acknowledgements. This research was supported through the programme “Research
in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach in 2021. The authors are
grateful to R. Vitolo, P. Lorenzoni, J. Draisma, F. Cléry and especially to E. Ferapontov
for their valuable comments, suggestions and remarks. A. Bolsinov and A. Konyaev were
supported by the Russian Science Foundation.
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1.2 Mathematical setup

The construction below is a special case of the general approach suggested in [21]. For
n = 1, the construction can be found in [20], see also [10, 30, 36].

We work in an open disc U ⊂ Rn with coordinates u1, ..., un. Our constructions are
invariant with respect to coordinate changes so one may equally think of (u1, ..., un) as a
coordinate chart on a smooth manifold M .

Consider the jet bundles (of curves) over U . Recall that for a point p ∈ U , the kth jet
space JkpU at this point is an equivalence class of smooth curves c : (−ε, ε)→ U such that
c(0) = p. The parameter of the curves c will always be denoted by x. The equivalence
relation is as follows: two curves are equivalent if they coincide at c(0) up to terms of order
k + 1.

For example, for k = 0 the space J0
pU contains only one element and the definition of

J1
pU coincides with one of the standard definitions of the tangent space TpU .

It is known that JkpU is naturally equipped with the structure of a vector space of
dimension n× k with coordinates denoted by

(u1
x, ..., u

n
x, u

1
x2 , ..., u

n
x2 , ..., u

1
xk , ..., u

n
xk). (1)

Namely, a curve c(x) = (u1(x), ..., un(x)) with c(0) = p viewed as an element of JkpU
has coordinates(

u1
x, ..., u

n
x, u

1
x2 , ..., u

n
x2 , ..., u

1
xk
, ..., un

xk

)
=

(
d
dx

(u1), ..., d
dx

(un), d2

dx2
(u1), ..., d

2

dx2
(un), ..., d

k

dxk
(u1), ..., d

k

dxk
(un)

)
|x=0

.
(2)

We denote by JkU the union
⋃

p∈U J
k
pU . It has a natural structure of a k×n-dimensional

vector bundle over U . The coordinates (u1, ..., un) on U and (1) on JkpU generate a coor-
dinate system

(u1, ..., un, u1
x, ..., u

n
x, u

1
x2 , ..., u

n
x2 , ..., u

1
xk , ..., u

n
xk)

on JkU adapted to the bundle structure. Any C∞ curve c : [a, b]→ U, x 7→ (u1(x), ..., un(x))
naturally lifts to a curve ĉ on JkU by

ĉ : [a, b]→ JkU , x0 7→
(
u1, ..., un, d

dx
(u1), ..., d

dx
(un), ..., d

k

dxk
(u1), ..., d

k

dxk
(un)

)
|x=x0

. (3)

Next, for every p ∈ U denote by Π[JkpU ] the algebra of polynomials in variables (1)
on JkpU . It has a natural structure of an infinite-dimensional vector bundle over U . Let
Ak denote the algebra of C∞-smooth sections of the bundle Π[JkpU ]. Notice that we have
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natural inclusion Ak ⊂ Ak+1 and set A =
⋃∞
k=0 Ak. In simple terms, the elements of A are

finite sums of finite products of coordinates

(u1
x, ..., u

n
x, u

1
x2 , ..., u

n
x2 , ..., u

1
xk , ..., u

n
xk , ...) (4)

with coefficients being C∞-functions on U . The summands in this sum, i.e., terms of the
form aj1...jni1...in

(u)(u1
xi1

)j1 ...(unxin )jn with aj1...jni1...in
(u) 6≡ 0 will be called differential monomials.

The differential degree of such a differential monomial is the number i1j1 + i2j2 + ...+ injn.
For example, f(u)u1

x2(u
2
x)

2 has differential degree 2 + 2 × 1 = 4. Differential degree of an
element of A is the maximum of the differential degrees of its differential monomials, it is
a nonnegative integer number. Elements of A will be called differential polynomials.

Generators of this algebra are coordinates uixj and functions on U . Every element
of A can be obtained from finitely many generators using finitely many summation and
multiplication operations.

The following two linear mappings will be important for us. The first one, called the
total x-derivative and denoted by D (another standard notation used in literature is d

dx
) is

defined as follows. One requires that D satisfies the Leibnitz rule and then defines it on
the generators of A, i.e., on functions f(u) and coordinates (4) by setting

D(f) =
n∑
i=1

∂f

∂ui
uix , D(uixj) = uixj+1 .

Clearly, the operation D increases the differential degree by one at most.

Next, denote by Ã the quotient algebra A/D(A). The tautological projection A → Ã
is traditionally denoted by H 7→

∫
Hdx ∈ Ã. In simple terms it means that we think that

two differential polynomials H, H̄ are equal, if their difference is a total derivative of a
differential polynomial.

Note that by construction, the operation D has the following remarkable property,
which explains its name and also the notation d

dx
used for D sometimes in literature. For

any curve c : [a, b]→ U whose lift (3) will be denoted by ĉ and for any element H ∈ A we
have:

d
dx

(H(ĉ)) = (DH) (ĉ). (5)

The second mapping is the mapping from A to an n-tuple of elements of A. The mapping
will be denoted by δ and will be called the variational derivative. Its ith component will
be denoted by δ

δui
and for an element H ∈ A it is given by the Euler-Lagrange formula:

δH
δui

=
∞∑
k=0

(−1)kDk

(
∂H
∂ui

xk

)
(only finitely many elements in the sum are different from zero so the result is again a
differential polynomial). It is known, see e.g. [20], that for an element H ∈ A we have
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δH = 0 if and only if H is a total x-derivative. Then, we again see that the variational
derivative does not depend on the choice of differential polynomial in the equivalence
class H ⊂ A. Then, the mapping δ induces a well-defined mapping on Ã, which will
be denoted by the same letter δ. One can think of δH as a covector with entries from
Ã, because the transformation rule of its entries under the change of u-coordinates is a
natural generalisation of the transformation rule for (0,1)-tensors.

Following [13, 14], let us define a (homogeneous, nondegenerate) Poisson bracket of
order 1. We choose a contravariant flat metric g = gij of any signature whose Levi-
Civita connection will be denoted by ∇ = (Γijk). Next, consider the following operation

Ag : Ã× Ã→ Ã: for two elements H, H̄ ∈ Ã we set

Ag(H, H̄) =

∫
δH̄
δuα

(
gαβD

(
δH
δuβ

)
− Γαβγ

δH
δuβ
uγx
)
dx. (6)

In the formula above and later in the text, we sum over repeating indexes and assume
Γisj = Γspjg

pi. The components Γisj will be called contravariant Christoffel symbols, when
we speak about different metrics we always raise the index by the own metric. A common
way to write the operation Ag which we also will use in our paper assumes applying it to
δH
δuβ

and multiplication with δH̄
δuα

(and of course summation and projection to Ã):

Ag = gαβD − Γαβγ uγx. (7)

It is known, see e.g. [13, 14, 15], that the operation Ag given by (6) defines a Poisson
bracket on Ã, that is, it is skew-symmetric and satisfies the Jacobi identity. Moreover, one
can show that the operation constructed by g and Γ via (6) defines a Poisson bracket if
and only if g is flat, that is, its curvature is zero, and Γijk is the Levi-Civita connection of
g. It is also known that the construction (6) does not depend on the coordinate system on
U .

Next, let us define a (nondegenerate, homogeneous) Darboux-Poisson structure of order
3. We choose a nondegenerate contravariant flat metric h = hij of arbitrary signature and
define the operation Bh : Ã× Ã→ Ã by the formula:

Bh = hαq
(
δpqD − Γpqmu

m
x

) (
δrpD − Γrpku

k
x

) (
δβrD − Γβrsu

s
x

)
=

= hαβD3 − 3hαqΓβqsu
s
xD

2+

+ 3

(
hαq
(

ΓpqsΓ
β
pr −

∂Γβqs
∂ur

)
usxu

r
x − hαqΓβqsusx2

)
D+

+

(
hαq
(

2Γaqs
∂Γβar
∂up

+
∂Γaqs
∂ur

Γβap − ΓaqsΓ
b
arΓ

β
bp −

∂2Γβqs
∂ur∂up

)
usxu

r
xu

p
x+

+ hαq
(

2ΓaqsΓ
β
ar + ΓaqrΓ

β
as − 2

∂Γβqr
∂us

−
∂Γβqs
∂ur

)
usxu

r
x2 − hαqΓβqsusx3

)
(8)

6



In the formula we have used the same conventions as above, i.e., assume summation over
repeating indexes. Moreover, similar to formula (7), we did not write H, H̄ in the formula.
They are assumed there as follows: the differential operator (8) is applied to δH

δuα
, the result

is multiplied by δH̄
δuβ

, and then we perform summation with respect to the repeating indexes
α, β.

As in the case of order 1, the operation Bh given by (8) defines a Poisson bracket on Ã.
The construction of this Poisson bracket is independent on the choice of coordinate system
on U . However, in contrast to the case of order 1, the form (8) is not the most general
form for a local Poisson bracket on Ã of order 3. In fact, the word Darboux indicates that
in a certain coordinate system (flat coordinate system for h in our case) the coefficients
of the Poisson structure are constants1. In this Darboux coordinate system the Christoffel
symbols Γijk are all zero and formula (8) reduces to2

Bh(H, H̄) = δH̄
δuβ
hαβD3

(
δH
δuα

)
. (9)

Poisson structures P1 of order 1 are always Darboux-Poisson, but there are examples, see
e.g. [18, 19, 32], of Poisson structures P3 of order 3 which are not Darboux-Poisson.

Similar to the finite-dimensional case, a Poisson structure P and choice of a “Hamilto-
nian” H ∈ Ã allows one to define the Hamiltonian flow, which in our setup is a system of
n PDEs on n functions ui(t, x) of two variables, t and x. It is given by:

∂uβ

∂t
= Pαβ

(
δH
δuα

)
. (10)

For example, in the case of the Poisson structure (6) for a Hamiltonian of degree 0 (i.e.,
for a function H on U) the Hamiltonian flow is given by

∂uβ

∂t
= gβα ∂2H

∂uα∂uγ
uγx − Γβαγ

∂H
∂uα

uγx = ∂uγ

∂x
∇β∇γH. (11)

Such systems of PDEs are called Hamiltonian systems of hydrodynamic type.

In our paper we study compatibility of nonhomogeneous Poisson structures of type
P3 +P1 such that the part of order 3 is Darboux-Poisson. That is, we have 4 nondegenerate
Poisson structures: Ag and Aḡ constructed by flat metrics g and ḡ by (6), and Bh and
Bh̄ constructed by flat metrics h and h̄ by (8). We assume that Ag + Bh and Aḡ + Bh̄
are (nonhomogeneous) Poisson structures and ask the question when these structures are
compatible in the sense that any of their linear combinations is a Poisson structure [27].
Since it is automatically skew-symmetric, the compatibility is equivalent to the Jacobi
identity for each linear combination of Ag + Bh and Aḡ + Bh̄.

The meaning of the word “nondegenerate” relative to the Poisson structures under dis-
cussion is as follows: the metrics g, ḡ, h, h̄ which we used to construct them are nondegener-
ate, i.e., they are given by matrices with nonzero determinant. Additional nondegeneracy

1The terminology “Darboux-Poisson” is motivated by [11].
2In fact, (8) is just the formula (9) rewritten in an arbitrary (not necessarily flat) coordinate system.
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condition, natural from the viewpoint of mathematical physics, is as follows: the operators
Rh = h̄h−1 and Rg = ḡg−1 have n different eigenvalues. Under these conditions, we solve
the problem completely: we find explictly all pairs of such Poisson structures.

Let us also comment on a more physics-oriented approach to the construction above, see
e.g. [11]. Physicists often view x as a space coordinate, and (u1, ..., un) as field coordinates.
In the simplest situation, the values u1, ..., un at x may describe some physical values (e.g.,
pressure, temperature, charge, density, momenta). The total energy of the system is the
integral over the x variable of some differential polynomial in u1, ..., un, and the Hamiltonian
functions H ∈ A have then the physical meaning of the density of the energy, i.e., of the
integrand in the formula Energy(c) =

∫
H(ĉ)dx. Further, it is assumed that the physical

system is either periodic in x, or one is interested in fast decaying solutions as x → ±∞.
The integration by parts implies then that the differential polynomial is defined up to an
addition of the total derivative in x which allows one to pass to Ã = A/D(A). The natural
analog of the differential of a function in this setup is the variational derivative δ

δuα
, and

actually the equation (10) is the natural analog of the finite-dimensional equation u̇ = XH

(where XH is the Hamiltonian vector field of a function H; it is given by Xj
H = P ij ∂H

∂ui

where P (u)ij is the matrix of the Poisson structure; please note similarity with (10)).
Generally it is useful to keep in mind the physical interpretation and the analogy with the
finite-dimensional case.

1.3 Brief description of main results, structure of the paper and
conventions

In this paper we address the following problems:

(A) Description of compatible pairs, Bh +Ag and Bh̄ +Aḡ, of non-homogeneous Poisson
brackets in arbitrary dimension n. In Theorems 1 and 2 we give an algebraic interpre-
tation of this problem in terms of Frobenius algebras and reduce it to classification
of Frobenius pencils, i.e. linear families of Frobenius algebras. We do it under the
following nondegeneracy assumption: the (1,1)-tensor Rh = h̄h−1 (connecting h and
h̄) has n different eigenvalues.

(B) Description and classification of Frobenius pencils. We reduce this purely algebraic
problem to a differential geometric one (explicitly formulated in Section 6.1) and
completely solve it using geometric methods. The nondegeneracy assumption is that
the (1,1)-tensor Rg = ḡg−1 (connecting g and ḡ) has n different eigenvalues. Namely,
we show that each Frobenuis pencil in question is a subpencil of a certain maximal
pencil. We explicitly describe all maximal pencils, see Theorems 3 and 4.

(B1) A generic in a certain sense maximal pencil corresponds to the well-known multi-
Poisson structure discovered by M. Antonowitz and A. Fordy in [1] and studied
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by E. Ferapontov and M. Pavlov [17], see also [2, 3, 9]. We refer to it as to
Antonowitz-Fordy-Frobenius pencil, AFF-pencil. In Theorem 3 we show that
every two-dimensional Frobenius pencil with one additional genericity assump-
tion is contained in the AFF-pencil.

(B2) Our main result, Theorems 4 and 5, give a complete description in the most
general case. Theorem 4 constructs all the maximal Frobenius pencils using
AFF-pencils as building blocks. Theorem 5 states that each Frobenuis pencil is
a subpencil of a certain maximal pencil from Theorem 4. These maximal pencils
are uniquely determined by some combinatorial data, directed rooted in-forest
F with vertices labeled by natural numbers whose sum is the dimension of the
manifold. The AFF-pencil corresponds to the simplest case, when F consists of
a single vertex. To the best of our knowledge, the other Frobenius pencils and
the corresponding bi-Poisson structures are new.

In addition, we show that common Frobenius coordinate systems admit an elegant
invariant description in terms of the Nijenhuis pencil L, see Theorem 4.

(C) Dispersive perturbations of compatible Poisson brackets of hydrodynamic type. The
general question is as follows: given two compatible Poisson structures Ag and Aḡ of
the first order, can one find flat metrics h and h̄ such that Bh +Ag and Bh̄ +Aḡ are
compatible Poisson structures? This passage from a Poisson bracket of hydrodynamic
type to a non-homogeneous Poisson bracket of higher order is called dispersive pertur-
bation in literature. We study dispersive perturbation of bi-Hamiltonian structures
assuming that the third order terms Bh and Bh̄ are Darboux-Poisson.

We describe all such perturbations under the assumption that both Rh = h̄h−1 and
Rg = ḡg−1 have n different eigenvalues, and in particular, answer a question from
[17] on dispersive perturbations of the AFF-pencil (Remark 3.2).

The structure of the paper is as follows. In Section 2, we start with basic facts and
constructions related to compatibility of homogeneous Poisson structures of order 1 and 3,
then give description of compatible non-homogeneous structures Bg +Ah and Bh̄ +Aḡ in
terms of Frobenius algebras (Theorems 1 and 2), leading us to the classification problem
for the so-called Frobenius pencils. We conclude this section with an example of AFF-
pencil. The AFF-pencil plays later a role of a building block in our general construction.
Moreover, it provides an answer under a minor nondegeneracy assumption, see Theorem 3
in Section 3, where we also discuss a question of Ferapontov and Pavlov. Theorem 3 will
be proved in Section 6.

In Section 4 we formulate the answer to the classification problem in its full generality.
Theorem 5 (proved in Section 7) gives a description of Frobenius pencils in the “diagonal”
coordinates for g, ḡ, and Theorem 4 (proved in Section 7.3) describes the corresponding
Frobenius coordinates. In Section 4.2 we discuss the case of two blocks and give explicit
formulas, see Theorem 6.
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Finally in Section 8, we give a pure algebraic description of the Frobenius pencils from
the classification theorem (Theorem 5) using the so-called warped product of pro-Frobenius
algebras (as an algebraic counterpart of geometric warped product operation).

