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AEPPLI-BOTT-CHERN-MASSEY PRODUCTS, BIGRADED NOTIONS
OF FORMALITY, AND NON-ZERO DEGREE MAPS

A. MILIVOJEVIC AND J. STELZIG

ABSTRACT. We introduce and study notions of bigraded formality for the algebra of forms on
a complex manifold, along with their relation to higher Aeppli-Bott—Chern—Massey products
which extend, in an augmented setting, the case of triple products studied by Angella—
Tomassini. We show that these Aeppli-Bott—Chern—Massey products on complex manifolds
pull back non-trivially to the blow-up along a complex submanifold, as long their degree is
less than the real codimension of the submanifold. We then consider the general question of
under which conditions formality is preserved by non-zero degree maps.

1. INTRODUCTION

From an early stage in the development of rational homotopy theory, there have been fruit-
ful interactions with complex geometry: Deligne—Griffiths—Morgan—Sullivan famously proved
that all compact Kéhler manifolds are rationally formal [DGMS75], [Su77]. Neisendorfer—
Taylor adapted the notions of models and formality to the holomorphic category [NT78] while
giving some preference to the antiholomorphic differential 0 as necessitated by analogy to
a singly-graded theory. In the first part of this article, we continue this adaptation by in-
troducing notions of formality (and obstructions thereof) for bigraded bidifferential algebras
which are symmetric in the two differentials.’ This yields new complex-geometric invariants
with a homotopy-theoretic flavor.

Two genuinely new cohomological invariants that arise when passing from simple complexes
to double complexes — the Bott—Chern cohomology, forming an algebra, and the Aeppli
cohomology, which is a module over the former — allow one to consider new, symmetric,
Massey-like triple products, introduced by Angella—Tomassini in [AT15]. Generalizing these
in a different direction than that taken by Tardini [Tal7, §4.4], we identify these Aeppli—
Bott—Chern—Massey (ABC—Massey) triple products as one member of a sequence of higher
ABC-Massey products, employing a relevant chain complex studied by Schweitzer and guided
by a general framework for defining Massey—like products developed by Massey himself in
the 1950’s. In this framework, the ABC-Massey triple products studied in [AT15] can be
thought of as associated to a 1-simplex, while the quadruple, quintuple, etc. products are
associated to higher-dimensional simplices. The Massey products defined directly in terms of
this spectral sequence construction are basepoint-dependent. They differ from the basepoint-
independent “ad hoc” constructions one usually encounters (also introduced by Massey) but
can be used as a guide to defining basepoint independent ad hoc products. We illustrate this
for the quadruple ABC-Massey products.

We then identify two homotopy—theoretic notions of formality for bigraded bidifferential
algebras (with an augmentation and without), one stronger than the other, which are ob-
structed by the presence of (some of) these ABC-Massey products. The relations between
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these, a metric-dependent formality condition akin to geometric formality, and ordinary (de
Rham) formality are discussed through examples.

In the second part of the article, inspired by a theorem of Taylor that non-vanishing Massey
triple products pull back non-trivially under non-zero degree maps of Poincaré duality spaces
[Tal0], and placing into context various constructions of non-formal manifolds via blow-
ups and finite group quotients, we ask under which conditions formality itself is preserved
under such non-zero degree maps. This question has a holomorphic analogue for bigraded
formality, where Serre duality plays the role of Poincaré duality. The existence of non-zero
degree maps (giving a relation going by the name of domination or Gromov’s partial order)
between smooth manifolds, particularly in low dimension (see e.g. [L20], [Nel4]), and in the
holomorphic setting (see e.g. [BBM15], [Mel8]), has been studied by many authors. The
general empirical phenomenon is that the recipient of a non-zero map is in a sense nicer than
the domain, and in view of this one might ask when formality is preserved under such maps.

We gather some results on when formality is indeed preserved. Babenko—Taimanov [BT00]
showed that Massey products on symplectic manifolds are preserved under symplectic blow-
up along a submanifold, as long as their degree is less than twice the real codimension of
the submanifold. We extend this to complex blow-ups and ABC-Massey products. We also
show that 1-formality is preserved under non-zero degree maps ¥ — X of closed manifolds

where the cup product H'(Y;Q) ® H'(Y;Q) = H2(Y;Q) is trivial.

Acknowledgements. This research was supported through the “Research in Pairs” pro-
gram at the Mathematisches Forschungsinstitut Oberwolfach in 2021. We thank the MFO
for the excellent working conditions provided there. The first named author would likewise
thank the Max Planck Institute for Mathematics for its hospitality. We are grateful to Joana
Cirici and Scott Wilson for many useful discussions and comments that improved the pre-
sentation of the material. We further thank Michael Albanese, Pavel Hajek, and Leo Zoller
for stimulating conversations, and Nicoletta Tardini for pointing us to [Tal7].

2. PRELIMINARIES

One of the basic objects we consider are double complexes, i.e. bigraded complex vector
spaces with differentials, suggestively denoted & and 0, of bidegree (1,0) and (0,1) respec-
tively, such that (9 + 0)? = 0. We recall that (bounded) double complexes admit direct sum
decompositions into well-understood indecomposable subcomplexes (“squares and zigzags”),
see [KQ20], [Ste21].

Definition 2.1. A map of double complexes ¢ : A — B is called an Ej—isomorphism if it
induces an isomorphism in row and column cohomology.

Remark 2.2. In general, this notion of Fj—isomorphism is a stronger condition than in-
ducing an isomorphism in column (“Dolbeault”) cohomology only (see the notion of Ej-
quasi-isomorphism in [CSLW20]). However, if both double complexes are equipped with a
real structure, i.e. an antilinear involution ¢ such that cAP? = A%P and cdc = 0, and we
consider maps compatible with this structure (o = ¢o), then the condition of being an
FEq—isomorphism is the same as inducing an isomorphism in column cohomology only. In
particular, this applies to the case of A = Ax, B = Ay being the double complexes of forms

on complex manifolds X,Y, and ¢ = f* induced by a holomorphic map Y i> X, or to the
inclusion of forms A)G< C Ax invariant under a group acting by biholomorphisms.

Definition 2.3. A cohomological functor is a linear functor from the category of double
complexes to the category of vector spaces which sends squares to the zero vector space.
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Proposition 2.4. Let f: A — B be an Eq1—isomorphism of bounded double complexes.

(1) The induced map f®": A®" — B®" is an E;-isomorphism.
(2) For any cohomological functor H, the induced map H(f) is an isomorphism.

