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CHARACTERIZATION OF TROPICAL PLANAR CURVES
UP TO GENUS SIX

AYUSH KUMAR TEWARI

ABSTRACT. We provide new forbidden criterion for realizability of smooth
tropical plane curves. This in turn provides us a complete classification
of smooth tropical plane curves up to genus six.

1. INTRODUCTION

Tropical plane curves exhibit duality with respect to regular subdivisions
of a certain lattice polygon. Smooth tropical planar curves are dual to
unimodular triangulations. This duality also describes tropical planar curves
as metric graphs, where each edge length can be understood as a metric.
The skeleton is a trivalent, planar metric graph which allows a deformation
retract from the tropical plane curve to itself. It can be obtained via a
graph theoretic operation from the tropical curve. An important invariant
under this duality is the genus of the tropical curve which is equal to the
number of cycles in the skeleton and which is also equal to the number
of interior lattice points of the corresponding lattice polygon. A central
problem concerning skeleta of smooth tropical plane curves has been to
categorize which trivalent, planar graphs can occur as skeleta of smooth
tropical plane curves.

The graphs which do occur as skeleta of tropical curves are referred as
troplanar or tropically planar [2]. Starting from the work in [!], there has
been immense interest to find forbidden criteria to rule out classes of graphs
which can not be realizable. We illustrate the duality between the unim-
doular triangulations, tropical plane curves and skeletons by the Figure
and refer the reader to [1], [2], [3] for further details about the duality and
the graph theoretic operation to obtain the skeleton. In [1], computational
techniques were employed to classify all troplanar graphs for lower genera
g = 3,4 and g = 5. This classification provides us a complete classification
of all troplanar graphs till genus four. In [2], this computational study is
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pushed to the case of genus six and many new criteria are also established.
However the classification still remained incomplete for genus five and six.
Some of the previously known forbidden patterns are sprawling [1], crowded
[1] and TIE-fighter [2]. In [3], for the first time a complete classification of
all troplanar graphs up to genus five was achieved which is independent of
computational enumeration. Along with completing the case for genus five,
[3] also provided the list of eight graphs which remained unclassified for the
case of genus six, depicted in Figure

>

FIGURE 1. A unimodular triangulation of a genus 6 polytope
(left), its dual graph (center), and the corresponding skeleton
which has a double heavy cycle with two loops (right)

In this article we provide the first complete classification of all troplanar
graphs up to genus six in the form of Theorem 4. We provide a new
criterion stated as heavy cycle with one loop, which extends the arguments
of the criterion heavy cycle with two loops discussed in [3]. We also define
a new graph structure called double heavy cycle and provide a structural
result for a graph with double heavy cycle to be troplanar, which helps us
in completely classifying all genus six graphs.
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FIGURE 2. The eight trivalent planar graphs of genus six,
which are not realizable [2], and remained unclassified up till
now.
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2. HEAVY CYCLE WITH ONE LOOP

Let P be a lattice polygon and OP represent the boundary of P. A
lattice polygon with all interior lattice points in a line is called a hyperelliptic
polygon. We refer to the convex hull of the interior lattice points of a lattice
polygon P as int(P). We recall the following lemma from [3],

Lemma 1. Let P contain a unimodular triangle face with vertices a,b, z
such that neither a nor b is a vertex of P, and z is an interior lattice point.
If a and b lie on OP then either a and b lie on a common edge of P or the
lattice point a + b — z is contained in P.

We state the following definitions of a heavy cycle and a heavy cycle with
two loops from [3],

G2 Gl

€2 () vy €1

Gs

FIGURE 3. Graph with the heavy cycle C
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Definition 2. We say that a cycle C' in a planar graph G is heavy, if

(i) it has two nodes, v; and v9, such that v; is incident with a cut edge
e; connecting v; with a subgraph G; of positive genus;

(ii) and there is a third subgraph, G3, also of positive genus, which
shares at least one node with the cycle C; cf. Figure

We recall some basic notations from [3] concerning heavy cycle. From [3,
Lemma 1] we know that there are split lines, S; and Sy, dual to the edges
e1 and ey of G. Also by [3, Lemma 4], P is decomposed into a union of
three lattice polygons P;, P, and P3 such that A induces triangulations of
all three. We obtain triangulations A1, Ay and Az such that the component
G is the skeleton of A; for i = 1,2, and G3 U C' is realized by As. T} and
T5 represent the triangular faces in A dual to vy and vy respectively. The
polygon Pj is referred as the heavy component of P, and Ag is referred as
the heavy component of A.

In [3] a structural result concerning heavy cycles is proved specifying the
conditions under which a graph with a heavy cycle is realizable.

Lemma 3. Suppose that G has a heavy cycle with cut edges e1 and ey as in
Figure 3. Then the triangles Ty and Ty in A share an edge [z,w], where z
1s the interior lattice point dual to C, and the split lines S1 and Sy intersect
in w, which is a vertex of P3, and which lies in the boundary of P.

Definition 4. We say that a connected trivalent planar graph G has a heavy
cycle with two loops if it has the form as described in Figure 4, where Gj3
represents a subgraph of positive genus.