All objects in our paper are assumed to be of class C∞; actually our results show that
most of them are necessarily real-analytic.

Throughout the paper we use Ag and Bh to denote the Poisson structures of order 1
and 3 given by (9) and (8) respectively. Unless otherwise stated, the metrics we deal with
(such as g, h, ḡ, h̄, . . . ) are contravariant.

2 Non-homogeneous compatible brackets and Frobe-

nius algebras

2.1 Basic facts and preliminary discussion

Recall that we study compatibility of two Poisson structures Bh + Ag and Bh̄ + Aḡ, con-
structed by flat metrics h, h̄, g, ḡ; our goal is to construct all of them. Recall that by defi-
nition it means that for any constants λ, λ̄ the linear combination λ(Bh+Ag)+ λ̄(Bh̄+Aḡ)
is a Poisson structure. Using that B and A have different orders, one obtains (see e.g. [11])

Fact 1. Let h, h̄, g and ḡ be flat metrics. If Bh +Ag and Bh̄ +Aḡ are compatible Poisson
structures, then the following holds:

(i) Ag and Aḡ are compatible,

(ii) Bh and Bh̄ are compatible,

(iii) Ag and Bh are compatible (as well as Aḡ and Bh̄).

This Fact naturally leads us to considering pencils ( = linear combinations of metrics)
λh+ λ̄h̄ and λg + λ̄ḡ. We need the following definition:

Definition 1 (Dubrovin, [15, Definition 0.5]). Two contravariant flat metrics g and ḡ are
said to be Poisson compatible, if for each (nondegenetrate) linear combination ĝ = λg+ λ̄ḡ,
λ, λ̄ ∈ R, the following two conditions hold:

1. ĝ is flat;

2. the contravariant Christoffel symbols for g, ḡ and ĝ are related as

Γ̂αβs = λΓαβs + λ̄Γ̄αβs . (12)
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In this case, the family of metrics {λg + λ̄ḡ}λ,λ̄∈R is said to be a flat pencil of metrics.

The next fact explains relationship between Poisson compatibility of flat metrics and
compatibility of the corresponding Poisson structures.

Fact 2. Let h, h̄, g and ḡ be flat metrics. Then, the following statements are true:

(i) Ag and Aḡ are compatible if and only if g and ḡ are Poisson compatible.

(ii) If Bh and Bh̄ are compatible, then h and h̄ are Poisson compatible.

(iii) If Bh and Ag are compatible, then h and g are Poisson compatible.

The (i)-part of Fact 2 is in [13], see also [16, 28, 29]. In view of formula (7), the two
conditions from Definition 1 are nothing else but a geometric reformulation of the com-
patibility condition for Poisson structures of order one, which explains the name Poisson
compatible. The (ii)-part is an easy corollary of [11, Theorem 3.2], see also proof of Theorem
3 below. The (iii)-part follows from [24, Theorem 2.2].

Notice that unlike the case of Poisson structures of order 1, not every pair of Poisson
compatible metrics h and h̄ (resp. h and g) leads to compatible Poisson structures of higher
order Bh and Bh̄ as in (ii) (resp. Bh and Ag as in (iii)). Some extra conditions are required.
These conditions will be explained below in Fact 4 (for h and g leading to compatible Bh
and Ag) and Theorem 3 (for h and h̄ leading to compatible Bh and Bh̄).

Let us also recall the relation of compatible metrics to Nijenhuis geometry:

Fact 3 (see [16, 28, 29]). If g and ḡ are Poisson-compatible, then the (1,1)-tensor R = ḡg−1

is a Nijenhuis operator. Moreover, if g is flat, R is a nondegenerate Nijenhuis operator
with n different eigenvalues, and ḡ := Rg is flat, then ḡ is compatible to g.

As already explained, the condition that Bh +Ag is a Poisson structure is a nontrivial
geometric condition on the flat metrics h and g, stronger than their Poisson compatibility
in the sense of Definition 1. This condition was studied in literature (see e.g. [4]) and
it was observed that the compatibility of homogeneous Poisson structures of order 3 and
1 is sometimes related to certain algebraic structure. In our case, under the assumption
that Bh is Darboux-Poisson, the algebraic structure which pops up naturally is Frobenius
algebra.

Definition 2. Let (a, ?) be an n-dimensional commutative associative algebra over R
endowed with a nondegenerate symmetric bilinear form b( , ). The pair

(
(a, ?), b

)
is called

a Frobenius algebra, if

b(ξ ? η, ζ) = b(ξ, η ? ζ), for all ξ, η, ζ ∈ a. (13)

The form b is then called a Frobenius form.

11



Notice that we do not assume that a is unital which makes our version slightly more
general than the one used in the theory of Frobenius manifolds (see e.g. [15]), or in certain
branches of Algebra. The bilinear form b may have any signature.

Condition (13) is linear in b, so all Frobenius forms (if we allow them to be degenerate)
on a given commutative associative algebra form a vector space.

Fix a basis e1, . . . , en in a. Below we will interpret a as the dual (Rn)∗ and for this
reason we interchange lower and upper indices. Consider the structure constants aijk defined
by ei ? ej = aijk e

k and coefficients bij := b(ei, ej) of the Frobenius form b. The algebra a is
Frobenius if and only if aijk and bij satisfy the following conditions:

aijk = ajik (commutativity),

aijαa
αr
k = aiαk a

jr
α (associativity),

bαraijα = biαajrα (Frobenius condition).

(14)

The dual a∗ has a natural structure of an affine space Rn with ui ' ei being coordinates on
a∗ ' Rn. Thus, on a∗ we can introduce the contravariant metric gαβ(u) = bαβ+aαβs us which
is known to be flat (e.g. [24, Lemma 4.1]; the result also follows from [4]). What is special
here is not the metric g itself, but the coordinate system u1, . . . , un which establishes a
relationship between g and the Frobenius algebra a. This leads us to

Definition 3. Let g be a flat metric. We say that u1, . . . , un is a Frobenuis coordinate
system for g if

gαβ(u) = bαβ + aαβs us, (15)

where aαβs are structure constants of a certain Frobenius algebra a and b = (bαβ) is a
(perhaps degenerate) Frobenius form for a .

Frobenius coordinates possess the following important property that can be easily
checked.

Fact 4 (see [4] and [24]). Let g be a contravariant metric and u1, . . . , un a coordinate
system. The following two conditions are equivalent:

1. In coordinates u1, . . . , un, the contravariant Christoffel symbols Γαβs of g are constant
and symmetric in upper indices.

2. u1, . . . , un are Frobenius coordinates, i.e., g is given by (15).

If either of these conditions holds, then g is flat and Γαβs = −1
2
∂gαβ

∂s
.

The relation of Frobenius coordinate systems to our problem is established by the
following remarkable and fundamental statement:
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Fact 5 ([24, Theorem 2.2]). Let g and h be two flat metrics. Then Bh +Ag is Poisson if
and only if there exists a coordinate system u1, . . . , un such that the following holds:

1. gαβ(u) = bαβ+aαβs us, where aαβs are structure constants of a certain Frobenius algebra
a, and b is a Frobenius form for a;

2. the entries hαβ of h in this coordinate system are constant;

3. h =
(
hαβ
)

is a Frobenius form for a, that is, hαqaβγq = hγqaβαq .

This fact was independently obtained by P. Lorenzoni and R. Vitolo in their unpublished
paper. The “if” part of the statement follows from [35] by I. Strachan and B. Szablikowski,
see also [12, Theorem 5.12].

The coordinates (u1, . . . , un) from Fact 5 will be called Frobenius coordinates for the
nonhomogeneous Poisson structure Bh + Ag. Of course, Frobenius coordinates are not
unique; indeed, they remain to be Frobenius after any affine coordinate change. This is
the only freedom since the metric h is constant in Frobenius coordinates.

2.2 Reduction of our problem to an algebraic one and Frobenius
pencils

Definition 4. Let (a, ?) and (ā, ?̄) be Frobenius algebras defined on the same vector space
V and h, h̄ : V × V → R the corresponding Frobenius forms. We will say that (a, h) and
(ā, h̄) are compatible if the operation

ξ, η 7→ ξ ? η + ξ ?̄ η, ξ, η ∈ V, (16)

defines the structure of a Frobenius algebra with the Frobenuis form h+ h̄.

Similarly, if a and ā are Frobenius algebras each of which is endowed with two Frobe-
nius forms b, h and b̄, h̄ respectively, then we say that the triples (a, b, h) and (ā, b̄, h̄) are
compatible if (16) defines a Frobenius algebra for which b+ b̄ and h+ h̄ are both Frobenuis
forms.

Formally, the definition requires that b + b̄ and h + h̄ are nondegenerate. It is not
essential. Indeed, if the operations ? and ?̄ are associative, and also the operation ?̂ := ?+ ?̄
given by (16) is associative, then any linear combination λ?+λ̄?̄ is associative. Moreover, if
b̂ := b+b̄, possibly degenerate, satisfies the condition (13) for ?̂, then the linear combination
λb+ λ̄b̄ also satisfies the condition (13) with respect to λ?+λ̄?̄. Thus, passing to a suitable
linear combination we can make b̂ and also ĥ nondegenerate.
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In view of Facts 4 and 5, compatible Frobenius triples (a, b, h) and (ā, b̄, h̄) naturally
define compatible Poisson structures Bg +Ah and Bḡ +Ah̄. The next theorem shows that
the converse is also true under the assumption that Rh = h̄h−1 has n different eigenvalues.

Theorem 1. Consider two non-homogeneous Poisson structures Bh+Ag and Bh̄+Aḡ and
suppose that Rh = h̄h−1 has n different eigenvalues.

Then, they are compatible if and only if (g, h) and (ḡ, h̄) admit a common Frobenius
coordinate system u1, . . . , un in which

1. hαβ and h̄αβ are constant,

2. gαβ(u) = bαβ + aαβs us and ḡαβ(u) = b̄αβ + āαβs us,

3. (a, b, h) and (ā, b̄, h̄) are compatible Frobenius triples (here a and ā denote the algebras
with structure constants aαβs and āαβs respectively).

Corollary 2.1. In more explicit terms, compatibility of Bh + Ag and Bh̄ + Aḡ such that
Rh = h̄h−1 has n different eigenvalues is equivalent to reducibility of these operators, in an
appropriate coordinate system u1, . . . , un, to the following simultaneous canonical form

Bh +Ag = hαβD3 + bαβD + aαβs usD + 1
2
aαβs usx,

Bh̄ +Aḡ = h̄αβD3 + b̄αβD + āαβs usD + 1
2
āαβs usx,

where hαβ, h̄αβ, bαβ, b̄αβ, aαβs , āαβs are constants symmetric in upper indices and satisfying
the conditions:

aαβq aqγs = aγβq a
qα
s , āαβq āqγs = āγβq ā

qα
s , āαβq aqγs + aαβq āqγs = āγβq a

qα
s + aγβq ā

qα
s ,

hαqaβγq = hγqaβαq , bαqaβγq = bγqaβαq , h̄αqāβγq = h̄γqāβαq , b̄αqāβγq = b̄γqāβαq ,

h̄αqaβγq + hαqāβγq = h̄γqaβαq + hγqāβαq , b̄αqaβγq + bαqāβγq = b̄γqaβαq + bγqāβαq .

(17)

Notice that the coordinates u1, . . . , un from Theorem 1 are just flat coordinates for h
(or equivalently, for h̄ as these metrics have common flat coordinates by Theorem 1).

We see that Theorem 1 reduces the problem of description and classification of pairs of
compatible Poisson structures Bh +Ag and Bh̄ +Aḡ such that Rg = h̄h−1 has n different
eigenvalues to a purely algebraic problem. As we announced above, we will reformulate it
differential geometric terms in Section 6.1, and solve it under the assumption that Rg =
ḡg−1 has n different eigenvalues.

We have not succeeded in solving the problem by purely algebraic means. Like many
other problems in Algebra, it reduces to a system of quadratic and linear equations (see
relations (17)). For example, classification of Frobenius algebras is a problem of the same
type. This problem is solved under the additional assumption that the Frobenius form
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is positive definite in [5], and in our opinion is out of reach otherwise. Of course, for a
fixed dimension one can find complete or partial answers. In particular, in [31] it is shown,
that up to dimension 6 there is a finite number of isomorphism classes of commutative
associative algebras and for n > 6 the number of classes is infinite. In [22] the classification
of nilpotent commutative associative algebras up to dimension 6 is given. See also [26, 35].

In the situation discussed in Theorem 1, consider the pencil of first order Poisson
structures Aλg+µḡ, which is sometimes referred to as quasiclassical limit [17] of the non-
homogeneous pencil Bλh+µh̄ + Aλg+µḡ. We can ask the inverse question: Given a flat
pencil {λg + µḡ}, does the corresponding Poisson pencil {Aλg+µḡ} admit a perturbation
with nondegenerate Darboux-Poisson structures of order three of general position?

Theorem 1 basically shows that the main condition for the related quadruple of metrics
(h, h̄, g, ḡ) is the existence of a common Frobenius coordinate system for g and ḡ. Indeed,
if this condition holds true and this Frobenuis coordinate system is given, then the other
two metrics h and h̄ can be “reconstructed” by solving a system of linear equations. More
precisely, we have the following

Theorem 2. Let g and ḡ be compatible flat metrics that admit a common Frobenius coor-
dinate system u1, . . . , un, that is

gαβ(u) = bαβ + aαβs us and ḡαβ(u) = b̄αβ + āαβs us,

where (a, b) and (ā, b̄) are Frobenius pairs (here a and ā denote the algebras with structure
constants aαβs and āαβs respectively). Then

(i) the corresponding Frobenius algebras are compatible,

(ii) there exist nondegenerate metrics h and h̄ (with hαβ and h̄αβ being constant in coor-
dinates u1, . . . , un), such that Bh+Ag and Bh̄+Aḡ are compatible Poisson structures,

(iii) in Frobenius coordinates u1, . . . , un, the (constant) metrics h and h̄ can always be
chosen in the form

hαβ = m0 bαβ+aαβs ms and h̄αβ(u) = m0 b̄αβ+āαβs ms, (m1, . . . ,mn) ∈ Rn, m0 ∈ R.
(18)
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2.3 AFF-pencil

Consider a real affine space V ' Rn with coordinates u1, . . . , un and define the (Nijenhuis)
operator L and contravariant metric g0 on it by:

L =


u1 1 0 . . . 0
u2 0 1 . . . 0

. . .

un−1 0 0 . . . 1
un 0 0 . . . 0

 , g0 =



0 0 . . . 0 0 1
0 0 . . . 0 1 −u1

0 0 . . . 1 −u1 −u2

. .
.

0 1 . . . −un−4 −un−3 −un−2

1 −u1 . . . −un−3 −un−2 −un−1


. (19)

Next, introduce n + 1 contravariant metrics gi = Lig for i = 0, . . . , n. In matrix form, we
have

gi =

(
an−i 0

0 bi

)
, (20)

where an−i is a (n− i)× (n− i) matrix

an−i =


0 . . . 0 0 1
0 . . . 0 1 −u1

0 . . . 1 −u1 −u2

. . .
1 . . . −un−i−3 −un−i−2 −un−i−1


and bi is i× i matrix of the form

bi =


un−i+1 un−i+2 . . . un−1 un

un−i+2 un−i+3 . . . un 0
. . .

un−1 un . . . 0 0
un 0 . . . 0 0

 .

In particular, g0 = an and gn = bn.

The metrics g0, g1, . . . , gn are flat and pairwise compatible, so that they generate an
n+1-dimensional flat pencil with remarkable properties, see e.g. [17, 9]. We can write this
pencil as

{P (L)g0}, where P (·) is an arbitrary polynomial of degree ≤ n (21)

and L and g0 are given by (19). We will refer to it as to AFF-pencil. This pencil was
discovered, in the form (19) and (20), by M. Antonowicz and A. Fordy [1]. As we see, the
components of each metric gi are affine functions, moreover, the coordinates (u1, . . . , un)
are common Frobenius coordinates for all of them.

The corresponding Frobenius algebras are easy to describe. Consider two well-known
examples:
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• the algebra an of dimension n with basis e1, e2, . . . , en and relations

ei ? ej =

{
ei+j, if i+ j ≤ n,

0 otherwise.

Notice that an can be modelled as the matrix algebra Span(J, J2, . . . , Jn), where J
is the nilpotent Jordan block of size (n + 1)× (n + 1). It contains no multiplicative
unity element.

• the algebra bn of dimension n with basis e1, e2, . . . , en and relations

ei ? ej =

{
ei+j−1, if i+ j − 1 ≤ n,

0 otherwise.