Proof. The first statement follows from the Kiinneth formula. The second is a special case
of [Ste21, Prop. 12]. O

Remark 2.5. In particular, Fq—isomorphisms induce isomorphisms in Bott—Chern and Aep-
pli cohomology. Recall that the Bott—Chern cohomology Hpc and Aeppli cohomology H 4
are given by
ker O N ker 0 ker 00
Hpe = ——=—, Ha= —(Y——=.
im 00 imd+imd
It will be shown in [Ste22] that, conversely, any map inducing an isomorphism in Bott—Chern
and Aeppli cohomology is an Fj—isomorphism. Along the lines of Remark 2.2, a map induced
by a holomorphic map of compact complex manifolds that induces an isomorphism on Bott—
Chern cohomology automatically induces an isomorphism on Aeppli cohomology (and vice
versa) by Serre duality [S07], and is hence an Fj—isomorphism.

The forms on a complex manifold have the additional structure of a graded—commutative
product, where the graded—commutativity takes into consideration only the total degree,
together with the differentials 9 and 0 being (graded, again with respect to the total grading)
derivations. We refer to such a structure as a (graded—)commutative bigraded bidifferential
algebra, or cbba for short. A map of cbba’s whose underlying map of double complexes is
an Fj—-isomorphism will be called a weak equivalence (this model-categorical terminology
will be justified in [Ste22]).

There are augmented versions of all the above objects, and of Proposition 2.4; both will
be relevant in the next two sections.

3. AEPPLI-BOTT-CHERN HIGHER PRODUCTS

Recall the Aeppli-Bott—Chern-Massey (ABC-Massey) triple product, as defined in [AT15,
Definition 2.1]. For Bott—Chern cohomology classes a,b, ¢ € Hpc(X) such that ab = be = 0,
take representatives o, 3,7 for a,b,c respectively, and choose forms z,y such that 00z =
af and 99y = Bry. Then the triple product is the coset in Ha(X)/ (aHA(X) + cHa(X))
corresponding to the Aeppli cohomology class [ay — zv] € Ha(X). Note the different sign
convention than in [AT15]; the results of loc. cit. carry through verbatim for this different
sign convention.

We adapt Massey’s spectral sequence construction of triple and higher order Massey prod-
ucts to the setting of complex manifolds. This construction is basepoint-dependent, and
hence will give invariants of pointed complex manifolds. However, the construction of the
Massey product as a differential in a certain spectral sequence reviewed below, informs one
how to define the usual, basepoint-independent, “ad hoc” Massey products. In either case, we
recover the ordinary and Dolbeault—-Massey products [CT15], along with ABC-Massey triple
products (see e.g. [TT14], [AT15]). This allows us to define higher ABC-Massey products in
the spectral sequence setup. We give an explicit definition and formula for ad hoc quadruple
ABC—-Massey products, which can in principle be extended to quintuple and higher prod-
ucts. Generally the spectral sequence Massey products have a larger indeterminacy but also
a larger domain of definition than the ad hoc ones.

3.1. Eilenberg—Moore spectral sequence. We fix an augmented abstract simplicial com-
plex K, i.e. a collection of subsets (including the empty set) of some fixed set such that for
every 0 € K and 7 C o, we also have 7 € K. We will later only consider the case that K is
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the standard simplex, i.e. K = A™ = all subsets of {0, ...,n}, but the construction works in
this greater generality and gives, in principle, additional invariants.

We further fix a linear functor S from double complexes to simple complexes such that
its composition with taking cohomology is a cohomological functor. On a first reading, the
reader may want to assume that this associates to a double complex A its total complex.
This choice of A will recover the Massey products as presented in [M58, §§3—4].

Now let A be an augmented cbba and write AT = ker(A — C) for its augmentation ideal.
This is a cbba without unit. The principal example we have in mind is A = Ax for a complex
manifold and the augmentation given by the restriction of forms to some basepoint = € X.
We may now form a new triple complex C;™* (4, K) as follows: For every fixed p € Z, define

(1) CAK)= P A'w.4f
o€K,|o|=p p+2 times

(where we consider the empty set to have cardinality —1). Each C,(A, K) inherits the
structure of a double complex from A, by using the usual induced differentials and gradings
on tensor products and direct sums of double complexes. This gives the upper grading on
C:"(A, K). The differential § in the direction of the lower grading is given as follows: Denote
the summand belonging to a given p-simplex o by Cy,(A, K),. If 0; is the face obtained by
omitting the i-th vertex, then on elementary tensors in Cp(A, K)s, one sets

8(ap @ ... ® ap) = Z (—1)iag ® ... ® @ - Qi1 ® ... ® an
o, €K
and extends linearly. This defines a map of double complexes Cp(A, K) — Cp—1(A, K) and
satisfies 62 = 0.

Now we may apply S to each Cp™(A, K) to obtain a simple complex Cy(A, K, S) and,
consequently, a double complex C}(A, K, S) (with commuting differentials instead of anti-
commuting ones). Note that the “horizontal” differential 0 is of degree —1 and the vertical
differential is of degree 1.

Definition 3.1. The Eilenberg—Moore spectral sequence {EM (A, K, S);™,d,}r>1 is
the spectral sequence associated with the filtration of C}(A, K, S) by horizontal degree. Its
differentials are of degree |d,| = (—r, —r + 1) and the spaces on the first page are given by

EM(A K, S} = HY(CH(X,K,S) = P HUSAT®-- @A)
c€K,|o|=p
with differential dy induced by §.

Remark 3.2. By construction, this spectral sequence is functorial for maps of augmented
cbba’s, and by (the augmented version of) Proposition 2.4, a weak equivalence of augmented
cbba’s gives rise to isomorphic spectral sequences.

Example 3.3. ([M58]) Let S be the total-complex functor and K = A" the standard simplex.
Then for n = 0, The first page looks as follows:

d
H(A?;t) — H(A?;)t) ® H(A?;t),

where we suppress the vertical grading in the notation and the differential is given by multi-
plication. For n = 1, we obtain as first page

d d
H(A;Zt) — H(A;Zt)(m D H(Ai)t)@z — H(A;Zt)(@?’,

where the first map is given by (e ® b, ¢ ® d) — ab + c¢d and the second one by (a @ b® ¢) —
(ab® ¢, —a ® be). In particular, for elementary tensors [a] ® [3] ® [7] with af = dx, By = dy
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(and hence d; ([o] ® [3] ® [7]) = 0, the second differential dy([o] ® [8] @ [7]) = [2y — (=1)!*lay]
is given by the formula for the ordinary triple Massey product. In general, for arbitrary
n, the longest possible differential will (on elementary tensors) be given by the formula for
n + 2—fold Massey products.

Motivated by this, we define:

Definition 3.4. Let n > 2. An n—fold Massey product in the spectral sequence sense
(with respect to S) in the augmented algebra A is an element in the image of the map

do1: EM(A, A2, 8)172* 5 EM(A, A" 2, 5), i +2,

Remark 3.5. Note that by definition, such a Massey product is a subset of H(S(A™))
(namely, a coset for the space generated by the images of all lower page differentials). By
Remark 3.2, Massey products can be pulled back and are invariants of a cbba up to weak
equivalence.