FIGURE 4. Heavy cycle with two loops

Using Lemma 3 in [3], the following forbidden criterion is established,

Theorem 5. Suppose G is a graph with a heavy cycle C and two loops with
cut edges, ey and eq, as in Figure /. Then the heavy component P3 can
have at most three interior lattice points, and these lie on the line spanned
by the edge [z,w] € A, where z is the interior lattice point dual to C, and
w 18 the intersection point of the split edges s1 and so. In particular, Ps is
hyperelliptic and g < 5.
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Inspired from these definitions, we define a graph with a heavy cycle with
one loop,

Definition 6. We say that a planar, trivalent graph G has a heavy cycle with
one loop if it is of the form shown in Figure 5, where GGo and G3 represent
subgraphs of positive genus.

.
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FIGURE 5. Heavy cycle with one loop

Similar to Theorem 5 we prove the first new forbidden criterion in this
article, along with additional conditions in the specific case of g = 6,

Theorem 7. Suppose G is a tropically planar graph with a heavy cycle with
one loop as shown in Figure 5, then the heavy component Ps is hyperelliptic
and can have at most three interior lattice points. Also, Py can have at most
three interior lattice points. In the case when genus g = 6 and g(Py) = 2, P,
is hyperelliptic and the triangulation restricted to Ps, i.e, Ao cannot have a
nontrivial split. In particular, genus of G can be at most seven.

Proof. Let T1 = conv{(0,0),(1,0), (0,1)} and T = conv{(0,0), (-1, —k),(0,1)}
be the triangles dual to v; and vy respectively in A with the edges s1(between
the points (1,0) and (0,1)) and sg(between the points (0,1) and (—1,—k))
being the split edges corresponding to the cut edges e; and es in Figure
. We let z = (0,0) be the point corresponding to the heavy cycle C' and
by the heavy cycle lemma we know that 77 and 75 share an edge and the
split edges intersect at a point, in this case that point is w = (0,1). This is
illustrated in Figure 6. Invoking Lemma | for T} we realize that the point
r=(1,1) is in P. If we consider the case that r is in 9P, that implies that
the sub polygon of P realizing the loop lies in between the parallel lines
y = 0 and y = 1, which gives a contradiction as this does not contain any
interior lattice point. Hence, r lies in the the interior of P. Similarly, for
Ty = conv{(0,0), (=1, —k), (0,1)}, we obtain that the point ' = (-1, —k+1)
lies in the interior of P. Similar to the arguments used in the case of heavy
cycle with two loops, we realize that when we invoke convexity of P along
with the condition that r and r’ are interior points of P, then we obtain
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FIGURE 6. This illustrates Theorem 7: general sketch (left)
and the case when g(P’) > 4 (right), which is impossible

that the sub polygon realizing the subgraph G, lies between the lines x = 1
and x = —1 illustrated in Figure 5, which implies that Pj is hyperelliptic.

We now move on to show that g(P;) < 3. We proceed by contradiction
and assume g(P’) > 4. By our assumption, (0, —3) is an interior lattice point
of P3. We notice that the point p; = (1,0), which is a boundary point, and
r = (1,1), which is an interior lattice point, both lie on the line x = 1.
We now consider the possibilities for the point (1,2); either (1,2) € Py, in
which case (1,2) € 9P, or the boundary edge at w passes through a point
in the open interval ((1,2),(1,1)). Also, no point in dP; can be present on
the line y = 3x — 3 because (0, —3) is an interior lattice point. Hence, we
conclude that P; is contained in the triangle conv{p;,w, (1,3)}. However,
this triangle is not valid because (1, 3) has been excluded; see Figure 6. This
provides the desired contradiction, and thus g(P’) < 3.
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FIGURE 7. This illustrates the case when g = 6 and g(P2) =
2

Now we show that g(P) < 7. We know that the points r = (1,1) and
(0, —2) are interior points of P. Hence, no point in 9P; can be present on
the line y = 2x — 2 because (0, —2) is an interior lattice point. Again, (1,2)
is either in P or the boundary edge at w passes through a point in the open
interval ((1,2),(1,1)). Therefore, we conclude that P; =conv{py,w,(2,3)}.
Now, we try to find the maximal subpolygon P, (in terms of area) that we
can obtain given the above constraints. We realize that the maximal polygon
in this case P, = conv{(0,1),(—1,—3), (—4,—3)}, which is shown as the
triangle wCR in Figure

With the general statement proven, we now consider the specific case of
genus g = 6. In the case that g(P») = 2, P» is hyperelliptic since all lattice
polygons with g < 2 are hyperelliptic [I]. We again proceed by constructing
the maximal polygon P in this case. Since g(P) = 2 and P, is hyperelliptic,
we realize that the point (—1,—1) is an interior point of P, because if it not
in P or is in 0P, then it contradicts g(P,) = 2. This implies that for a point
p = (z,y) € P, x > —2. This implies that the maximal polygon P, in this
case is P, = conv{w, (-2, —-1),(—2,-3), (—1,—3)}, which is depicted in
the Figure 7 as the quadrilateral wPQR. We realize that for P, and all
its sub polygons, none of the corresponding triangulations As can posses a
non trivial split edge, such that it divides P into two sub polygons each of

which has a positive genus. Hence, the proof.
O

We state the forbidden criterion we obtain as a result of Theorem 7,
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Corollary 8. Let G be a planar trivalent graph of genus g > 8 such that G
has a heavy cycle with one loop. Then, G cannot be tropically planar.