This algebra can be understood as the unital matrix algebra Span(Id, J, J2, . . . , Jn−1)
where J is the nilpotent Jordan block of size n×n. The difference from the previous
example is that bn, by definition, contains the identity matrix. Equivalently, we
can define bn as the algebra of truncated polynomials R[x]/〈xn〉 (similarly an '
〈x〉/〈xn+1〉).

It is straightforward to see that the metric gn = bn is related to the Frobenius algebra
bn. Similarly g0 = an is related to the Frobenius algebra an (this becomes obvious if
we reverse the order of basis vector and mutiply each of them by −1). Hence, formula
(20) shows that the Frobenius algebra associated with gi is isomorphic to the direct sum
an−i ⊕ bi.

It is interesting that a generic metric g = P (L)g0 from the AFF-pencil (21), i.e. such
that P (L) has n distinct roots, corresponds to the direct sum R⊕ · · · ⊕ R⊕ C⊕ · · · ⊕ C,
where each copy of R relates to a real root and each copy of C relates to a pair of complex
conjugate roots of P (·).

It is a remarkable fact that for each gi we can find a partner hi such that Bhi +Agi is a
Poisson structure and all these structures are pairwise compatible. The (constant) metrics
hi take the form

hi = (gi)m̄,m0 , m̄ = (m1, . . . ,mn) ∈ Rn,m0 ∈ R, (22)

where (gi)m̄,m0 is obtained from the matrix gi(u) by replacing us with ms and all 1’s with
m0. In this way, we obtain an (n + 1)-dimensional pencil of non-homogeneous Poisson
structures generated by Bhi +Agi :{

n∑
i=0

ci
(
Bhi +Agi

)}
ci∈R

(23)
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Alternatively, the pencil (23) can be described as follows. Fix m̄ = (m1, . . . ,mn) ∈ Rn,
m0 ∈ R and let L(m̄) denote the operator with constant entries obtained from L = L(u)
by replacing ui with constants mi ∈ R. Similarly, g0(m̄) denotes the metric with constant
coefficients obtained from g0 by replacing ui with the same constants mi ∈ R.

Then for g = P (L)g0 we can define its partner h (metric with constant entries) as

h = m0P
(
L
(

1
m0 m̄

))
g0

(
1
m0 m̄

)
It can be easily checked that the correspondence (m0,m1, . . . ,mn) 7→ h defined by this
formula is linear so that it makes sense for m0 = 0 (the denominators cancel out). Then
the pencil (23) can be, equivalently, defined as{

Bm0P(L( 1
m0 m̄))g0( 1

m0 m̄) +AP (L)g0

}
degP (·)≤n

. (24)

Notice that such a pencil is not unique, as the above construction depends on n + 1
arbitrary parameters m0,m1, . . . ,mn. In other words, in (24), the polynomial P (·) serves as
a parameter of the bracket within the AFF-pencil, whereas (m0, m̄) parametrise dispersive
perturbations of this pencil.

Remark 2.1. For our purposes below it will be convenient to rewrite this pencil in another
coordinate system by taking the eigenvalues of L as local coordinates x1, . . . , xn. In these
coordinates, g0 and L from (19) take the following diagonal form (see e.g. [17, p. 214] or
[6, §6.2])3:

gLC =
n∑
i=1

(∏
s 6=i

(xi − xs)

)−1 (
∂
∂xi

)2
, L = diag(x1, ..., xn), (25)

so that the AFF pencil (21) becomes diagonal too:

{P (L)gLC}, where P (·) is a polynomial of degree ≤ n. (26)

We also notice that the transition from the diagonal coordinates x to Frobenius coordinates
u is quite natural: the coordinates ui are the coefficients σi of the characteristic polynomial
χL(t) = det(t·Id−L) = tn−σ1t

n−1−σ2t
n−2−· · ·−σn, so that, up to sign, ui are elementary

symmetric polynomials in x1, . . . , xn.

The AFF pencil provides a lot of examples of compatible flat metrics g and ḡ that
admit a common Frobenius coordinate system: one can take any two metrics from the
pencil (21) or, equivalently, (26).

3The letters LC in gLC refer to Levi-Civita. The metric gLC played the key role in his classification of
geodesically equivalent metrics [25]. See also [9] for discussion on the relationship between projectively
equivalent and Poisson-compatible metrics.
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3 Compatible flat metrics with a common Frobenius

coordinate system: generic case

Theorems 1 and 2 reduce the compatibility problem for two Poisson structures of the form
Bh +Ag to a classification of all pairs of metrics g and ḡ admitting a common Frobenius
coordinate system. The next theorem solves this problem under the standard assumption
that Rg = ḡg−1 has n different eigenvalues and one minor additional condition.

Theorem 3. Let g and ḡ be compatible flat metrics that admit a common Frobenius co-
ordinate system. Assume that the eigenvalues of the operator Rg = ḡg−1 are all different
and in the diagonal coordinates (such that Rg is diagonal) every diagonal component of g
depends on all variables. Then the flat pencil λg + µḡ is contained in the AFF-pencil, in
other words, there exists a coordinate system (x1, . . . , xn) such that

g = P (L)gLC and ḡ = Q(L)gLC.

for some polynomials P (·) and Q(·) of degree ≤ n and gLC and L defined by (25).

Moreover, if n ≥ 2 and P (·) and Q(·) are not proportional, then the common Frobenius
coordinate system for g = P (L)gLC and ḡ = Q(L)gLC is unique up to an affine coordinate
change.

Theorem 3 will be proved in Section 6. The uniqueness part will be explained in Section
7.3, see Remark 7.2.

Remark 3.1. In Theorem 3 we allow some of the eigenvalues Rg to be complex. In this
case, we think that a part of the diagonal coordinates (x1, ..., xn) is also complex-valued.
For example, the coordinates x1, ..., xk may be real-valued, and the remaining coordinates

xk+1 = z1, xk+2 = z̄1,..., xn−1 = z
n−k

2 , xn = z̄
n−k

2 , where “ ¯ ” means complex conjugation,
are complex-valued. In this case (26) gives us a well-defined (real) metric gLC and a (real)
Nijenhuis operator L.

The genericity condition in Theorem 3 is that every diagonal component of g depends
on all variables. In Theorems 5, 4 below we will solve the problem in full generality, without
assuming this or any other genericity condition.

Remark 3.2. In [17, §5] E. Ferapontov and M. Pavlov asked whether dispersive per-
turbations of the pencil (21) with g0 and L given by (25) other than those described
in Section 2.3 are possible. Theorem 3 leads to a negative answer under the additional
assumption that the dispersive perturbation is in the class of nondegenerate Darboux-
Poisson structures of order 3. Indeed, according to Theorem 1 every dispersive perturba-
tion λ(Bh +Ag) + µ(Bh̄ +Aḡ) of the pencil λAg + µAḡ can be reduced to a simple normal
form in a common Frobenius coordinate system for g and ḡ (assuming that Rh = h̄h−1
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has different eigenvalues). Moreover, in this coordinate system h and h̄ are constant and
represent Frobenius forms for the corresponding Frobenius algebras a and ā. Since by The-
orem 3, such a coordinate system is unique, it remains to solve a Linear Algebra problem
of choosing suitable forms h and h̄, satisfying three conditions (cf. (17)):

h(ξ ? η, ζ) = h(ξ, η ? ζ),

h̄(ξ ?̄ η, ζ) = h̄(ξ, η ?̄ ζ),

h̄(ξ ? η, ζ) + h(ξ ?̄ η, ζ) = h̄(ξ, η ? ζ) + h(ξ, η ?̄ ζ),

(27)

It is straightforward to show for a generic pair g, ḡ of metrics from the AFF-pencil, the
forms h and h̄ are defined by n+1 parameters m0,m1, . . . ,mn as in (24). No other solutions
exist. In particular, formula (24) describes all possible dispersive perturbations of the AFF-
pencil by means of nondegenerate Darboux-Poisson structures of order 3. Moreover, this
conclusion holds for any generic two-dimensional subpencil.

4 Compatible flat metrics with a common Frobenius

coordinate system: general case

4.1 General multi-block Frobenius pencils

Let us now discuss the general case without assuming that in diagonal coordinates, every
diagonal component of g depends on all variables.

Similar to Theorem 3, the metrics g and ḡ will belong to a large Frobenius pencil built
up from several blocks each of which has a structure of an (extended) AFF pencil. We
start with constructing a series of such pencils.

We first divide our diagonal coordinates into B blocks of positive dimensions n1, ..., nB
with n1 + ...+ nB = n:

(x1
1, ..., x

n1
1︸ ︷︷ ︸

X1

, ..., x1
B, ..., x

nB
B︸ ︷︷ ︸

XB

). (28)

Next, we consider a collection of nα-dimensional Levi-Civita metrics gLC
α and nα-dimensional

operators Lα (as in Theorem 3 but now for each block separately):

gLC

α =
nα∑
s=1

(∏
j 6=s

(xsα − xjα)

)−1 (
∂
∂xsα

)2

, Lα = diag(x1
α, ..., x

nα
α ). (29)
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Then we introduce a new block-diagonal metric ĝ

ĝ = diag(ĝ1, . . . , ĝB) with ĝα =
∏
s<α

(
1

detLs

)csα
gLC

α , (30)

where csα = 0 or 1. The values of the discrete parameters csα are determined by some
combinatorial data as explained below.

Finally, we consider the pencil of (contravariant) metrics of the form

{L̂ ĝ | L̂ ∈ L} (31)

where L is a family (pencil) of block-diagonal operators of the form

L̂ = diag
(
P1(L1), P2(L2), . . . , PB(LB)

)
.

where Pα(·) are polynomials with degPα ≤ nα + 1 treated as parameters of this family.
The coefficients of the polynomials Pα are not arbitrary but satisfy a collection of linear
relations involving coefficients from different polynomials so that this pencil, in general,
is not a direct sum of blocks (although, direct sum is a particular example). Notice that
L is a Nijenhuis pencil whose algebraic structure is quite different from that of the pencil
{P (L)} from Theorem 3.

The numbers csα and relations on the coefficients of Pα’s are determined by a com-
binatorial object, an oriented graph F with special properties, namely, a directed rooted
in-forest (see [38] for a definition). This graph may consists of several connected compo-
nents, each of which is a rooted tree whose edges are oriented from its leaves to the root.
An example is shown in Figure 1.

Each vertex of F is associated with a certain block of the above decomposition (28)
and labelled by an integer number α ∈ {1, ..., B}. The structure of a directed graph
defines a natural strict partial order (denoted by ≺) on the set {1, ..., B}: for two numbers
α 6= β ∈ {1, ..., B} we set α ≺ β, if there exists an oriented way from β to α. For instance,
for the graph shown on Fig. 1, we have 1 ≺ 3, 2 ≺ 4, 5 ≺ 6. Without loss of generality
we can and will always assume that the vertices of F are labeled in such a way that α ≺ β
implies α < β.

Notice that the vertices of degree one are of two types, roots and leaves: α is a root if
there is no β such that β ≺ α and, conversely, β is a leaf if there is no β such that α ≺ β.
We say α = next(β), if α ≺ β and there is no γ with α ≺ γ ≺ β. In the upper tree of
Fig. 1 the root is 1, the leaves are 3 and 4 and we have: 1 = next(2) and 2 = next(3),
2 = next(4).

The numbers csα in (30) are now defined from F as follows:

csα =

{
1, if s ≺ α,

0, otherwise.
(32)
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Figure 1: A 6× 6 matrix cαβ and the corresponding in-forest. The upper tree corresponds
to the upperleft 4× 4-block, the lower tree corresponds to the downright 2× 2-block.

Notice that in our assumptions, s ≺ α implies s < α so that the B×B-matrix csα is
uppertriangular with zeros on the diagonal, see Figure 1.

Finally, for a vertex α we denote the coefficients of the corresponding polynomial Pα
by Pα(t) =

α
a0 +

α
a1t+ ...+

α
anα+1t

nα+1. Then the conditions on the coefficients Pα(t) are

(i) If α is a root, then
α
anα+1 = 0, i.e., degPα ≤ nα.

(ii) If nα = 1, then
α
anα+1 = 0, i.e. degPα ≤ 1.

(iii) If α = next(β), then
α
a0 = 0 and

α
a1 = (−1)nα

β
anβ+1.

(iv) If α = next(β) and α = next(γ) with β 6= γ, then
β
anα+1 =

γ
anγ+1 = 0 (and, hence,

α
a1 = 0 in view of (iii)).

This completes the description of the pencil (31) of (contravariant) metrics and we can
state our next result.

Theorem 4. The pencil (31) (with cαβ defined by (32) and coefficients of Pα satisfying
(i)-(iv)) is Frobenius. In other words, all the metrics

g = L̂ ĝ = diag
(
P1(L1)ĝ1, . . . , PB(LB)ĝB

)
with ĝα =

∏
s<α

(
1

detLs

)csα
gLC

α , (33)

are flat, Poisson compatible and admit a common Frobenius coordinate system

(u1, ..., un) = (u1
1, ..., u

n1
1︸ ︷︷ ︸

U1

, ..., u1
B, ..., u

nB
B︸ ︷︷ ︸

UB

) (34)
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which is defined as follows. Let σ1
α, . . . , σ

ni
α denote the coefficients of the characteristic

polynomial of Lα

χLα(t) := det (t Idnα×nα −Lα) = tnα − σ1
αt
nα−1 − σ2

αt
nα−2 − ...− σnαα , α = 1, . . . , B.

Then
uk1 = σk1 , k = 1, . . . , n1,
uk2 = (detL1)c12 σk2 , k = 1, . . . , n2,
uk3 = (detL1)c13(detL2)c23 σk3 , k = 1, . . . , n3,

. . .
ukB =

∏
s<B(detLs)

csB σkB, k = 1, . . . , nB.

(35)

Theorem 4 will be proved in Section 8.

The advantage of the formulas for Frobenius coordinates in Theorem 4 is that they are
invariant in the sense they do not depend on the choice of coordinates in blocks, but use
coefficients of the characteristic polynomials of blocks Li.

Let us explain how one can use this property to check algorithmically (say, using com-
puter algebra software) that the coordinates in Theorem 4 are indeed Frobenius for the
metric g.

In each block (with number α), we change from diagonal coordinates Xα = (x1
α, ..., x

nα
α )

to the coordinates Yα = (y1
α, ..., y

nα
α ) given as follows:

χLα(t) = tnα − y1
α t

nα−1 − y2
α t

nα−2 − ...− ynαα . (36)

Note that in the coordinates Yα, the metric gLC
α and the operator Lα have the form (19)

with u1, ..., un replaced by y1
α, ..., y

nα
α . Since in these coordinates we have (−1)nα detLα =

ynαα , the iterated warped product metric g = (gij) is given by the following easy algebraic
formula

g = g1 +

(
(−1)n1

yn1
1

)c12
g2 +

(
(−1)n1

yn1
1

)c13 ((−1)n2

yn2
2

)c23
g3 + ... ,

with gα = Pα(Lα)gLC
α and gLC

α and Lα explicitly given by (19).

In order to check whether the coordinates u given by (35) are Frobenius, one needs to
perform the multiplication

JgJ>,

where J =
(
∂ui

∂yj

)
is the Jacobi matrix of the coordinate transformation4 (y1, ..., yn) →

(u1, ..., un) and check whether the entries of the resulting matrix JgJ> are affine functions
in ui and conditions (17) are fulfilled. All these operations can be realised by standard
computer algebra packages.

4This transformation is given by (35) as yiα = σiα and detLα = (−1)nαynα
α .
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The next result gives a description of two-dimensional Frobenius pencils in the general
case.

Theorem 5. Let g and ḡ be compatible flat metrics that admit a common Frobenius coor-
dinate system. If the eigenvalues of the operator Rg = ḡg−1 are all different at a point p,
then in a neighbourhood of this point the pencil λg+µḡ is isomorphic to a two-dimensional
subpencil of the Frobenius pencil (31), i.e., in a certain coordinate system these metrics
take the form

g = diag (P1(L1)ĝ1, . . . , PB(LB)ĝB) and ḡ = diag (Q1(L1)ĝ1, . . . , QB(LB)ĝB) (37)

(with parameters cαβ defined by (32) and coefficients of Pα and Qα satisfying (i)-(iv)).

Theorem 5 will be proved in Section 7.

Remark 4.1. In Theorem 5 we allow complex eigenvalues of Rg. The corresponding part
of diagonal coordinates is then complex. Moreover, the polynomials Pα and Qα may have
complex coefficients. The only condition is that the metrics given by (30) should be well-
defined real metrics. It is easy to see that this condition implies in particular that every
block (gLC

α , Lα) is either real or pure complex (= all coordinates are complex; the coefficients
of the polynomials Pα and Qα may be complex as well), and that a pure complex block
comes together with a complex-conjugate one. See also [6, §3] for discussion on Nijenhuis
operators some of whose eigenvalues are complex.