Example 3.6. Forgetting the d-differential in A, i.e. taking S to be the column complex
functor, we obtain a spectral sequence version of the Dolbeault—-Massey products [CT15]
(which are obtained by the corresponding ad hoc procedure, and are the natural Massey
products in Neisendorfer—Taylor’s theory [NT78]).

As a more substantial example, we will now generalize ABC-Massey triple products to
arbitrary length. Our generalization will be of a different nature than the one considered by
Tardini [Tal7, §4.4], where an odd number of Bott—Chern classes is taken in to produce an
Aeppli class.

To this end, we recall [S07, 4.b] the Schweitzer complex Sy, ,(A) associated to a double

complex A and a fixed bidegree (p, q), which presents Hf(l’qfl and H Jg’g as the cohomology
of a singly-graded complex. The complex is given by
/

APatl g Apt+la

AP—2.9-1  Ap—1,0—2
e
where d denotes the map induced by restricting or projecting the de Rham differential in the

obvious way.
Note that the cohomology of this complex at the A™9 entry is precisely Hi4(A), and at

AP=1a=1 it is HR1971(A). Indexing the entries so that AP~ is at index 0 and AP4
is at index 1, let us denote by qupq(A) the cohomology at index ¢; in this convention,

HEM7Y(A) = HY (A), HEEL(A) = HY (A) and

ker (pro d: Ar~20-1 g Ap—1a-2 __, Ap—l,q—l)
im (pro d : AP=3.4—1 g Ap—2.4-2 g Ap—1.4-3 5 Ap—20-1 g Ap—1.4-2)’

Hs,(4) =
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[2]

(11 [2]

[-1]) [0]
[-1]

FIGURE 1. The indices in the Schweitzer complex.

Let us explain how triple ABC-Massey products arise in this setup. The part of the
first page of the Eilenberg-Moore spectral sequence EM (A, Al, Sp.q) relevant for us looks as
follows:

HpE(AT) «—————— HRd((A7)?) @ H ((A7)®?) «———— Hp((A1)®?)

HYHNA) e HETMN (A © BN (AN HY (M)

Now pick three Bott—Chern classes a,b,c whose degrees sum up to (p,q). There is a

natural map (Hpc(A)®* = Hpo((AT)®3), so their tensor product defines an element in
HEL((AT)®3). If ab = be = 0, this element will be dq-closed. The second differential, i.e. the

triple ABC—Massey product is represented by a zigzag:

Spa(AT) Spa((AT)E2) @ S5 (((AT)F?) «—— 8, ,((A1)®?)
o]
Spa(AT) «—— 8 (AN)#2) & 5) ,((AT)®?) Spa((AT)%?)

If a = [a],b = [8],c = [y] and ab = [90x], By = Dy, such a zigzag is given by

(af®y,—a®py) +—— a® Ry

[

Ty —ay +— (2R, —a®y)

So da(a ® b ® c) is represented by the usual triple ABC-Massey product.
Now we describe the quadruple ABC—Massey products. They will be represented by a

zigzag:

Spq(A) (Spq((AF)®2)F2 (Sp,q((AT)F9)F? —— 5, ((AF)®Y)
Spa(A) (Spg((AT)E2)P? —— (8P ((AT)®%)® Spq((AT)®Y)

[

Spq(AT) e (S5 ((AT)#2)®? (Spq ((AT)9%)®8 Spq((AT)E)

p.q
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If we start with classes a, b, ¢, d € Hpc of pure bidegree, with representatives a;, 3, ~, § such
that |a8vd| = (p,q) and assume there are pure bidegree elements x,y, z,n, 7, £, & such that
(2) 00x = a3, 00y = By, 00z = v and xy — ay = On + On', yd — Bz = O + O¢'

such a zigzag may be represented as

af R®vR
—a®BYRI| S a®BRYRS
a®p Y0

a® (yé — Bz) TRY®S

aBRz—zRY | ¢ [ —a®y®d

(7 —ay) ®§ a®B®z

1

(—D'*a(g +¢) (-D'*a® (E+¢)
—(8x)z + (1)1 F12h: — —(ax®z+(—1)‘w‘x®52)
+(n+n')o n+n)®s

The quadruple ABC-Massey product of a, b, ¢, d is then represented by the class
[(—D)la(¢ +¢) = (02)2 + (1)1 28z + (n + 1))

in (a quotient of) H gplq(AJr). One can continue this construction to obtain formulas for the
“higher” ABC-Massey products.

Remark 3.7. Note that we could have taken our initial data in a different cohomology group
of the Schweitzer complex of a tensor power of AT, beside Bott—Chern cohomology. Hence
we in fact obtain a doubly—indexed family of Massey—like products in the spectral sequence
sense; one index for the “length” of the product (that we may think of as the number of
inputs), and one index for the cohomology group of the Schweitzer complex our inital data
lives in.

Three somewhat distinct behaviors emerge among the doubly—indexed family of products
in the spectral sequence sense: The upper “half” of the Schweitzer complex (i.e. with index
> 1) has a map of complexes to the total de Rham complex, while the lower half (i.e. with
index < 0) receives a map from the total de Rham complex. Consequently, if we start in
high degree in the upper half of the Schweitzer complex and form sufficiently short Massey
products, these products map to the ordinary de Rham Massey products (but they live in
finer groups). Similarly, we may map de Rham Massey products to ABC-Massey products
starting in the lower part of the Schweitzer complex. On the other hand, those products that
cross the 00-“bottleneck” in the Schweitzer complex, i.e. with input in the upper half and
output in the lower half, are genuinely new phenomena that do not seem to be related in any
straightforward way to ordinary Massey products.

We also remark that one can map Bott—Chern classes to the cohomology at any index in
the appropriate Schweitzer complex, and hence, if one prefers to start with a pure tensor of
Bott-Chern classes, this is possible at any stage.

3.2. Ad hoc Massey products. The ABC-Massey products introduced above are associ-
ated with an augmented cbba. This is in contrast with the more common ad hoc definitions
of (triple ABC—) Massey products, which do not need an augmentation, as for instance in
[M58, Section 2], [K66] (resp. [AT15], [Tal7]). The ad hoc version always starts with a pure
tensor of classes as input and outputs a subset of cohomology, which, apart from the triple
product case, is generally not the coset of a linear subspace. The product is then said to
vanish if zero is contained in this subset.