In certain special cases, a common Frobenius coordinate system for g and ḡ is not
unique (up to affine transformations). This is the case when nα = 1, cαβ = 0 for all β (i.e.,
this block represents a leaf of the corresponding in-forest) and the diagonal component of
Rg = ḡg−1 corresponding to this block is constant, in other words, the (linear) polynomials
Pα and Qα are proportional. The restrictions gα and ḡα onto this blocks are then as follows

gα = f · (axα + b)
(

∂
∂xα

)2
and ḡα = c gα = c f · (axα + b)

(
∂
∂xα

)2
, c ∈ R,

where f is some function of the remaining coordinates and Lα = (xα) (diagonal 1 × 1
matrix). However, we can do coordinate transformation xα 7→ x̃α = x̃α(xα) that kills the
factor axα + b and reduces the metrics to the form

gα = f ·
(

∂
∂x̃α

)2
and ḡα = c gα = c f ·

(
∂
∂x̃α

)2
, c ∈ R,

Hence, with a new operator Lnew
α = (x̃α) and new polynomials P new

α (t) = 1, Qnew
α (t) = c,

we still remain in the framework of our construction and (37) still holds. This non-affine
transformation will lead to another Frobenius coordinate system. In Section 7.3 we explain
that only this situation allows ambiguity in the choice of Frobenius coordinates up to affine
transformations.
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Remark 4.2. In [17, Theorem 2] it was claimed that under some general assumptions for
n > 2, there is only one equivalence class of (n + 1)-Hamiltonian hydrodynamic systems
(in the sense of [17]) and n+ 1 is the best possible. The corresponding multi-Hamiltonian
structure comes from the (n+ 1)-dimensional AFF-pencil. In this view, it is interesting to
notice that multi-block pencils from Theorem 5 also provide such a structure, which may
have even higher dimension.

4.2 Case of two blocks

In the case of two blocks, i.e., B = 2, the construction explained in the previous section
gives a natural and rather simple answer. We have two cases: c12 = 0 and c12 = 1. The
first case is trivial being a direct product of two blocks (possibly complex conjugate) each
of which is as in Theorem 3; in (33) we set ĝi = gLC

i and take Pi to be arbitrary polynomials
of degrees ≤ ni (i = 1, 2).

Theorem below is a special case of Theorem 4 in the non-trivial case c12 = 1.

Theorem 6. Suppose B = 2, c12 = 1 and consider the metric g given by the construction
from Section 4.1:

g = g1 +
1

detL1

g2, with gi = Pi(Li)g
LC

i . (38)

Following this construction, assume that the polynomials P1 and P2 have degrees no greater
than n1 and n2 + 1 respectively: P1 =

∑n1

s=0 ast
s and P2 =

∑n2+1
s=0 bst

s; moreover, if n2 = 1
then bn2+1 = 0. Then the coordinates from Theorem 4 are Frobenius for g if and only if
a0 = 0 and (−1)n1a1 = bn2+1.

Example 4.1. In Theorem 6, take n1 = n2 = 2. In diagonal coordinates x1, x2, x3, x4, the
metric g = (gij) is as follows:

g = diag

(
P1(x1)

x1 − x2
,
P1(x2)

x2 − x1
,

P2(x3)

x1x2(x3 − x4)
,

P2(x4)

x1x2(x4 − x3)

)
,

where P1(t) = a1t + a2 and P2(t) = b0 + b1t + b2t
2 + b3t

3 with b3 = a1. Recall that
L = L1 ⊕ L2 with L1 = diag(x1, x2), L2 = diag(x3, x4), and the relation between the
diagonal coordinates xi and the Frobenius coordinates ui given by Theorem 4 are as follows:

u1 = trL1 = x1 + x2,

u2 = − detL1 = −x1x2,

u3 = detL1 · trL2 = x1x2(x3 + x4),

u4 = − detL1 · detL2 = −x1x2x3x4 = − detL.
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In these Frobenius coordinates, the metric g = (gij) has the following form:

g =


a2u

1 + a1 a2u
2 a2u

3 a2u
4

a2u
2 a1u

2 a1u
3 a1u

4

a2u
3 a1u

3 −a1u
4 − b1u

2 − b2u
3 −b0u

2 − b2u
4

a2u
4 a1u

4 −b0u
2 − b2u

4 b0u
3 − b1u

4

 .

This formula defines a 5-dimensional pencils of metrics (with parameters a1, a2, b0, b1, b2).
For any choice of the parameters such that g is nondegenerate, the coordinates ui are
Frobenius for it in the sense of Definition 3.

From the algebraic viewpoint, we may equivalently think of this formula as 5-parametric
family (pencil) of Frobenius algebras (a, b). The entries of g define the structure constants
of a. For instance, g11 = a2u

1 + a1 and g34 = −b0u
2 − b2u

4 imply

e1 ? e2 = a2e
1 and e3 ? e4 = −b0e

2 − b2e
4

for a basis e1, e2, e3, e4 of a. The matrix (bij) of the corresponding Frobenius form b is
obtained from that of g by assigning to ui any constant values ui = mi ∈ R (such that
b is non-degenerate for generic choice of a1, a2, b0, b1, b2). To get a Frobenius pencil the
constants mi should be the same for all parameters a1, a2, b0, b1, b2.

In the coordinates (u1, ..., u4) the operators L1 and L2 are given by the matrices

L1 =


u1 1 0 0

u2 0 0 0

u3 0 0 0

u4 0 0 0

 , L2 =


0 0 0 0

0 0 0 0

0 −u4u2−(u3)2

(u2)2
u3

u2
1

0 − u4u3

(u2)2
u4

u2
0

 .

The matrices of gLC
1 and gLC

2 are

gLC

1 =


0 1 u3

u2
u4

u2

1 −u1 −u3u1

u2
−u1u4

u2

u3

u2
−u3u1

u2
− (u3)2u1

(u2)2
−u1u4u3

(u2)2

u4

u2
−u1u4

u2
−u1u4u3

(u2)2
−u1(u4)2

(u2)2

 , gLC

2 =


0 0 0 0

0 0 0 0

0 0 0 −u2

0 0 −u2 u3

 .

5 Proof of Theorems 1 and 2

Proof of Theorem 1. We assume that Bh +Ag and Bh̄ +Aḡ are compatible with the addi-
tional condition that eigenvalues of Rh = h̄h−1 are pairwise different. We also assume that
h+ h̄ is nondegenerate.
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Recall that Theorem 7.1 from [11] implies that Bh and Bh̄ are compatible Poisson
structures (item (i) in Fact 1). Let Γαβs and Γ̄αβs denote the contravariant Levi-Civita
connections of h and h̄. From Theorem 3.2 in [11] applied to Bh + Bh̄, it follows that the
connection Γ̂βqs defined from

Γαβs + Γ̄αβs = (h+ h̄)αqΓ̂βqs

is symmetric and flat.

By direct computation ∇̂(h+h̄) = ∇h+∇̄h̄ = 0, so that Γ̂ is the Levi-Civita connection
for h + h̄ and moreover, h + h̄ is flat. According to Theorem 6.2 in [11], this implies that
Bh + Bh̄ is Darboux-Poisson (i.e., is given by (8)). Hence, in our notations, we obtain the
formula

Bh + Bh̄ = Bh+h̄. (39)

Setting Γ̂αβs = (h+ h̄)αqΓ̂βqs to be the contravariant Levi-Civita connection of h+ h̄, we
get

Γαβs + Γ̄αβs = Γ̂αβs , (40)

and conclude that h and h̄ are Poisson compatible in the sense of Definition 1 (in particular,
this proves the (ii)-part of Fact 2). Hence, Rh = h̄h−1 is a Nijenhuis operator (Fact 3).

For a pair of flat metrics h and h̄, introduce the so-called obstruction tensor

Sβrq = Γβrq − Γ̄βrq.

It vanishes if and only if h, h̄ can be brought to constant form simultaneously (thus, the
name). It is obviously symmetric in lower indices. Condition (40) can be written in
equivalent form ([28], Lemma 3.1 and Theorem 3.2) in terms of only Γαβs , Γ̄αβs , h, h̄

Γ̄αβq hqγ − Γ̄γβq h
qα + Γαβq h̄qγ − Γγβq h̄

qα = 0 (41)

After lowering both indices with h and rearranging the terms we get

SβpqR
q
s −Rq

pS
β
qs = 0. (42)

For a given metric h and its Levi-Civita connection, define

cαβrs = hαq

(
ΓaqrΓ

β
as −

∂Γβqs
∂ur

)
.

The c̄αβrs , ĉ
αβ
rs for h̄ and h+ h̄ are defined in a similar way. This formula is one “half” of the

formula for Riemann curvature tensor and the flatness of the metrics implies that cαβrs = cαβsr
(and similarly for metrics h̄, h + h̄). Using this symmetry in lower indices, we apply the
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general formula (8) to the Poisson structures in (39) and collect coefficients in front of D2

to get
3cαβrs u

r
xu

s
x − 3Γαβs usxx + 3c̄αβrs u

r
xu

s
x − 3Γ̄αβs usxx = 3ĉαβrs u

r
xu

s
x − 3Γ̂αβs usxx.

Collecting all the terms with urxu
s
x in this differential polynomial, in turn, implies

ĉαβrs − cαβrs − c̄αβrs = 0.

Using the characteristic property of the Levi-Civita connection

∂hαβ

∂us
+ hαqΓβqs + Γαqsh

qβ = 0

we rewrite cαβrs as

cαβrs = hαq

(
ΓaqrΓ

β
as −

∂Γβqs
∂ur

)
= − ∂

∂ur

[
hαqΓβqs

]
− hpqΓαqrΓβps (43)

Applying (40), (41) and (43) yields

0 =
(
ĉαβrs − cαβrs − c̄αβrs

)
(h+ h̄)sγ =

(
hpqΓαqrΓ

β
ps + h̄pqΓ̄αqrΓ̄

β
ps − (h+ h̄)pqΓ̂αqrΓ̂

β
ps

)
(h+ h̄)sγ =

= hpqΓαqrΓ
β
psh

sγ + hpqΓαqrΓ
β
psh̄

sγ + h̄pqΓ̄αqrΓ̄
β
psh

sγ + h̄pqΓ̄αqrΓ̄
β
psh̄

sγ −
(
hpqΓαqr + h̄pqΓ̄αqr

)(
Γβpsh

sγ + Γ̄βpsh̄
sγ
)

=

= Γαqr
(
hpqΓβpsh̄

sγ − hpqΓ̄βpsh̄sγ
)
− Γ̄αqr

(
h̄pqΓβpsh

sγ − h̄pqΓ̄βpshsγ
)

=

=
(
Sαqr + Γ̄αqr

)(
hpqΓβpsh̄

sγ − hpqΓ̄βpsh̄sγ
)
− Γ̄αqr

(
h̄pqΓβpsh

sγ − h̄pqΓ̄βpshsγ
)

=

= Sαqrh
pqSβpsh̄

sγ + Γ̄αqr
(
hpqΓβpsh̄

sγ − hpqΓ̄βpsh̄sγ − h̄pqΓβpsgsγ + h̄pqΓ̄βpsh
sγ
)

=

= Sαqrh
pqSβpsh̄

sγ.

Now consider the coordinate system in which the Nijenhuis operator Rh is diagonal. As
Rh by definition is self-adjoint with respect to both h and h̄, we get that both contravari-
ant metrics are also diagonal. Condition (42) implies that for given β the only non-zero
elements of Sβpq are the ones that stand on the diagonal. The previous calculation yields

Sαqrh
pqSβpsh̄

sγ = 0

which, for fixed α and β, is just the product of four diagonal matrices, two of which
are nondegenerate. Taking α = β we see that the matrix Sαqr must be zero. As α is
arbitrary, this implies that the obstruction tensor vanishes and h, h̄ have common Darboux
coordinates.

Fix the coordinates in which both h and h̄ are flat. Applying Fact 5, we see that these
coordinates are Frobenius for both g and ḡ. Using (39) and applying Fact 5 to the sum
of our Poisson structures, we get that aαβs + āαβs define a commutative associative algebra,
while bαβs + b̄αβs and hαβs + h̄αβs are Frobenius forms for this algebra.

The inverse statement immediately follows from Facts 4 and 5.
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Proof of Theorem 2. Consider a pair of compatible flat metrics g, ḡ in common Frobenius
coordinates u1, . . . , un

gαβ(u) = bαβ + aαβs us and ḡαβ(u) = b̄αβ + āαβs us,

Fact 4 implies that −1
2
aαβs and −1

2
āαβs are the contravariant Christoffel symbols for g

and ḡ respectively.

Compatibility of g and ḡ means that the contravariant Levi-Civita symbols for flat
metric g+ ḡ are the sum of the corresponding symbols for g and ḡ, that is, −1

2
aαβs − 1

2
āαβs .

At the same time these symbols are constant and symmetric in upper indices. Hence the
coordinates u1, . . . , un are Frobenius for g + ḡ (Fact 4).

This, in turn, implies that aαβs + āαβs are the structure constants of a commutative
associative algebra and bαβs + b̄αβs is one of its Frobenius form. Thus, the corresponding
Frobenius algebras are compatible.

As g and ḡ are both nondegenerate metrics, this implies that for a generic collection of
constants m0,m1, . . . ,mn, the bilinear forms

hαβ = m0bαβ + aαβs ms and h̄αβ = m0b̄αβ + āαβs ms

are both nondegenerate too. At the same time, each of them is the sum of a Frobenius form
(m0bαβ and resp. m0b̄αβ) and trivial form (aαβs ms and resp. āαβs ms), which corresponds to
m ∈ a∗ with coordinates m1, . . . ,mn and, thus, is also Frobenius5. As a result, h and h̄
lead us to Frobenius triples (h, b, a) and (h̄, b̄, ā.).

By construction, h + h̄ defines (if nondegenerate) a Frobenius form for the sum of
the algebras. Thus, we get compatible Frobenius triples, which yield compatible non-
homogeneous Poisson structures Bh +Ag and Bh̄ +Aḡ.

6 Proof of Theorem 3

6.1 Rewriting the existence of Frobenius coordinates in a differential-
geometric form

We start with the following observation related to Frobenius coordinate systems (Fact 4):
(u1, . . . , un) is a Frobenius coordinate system for a metric g if and only if the contravariant

5Here we use a well known fact for any m ∈ a∗, the form ξ, η 7→ 〈ξ ? η,m〉 is Frobenius, perhaps
degenerate. If a has a unity element, then every Frobenius form is of this kind. Otherwise, there might
exist other (nontrivial) Frobenius forms.
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Christoffel symbols Γijk =
∑

s g
siΓjsk in this coordinate system are constant and symmetric

in upper indices.

We denote by Γ, Γ̄ the Levi-Civita connections of g and ḡ. Assuming that a com-
mon Frobenius coordinate system u1, . . . , un exists, we let Γ̂ be the flat connection whose
Christoffel symbols identically vanish in this coordinate system. Let Ri

jk`, R̄
i
jk`, and R̂i

jk`

denote the corresponding curvature tensors. We assume n ≥ 2, the case n = 1 is trivial.

Consider the tensors

Sijk :=
∑
s

gsi
(

Γjsk − Γ̂jsk

)
S̄ijk :=

∑
s

ḡsi
(

Γ̄jsk − Γ̂jsk

)
.

In terms of these tensors, the necessary and sufficient conditions that the connection Γ̂
determines Frobenius coordinates are:

0 = R̂i
jk` = Ri

jk` = R̄i
jk` (44)

Sijk = Sjik (45)

S̄ijk = S̄jik (46)

0 = ∇̂mS
ij
k = ∇̂mS̄

ij
k. (47)

Indeed, if (u1, . . . , un) is a common Frobenius coordinate system for g and ḡ, then
in these coordinates Γ̂jsk = 0, and Γijk = gisΓjsk and Γ̄ijk = ḡisΓ̄jsk are both constant and
symmetric in upper indices by Fact 4. Hence, (44)-(47) obviously follow.

Conversely, if (44)-(47) hold, then in the flat coordinates for Γ̂jsk we see that Γijk = Sijk
and Γ̄ijk = S̄ijk are both symmetric in upper indices due to (45) and (46) and are also
constant due to (47). Therefore, by Fact 4, (u1, . . . , un) are Frobenius coordinates for both
g and ḡ.

6.2 General form of the metric in diagonal coordinates

We work in the coordinates (x1, ..., xn) such that

Rg = ḡg−1 = diag(`1(x1), ..., `n(xn)) , gij = diag(ε1e
g1 , ..., εne

gn), (48)

where gi are local functions on our manifold and εi ∈ {−1, 1}. It follows from Facts 2
and 3 that Rg is a Nijenhuis operator and therefore, according to Haantjes theorem, is
diagonalisable and `i depends on xi only (see also various versions of diagonalisability
theorems in [6] which, in particular, allows us to include the case of complex eigenvalues
too). We assume that all `i(x

i) are different and never vanish.
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Remark 6.1. We allow some of the diagonal variables xi to be complex. Note that if a
variable xi is complex then by [6, §3] we may assume that the corresponding eigenvalue
`i is a holomorphic function of xi. In the first read, we recommend to think of all the
eigenvalues as real and then to carefully check that our proofs are based on algebraic
manipulations and differentiations, which are perfectly defined over complex coordinates,
so that generalisation of the proofs to complex eigenvalues requires no change in formulas.
See also a discussion at the end of [9, §7].

Note that the results we use (e.g. [33, 34]) are also based on algebraic manipulations
(essentially, on a careful calculation of the curvature tensor and connection coefficients)
and are applicable if a part of eigenvalues is complex.

Let us first consider the conditions (45, 46). We view them as linear (algebraic) system
of equations with unknown Γ̂ijk’s (satisfying also Γ̂ijk = Γ̂ikj) whose coefficient matrix is
constructed from the entries of g and L and the free terms are constructed from g, ḡ,Γ, Γ̄.
Being rewritten in such a way that unknowns are on the left hand side and free terms are
on the right hand side, it has the following form:

e−giΓ̂jik − e−gj Γ̂ijk = e−giΓjik − e−gjΓijk ,
`ie
−giΓ̂jik − `je−gj Γ̂ijk = `ie

−giΓ̄jik − `je−gj Γ̄ijk .
(49)

We see that for fixed i = j = k, the system bears no information. For fixed i 6= j, the

coefficient matrix

(
e−gi −e−gj
`ie
−gi −`je−gj

)
of the linear system (49) is nondegenerate, since the

eigenvalues `i are all different, and therefore the system has a unique solution.

The entries of the connections Γ and Γ̄ of the diagonal metrics gij and ḡij := gL−1

were calculated many times in the literature, see e.g. [9, Lemma 7.1], and are given by the
following formulas:

• Γkij = Γ̄kij = 0 for pairwise different i, j and k,

• Γkkj = 1
2
∂gk
∂xj

for arbitrary k, j,

• Γkjj = −εj e
gj−gk

2

∂gj
∂xk

for arbitrary k 6= j,

• Γ̄kkj = Γkkj for arbitrary k 6= j,

• Γ̄iii = Γiii −
`′i
2`i

• Γ̄kjj = `k
`j

Γkjj for arbitrary k 6= j.
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By direct calculations using these formulas we obtain that the solution of the system
(49) is as follows:

(A) Γ̂iii = ui for all i

(B) Γ̂iij = Γ̂iji = ∂gi
∂xj

for i 6= j

(C) Γ̂ijk = 0 for all i 6= j and k 6= i (we allow the case k = j).

Here ui should be viewed as local functions on the manifold.

Combining these with the formulas for Sijk we obtain:

• Sii i = εie
−gi
(
ui − 1

2
∂gi
∂xi

)
for all i,

• Sii j = εi
2
e−gi ∂gi

∂xj
, for all i 6= j,

• Siji = Sjii =
εj
2
e−gj ∂gi

∂xj
for all i 6= j,

• Sijk = 0 for all i 6= j 6= k 6= i.

By direct calculations we see that for any i 6= j 6= k 6= i we have ∇̂kS
ij
j = εi

2
∂2gi

∂xj∂xk

implying

0 =
∂2gi

∂xj∂xk
. (50)

Next, consider the terms of the form ∇̂jS
ii
i and ∇̂iS

ii
j with i 6= j. They are given by

∇̂jS
ii
i = εi

e−gi

2

(
∂gi
∂xj

∂gj
∂xi

+
∂2gi
∂xi∂xj

)
,

∇̂iS
ii
j = −εi

e−gi

2

(
∂gi
∂xj

∂gj
∂xi

+
∂2gi
∂xi∂xj

− 2
∂ui
∂xj

)
.

Since ∇̂jS
ii
i = ∇̂iS

ii
j = 0, the formulas above imply

∂ui
∂xj

= 0 (51)

so each ui is a function of xi only.

Next, we prove the following Lemma. Denote by Ui = Ui(x
i) and Uj = Uj(x

j) the
primitive functions for eũi and eũj , where ũi and ũj are primitive functions for ui and uj.
By their definition, U ′i 6= 0 and U ′j 6= 0.
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Lemma 6.1. There exist constants Cij such that for the constants αij ∈ {0, 1} given by
the formula

αij = αji =

{
1 if Cij = Cji = 0
0 otherwise

and for any i 6= j the function

gi − ln (|CijUi − CjiUj|αij)

does not depend on xj (we use the convention that 00 = 1).

Proof. We consider the curvature tensor R̂i
jk` of the connection Γ̂. To compute it, we need

to substitute Γ̂ given by (A,B,C) above into the standard formula for the curvature

R̂`
ijk = ∂

∂xj
Γ̂`ik − ∂

∂xk
Γ̂`ij +

∑
s

(
Γ̂`jsΓ̂

s
ik − Γ̂`ksΓ̂

s
ij

)
. (52)

We obtain for i 6= j:

0 = R̂i
iji = − ∂gi

∂xj
∂gj
∂xi
− ∂2gi
∂xj∂xi

(53)

0 = R̂i
jji = − ∂gi

∂xj
uj +

(
∂gi
∂xj

)2

+
∂2gi

∂xj2 (54)

0 = R̂j
jji =

∂gi
∂xj

∂gj
∂xi

+
∂2gj
∂xi∂xj

(55)

0 = R̂j
iji = −

(
∂gj
∂xi

)2

+ ui
∂gj
∂xi

− ∂2gj

∂xi2
. (56)

We view 4 equations above a system of PDEs on the unknown functions

a =
∂gi
∂xj

and b =
∂gj
∂xi

. (57)

The condition (51) implies that the coefficients of the system depend on xi and xj and we
may temporarly “forget” all other variables. The system then has the following form:

∂a

∂xi
= −ab , ∂a

∂xj
= −a2 + auj ,

∂b

∂xi
= −b2 + bui ,

∂b

∂xj
= −ab. (58)

This system is of Cauchy-Frobenius type (in the sense that all first derivatives of unknown
functions are explicit expressions of the unknown functions and variables). By direct
computation we check that its integrability conditions hold identically. Then, its solution
depends on an arbitrary choice of the values of a and b at one arbitrarily chosen point p0.
Note that if a(p0) = 0 then a is identically 0, the same is true for b.
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By direct substitution we see that for any functions Ci, Cj the pair of functions

a =
CjU

′
j

CiUi + CiUj
, b =

CiU
′
i

CiUi + CjUj
(59)

satisfies the equation. In the case Ci = Cj = 0 we think that a and b given by (59)
vanish identically. The functions Ui = Ui(x

i) and Uj = Uj(x
j) used in (59) are as defined

before Lemma 6.1. By varying the constants Ci, Cj one can get any nonzero initial values
a(p0), b(p0) so this is indeed a general solution.

In the case Ci 6= 0 or Cj 6= 0, using (57), we obtain

gi = ln(|CiUi + CjUj|) +Di and gj = ln(|CiUi + CjUj|) +Dj (60)

with Di independent of xj and Dj independent of xi. In the case Ci = 0 = Cj we obtain
that gi is independent of xj and gj is independent of xi automatically.

Note that if we ‘remember’ all the coordinates, then Ci, Di may also depend on all
other variables xk, k 6∈ {i, j}.

Let us study the dependence of Ci and Cj on the variable xk with k 6∈ {i, j}. We first
consider the case when Ci 6= 0 and Cj 6= 0. We observe that by (50) we have that (we
assume i 6= j 6= k 6= i)

0 =
∂2gi

∂xj∂xk
(57,59)

=
∂

∂xk
CjU

′
j

CiUi + CjUj
= −

U ′jUi
∂
∂xk

Ci
Cj

(Ci
Cj
Ui + Uj)2

implying that the ratio Ci/Cj is a constant. Note that U ′j 6= 0 since it is a primitive
function for a nonvanishing function. Then, we may assume that Ci and Cj are constants,
since in the formula (60) the dependence of Ci and Cj on other variables can be hidden in
Di and Dj.

In the cases Ci = 0 or Cj = 0 (but not Ci = 0 = Cj both) the dependence of Ci and
Cj on other variables can trivially be hidden in Di and Dj. In the remaining case, when
Ci = 0 = Cj, we already know that gi is independent of xj and gj is independent of xi.

Thus, if Ci 6= 0 or Cj 6= 0, gi − ln(|CiUi + CjUj|) does not depend on xj and gj −
ln(|CiUi+CjUj|) does not depend on xi. Note that the constants Ci and Cj are constructed
by fixed i and j, let us call them Cij and Cji. In the case Cij = Cji = 0, the function
gi − ln(|CijUi +CjiUj|0) does not depend on xj (recall that in our convention 00 = 1).

Consequently applying the Lemma, we see that

gi −
∑
s 6=i

ln (|CijUi + CisUs|αis)
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depends on xi only.

Therefore, the ith diagonal component gii of the metric g is as follows:

gii = εie
gi = hi(x

i)

(∏
s 6=i

(
CisUi(x

i) + CsiUs(x
s)
)αis) (61)

for some functions hi of one variable.

6.3 Last step of the proof: making all Cij equal ±1

In the previous section we have proved that the the metric g is given by (61). Observe
that by the assumptions of Theorem 3, the diagonal coordinates depend on all variables,
so all αij = 1 and all Cij 6= 0 for i 6= j. First note that in the case when all Cij = 1 for
i < j and Cij = −1 for i > j, the diagonal metric g is in the so-called Levi-Civita form:

gii =

(∏
j 6=i

(Ui(x
i)− Uj(xj))

)
hi(x

i). (62)

In this section we show that one can bring the metric to the form (62) by certain
‘admissible’ operations which include only coordinate transformations and renaming of
functions. Combining this with a result of A. Solodovnikov (Fact 6) will prove Theorem 3.

We will use the condition ∇̂iS
ij
k = 0. Assuming i 6= j 6= k 6= i, this condition reads

−εj
2
e−gj

(
∂gi
∂xj

∂gi
∂xk
− ∂gi
∂xj

∂gj
∂xk
− ∂gi
∂xk

∂gk
∂xj

)
= 0. (63)

Substituting (61) there , we see that the following condition should be satisfied:

0 = CikCjiCkj − CijCjkCki = det

 0 Cij Cik
−Cji 0 Cjk
−Cki −Ckj 0

 . (64)

Let us now use the condition (64) and ‘make’ Cij = 1 for i < j and Cij = −1 for i > j.
We will use the following operations for it:

(a) We can multiply the factor (CijUi + CjiUj) in the ith and jth diagonal components
of g (given by (61)) by a nonzero constant and correspondingly change hi and hj by
dividing them by the same constant.
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(b) For every fixed pair i 6= j if Cij 6= 0 we can rename CijUi by Ui (which we will do if
i < j) or by −Ui (if i > j).

By applying the operation (a), we make C1i = 1 for all i 6= 1. By applying the operation
(b), we make and Ci1 = −1 for all i 6= 1. In addition, by applying operation (a) we make
C2i = 1 with i > 2. Then, the first two rows and the first column of the matrix Cij are
as we want. Then, the condition (64) with i = 1, j = 2 arbitrary k > 2 reads Ck2 = −1
so the second column is automatically as we want. Then, applying operation (a) we make
all C3k with k > 3 equal to 1. The condition (64) with i = 1, j = 3 arbitrary k > 3 reads
Ck3 = −1 and implies that the third column is as we want. Repeating the procedure, we
bring the metrics in the Levi-Civita form (62).

Let us now take Ui(x
i) as a local coordinate system: xinew := Ui(x

i
old). We can do it

because the derivative of Ui is not zero. In the new coordinates Rg is still diagonal and
the ith diagonal component depend on the variable i only. In these coordinates, the metric
(62) is diagonal with

gii =

(
n∏
j 6=i

(xi − xj)

)
1

Hi(xi)
. (65)

Therefore, the metric ḡ is also diagonal with similar diagonal elements of the form

ḡii =

(
n∏
j 6=i

(xi − xj)

)
1

H̄i(xi)
(66)

Fact 6. The diagonal metric of form (65) (resp. (66)) in dimension at least two has
constant curvature if and only if there exists a polynomial P (resp. Q) of degree ≤ n + 1
such that Hi(x

i) = P (xi) (resp. H̄i(x
i) = Q(xi)). Moreover, the curvature of the metric

vanishes if and only if the polynomial P (resp. Q) has degree ≤ n.

Fact 6 was proved in [34, §5] and easily follows from calculations in [9, §7].

Taking L = diag(x1, ..., xn) and the (contravariant) Levi-Civita metric

gLC =
∑
i

(
n∏
j 6=i

(xi − xj)

)−1 (
∂
∂xi

)2
, (67)

we see that g = P (L)gLC and ḡ = Q(L)gLC, which completes the proof of Theorem 3. (The
“uniqueness” part of Theorem 3 will be explained in Remark 7.2).
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7 Proof of Theorem 5

7.1 Upperblockdiagonal structure of the matrix Cij

We assume that the metric g is diagonal and its diagonal elements have the form (61). We
view Cij as entries of an n × n-matrix. For cosmetic reasons we assume that all diagonal
elements Cii of the matrix Cij are zero. We can do it because these elements do not come
into the formula for g.

Let us show that by rearranging the coordinates x1, ..., xn one can make the matrix C
upperblockdiagonal. Moreover, in every diagonal block all nondiagonal entries are different
from zero. We will need the following Lemma:

Lemma 7.1. If Cji = 0 for certain different i, j ∈ {1, ..., n}, then for any k ∈ {1, ..., n}
we have CjkCki = 0. Moreover, if in addition Cij = 0, then for any k ∈ {1, ..., n} we have
CikCjk = 0.

Proof. For k = i or k = j the statement follows from our convention Cii = Cjj = 0, further
we assume i 6= k 6= j( 6= i).

We consider the equation (63): under the assumption Cji = 0 the terms ∂gi
∂xj

∂gi
∂xk

and
∂gi
∂xj

∂gj
∂xk

vanish. Then, the equation reads ∂gi
∂xk

∂gk
∂xj

= 0 and implies that ∂gi
∂xk

= 0 (which

in turn implies Cki = 0) or ∂gk
∂xj

= 0 (which in turn implies Cjk = 0). This proves the
first statement of the lemma. Next, observe that under the assumption Cjk = Ckj = 0
the equation (63) reads ∂gi

∂xj
∂gi
∂xk

= 0 implying CkiCji = 0. Renaming i ↔ k finishes the
proof.

Next, consider i ∈ {1, ..., n} such that the ith column of the matrix Cij contains the
maximal number of zero entries. We assume without loss of generality that i = 1, that
the elements C21, ..., Cd1 are not zero and the other elements of the first column are zero.
Applying Lemma 7.1 to the element Cd′1 with d′ > d, we obtain that Cd′kCk1 = 0. Since
Ck1 6= 0 for k ≤ d, we obtain Cd′k = 0 for such k.

Thus, all elements of the matrix Cij staying under the upper left d × d block are
zero. If Cij = 0 with i 6= j ∈ {1, ..., d}, we obtain a contradiction with the assumption
that the ith column of the matrix Cij contains the maximal number of zeros. Thus, all
Cij with i 6= j ∈ {1, ..., d} are not zero. Thus, the first d columns of Cij are as in the
upperblockdiagonal matrix with the first block of dimension d × d. We further have that
all nondiagonal components of the first block are different from zero.

Next, consider the index i ∈ {d + 1, ..., n} such that the number of zero entries in the
columns of lower right (n − d) × (n − d) block is maximal. We may assume without loss
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of generality that i = d+ 1, that the components Cd+1 d+2, ..., Cd+1 d+d′ are not zero and
the components Cd+1 d+d′+1, ..., Cd+1 n are zero. Arguing as above, using Lemma 7.1, we
obtain that for any k ∈ {d + 1, ..., d + d′} the components Cd+k d+d′+1, ..., Cd+k n are
zero. Thus, the first d + d′ columns of Cij are as in the upperblockdiagonal matrix with
the first block of dimension d × d and the second block of dimension d′ × d′. Moreover,
by the ‘maximality’ condition in our choice of the first column of the second block, all
nondiagonal elements of the second block are nonzero.

We can repeat the procedure further and further and obtain that the matrix Cij is as we
claimed: it is upperblockdiagonal and in every block all nondiagonal entries are different
from zero. Let us explain now that by the operations (a,b) from Section 6.3 we can make
Cij in every block equal 1 for i < j and −1 for j > i. Indeed, by applying the operations
(a) and (b) we can make the first two rows and the first column of every block to be as we
claimed. The condition (64) automatically implies that the second column of the block is
as we want. Next, applying operation (a) we make the third row as we want. Then, (64)
implies that the third column is as we want and so on. Note that these operations with
one block do not affect other blocks.