There is, in principle, a straightforward way of obtaining such an unaugmented ad hoc
version from the explicit description of the differentials in the spectral sequence version.
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Since the amount of necessary notation becomes unwieldy, let us only sketch this for triple
and quadruple products, taking our cues from our examples discussed in the previous section
and [K66]:

Definition 3.8. Let A be a cbba and a,b,c,d € Hpc(A) classes of pure bidegree with
representatives «, 3,7, and write (pqa, qa) = |, etc.
(1) A defining system for the ad hoc ABC-Massey quadruple product (a,b,c,d) is a
collection of elements z,y, z,7, £ such that
S S&m(A) y € Sy, (A), 2 € S5 (A),
f=n+n € SI b I(A) = AlaBvI=(21) g plaby=(1,2)
E=¢+¢ € Slﬁ 5\(‘4) = ABYI=21) g glB¥I-(1.2)
satisfying Equation (2) above.
(2) The ad hoc quadruple ABC—Massey product (a, b, c, d) is the subset of HS| 551 (A)
given by the collection of all classes

[(—Dag — (82)z + (—1)*H 128z + 76]
determined by a defining system.

Another choice for the classes in the ad hoc quadruple product would be
[(=D)*lag + (9z)z + (=122 + 7).

Note that the difference between the representatives of this and the previous choice is d(xz),

hence the two representatives give the same class in S|1[3 . (A).

Remark 3.9. As seen above, if one makes the analogous definitions in order to define an ad
hoc triple ABC-Massey product, one recovers the ABC-Massey product (a,b,c) of [AT15].

One can also pursue defining ad hoc quintuple and higher products, but we do not do so
here.

The functoriality and invariance properties in this ad hoc setup need to be proven with
more care:

Proposition 3.10. Let ¢ : A — B be a map of cbba’s.
(1) (Functoriality) For a,b,c € Hgc(A), one has p{a,b,c) C (p(a),¢(b), ¢(c)).
(2) (Invariance under weak equivalences) If ¢ is a weak equivalence, a,b,c € Hpc(A),
a' V', € Hge(B), there are equalities of sets

pla,b,c) = (p(a),¢(b),¢(c)) € Ha(B)
and
p~Ha V) = (o7 (), o7 (1), o7 () € Ha(A).

In particular, admitting a non-trivial Massey product is invariant under weak equivalences.

Proof. Given any defining system for the (a, b, ¢), its image under ¢ is a defining system for
(p(a), p(b), v(c)), hence the functoriality assertion. For the first equality of part (2), we have
to show the other inclusion. Let a = [a],b = [B],c = [y] and z,y € B with 00z = ¢(af)
and 99y = ¢(B7), such that [p(a)y — zp(7)] € {(@(a),¢(b),p(c)). Then we want to find
©o(2'),o(y') € imyp such that 99z’ = af and 99y’ = B such that [p(a)y — zp(y)] =
[o(ay’) — p(2'y)] € p(a,b,c). First, since Hpco(A) = Hpe(B), we may pick some primitives
00¢(7) = p(af) and 90(7) = ¢(B7). Now, ¢(Z) —x and ¢() —y are dd-closed and therefore
define Aeppli-classes. Because ¢ is a weak equivalence, we may choose elements ’,¢ € A
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such that [p(Z) —z] = [p(Z")] and [p(7)—y] = [p(7’)]. Then, setting 2’ = &'+ and ¢/ = 7'+
does the job, as

[p(@)y —zp(y)] = [p(@)(y— @)+ (@) = (z—p(Z) +(@)e(7)] = [p(a)p(y) — (") p(7)].

The second assertion follows from the first since we may write ' = ¢(a),b' = ¢(b),d = ¢(c)
for some a,b,c € H(A). O

Remark 3.11. The same kind of arguments (with more cumbersome notation) show that
Proposition 3.10 remains valid for quadruple ABC-Massey products, for Tardini’s [Tal7]
Massey products, and also for usual Massey products and quasi-isomorphisms.

Remark 3.12. We would like to emphasize that neither invariant, the Massey products in
the spectral sequence sense or the ad hoc sense, is finer than the other. The spectral sequence
products have a large indeterminacy (e.g. any product of positive-degree cohomology classes
will represent a trivial triple product in the spectral sequence sense), but also a larger domain
of definition, as the input data is not restricted to pure tensors. One can find a discussion
on this (for ordinary Massey products) in [P17].

Example 3.13. We exhibit an example of a non-vanishing ad hoc quadruple ABC-Massey
product, i.e. with four Bott—Chern classes as input. Consider a complex nilmanifold with
model

(A(.ﬁ, Z,Y,Y,2, 2, W, U_j)) dz = zy,dw = xz) :
That is, the above is the algebra of invariant forms on a complex parallelizable nilmanifold
together with its bigrading; the inclusion of this into all forms is a weak equivalence by [Sa76];
see also the work of Console-Fino, Rollenske and others, summarized in [R11].

Consider the Bott—Chern classes represented (uniquely) by z, 7, yZ. Note that 2% = 0,
z(zy) = 0, (zy)(yz) = 0, and that (zy)(yz) = 09(2z). The triple ABC-Massey product
(x,zy,yx) vanishes, as we have rzzZ = J(wz). The triple product (z,x,zy) also vanishes,
trivially.

The quadruple ABC-Massey product (z,z, zy, yZ) is thus well defined, and is represented
by the H §412 class [zwz]. To verify that this quadruple product is indeed non-vanishing, we
show that no other choice of primitive elements can yield the trivial class. First of all, notice
that for degree reasons, 0 is the only possible choice of 99-primitive for #? and for x(xy). A
primitive for (zy)(yZ) can be anything in the affine space

ZZ -+ span (a:i’, XY, T2, W, YT, Yy, Yz, Yyw, 2T, 2Y, W, ng) .
Therefore the possible representatives for (x, zy, Zy) lie in the affine space
xzZ + span (YT, xYy, TYZ, LYW, T2T, T2Y, TWT, TWY) .

Since J vanishes on (2,0) forms, any representative of the quadruple ABC-Massey product
is thus in

x (wz + span (x&, 2y, TZ, xW, YT, Yy, YZ, YW, 2T, 2y, WL, WY, 2Z, 2W)) .

No differential from .S 1, 22 contains a term of zwZ, and hence we are done.

This manifold is a holomorphic analogue of the filiform nilmanifold, which is the simplest
example of a nilmanifold with a non-vanishing quadruple Massey product. Indeed, our com-
plex nilmanifold is a holomorphic torus bundle over the Iwasawa bundle, while the filiform
nilmanifold is a circle bundle over the Heisenberg nilmanifold. (Here we refer to “the” filiform
and Heisenberg nilmanifold, though there are various lattices in the appropriate simply con-
nected nilpotent Lie group one could choose, resulting in different homotopy types; however,
the rational homotopy theoretic minimal model is unique.)
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Remark 3.14. Our definitions of ABC—Massey products can be adapted to the almost
complex setting by using the double complexes (Ax)s and (Ax),, associated with an almost
complex manifold X in [CPS21], and the ensuing notions of Schweitzer complexes.