We will denote by Bαβ the blocks of the matrix C (corresponding to the decomposition
n = n1 + ... + nB), the block Bαβ has dimension nα × nβ. Above we have shown that if
α 6= β, then either all its entries are zero or are equal to 1. In the first case we put cαβ = 0,
in the second case cαβ = 1. If α > β then all entries of the block Bαβ are zero, so such
cαβ = 0. We put cαα = 0.

Similarly, one shows that if such a block Bαβ with α < β is zero and the block Bαα′

is not, then all the blocks Bα′β with α′ 6= β are also zero. In order to do it, we take an
element Cij of this block. By Lemma 7.1, if cαβ = 0 with α 6= β, then for any s 6∈ {α, β} we
have cαscsβ = 0 implying the claim. Analogously one shows, using the second statement
of Lemma 7.1, that cαβ = 0 with α < β implies cαscβs = 0.

Let us summarise the properties of the B ×B matrix (cαβ):

(a) cαβ = 0 for α ≥ β, i.e., the matrix is upper triangular with zeros on the diagonal.

(b) If cαβ = 0, then for every s ∈ {1, ..., B} we have csβcαs = 0.

(c) If cαβ = 0 for certain α < β, then for every s ∈ {1, ..., B} we have cβscαs = 0.

Let us show that any such matrix can be constructed from a directed rooted in-forest
by a procedure described in Section 4.1. To see this, we introduce the relation ≺ on the
set {1, ..., B}: we define α ≺ β if and only if cαβ = 1. Clearly, α ≺ β implies that the
number α is smaller than the number β. The relation ≺ is a strict partial order. Indeed,
α 6≺ α because of (a), so the relation is irreflexive. If α ≺ β, then α < β by (a) implying
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β 6≺ α, so the relation is asymmetric. If α ≺ β and β ≺ γ then by (b) we have α ≺ γ, so
the relation is transitive.

Moreover, for every s ∈ {1, ..., B} the set Ss := {α | α ≺ s} is a chain, i.e., is totally
ordered. Indeed, for α < β ∈ Ss we have cαs = cβs = 1 implying cαβ = 1 in view of (c).

Next, it is easy to see that every strict partially ordered finite set such that every Ss is
a chain can be described by a directed rooted in-forest. The vertices of the forest are the
numbers 1, ..., B, and two vertices α, γ are connected by the oriented edge ~γα if α ≺ γ and
if there is no β such that α ≺ β ≺ γ, each connected component of this oriented graph is
a directed rooted in-tree. The forest clearly reconstructs the order “≺” and therefore the
matrix (cαβ): for two numbers α 6= β ∈ {1, ..., B} we have α ≺ β if there exists an oriented
way from β to α, see example on Fig. 1.

The converse is also true: every directed in-forest (with appropriately labeled vertices)
defines a matrix cαβ with properties (a), (b) and (c).

Example 7.1. If B = 3, the matrix cαβ is one of the following:0 0 0
0 0 0
0 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

0 0 1
0 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 1 1
0 0 0
0 0 0

 ,

0 1 1
0 0 1
0 0 0

 .

The first 4 cases correspond to the direct product situations. For example, in case 3 the
metric g is the direct product of the metrics g1 + 1

det(L1)
g3 and g2 with g1 = Q1(L1)gLC

1 ,

g2 = Q2(L2)gLC
2 and g3 = Q3(L3)gLC

3 . Notice that the metric g1 + 1
det(L1)

g3 depends on the
coordinates X1, X3 only and the metric g2 depends on the coordinates g2 only.

Finally, plugging these Cij into (61) and passing to the new coordinate system xinew =
Ui(x

i
old), we obtain the form from Theorem 5 with the only exception that the diagonal

factors Hi(x
i) := 1

hi(xi)
of the metric are not necessarily Pi(x

i) for polynomials Pi of degrees
≤ ni + 1. In order to show this, we notice that the metric has the iterated warped product
structure:

gij = g1 + σ1(X1)g2 + σ2(X1, X2)g2 + ...+ σB−1(X1, ..., XB−1)gB.

Since g is flat, g1 must be flat and g2, ..., gB of constant curvature. Applying the result of
[34, §5] (see Fact 6 above) shows that blocks gα of dimension greater than one are given
by Pα(Lα)gLC

α , where Pα is a polynomial of degree ≤ nα + 1 (in Section 7.2 we will show
that coefficients of these polynomials satisfy the conditions (i–iv) from Section 4.1 and also
consider 1-dimensional blocks).

Remark 7.1. We also see that if for a certain i at least one Cij 6= 0, then Γ̂iii = 0. In
the case all Cij = 0 for a fixed i, the corresponding block is one-dimensional and the other
blocks do not depend on the coordinate xi of this block. In this case, the only component
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from Γ̂ijk which is possibly not zero is ui := Γ̂iii. By a coordinate change of the coordinate

xi we may achieve ui = 0. Then, substituting the formulas for Sijk and Γ̂ from Section

6.2 in the condition ∇̂iS
ii
i = 0 we obtain d2

(dxi)2

(
1

hi(xi)

)
= 0 implying that the function

Hi := 1
hi(xi)

is a polynomial in xi of degree ≤ 1 as we claimed in Theorem 5.

7.2 Conditions on the coefficients of Pi

To complete the proof of Theorem 5, it remains to explain conditions (i)-(iv) on the coef-
ficients of Pi stated before Theorem 4. We will need some facts and preliminary work.

Fact 7. Consider the n-dimensional metric g = P (L)gLC, where L and gLC are as in (29),
and P is a polynomial P (t) = a1t+ ...+ an+1t

n+1 (with zero free term a0). Then

g
(

d
√

detL, d
√

detL
)

= (−1)n+1

4
a1 + 1

4
an+1 detL. (68)

Proof. The metric gLC and operator L are explicitly given so the proof is an exercise in the
Vandermonde identities and is left to the reader.

Recall that a Casimir of a Poisson structure is defined by the property that Poisson
structure applied to it gives zero. In the case of a first order Poisson structure coming from
a (flat) metric g, Casimir (of the lowest order) can be viewed as a function f satisfying
∇i∇jf = 0. Of course, any constant is a Casimir and n functionally independent Casimirs
give us flat coordinates for g in which the components gij are all constants. For a metric
g of constant curvature K we define Casimir as a function f̂ satisfying the equation6

∇i∇j f̂ + Kf̂gij = 0. The space of Casimirs of a constant curvature metric (on a simply-
connected manifold) is a vector space of dimension n+ 1.

Below, we work with warped product metrics for which the “covariant language” is
more convenient. For this reason, starting from Fact 8 and till the end of the current
Section 7.2, g and gi will denote covariant metrics. For the corresponding contravariant
metrics we use g∗ and g∗i .

Fact 8. Suppose a warped product metric g = g1 + f(X1)2g2 has constant curvature. Then
g1 and g2 have constant curvatures. Moreover, the following statements hold:

1. If g is flat, then g1 is flat.

2. If g is flat, then K2 = g∗1(d f, d f), where K2 is the curvature of g2.

6The functions satisfying this equation are indeed Casimirs of the (nonlocal) Poisson structure corre-
sponding to the constant curvature metric g, see e.g. [9, §2] and references therein.
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3. f(X1) is g1-Casimir.

Proof. The first statement is well-known and immediately follows from geometric argu-
ments. The second statement follows from the second formula in the first line of [33,
(4.2)]. The third statement follows, under the additional assumption that the curvature
is zero, from the second line of [33, (4.2)]. If the curvature is not zero, we may assume
that it is equal to 1. Then, we employ the conification construction: we consider the
(n + 1)-dimensional metric ĝ = (dx0)2 + (x0)2

(
g1 + f(X1)2g2

)
. The metric ĝ is flat and

can be viewed as a warped product metric with base (dx0)2 +(x0)2g1 and warping function
f̂ 2 := (x0f(X1))

2
. Then, the function f̂ := x0f(X1) is a Casimir of ĝ1 := (dx0)2 + (x0)2g1

implying that f(X1) is a Casimir of g1.

Next, we need the following technical lemma:

Lemma 7.2. Suppose the warped product metric g1 + f(X1)2g2 is flat and f(X1) is g1-
Casimir. Then, the following holds:

1. Every g1-Casimir F (X1) such that g∗1(d f, dF ) = 0 is a Casimir of g.

2. If g2 has constant nonzero curvature, then for any function φ(X2) satisfying ∇g2∇g2φ+
Kφg2 = 0 the function fφ is a g-Casimir.

3. If g2 is flat, then for any function φ(X2) satisfying ∇g2∇g2φ(X2) = const g2 and for
any g1-Casimir f̃ such that g∗1(d f, d f̃) = 1 we have that fφ−const f̃ is a g-Casimir.

Notice that the g-Casimirs described in Lemma 7.2 span a n + 1-dimensional vector
space and, therefore, form a basis of the space of g-Casimirs. Indeed, the first statement
gives an n1-dimensional space. For a metric g2 of nonzero constant curvature K, the space
of solutions to the equation ∇g2∇g2φ+Kφg2 = 0 is known to be (n2 + 1)-dimensional, see
e.g. [37]. Clearly, the Casimirs described in the first and second statements are linearly
independent, so that we get n1 + n2 + 1 = n+ 1 independent functions, as required.

Now, if the metric g2 is flat, then the space of Casimirs described by the third statement
is n2 + 2, since this is the dimension of the space of solutions of ∇∇φ = const ·g2. But
the spaces of g-Casimirs constructed using statements 1 and 3 of the Lemma clearly have
precisely two-dimensional intersection, namely the subspace generated by constants an by
the function f . We see that also in this case we achieved the whole dimension n+ 1 of all
Casimirs of g.

Proof. By direct calculations (done many times in the literature, see e.g. [33, (4.1)]) one
sees that the Christoffel symbols of the warped product metric g are given by the following
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formulas:

Γabc =
1

Γabc , Γαβγ =
2

Γαβγ ,Γ
a
βγ = −f

∑
s

f,s
1
gsa

2
gβγ ,Γ

α
aβ =

1

f
f,aδ

α
β ,Γ

a
αb = Γabα = Γαab = 0.

Here
1

Γ,
2

Γ relate to the Christoffel symbols of the metrics g1 =
1
g and g2 =

2
g respectively;

a, b, c, s run from 1 to n1 and α, β, γ from n1 + 1 to n. The notation f,s means ∂f
∂xs

.

For any function F (X1) we have:

∇a∇bF = ∇g1
a ∇

g2
b F , ∇α∇aF = 0 , ∇α∇βF = fg∗1(dF, df)

2
gαβ. (69)

In particular, if F is a g1-Casimir, then ∇g1
i ∇

g1
j F = fg∗1(dF, df)

2
gij which implies the first

statement. Also, if g2 is flat, then gradg1f is light-like (Fact 8, item 2), so f is a g-Casimir.

Next, for any function φ(X2) we have

∇a∇bφ = 0 , ∇a∇βφ = − 1

f
f,aφ,β , ∇α∇βφ = ∇g2

α ∇
g2
β φ.

In particular, if φ satisfies ∇g2
α ∇

g2
β φ = const

2
gαβ and g2 is flat, then

∇a∇b(φf) = 0 , ∇α∇b(φf) = 0, ∇α∇β(φf) = const
2
gαβf.

Combining this with (69), we see that φf − const f̃ is a Casimir.

If g2 is of constant nonzero curvature K and φ satisfies ∇g2∇g2φ + Kφg2 = 0, then

∇α∇β(φf) = −Kφ2
gαβf − φfg∗1(df, df)

2
gαβ = 0.

Now, we are able to describe conditions on the polynomials Pα that are necessary for
the flatness of the metric g from Theorem 5 given by (37), and also to finish the case of
one-dimensional blocks (we need to show that if an α-block is one-dimensional and there
exists at least one nonzero cαβ, then the corresponding function Hj(x

j) = 1
hj(xj)

from (65)

is a polynomial of degree ≤ 1).

First we consider the most important case, when cαβ = 1 for all 1 ≤ α < β ≤ B. The
corresponding graph in this case is just a “path” 1←− 2←−· · ·←− B from leaf B to root
1, so that the metric gij is given by the warped product of the form

g = g1 + f1(X1)2g2 + f1(X1)2f2(X2)2g3 + ...+

(
B−1∏
s=1

fs(Xs)
2

)
gB. (70)
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Suppose that a gα-component with α < B is one-dimensional7 and denote the correspond-

ing coordinate by xj. Consider the metric gα + f(Xα)2gα+1 + ...+
(∏B−1

s=α fs(Xs)
2
)
gB. It

has constant curvature and is a warped product metric with base gα = hj(x
j)(dxj)2 and

warping factor f(Xα)2 = detLα = xj. From Fact 8 it follows that the function f(xj) =
√
xj

is a Casimir of gα. The equation ∇gα∇gαxj + Kgα = 0 implies then that K 6= 0 and that
Hj := 1

h(xj)
is a polynomial of degree ≤ 1.

Thus, our metric g is given by (70) with each gα = gLC
α

(
Pα(Lα)

)−1
and fα =

√
detLα.

We already know that for every α, the degree of Pα is at most nα + 1. Moreover, for
those α such that nα = 1 the degree of Pα is at most 1. We denote the coefficients of the
polynomials by

P1(t) = a0+a1t+...+an1+1t
n1+1 , P2(t) = b0+b1t+...+bn2+1t

n2+1 , P3(t) = c0+c1t+...+cn3+1t
n3+1 ... ,

PB−1(t) = d0 + d1t+ ...+ dnB−1+1t
nB−1+1 , PB(t) = e0 + e1t+ ...+ enB+1t

nB+1.

Lemma 7.3. In the above notation, the flatness of g implies the following relations:

an1+1 = 0
a0 = b0 = c0 = ... = d0 = 0 ,
a1 = (−1)n1bn2+1, b1 = (−1)n2cn2+1, ..., d1 = (−1)nB−1enB+1.

(71)

To avoid misunderstanding, let us mention that the free term e0 of the polynomial PB
may be non-zero (see Example 4.1 with B = 2). Note also that in view of Theorem 4,
conditions (71) are sufficient for the flatness of g and existence of Frobenius coordinates.

Proof. We view g as a warped product metric over the n1 + n2 dimensional base equipped
with the metric g1 + f1(X1)2g2. Then, the metric g1 + f1(X1)2g2 is flat. Combining Facts
7 and 8, we obtain an1+1 = 0 implying the first line of (71). Next, from Fact 8 we know
that f1(X1) is a g1-Casimir implying a0 = 0 in view of Fact 7.

Let us now show that a1 = (−1)n1bn2+1. Since g1 + f1(X1)2g2 is flat, by Fact 8 we have

1
4
g∗
(
d (f1), d (f1)

)
= K2. (72)

Combing (72) with Fact 7, we obtain

bn2+1 = (−1)n1a1. (73)

Next, we view g as a warped product metric over the n1+n2+n3 dimensional base equipped
with the metric g1 + f1(X1)2g2 + f1(X1)2f2(X2)2g3. Then, the metric g1 + f1(X1)2g2 +

7The case α = B follows from Remark 7.1.
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f1(X1)2f2(X2)2g3 is flat. But it is itself a warped product metric over the n1 + n2 dimen-
sional base with the metric g1 + f1(X1)2g2. By Fact 8, this implies that f1f2 is a Casimir
of this metric. By Lemma 7.2, f2 is a Casimir of g2 so b0 = 0. Moreover, by Fact 8 we have

1
4
g∗
(
d (f1f2), d (f1f2)

)
= K3 (= −1

4
cn3+1). (74)

On the other hand

g∗
(
d (f1f2), d (f1f2)

)
= f2

2g∗1(d f1, d f1) + g∗2(d f2, d f2)
(68)
= (−1)n1+1

4
f 2

2a1 + (−1)n2+1

4
b1 + bn2+1f

2
2 .

(75)

Combining this with (74) and (73) we obtain cn3+1 = (−1)n2b1, as claimed. Iterating this
procedure we obtain (71). Note that at the last step of the iteration, the condition e0 = 0
does not appear.

Lemma 7.3 completes the proof of Theorem 5 under the additional assumption that for
every α < β we have cαβ = 1. We now reduce the general case to this situation.

We assume without loss of generality that the combinatorial data are given by a directed
rooted in-tree with B vertices, i.e. the graph F is connected. Otherwise, we have the direct
product situation, i.e., the metric and all other relevant objects are direct products of
lower-dimensional metrics and relevant lower dimensional objects.

We denote by 1, 2, ..., B the vertices of the in-tree F in such a way that α ≺ β implies
α < β; of course, the vertex 1 is then the root. Other vertices of degree one are called
leaves. Recall that α = next(β), if α ≺ β and there is no γ with α ≺ γ ≺ β.

For every leaf β we define the chain Sβ (oriented path to the root) as the sub-tree with
vertices β, next(β), next (next(β)),...,1. For example, the upper tree of Fig. 1 has two
chains, one with vertices 3, 2, 1 and another with vertices 4, 2, 1.

Next, for the chain Sβ and for any fixed point p we consider the following submanifold
Mβ passing through p: in the coordinates (X1, ..., XB) = (x1, ..., xn) it is defined by the
system of equations

Xα = Xα(p) for every α 6∈ Sβ .