4. BIGRADED NOTIONS OF FORMALITY

In usual rational homotopy theory, a commutative differential graded algebra (cdga) is
called formal if it is connected by a chain of quasi-isomorphisms to a cdga with trivial
differential (whose underlying algebra is consequently isomorphic to the cohomology of the
original cdga). This motivates the following two notions of formality in the bigraded setting,
where we wish to consider the differentials 9 and 0 on equal footing:

Definition 4.1. A cbba A is called:
(1) weakly formal, if it is connected by a chain of weak equivalences to a cbba H which
satisfies 0Oy = 0.
(2) strongly formal, if it is connected by a chain of weak equivalences to a cbba H
which satisfies 0y = 0y = 0.
We use the same terminology if A is augmented and the weak equivalences preserve augmen-
tations.

Note that strong formality implies weak formality and the d9-lemma (the latter being
an (additive) Fj—isomorphism invariant of double complexes). In the definition of strong
formality, one may thus take H to be Hpc(A). Conversely if A satisfies the 90-lemma, weak
and strong formality are equivalent.

Remark 4.2. Since we are not assuming the existence of real structures on our cbba’s, these
notions are a priori unrelated to the notions of Dolbeault formality and strict (Dolbeault)
formality considered in [NT78, p.187], as in both cases the weak equivalences considered (the
former being in the category of bigraded algebras with a single, 0, differential, and the latter
being in the category of cbba’s) require only an isomorphism on d-cohomology. If we were to
require all considered cbba’s to have a real structure, and the maps between them to preserve
this structure (e.g. if the chain of weak equivalences were induced by holomorphic maps of
complex manifolds), then the notions of strict formality and strong formality would coincide.
Without these additional requirements, the two notions are different; see Example 4.9.

As an immediate consequence of Remark 3.5, Proposition 3.10 and Remark 3.11, we have
the following, where we mean Massey products in the spectral sequence sense for augmented
formality and in the ad hoc sense for unaugmented formality:

Proposition 4.3. On a strongly formal manifold all ABC-Massey products vanish. On a
weakly formal manifold, all ABC-Massey products that cross the d0-bottleneck (c.f. Re-
mark 3.7) vanish.

In ordinary rational homotopy theory, and in the Dolbeault homotopy theory of [NT78],
formality is equivalent to augmented formality for cohomologically connected spaces (e.g.
compact complex manifolds in the latter), essentially due to the fact that the construction of
a cofibrant model does not involve adding generators in degree 0 (or bidegree (0,0) for the
latter). From now on, we will consider only the unaugmented notions of formality, unless
explicitly stated otherwise.

Taking metrics into account, recall that a compact Riemannian manifold is called geomet-
rically formal if products of harmonic forms are again harmonic. Considering the Bott—Chern
and Aeppli harmonic forms (see [S07, Section 2]), which we denote by Hpc and H 4, respec-
tively, one can ask for the additional condition that the collection of harmonic forms is closed
under the differential:
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Definition 4.4. A connected compact complex manifold is called ABC-geometrically
formal if it admits a Hermitian metric such that following two equivalent conditions are
satisfied:
(1) The space Ha + Hpc is closed under multiplication and 8, d.
(2) There exists a bigraded, bidifferential subalgebra H C Ax which is closed under
and satisfies 99 = 0, such that the inclusion is a weak equivalence.

Let us prove that these two conditions are indeed equivalent: If condition 1 holds, set

H :=Hs+ Hp. Since

Ow=20
w€EHpe <« Ow =0 & xw € Ha,
00 *xw =0

this space is closed under * and satisfies 90 = 0 by definition. It is a bigraded subalgebra
by assumption. Since Hpc(H) = Hpo(X) and Ha(H) = Ha(X), the inclusion is a weak
equivalence by Remark 2.5.

Conversely, if condition 2 holds, H has to be finite dimensional, since in any decomposition
into indecomposable complexes, there can be no squares (since 90 = 0) and every zigzag has
to occur with the same multiplicity as in Ax (where the multiplicities are known to be finite).
In particular, H is a closed subspace and we have an orthogonal projection Ax — H. Because
H is closed under * and is a bigraded subspace, this projection is a map of (bi)complexes:
Indeed, pick any orthonormal basis {h;} for H. Then the projection of any element in w € Ax
is written as pry(w) = > (w, hi)h;. Thus:

(d o pry)(w) = d (Z@, hi>hi> = 3" (w, hi){dhi, hy)hy

2
(pry o d)(w) =Y {w,d*hiYhi =Y {w, hy)(d*hi, hy)h
i i,j

and both terms coincide. In particular, this implies that the Bott—Chern and Aeppli Lapla-
cians have block-diagonal form with respect to the splitting Ax = H @ H' and consequently
Hpe = HeeNHEHpcNH:. Since Hpe(H) = Hpc(X), this implies Hpe € H and similarly
Ha C H. On the other hand, if w € H, necessarily 0w = 0, i.e. it gives rise to an Aeppli
class. The harmonic component w? lies in H, so w’ = w —w? € HN (im d+im d) = OH +OH,
where for the last equality we use that an element in H which gives the zero class in H4(X)
has already a primitive in H as Ha(H) = Ha(X). But then, because 99 = 0 in H, we have

Ow' = 0w =0 and 00 xw' =0, i.e. W € HNHpc. This completes the proof.

Remark 4.5. Note that the multiplicative structure was not used in proving the equivalence
of the two conditions in Definition 4.4. So we also have the following statement: the space
Ha + Hpc is closed under 9 and 0 if and only if there exists a bigraded subcomplex H C
Ax which is closed under x and satisfies 99 = 0, such that the inclusion is an (additive)
FEi—-isomorphism. Note also that this equivalence implies that the subspace in the second
condition has to coincide with Hpo + H 4, and in particular must be real.

Remark 4.6. Note that the inclusion H C Ax is automatically compatible with the augmen-
tation given by the choice of any basepoint. In particular, ABC-geometric formality implies
weak formality in the augmented sense.

Remark 4.7. (Relation to other notions of geometric formality) ABC-geometric formality
implies geometric Bott—Chern formality in the sense of Angella—Tomassini [AT15], i.e. the
Bott—Chern harmonics form an algebra. Indeed, the product of two Bott—Chern harmonic
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forms will of course be closed under d and 9, as well as under (99)* by the assumption of
ABC-geometric formality.

If we further assume our manifold satisfies the 99-lemma, then ABC-geometric formality
implies Dolbeault geometric formality [TT14] and ordinary geometric formality. Indeed, e.g.
for the latter, since the Bott—Chern harmonics and Aeppli harmonics coincide, they are closed
under 9,9, 0*,d" and hence de Rham harmonic, and vice versa.