This is a totally geodesic submanifold with respect to the connections Γ, Γ̄ and Γ̂. For Γ̂
this follows from formulas (A,B,C) of Section 6.2. For Γ and Γ̄ it follows from (61).

Therefore, the restriction of g and ḡ onto Mβ satisfies the assumptions of Theorem 5.
Moreover, the components cαβ corresponding to this restriction to 1 for α < β.

For example for β = 3, the metric g corresponding to the upper tree of Fig. 1 is given
by

g = g1 + detL1 · g2 + detL1 detL2 · (g3 + g4) (76)
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and the restriction of the metric g onto M3 is

g1 + detL1 · g2 + detL1 detL2 · g3.

The case when cαβ = 1 for all α < β have been completely understood above and it
has been proved that the metric is as in Theorem 5. This implies that the metrics g and
ḡ are constructed as in Section 4.1 and the coefficients of Pα and Qα satisfy conditions
(i–iii) from Section 4.1. It remains to show that they also satisfy condition (iv). In order
to do this, suppose that α = next(β) = next(γ) with β 6= γ. We consider the sub-tree
with vertices α, β, γ := next(α) = next(β) and the corresponding warped product metric
with the base metric gα and fibre metric gβ + gγ. For example, for α = 2 in the case of the
upper tree of Fig. 1, we consider the warped product metric g2 + detL2 · (g3 + g4).

We know that is must be of constant curvature which implies that the direct product
metric gβ + gγ must be of constant curvature which in turn implies that it is flat. Then,

by Fact 7 the coefficients
β
anβ+1 and

γ
anγ+1 vanish implying

α
a1 = 0. Theorem 5 is proved.

7.3 On the uniqueness of Frobenius coordinates for a pair of
metrics

We consider two flat metrics g, ḡ possessing a common Frobenius coordinate system, and
discuss the uniqueness of this coordinate system. As before we assume that Rg = ḡg−1 has
n different eigenvalues. We know that g, ḡ are as described in Theorem 5. In particular, in
the corresponding coordinates, the connection Γ̂ defining the Frobenius coordinate system
(i.e., the flat connection that vanishes in Frobenius coordinates) is given by the formulas
from Section 6.2. That is,

• For every i 6= j and k 6= i, Γ̂ijk = 0.

• For the indexes i 6= j from one block, Γ̂iij = 1
xj−xi .

• For the index i from the block number α and j from the block number β 6= α, we
have Γ̂jji = Γ̂jij =

cαβ
xi

.

• For every i, the component Γiii := ui depends on xi only.

Moreover, the function ui is necessary zero unless the only component of the metric g
which may depend on xi is the component gii, see Remark 7.1.

Clearly, the coordinate system is determined, up to affine coordinate changes, by its flat
connection. Therefore, the freedom in choosing Frobenius coordinate system is possible
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if some of ui are not zero. This happens if certain blocks are one-dimensional and other
blocks do not depend on the coordinates of these blocks. It is easy to see that in this case
the freedom is as discussed in Section 4.1 after Theorem 5.

Remark 7.2. Coming back to Theorem 3 (uniqueness part), we notice that for the metrics
g = P (L)gLC and ḡ = Q(L)gLC, every diagonal component gii depends on all variables
x1, ..., xn. Then, the connection Γ̂ is unique implying that Frobenius coordinates are unique
up to an affine coordinate change, as required.

8 Pro-Frobenius algebras and multi-block Frobenius

pencils. Proof of Theorem 4

8.1 Extended AFF-pencils and pro-Frobenius algebras

As seen from Section 4.1, the main ingredients in general multi-block Frobenius pencils
(Theorem 5) are metrics of the form

P (L)gLC, where P (·) is a polynomial of degree n+ 1. (77)

If degP ≤ n, then such metrics are flat and form the AFF-pencil (26). However, if
degP = n + 1, i.e., P (t) = an+1t

n+1 + . . . , then g = P (L)gLC has constant curvature
K = −1

4
an+1 (see Fact 8). All together, the metrics (77) form a pencil of compatible

constant curvature metrics, which can be thought of as one-dimensional extension of the
AFF-pencil (26), see details in [17], [9]. In Frobenuis coordinates u1, . . . , un from Section
2.3, the coefficients gαβ of the metric g = P (L)gLC with degP = n + 1 are not affine
functions anymore. In particular, in the notation from Section 2.3, for P (t) = tn+1 we get:

gn+1 = Ln+1g0 =


u2 u3 . . . un 0
u3 . . . un 0 0
... . .

.
. .
. ...

...
un 0 . . . 0 0
0 0 . . . 0 0

+


u1u1 u1u2 . . . u1un

u2u1 u2u2 . . . u2un

u3u1 u3u2 . . .
...

...
...

. . .
...

unu1 unu2 . . . unun

 .

All the other metrics from the extended AFF pencil (77), in coordinates u1, . . . , un, take
the form

gαβ = bαβ + aαβs us − 4Kuαuβ,

which looks as a quadratic perturbation of (15). These metrics still possess remarkable
properties, similar to those from Fact 4 and related to the following generalisation of
Frobenius algebras.
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Definition 5. A pro-Frobenius algebra is a triple (a, b,K), where a is a real finite-dimensional
commutative algebra with operation ?, b is a symmetric bilinear form on a, and K ∈ C
satisfying the following two properties

1. b(ξ ? η, ζ) = b(ξ, η ? ζ),

2. ξ ? (η ? ζ)− (ξ ? η) ? ζ = −4K
(
b(η, ζ)ξ − b(ξ, η)ζ

)
.

(78)

For K = 0 (or b = 0), we obtain an associative algebra. Also if K = 0 and b is
nondegenerate, then (a, b) is a Frobenius algebra.

This definition is motivated by the following

Proposition 8.1. Let g be a (contravariant) metric of arbitrary signature and (u1, . . . , un)
be a coordinate system. The following two conditions are equivalent:

1. In coordinates u1, . . . , un, the contravariant Christoffel symbols Γαβs of g are symmet-
ric in upper indices and take the form

Γαβs = −1

2
aαβs + 2Kuαδβs + 2Kδαs u

β, (79)

where aαβs ∈ R are constants.

2. In coordinates u1, . . . , un, the metric g is in the form

gαβ = bαβ + aαβs us − 4Kuαuβ, (80)

where the triple (aαβs , bαβ, K) defines a pro-Frobenius algebra (in this case we will say
that u1, . . . , un are pro-Frobenius coordinates for g).

A metric satisfying either of these equivalent conditions has constant curvature K.

This statement generalises Fact 4 that relates to the particular case of K = 0.

Proof. Fix a basis e1, . . . , en of a (for the sake of consistency we assume that vectors have
lower indices). In coordinates, conditions (78) can be written as

1. aαβq bqγ = bαqaβγq ,

2. aαqs a
βγ
s − aαβq aqγs = −4K

(
δαs b

βγ − bαβδγs
)
.

(81)

First, assume that the contravariant Christoffel symbols are given by (79). By definition
we have

∇sg
αβ =

∂gαβ

∂us
+ Γαβs + Γβαs =

∂gαβ

∂us
+ 2Γαβs = 0.
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This implies that the metric is of the form (80).

Now we use the condition that usual Christoffel symbols Γβpq are symmetric in lower
indices. First, we calculate

−Γαβq gqγ =
(1

2
aαβq − 2Kuαδβq − 2Kuβδαq

)(
bqγ + aqγs u

s − 4Kuquγ
)

=

=
1

2
aαβq bqγ +

(
− 2Kuαbβγ − 2Kuβbαγ +

1

2
aαβq aqγs u

s
)

+

+
(
− 2Kuαaβγs u

s − 2Kuβaαγs u
s − 2Kaαβs usuγ

)
+ 16K2uαuβuγ.

Applying this to Γγβq g
qα − Γαβq gqγ = Γγβq g

qα − Γαβp gpγ = (Γβpq − Γβqp)g
pγgqα = 0 we get

0 = Γγβq g
qα − Γαβq gqγ =

=
1

2

(
aαβq bqγ − aγβq bqα

)
+
(
− 2Kuαbβγ + 2Kbαβuγ +

1

2
aαβq aqγs u

s − 1

2
aγβq a

qα
s u

s
)
.

(82)

Thus, we get exactly conditions (81) and therefore (aαβs , bαβ, K) defines a pro-Frobenius
algebra, as stated.

Conversely, assume that g is of the form (80) so that u1, . . . , un are pro-Frobenius
coordinates. Consider the connection Γ̄βrs = grq

(
−1

2
aqβs + 2Kuqδβs + 2Kδqsu

β
)
. Relation

(82) implies that this connection is symmetric (w.r.t. r and s). At the same time

∇̄sg
αβ = aαβs −4Kuαδβs−4Kδαs u

β−1

2
aαβs +2Kuαδβs +2Kuβδαs−

1

2
aβαs +2Kuαδβs +2Kuβδαs = 0.

Hence, Γ̄βrs is the Levi-Civita connection of g. Thus, Conditions 1 and 2 from Proposition
8.1 are equivalent.

Finally, we compute the curvature tensor of g in terms of contravariant Christoffel
symbols [15, formula 0.9]:

Rβγα
s = −

∂Γγαp
∂us

gpβ +
∂Γγαs
∂up

gpβ + Γβγq Γqαs − Γβαq Γqγs . (83)

For contravariant Christoffel symbols given by (79) we have

∂Γαβp
∂us

=
∂Γαβs
∂up

= 2K
(
δαs δ

β
p + δαp δ

β
s

)
.

This yields
Rβγα
s = Γβγq Γqαs − Γβαq Γqγs . (84)
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Next, we calculate (here we use the symmetry of Γαβs in upper indices)

Γαβq Γqγs =
(
− 1

2
aαβq + 2Kuαδβq + 2Kuβδαq

)(
− 1

2
aqγs + 2Kuqδγs + 2Kuγδqs

)
=

=
1

4
aαβq aqγs −

(
Kuαaβγs +Kuβaαγs +Kuγaαβs +Kaαβq uqδγs

)
+

+ 4
(
K2uαuβδγs +K2uαuγδβs +K2uβuγδαs

)
.

Substituting this into (84) we get

Rβγα
s =

1

4
(aγβq a

qα
s − aαβq aqγs ) + δαs

(
−Kaβγq uq + 4K2uβuγ

)
−
(
−Kaαβq uq + 4K2uαuβ

)
δγs =

= −Kδαs bβγ +Kbαβδγ + δαs

(
−Kaβγq uq + 4K2uβuγ

)
−
(
−Kaαβq uq + 4K2uαuβ

)
δγs =

= K
(
gαβδγs − δαs gβγ

)
.

Thus, the metric has constant curvature K.

8.2 Algebraic interpretation of warped product

To a pair of Riemannian metrics of constant curvature we can naturally apply the warped
product operation which, under some additional conditions (see Fact 8), leads to a constant
curvature metric again. Having in mind the relationship between constant curvature met-
rics and pro-Frobenius algebras explained in Proposition 8.1, we now describe an algebraic
analog of warped product for pro-Frobenius algebras.

Take two pro-Frobenius algebras (a, b,K) and (â, b̂, K̂) with the following additional
properties:

(i1) there is a distinguished element m ∈ a which generates a one-dimensional ideal so
that m ? u = α(u)m, α(u) ∈ R, for all u ∈ a;

(i2) m ∈ Ker b, i.e. b(m,u) = 0 for all u ∈ a;

(i3) α(m) = 4K̂.

Notice that (i2) and (i3) are conditions on the first algebra a only, whereas (i3) should
be understood as an intertwining relation between a and â.

If (i1), (i2) and (i3) are fulfilled, we introduce the following commutative multiplication8

?w on the direct product a× â (here we use natural inclusions a, â ⊂ a× â):

8Here the index w stands for warped product
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• if u1, u2 ∈ a, then u1 ?w u2 = u1 ? u2, in other words, the product remains unchanged
so that a is a subalgebra of (a× â, ?w);

• if u ∈ a and v ∈ â, then u ?w v = α(u)v;

• finally if v1, v2 ∈ â, then v1 ?w v2 = v1 ? v2 + b̂(v1, v2)m.

We will denote the algebra so obtained by a×w â.

Proposition 8.2. Under the above conditions (i1), (i2) and (i3), the triple (a×w â, b,K)
is a pro-Frobenius algebra. (Here by b we denote the bilinear form on a× â which coincides
with b on a and has â as a kernel.)

Proof. Straightforward verification.

To the geometric language, this construction can be translated as follows.

Proposition 8.3. Let g and ĝ be two (contravariant) metrics written in pro-Frobenius
coordinates u1, . . . , un1 and v1, . . . vn2:

gαβ = bαβ + aαβs us − 4Kuαuβ,

ĝij = b̂ij + âijr v
r − 4K̂vivj,

(recall that g and ĝ then automatically have constant curvatures K and K̂ respectively).
Assume that the following conditions are satisfied:

(i1∗) : ain1
s = 0 for s 6= n1;

(i2∗) : bin1 = 0 for i = 1, . . . , n1;

(i3∗) : an1n1
n1

= 4K̂ (intertwining condition).

Then the warped product metric gwarp = g(u) + 1
un1

ĝ(v) has constant curvature and the
coordinates (y1, . . . , yn), n = n1 + n2, defined by

y1 = u1, . . . , yn1 = un1 ,

yn1+1 = un1v1, . . . , yn1+n2 = un1vn2 ,

are pro-Frobenius for gwarp.

Proof. The statement can be proved by straightforward verification. Alternatively, one can
argue that Proposition 8.3 is a geometric counterpart of Proposition 8.2 with appropriate
adjustments.
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We can naturally define a pro-Frobenius pencil as a family of metrics {gλ} having a
common pro-Frobenius coordinate system u1, . . . , un so that

gαβλ = bαβ(λ) + aαβs (λ)us − 4K(λ)uαuβ, (85)

where for each λ, the triple
(
bαβ(λ), aαβs (λ), K(λ)

)
defines a pro-Frobenius algebra and

gαβλ1+λ2
= gαβλ1 + gαβλ2 (in other words, bαβ(λ), aαβs (λ) and K(λ) are linear in λ). It is

straightforward to see from Proposition 8.1 that each pro-Frobenius pencil consists of
Poisson compatible constant curvature metrics.

Equivalently, in algebraic language, we can talk about a pencil of pro-Frobenius algebras
P = {(aλ, bλ, Kλ)}. Observe two simple properties of pro-Frobenius pencils.

First of all notice that any affine transformation u 7→ Au + a preserves the form of
the metric (85). More precisely, linear transformations preserve the triple (aλ, bλ, Kλ) as
an invariant algebraic object, whereas under shifts (u 7→ u + a), the ingredients of any
pro-Frobenius algebra (a, b,K) change according to the following rule:

ξ ?new η = ξ ? η − 4K
(
ξ · a(η) + η · a(ξ)

)
,

bnew(ξ, η) = b(ξ, η) + a(ξ ? η)− 4Ka(ξ)a(η),

Knew = K,

leading to a new pro-Frobenius pencil Pnew =
{(

(aλ)new, (bλ)new, (Kλ)new

)}
. Since this

transformation is quite simple and controllable, we will think of pencils P and Pnew related
in this way as equivalent.

The second observation is that every pro-Frobenius pencil contains a Frobenius pencil
of codimension one. In geometric language, this means that every pencil P of constant
curvature metrics of type (85) contains a codimension-one subpencil of flat metrics Pflat ⊂
P . Indeed, the metrics gλ from Pflat is defined by a single linear relation K(λ) = 0. For
example, the (flat) AFF pencil (26) is a codimension one subpencil of the extended AFF
pencil (77).

8.3 Geometric construction for general multi-block Frobenius
pencils

The above discussion leads us to a rather natural, alternative geometric description of
Frobenius pencils from Theorem 4. This description will automatically imply that metrics
(31) admit a common Frobenius coordinate system given by (35) so that Theorem 4 follows.

We now explain how, using the directed rooted in-forest structure (see Section 4.1), one
can construct the pencil (31) from elementary building blocks related to vertices of this
in-forest graph.
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This step-by-step construction works as follows. Without loss of generality, we assume
that the graph F (see Section 4.1) related to a given pencil is connected, i.e., the in-forest
consists of a single tree. We start with its leaves and move from each of them towards the
root to construct branches and then the whole tree. At each step of this construction we
obtain a collection of pro-Frobenius pencils P1, . . . ,Ps. The starting point is the collection
of extended AFF-pencils related to all the leaves.

Geometrically, the (re)construction reduces to two simple operations, namely flattened
direct product and warped product. Let us describe them.

• Flattened direct product.