Example 4.8. We show on the example of the Kodaira—Thurston surface K'T' that ABC-
geometric formality, and hence also weak formality, does not imply the 0d—lemma nor de
Rham formality. A bigraded model for this complex manifold is given by

(A(z,7,y,9),dy = 2%),

where z and y are in bidegree (1,0). The inclusion of this cbba into the forms on KT is a
weak equivalence.

FIGURE 2. The double complex of the Kodaira—Thurston surface.

With respect to the obvious (diagonal) metric, we see that this algebra satisfies the second
condition in Definition 4.4. Being a non-trivial nilmanifold, KT is not formal (nor is it
Dolbeault formal). A concrete non-vanishing (Dolbeault—) Massey triple product is (z, &, Z),
represented by yZz.

Example 4.9. We consider the Hopf surface, which is weakly formal, de Rham formal (as
the underlying smooth manifold is S x $3), and does not satisfy the 99-lemma (as the first
Betti number is odd). A model, i.e. a cbba with a weak equivalence to the cbba of forms,
for the Hopf surface is given by [Ste22]

(A(w,a?", y,2,02,0z),dr = —dx = y,00z = in) )
where z is in bidegree (1,0) and y, z are in (1, 1). This model maps to
(A('Ivi‘a y)/(y2)7 dr = —dz = y)

by sending z, 9z, 0z to 0. This map is a weak equivalence and the latter cbba satisfies 99 = 0,
so the Hopf surface is weakly formal. It is also strictly formal, so in particular Dolbeault
formal, in the sense of Neisendorfer—Taylor [NT78, p. 197].

Example 4.10. Sferruzza and Tomassini have constructed an example of a compact com-
plex threefold which satisfies the 90-lemma, yet carries a non-vanishing triple ABC-Massey
product [ST21], and hence is not weakly formal. For the convenience of the reader, we give
a simple algebraic version of their example: Consider the cbba of left-invariant forms on the
Iwasawa manifold:

(A(S017 ¢27 9037 @17 @27 @3)7 d<p3 = _801@37 dQBS - @1@2)
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weak formality & strong formality —— de Rham formality

Hopf, KT ~~ l /

86 lemma

/,ST’//’
"
vanishing ABC-Massey

products crossing the vanishing Dolbeault—Massey products vanishing Massey products
00-bottleneck

FicURE 3. Relations between various discussed notions. A dotted arrow
means that the source property does not imply the target property, with a
counterexample labelling the arrow. KT denotes the Kodaira—Thurston sur-
face, ST the manifold constructed by Sferruzza—Tomassini, and Hopf denotes
the Hopf surface.

Now define A to be the sub-cbba generated by ¢'@!, p?@?%, p3@3, i.e. as a bigraded vector
space:

AO’O — C

AV = span(p' @', 0*3%, ©°3°)

A?? = Span(cp1<ﬁ2<p1902 P3P0, PP %)
AP! =span(p'p®p®)  AM? = span(¢’p'p”)

A*? = span(p' "0*¢' 67°)

with all other AP = 0 and only nontrivial differential 000333 = prp?@'@%. Then A satisfies
the 90-lemma, but ('@, '@l p?@?) # 0.

We collect the relations between the various notions of formality in Figure 3.

Example 4.11. Consider the Calabi-Eckmann complex structure on S% x S, with a global
basis {¢!, 2, ¢3} of (1,0)forms satisfying

do' = i¢'¢® +id' ¢,

46? = 26" — 6%,

dg® = —ig' ¢l + ¢*¢?,
see [TT17, §3]. Note that the inclusion of the algebra generated by these elements and their
conjugates into all forms is an injection on Hyg since it is a map of algebras satisfying Serre

duality, with respect to the invariant volume form ¢'¢2¢3plp2¢3. From knowledge of the
Hodge numbers of S® x S3 [B78], the map is also a surjection on H, and hence, since it
preserves real structures (see Remark 2.2), it is a weak equivalence. With respect to the
diagonal metric, the subalgebra generated by ¢'¢l, p2¢2, p¢3 and their & and O-derivatives
satisfies the second condition of Definition 4.4, and so in particular this manifold is weakly
formal.

As shown in [TT17, §3], there is a small deformation of this complex manifold that carries
a non-trivial ABC—Massey triple product. In particular, by Proposition 4.3, weak formality
is not stable under (small) deformation.
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Example 4.12. We give a non-trivial example of a strongly formal manifold. Consider
the full flag manifold SU(3)/(U(1) x U(1)). The details of the calculation to follow will
be given in [MW22]. There is a left-invariant complex structure J on SU(3) descending to
SU(3)/ (U(1) x U(1)), such that in a certain basis ¢!, ¢?, ¢, ¢* of left-invariant (1,0)forms
on SU(3), we have that the subalgebra of forms that descend to the quotient is generated by

ts = 4P, o= 39, o = 4T
03 =~} (%663 + 6°5761) , ol = § (6°P%0 — 6°6"5%)
with dab, = —dag = —daly = 3 (B + B), dag = 0, and day = 4(az0fy — asaly — ahaly), where

§ denotes the (2,1) form —ag + iaf. Denoting v = 4i(aealy — anah, — abhady), the invariant
subalgebra is represented by the double complex in Figure 4.

®(aztay)?

.E E— .'Y .(

I |

.cx2+a’2 .2042 — .ﬁ

az—al)?

o —od)
®

FIGURE 4. The left-invariant double complex for SU(3)/ (U(1) x U(1))

We can model this complex by
(A(ﬂs, Yy, z,w), 00z = xy — x° — y?, 00w = x?’) ,
where x,y, z are in degree (1,1) and w is in (2,2), by mapping
xr—>a2+o/2, yr—>a2—o/2/, z— ag, w— 0.

This map is a weak equivalence. On the other hand, the inclusion of the full complex
above into the complex of all forms on the flag manifold is also a weak equivalence. Indeed,
(ag + b)) + (e — af) yields a left-invariant Kahler form; by a classical result of Chevalley—
Eilenberg, the inclusion of the complex into all forms induces an isomorphism on de Rham
cohomology, so by the degeneracy of the Frolicher spectral sequence our claim follows.

Hence our manifold is weakly formal. Since it also satisfies the 0-lemma, it is equiv-
alently strongly formal. Notice that it is not ABC—geometrically formal with respect to
any SU(3)-invariant metric, as otherwise the products of its degree two part would span a
three—dimensional space.

The existence of the Sferruzza—Tomassini manifold leads us to the following question:
Question 4.13. Are compact Kdhler manifolds strongly formal?