We choose some pencils Pi1 , Pi2 , . . . , Pis , s ≥ 2, from our collection and combine
them into direct product Pi1 × Pi2 × · · · × Pis . The dimension of this new pencil is∑

dimPik . However, in general, this pencil is not suitable for our purposes as direct
product of constant curvature metrics is not a constant curvature metric unless all of
them are flat. We know, however, that each pro-Frobenius pencil contains a Frobenius
pencil Pflat

ik
⊂ Pik of codimension one (unless Pik is Frobenius itself, i.e. consists of

flat metrics so that Pflat
ik

= Pik). We replace each Pik by Pflat
ik

and take the direct
product

Pflat
i1
× Pflat

i2
× · · · × Pflat

is =



gi1

gi2
. . .

gis

 , gik ∈ P flat
ik

 ,

which is still a Frobenius pencil (flattened direct product). Notice that the dimension
of this pencil is now smaller than

∑
dimPik due to flattening. In terms of coefficients

of the polynomials Pik(·) (see Section 4.1), this operation corresponds to condition
(iv): the highest order coefficients an+1 must vanish.

• Warped product.

Take an extended AFF pencil F and an arbitrary pro-Frobenuis pencil P . Let
u1, . . . , un be a common pro-Frobenius coordinate system for all gλ ∈ F so that

gαβλ = bαβ(λ) + aαβs (λ)us − 4K(λ)uαuβ,

Here λ ∈ Rn+2 is a linear parameter of the extended AFF pencil F so that bαβ(λ),
aαβs (λ) and K(λ) are linear in λ. Recall that the space of parameters Rn+2 for the
extended AFF-pencil F is naturally identified with the space of polynomials Rn+1[t]
so that we naturally set λ = P (t) = an+1t

n+1 + ant
n + . . . a1t+ a0.

Following Proposition 8.3, we now consider all warped product metrics of the form

gλ +
1

un
ĝµ, gλ ∈ F , ĝµ ∈ P .
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However, we need to ensure that Conditions (i1∗), (i3∗) and (i3∗) are met, that is:

ains (λ) = 0 for s 6= n, bin(λ) = 0, and annn (λ) = 4K̂.

The first two conditions are linear equations on λ. They both amount to the condition
a0 = 0 (cf. the first part of Condition (iii) in Section 4.1). Finally the third is an
intertwining linear relation9 between the parameters of the two pencils (as K̂ depends
linearly on the parameter µ of P).

Imposing these two conditions, we obtain a new pro-Frobenius pencil (Proposition
8.3), which we will understand as warped product F×wP (recall that F is an extended
AFF-pencil whereas P is an arbitrary pro-Frobenius pencil).

We can use these two operations to construct more and more complicated pro-Frobenius
pencils starting from simple ones (in our case, we start from extended AFF-pencils). More-
over, at each step we construct a pro-Frobenius coordinate system for the new pencil from
those of the initial pencils by using Proposition 8.3.

All the pencils from Theorem 4 can be obtained in this way. Indeed, if the tree F
(defining a pencil from Theorem 4) is given, then the reconstruction procedure is quite
natural. We start with the leaves and then, moving towards the root, at each step add one
more vertex, say i. The result of this step will be a pro-Frobenius pencil Pi corresponding
to this vertex (and keeping information from all the vertices k located above i, i.e. such
that i ≺ k). There are two essentially different cases:

1) If i is not a branching point, i.e., there is only one vertex j such that i = next(j),
then we use the warped product operation. More precisely, for this vertex j, we have
already a certain pro-Frobenius pencil Pj constructed previously. We take the extended
AFF-pencil Fi and apply the warped product procedure for these two pencils

Fi,Pj
warp−→ Pi = Fi ×w Pj

to get a new pro-Frobenius pencil Pi that corresponds to the vertex i.

2) If i is a branching point, i.e., there are several vertices j1, . . . , jk such that i =
next(js), then we first apply the flattened direct product operation to the pro-Frobenius
pencils Pjs and then take the warped product with the extended AFF pencil Fi:

Fi,Pflat
j1
× · · · × Pflat

js

warp−→ Pi = Fi ×w

(
Pflat
j1
× · · · × Pflat

js

)
.

At the very end, when we come to the root of the whole tree, say i = 1, and obtain a
pro-Frobenuis pencil P1, we need to perform one more operation, namely, making it flat

9If P is an extended Frobenius pencil in dimension n̂, then in terms of polynomials λ = P and λ̂ = P̂ ,
this relation takes the form a1 = ±ân̂+1, cf. the second part of Condition (iii) from Section 4.1. Also, if
P is flat, i.e. K̂ = 0, then this relation is a1 = 0, cf. Condition (iv) from Section 4.1.
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(cf. Condition (i) from Section 4.1):

P1 −→ Pflat
1 .

This final, already Frobenius, pencil Pflat
1 is the one which corresponds to the given tree F

in the sense of Theorem 4.

It is important to notice that each time as we perform a warped product operation, we
simultaneously construct a common pro-Frobenius coordinate system for the new pencil Pi.
According to Proposition 8.3 we simply need to multiply some coordinates by un, which
in our case is ± detLi. In other words, the above construction leads us, step-by-step, to
the Frobenius coordinate system (35). Theorem 4 is proved.

8.4 Algebraic reformulation of the classification Theorem 5

The above construction can be naturally reformulated in purely algebraic language. We
now work with pencils of pro-Frobenius algebras, i.e., with linear families {(aλ, bλ, Kλ)}λ∈Rk .
The building blocks of our construction are extended AFF-pencils which we will still denote
by F1, . . . ,FB (we use a natural correspondence between pro-Frobenius pencils of metrics
and algebras and basically identify them).

Our goal is to construct a (multi-block) pencil of Frobenius algebras starting from pro-
Frobenuis pencils F1, . . . ,FB. The below construction is an almost literal translation of
the previous geometric Section 8.3 into algebraic language. This translation is straight-
forward due to one-to-one relationship between (pro-)Frobenius pencils of metrics and
(pro-)Frobenius pencils of algebras explained above in Sections 8.1 and 8.2.

We start with two basic operations which we will apply to pro-Frobenius pencils. The
first operation (we call it flattening) can be applied to any pro-Frobenius pencil F =
{(aλ, bλ, Kλ)}λ∈Rk and is as follows:

F = {(aλ, bλ, Kλ)}λ∈Rk 7→ Fflat = {(aλ, bλ)}λ∈Rk,K(λ)=0

In other words, Fflat is a subpencil of F defined by the relation K(λ) = 0. As K(λ) is a
linear function in λ, we will get a subpencil of codimension one (unless K(λ) ≡ 0 and then
Fflat = F because F itself is already flat10).

The second operation, warped product, can be applied to a pair of pro-Frobenius pencils
F ,P , the first of which F = (aλ, bλ, Kλ)}λ∈Rk is the extended AFF-pencil, while the second
one P = (âµ, b̂µ, K̂µ)}µ∈Rm is arbitrary:

F ,P 7→ F ×w P
10We use “flat” to emphasise the relation with Riemannian metrics. If K = 0, then the corresponding

metric is flat.
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This pencil will consists of warped products (aλ×w âµ, bλ, Kλ) with the parameters λ ∈ Rk

and µ ∈ Rm appropriately chosen (in order for this operation to make sense, see Conditions
(i1), (i2), (i3)). More precisely, recall that in the case of the extended AFF-pencil, the
parameter λ ∈ Rn+2 ' Rn+1[t] is identified with a polynomial of degree n + 1 (where
n = dim aλ):

λ = P (t) = a0 + a1t+ · · ·+ an+1t
n+1.

For each polynomial we construct a metric g = P (L)g0 with L and g0 given by (19). In
coordinates u1, . . . , un, this metric takes the form

gαβ = bαβ + aαβs us − 4Kuαuβ

leading to a certain pro-Frobenius algebra (a, b,K) whose ingredients depend on λ = P (t).
Following the definition of the warped product of pro-Frobenius algebras, we set m = en

(the last basis vector in our standard presentation for the AFF-pencil). To fulfil Conditions
(i1), (i2), (i3), we set a0 = 0 (this gives (i1) and (i2) for each aλ). To guarantee (i3) for
(aλ, bλ, Kλ) and (âµ, b̂µ, K̂µ), we need to set a1 = −4K̂µ.

Thus finally we get:

F ×w P = {aλ ×w âµ, bλ, Kλ}a0(λ)=0, a1(λ)=−4K̂µ, λ∈Rn+2, µ∈Rk

Notice that the dimension of the underlying algebras in the pencil F ×w P equals
dim aλ + dim âµ, the sum of the dimensions of the corresponding algebras from F and P .
However, the dimension of the pencil F ×w P itself equals dimF + dimP − 2 because of
two additional linear relations a0 = 0 and a1 = −4K̂µ.

Finally, we notice that for two (or several) Frobenius pencils P1 = {aλ, bλ}λ∈Rk and
P2 = {âµ, b̂µ}µ∈Rm we can naturally define the direct product

P1 × P2 = {aλ × âµ, bλ × b̂µ}(λ,µ)∈Rk+m

where bλ × b̂µ
(
(u, û), (v, v̂)

)
= bλ(u, v) + b̂µ(û, v̂).

We now apply the above two operations, flattened direct product and warped product,
to our building blocks.

For instance, we can take several “building blocks” Fi1 , . . . ,Fis and take the flattened
direct product

P = Fflat
i1
× · · · × Fflat

is

Next, we can take an extended AFF-pencil Fα and consider a warped product Fα ×w P ,
and then repeat this operation with another extended AFF-pencil, i.e., Fβ ×w (Fα ×w P).
We can continue in this way, applying any combination of these two operations. If we end
up with a certain pro-Frobenius pencil, we should not forget to make it flat (at the very
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final step) to get a desired Frobenius pencil. It is easy to notice that the whole process is
governed by a graph, which is exactly the in-forest F discussed in Section 4.1.

The general classification theorem for Frobenius pencils (Theorem 5), in algebraic lan-
guage, takes now the following form.

Theorem 5B. Let (a, b) and (ā, b̄) be two compatible Frobenius algebras satisfying the
following genericity condition: the operator R defined from the identity b(Ru, v) = b̄(u, v)
has different eigenvalues. Then the corresponding Frobenius pencil {λa+µā, λb+µb̄}(λ,µ)∈R2

is a subpencil of a multi-block Frobenius pencil constructed from extended AFF-pencils by
means of two operations, warped product and flattened direct product, as explained above.

References

[1] M. Antonowicz, A. Fordy, Coupled KdV equations with multi-Hamiltonian struc-
tures, Phys. D: Nonlinear Phenomena, 28(3)(1987), 345–357.

[2] M. Antonowicz, A. Fordy, Coupled Harry Dym equations with multi-Hamiltonian
structures, J. Phys. A: Mathematical and General 21(5), L269–L275.

[3] M. Antonowicz, A. Fordy, Factorisation of energy dependent Schrödinger operators:
Miura maps and modified systems, Comm. Math. Phys., 124(1989), 465–486.

[4] A. Balinskii, S. Novikov, Poisson brackets of hydrodynamic type, Frobenius algebras
and Lie algebras, Doklady Ak. Nauk., 283(5)(1985), 1036–1039

[5] A. Boralevi, J. Draisma, E. Horobet, E. Robeva, Orthogonal and unitary tensor
decomposition from an algebraic perspective, Israel J. Math. 222(1) (2017), 223–
260.

[6] A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, Nijenhuis Geometry, Adv. Math.
(2021), https://doi.org/10.1016/j.aim.2021.108001, arXiv:1903.04603.

[7] A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, Nijenhuis Geometry III: gl-regular Ni-
jenhuis operators, arXiv:2007.09506.

[8] A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, Applications of Nijenhuis geometry:
Nondegenerate singular points of Poisson-Nijenhuis structures, Eur. J. Math., (2021).
DOI:10.1007/s40879-020-00429-6.

[9] A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, Applications of Nijenhuis geometry
II: maximal pencils of multihamiltonian structures of hydrodynamic type, Nonlin-
earity 34(8) (2021), 5136–5162. arXiv:2009.07802.

56



[10] M. Casati, P. Lorenzoni, R. Vitolo, Three computational approaches to weakly non-
local Poisson brackets, Studies in Applied Mathematics, 144(4)(2020), 412–448.

[11] P.W. Doyle, Differential geometric Poisson bivectors in one space variable, J. Math.
Phys. 34(1993), 1314–1338.

[12] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations,
John Wiley & Sons, 1993.

[13] B. Dubrovin, S. Novikov, Hamiltonian formalism of one-dimensional systems of hy-
drodynamic type, and the Bogolyubov “Whitman averaging method”, Dokl. Akad.
Nauk SSSR, 270(4) (1983), 781–785.

[14] B. Dubrovin, S. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differ-
ential geometry and Hamiltonian theory, Uspekhi Mat. Nauk, 44(6)(1989), 29–98.

[15] B. Dubrovin, Flat pencils of metrics and Frobenius manifolds, integrable systems and
algebraic geometry : proceedings of the Taniguchi symposium 1997, Kobe, June 30
- July 4, 1997 and Research Institute for Mathematical Sciences, Kyoto University,
July 7 - 11, 1997 / eds. M.-H. Saito, Y. Shimizu and K. Ueno. - Sing, ISBN 981-02-
3266-7.

[16] E. V. Ferapontov, Compatible Poisson brackets of hydrodynamic type, J. Phys. A:
Math. Gen. 34 (2001), 2377–2388.

[17] E. V. Ferapontov, M. V. Pavlov, Quasiclassical limit of coupled KdV equations. Rie-
mann invariants and multi-Hamiltonian structure, Physica D, 52 (1991), 211–219.

[18] E. V. Ferapontov, M. V. Pavlov, R. F. Vitolo, Towards the Classification of
Homogeneous Third-Order Hamiltonian Operators, IMRN 2016(22), 6829–6855,
https://doi.org/10.1093/imrn/rnv369

[19] E. V. Ferapontov, M. V. Pavlov, R. F. Vitolo, Systems of conservation laws with
third-order Hamiltonian structures, Lett. Math. Phys., 108(2018)(6), 1525–1550.

[20] I. Gelfand, L. Dikii, Asymptotic properties of the resolvent of Sturm-Liouville equa-
tions, and the algebra of Korteweg-de Vries equations. (Russian) Uspehi Mat. Nauk,
30(1975), no. 5(185), 67–100. English tanslation in: Russian Mathematical Surveys,
30(1975), 77–113.

[21] I. Gelfand, I. Dorfman, Hamiltonian operators and algebraic structures related to
them, Funct. Anal. Appl., 13(4) (1979), 248–262.

[22] I. Kaygorodov, I. Rakhimov, Sh. K. Said Husain, The algebraic classification of
nilpotent associative commutative algebras, J. Algeb. Appl., 19(11)(2020), 2050220.

57



[23] A. Yu. Konyaev, Nijenhuis geometry II: Left-symmetric algebras and linearization
problem for Nijenhuis operators, Diff. Geom. App., 74(2021),101706.

[24] A. Yu. Konyaev, Geometry of inhomogeneous Poisson brackets, multicom-
ponent Harry Dym hierarchies and multicomponent Hunter-Saxton equations,
arxiv.org/abs/2112.05635.

[25] T. Levi-Civita, Sulle trasformazioni delle equazioni dinamiche, Ann. di Mat., serie
2a, 24(1896), 255–300.

[26] P. Lorenzoni, A. Savoldi, R. Vitolo, Bi-Hamiltonian structures of KdV type, Journal
of Physics A: Mathematical and Theoretical, 51(2018), 045202.

[27] F. Magri, A simple model of the integrable Hamiltonian equation, Journal of Math-
ematical Physics 19(1978), 1156.

[28] O. Mokhov, Compatible flat metrics, J. Appl. Math. 2(7)(2002), 337–370.

[29] O. Mokhov, Pencils of compatible metrics and integrable systems, Uspekhi Mat.
Nauk, 72(5)(437) (2017), 113–164, Russian Math. Surveys, 72(5)(2017), 889–937.

[30] P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag New
York, 513 pages, 1993.

[31] B. Poonen, Isomorphism types of commutative algebras of finite rank over an alge-
braically closed field, Computational arithmetic geometry, 111–120, Contemp. Math.,
463, Amer. Math. Soc., Providence, RI, 2008.

[32] G. Potemin, On third-order Poisson brackets of differential geometry, Russian Math-
ematical Surveys, 52(3) (1997), 617–618.

[33] M. Prvanovic, On warped product manifolds, Filomat 9(2) (1995), 169–185. Avail-
able from http://elib.mi.sanu.ac.rs/

[34] A. S. Solodovnikov, Geometric description of possible presentations of Riemannian
metrics in the Levi-Civita form, (Russian) Tr. Semin. Vektor. Tenzor. Anal. 12(1963),
131–173.

[35] I. A. B. Strachan, B. M. Szablikowski, Novikov Algebras and a Classification of
Multicomponent Camassa–Holm Equations, Volume 133(1)(2014), 84–117.

[36] R. Vitolo, Computing with Hamiltonian operators, Computer Physics Communica-
tions, 244(2019), 228–245.
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