Either compact Kéhler manifolds are strongly formal, in which case ABC-Massey products
can tell the difference between Kéhler manifolds and non—Ka&ahler manifolds satisfying the 90—
lemma, or we have potential invariants for Kahler manifolds.
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Since all Kéhler nilmanifolds are biholomorphic to tori [BC06, Theorem 2|, one could
consider looking at Ké&hler solvmanifolds for a negative answer to the above question. A
complicating factor is that all such manifolds are finitely covered by tori [Ar04, Corollary 1],
and hence their non-formality could not be detected by a non-vanishing ABC—Massey triple
product, by Proposition 5.4.

On the positive side, we have the following:

Proposition 4.14. Hermitian symmetric spaces are strongly formal (even ABC-geometrically
formal).

Proof. On Hermitian symmetric spaces, the cohomology can be computed from the sub-cbba
of invariant forms, but it is known that d = 0 on such forms. (This is the same proof as for
usual (geometric) formality of Riemannian symmetric spaces, see e.g. [Ko01].) ]

5. FORMALITY AND NON-ZERO DEGREE MAPS
We consider the following question:

Question 5.1. Let Y — X be a non-zero degree map of rational Poincaré duality spaces,
and suppose Y is formal. Under what conditions does it follow that X is formal?

By a rational Poincaré duality space we mean a connected space with degree-wise finite
dimensional rational homology, satisfying Poincaré duality on its rational cohomology. Ex-
amples are given by closed orientable manifolds. There is also the following variant of this
question:

Question 5.2. Let f : Y — X be a non-zero degree map of rational Poincaré duality spaces,
and m some nonvanishing obstruction to formality on X that can be pulled back to Y. Under
what conditions is the pullback f*m nonvanishing?

Some significant known results related to the above questions are as follows:

e By the argument in [DGMS75, Theorem 5.22], if Y — X is a holomorphic map of
compact complex manifolds of non-zero degree, and Y satisfies the 90-lemma, then
X also satisfies the d0-lemma. (Recall from loc. cit. that a manifold satisfying the
d0-lemma is formal.)

e For any singular complex algebraic variety X, there is a smooth complex algebraic
variety X and a degree one map X 5 X by Hironaka’s resolution of singularities.
Smooth complex algebraic varieties are formal. If the above question had an affirma-
tive answer, then it would follow that any singular complex algebraic variety which
satisfies rational Poincaré duality is formal. This conclusion is indeed known to be
true, see [H86, Theorem 5], [ChCil7, p.49].

e Suppose we have a non-zero degree map Y i) X of rational Poincaré duality spaces of
dimension < 5n+ 2, where X is rationally n—connected. Then Y being formal implies
that X is formal. Indeed, by [CN20], formality of X is equivalent to the Bianchi-
Massey tensor vanishing; a non-trivial Bianchi—-Massey tensor pulls back non-trivially,
obstructing formality of Y.

e Taylor [TalO] proved that a non-vanishing Massey triple product on X pulls back to
a non-vanishing Massey triple product on Y. We give an alternative argument here:

Proposition 5.3. Let a,b,c € H(X) with ab=bc = 0. If

H(X)
UH(X)+ H(X)Uc

m:= (a,b,c) #0 € -
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then also
H(Y)
[faUHY)+ H(Y)U f*c¢

fr(m) #0¢€

Proof. The map f* : H(X) — H(Y) has a one-sided inverse given by f. := ngffﬂw ie.
fof* = Idg(x). This yields a splitting

HY) ) H(X) @ H(Y)/fH(X).

By the projection formula
f(ffzUy) =2 U fiy forx € H(X),y € H(Y),

this (additive) splitting is compatible with the natural H (X )-module structures on both sides
(given by f* on the left and (Id, f*) on the right). Therefore, writing K := H(Y)/f*H(X),
the domain of definition of the Massey product decomposes as

H(Y) - H(X) . K
f*faUH(Y)+ H(Y)U f*c aUHX)+ H(X)Uc = ffaUK+ KU f*¢’
and under this splitting, we have f*(m) = (m,0). O

One can readily adapt the above argument, or Taylor’s argument, to the case of ABC—
Massey triple products, where Bott—Chern and Aeppli cohomology pair non-degenerately
under Serre duality [S07]. We have:

Proposition 5.4. Let Y — X be a non-zero degree holomorphic map of compact complex
manifolds. A non-vanishing ABC-Massey triple product on X pulls back to a non-vanishing
ABC—Massey triple product on Y. O

Remark 5.5. Often in examples one has a subalgebra of invariant forms, satisfying Poincaré
or Serre duality, and containing an invariant volume form, in the algebra of all forms Ax on a
closed manifold X. By duality, this algebraic map is injective on cohomology. Then the same
argument as above applies to show that a non-vanishing triple Massey or triple ABC—Massey
product calculated on the invariant subalgebra continues to be non-vanishing on Ax; that
is, if there is some defining system for the triple product on Ax making it trivial, then there
was a defining system on the subalgebra making it trivial to begin with.

Remark 5.6. Without the Poincaré duality assumption, it is generally easy to find examples
of cohomologically injective maps of cdga’s such that a non-vanishing triple Massey product
in the domain vanishes in the target. For example, consider the inclusion of cdga’s

A:=(Az,y,2),dz = xy) — B := (A(z,y,2,u,v),dz = zy,dv = zz — yu),

where all generators are in degree 1. This induces an inclusion A’ := A/AZ3 «— B’ := B/B>3
which is injective on cohomology. Now, (z,x,y) is a non-vanishing triple product in A’, while
in B’ it is represented by [zz] = [yu], which lies in the indeterminacy.

We can also ask the analogue of Question 5.1 for holomorphic maps of compact complex
manifolds and weak or strong formality. In that direction, we have the following result:

Theorem 5.7. Let Z C X a complex submanifold of complex codimension k£ > 2 and
7 : X — X the blow-up of X along Z. If m is a non-trivial ABC-Massey product (either in
the ad hoc or the spectral sequence sequence) on X, living in total degree < 2k, then also
7*m is non-trivial.
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Proof. Recall [Ste21] that additively, there is the following formula for the cohomology of X:

k-1
(3) Hpo(X) @ @HBC(Z)M ~ Hpo(X).
i=1

Here [i] denotes an up-right shift in bidegree by (7,7). The induced ring structure up to degree
2k on the left hand side is simple to describe: Both summands have a natural Hpc(Z)-module
structure (via the identity, resp. restriction) and elements in Hpc(Z) multiply according to
the multiplication in Hpc(Z) with appropriate degree shift. In particular, if we truncate
before degree 2k, the right summand (which corresponds to ker 7, under the isomorphism),
is an ideal. The analogous formulae hold for H 4(X) with its structure as an Hpc (X )-module.
The main idea is to construct a partial (bigraded) relative model for the blow-up, which
retracts to Ax. More precisely, we will construct a map ¢ : M — A; with the following
properties:
(1) As algebras, M = Ax ® AV for some bigraded vector space V.
(2) The ideal I(V) generated by V is a differential ideal (ie. M = Ax @& I(V) as
complexes).
(3) On Ax, p =7".
(4) The map
H(g) : H(My) — H(X)
is an isomorphism in total degrees < 2k, for H = Hpc and H = H 4.
With this setup, we obtain a commutative diagram of cbba’s:

in which the composition of the two maps (inclusion and projection) in the first row is the
identity and the vertical map induces an isomorphism in cohomology up to degree k. This
implies the claim by functoriality of Massey products. Note that if we had chosen basepoints
of X and X, the above is compatible with the induced augmentations.

Let us indicate how to construct such a model. Since this is essentially a special case of
the general construction of (bigraded, relative) models that will be carried out in [Ste22],
we allow ourselves to be brief. First, pick a bigraded generating set {b;} for Hpc(Z) and a
collection of linearly independent classes {a;} that span a complement to the image of the
natural map Hpc(Z) — Ha(Z). Now pick representatives b;,a; for the classes j,7*b; and
Jxm*ai, where j : B — X is the inclusion of the exceptional divisor into X. We may choose
the unique class in H%’g(Z ) to be [1], which maps to [f]. Let us denote by 6 a representative
for that class. Then define V' to be the vector space generated by the symbols (of pure
bidegree) x;,y;, 8yj,5yj and set M’ := Ax ® AV’ and define a differential to be as indicated
by the symbols on the y; and zero on all other generators (i.e. dz; = doy; = dgyj = 0). Then
there is a well-defined map ¢’ : M’ — Ay by sending z; — b;,y; — a;. By 3, the induced
maps H (') will be surjective and the pair (M’ ') satisfies all conditions except maybe 4.
Therefore, consider

C =ker Hpe(¢') : Het (M) = HZM(X)
Under the identification Hgo(M') = Hpo(X) ® Hpe(I(V')) and the formula 3, we see that,
since we are in degrees less than 2k, C = {0} @ C’. (In fact, in degree 2k, the class 6% will
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create a relation between both summands). Therefore, in order to kill these relations, we
may pick (generators ¢; for) classes in ker 7., and then define V" to be the vector space given
by the symbols z;, 0z;,0z;. Then set M" := M’ ® AV"”, with differentials as indicated by the
symbols and 99z; = ¢;. We may then extend ¢’ to ¢” : M” — Ay by sending z; to some §0-
primitive for ¢'(¢;). The map H(M’) — H(M") has the property that all elements in C' map
to 0 and all elements in ker H4(¢') map to elements in the image of Hpo(M") — H(M").
Repeating this process if necessary, we obtain our desired pair (V,¢) and hence M. O

Remark 5.8. Essentially the same proof (with some obvious simplifications) shows the
statement for ordinary Massey products in the de Rham cohomology of any blow-up of a
submanifold with almost complex normal bundle (c.f [M84]), in particular for symplectic
blow-ups. This had previously been obtained by Babenko-Taimanov [BT00].

On the purely topological level, related to Question 5.1, we have the following observation:

Proposition 5.9. Let Y i> X be a non-zero degree map of (orientable) closed n—manifolds,

where the cup product H'(Y) @ HY(Y) = H2(Y) is trivial. If Y is 1-formal (see [FMO5,
Definition 2.2]), then X is 1-formal. If n = 3 or 4, then formality of ¥ implies formality of
X.

Note that the condition of having trivial H(Y)®@ H*(Y) = H2(Y) is not too restrictive for
3-manifolds; if there were a,b € H'(Y) such that ab # 0, then by Poincaré duality we could
choose ¢ € H(Y), linearly independent of a and b, such that abe # 0. Choosing integral
representatives of non-zero multiples of a, b, ¢ hence gives us a non-zero degree map ¥ — T3.

Also, notice that our assumptions imply that H'(X) ® H'(X) — H?(X) is trivial as well.
Indeed, suppose ab # 0 for some a,b € H'(X). Then we would have (f*a)(f*b) = f*(ab) # 0
by the injectivity of f*. As a further remark, there do exist closed 3—manifolds satisfying this
condition which are non-formal, e.g. the Heisenberg manifold.

Proof. Take minimal models Mx = (AVX,d) and My = (AVY,d) for our manifolds. We will
argue that My is 1-formal. Namely, we will show there is a splitting of the space of degree
1 generators V¥ = O @ N{¥, where C;¥ = kerd, such that any closed element in A(V}) in
the ideal generated by N1X is exact in Mx.

Before doing that, let us show that V;¥ injects into V;¥ under the induced map on models,
which we also denote by f*. Certainly C;¥ injects (into C}) since f* is injective on coho-
mology. Consider the increasing filtration of V;¥ given by F* = C{¥, F! = d~1(A%C{"), F? =
d=Y(A2F%),.... This filtration is exhaustive and preserves the differential by nilpotency. Now
take a non-closed element in F'* (if it is closed, it pulls back non-trivially); then the image
of its differential under f* is non-zero by freeness, and hence the image of the element is
non-zero. Inductively we obtain our claim. In fact, we have shown that the cdga (AVIX , d)
injects into My .

Now we observe that, in general, on a 1-formal minimal cdga (AV,d) with trivial cup
product H' ® H' — H?, we can choose any complement to the closed elements in degree 1
in the definition of 1-formality. Indeed, by 1-formality we have some splitting V;, = Cy & Ny
with the desired properties. Choose another complement N{ to Cy, and take a closed element
in AVj in the ideal generated by Nj. We can write this element as a sum of an element in the
ideal of N7 and a product of elements in C;. Since the latter is closed, the former is closed
as well, and hence it is exact in (AV, d) by assumption. The product of elements in C} is also
exact in (AV,d) by the assumption on the cup product.

Now choose any complement NiX to C'1X in VlX. Mapping over (injectively) to My via
f*, we can complete a basis of C{* to a basis of C{, and a basis of N{* to a basis for a
complement to C} in V;¥. Suppose now that we have a closed element in A(V{¥) in the



BIGRADED NOTIONS OF FORMALITY 19

ideal generated by N;¥. Pulling back to My, this is now a closed element in A(V{Y) in the
ideal generated by N . By 1-formality of My, it is exact. Hence, by the injectivity of f* on
cohomology, the element must have been exact in Mx to begin with.

We have shown the general statement that the target of a non-zero degree map from a 1—
formal manifold with vanishing H'®@ H' — H? is itself 1-formal. The statement for manifolds
of dimension 3 or 4 now follows from the fact that a closed manifold in these dimensions is
formal if and only if it is 1-formal [FMO05, Theorem 3.1]. O
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