Remark 9. Figure 8 shows the unimdoular triangulation which realizes a
graph with a heavy cycle and one loop. Notice, that Gs has no cut edges
and hence P, has no nontrivial split.

O

FIGURE 8. A unimodular triangulation of genus six with
g(Py) = 2 (left), corresponding skeleton with a heavy cycle
with one loop with G2 that does not have a cut edge (right)

3. DOUBLE HEAVY CYCLE

We now define a double heavy cycle,

Definition 10. We say that cycles C1,C5 in a planar graph G are double
heavy, if

(i) it has two nodes, v1 and vg, such that v; is incident with a cut edge
e; connecting v; with a subgraph G; of positive genus;

(ii) and there is a third subgraph, G, also of positive genus, which
shares at least one node with the cycles C; and Cy; cf. Figure
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FIGURE 9. Graph with double heavy cycles Cy and C5

We fix some additional notation concerning double heavy cycle. Let T, T}
and T5 denote the triangles in A dual to v,v; and vy in G respectively. Let
z1 and 2z represent the interior lattice points dual to C7 and Cy. We also
recall that the unimodular triangles in A can be categorized into degree one,
two and three depending on the number of triangles adjacent to them in A.
Similar to Lemma 3, we now prove a structural result concerning double
heavy cycles,

Lemma 11. Suppose that G has double heavy cycles C; and Cy with cut
edges e1 and es as in Figure 3. Then the triangles T and T1 in A share an
edge [z1,w], the triangles T and Ty in A share an edge [z2,w| where z1 is
the interior lattice point dual to C1 and z9 is the interior lattice point dual
to Cy. The split lines S1 and So intersect in w, which is a shared vertex
between T7 and T5.

Proof. Similar to the earlier proofs we fix a unimodular triangle 77 =
conv{(0,0),(0,1),(1,0)}, where z; = (0,0), with the split edge s; being
between the points (0, 1) and (1,0). Since the cycles C; and Cy are adjacent
in GG, the interior lattice points dual to them would be hyperelliptic, i.e.,
they would lie on a line. Hence, zo would lie on the line x = —1. Also,
by using Lemma | on 77 we infer that the point (1,1) is an interior lattice
point of P.

We now show that 7" and 7 share an edge. We assume to the contrary,
that there exists at least one face 7" in between T and 7; which is either
a degree two triangular face or a degree three triangular face adjacent to a
degree one face. In both these cases, after deletion of degree one faces, T” is a
degree two triangular face. We consider the polygon P’ obtained from P by
recursive deletion of degree one faces. If G is a graph realizable by P, then
it is also realizable by P’. Henceforth, we consider the triangulation in P’.
Given the structure of G and our choice of T7, we realize that the common
edge between T} and T” would be [(0,0), (0,1)]. Using unimodularity of 7’
we realize that the third vertex of T’ lies on the line z = —1. Invoking
convexity, presence of 71 in P’ and the point (1,1) being an interior lattice
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FIGURE 10. Possibilities for the face T' (left) and an example
with the faces Ty, T and T3 in A for ¢ = 0 (right)

point, we observe that any point (—1,¢) with ¢ = 1 cannot be a vertex of T".
Therefore we consider the third vertex of 7" to be (—1,¢),q < 0. Since T” is
a degree two triangular face, this would imply that one of its edge is along
OP’, which gives us a contradiction because then it can only be adjacent to
T and T; and not to any other triangle, but it has to be adjacent to at least
one other triangle from the heavy component which realizes G3. Hence, we
conclude that T" and T} share an edge in his case. Since, v is symmetric
with respect to v; and vy in G, therefore T' is symmetric with respect to 1T
and T5. Hence, we also conclude that T and 75 share an edge, illustrated in
Figure

We now are left to show that 77 and 75 share a vertex. We realize that
given Ty = conv{(0,0),(1,0),(0,1)} and 7" = {(0,0),(0,1),(-1,9)}, ¢ < 0,
the edge that is shared by T and T3 is the edge between the points (—1, )
and (0,1). When we consider all possible candidates for the third vertex
(a, B) of Ty, we realize that a < 0. Also, if 5 > 1, then this contradicts
convexity of P, at the point (0,1). Hence, § < 1. If 8 = 1, this would imply
that P; is squeezed between the line y = 0 and y = 1, which has no interior
lattice points. Therefore, 5 < 0. We obtain that for all such values of o and
B the split edge s is of the form [(«, 8), (0,1)]. This implies that 77 and T
share the vertex w = (0, 1), illustrated in Figure 10. Hence, the proof. [

We now define a graph having a double heavy cycle with two loops,

Definition 12. We say that a connected trivalent planar graph G has a
double heavy cycle with two loops if it has the form as described in Figure
, where the shaded region G3 a subgraph of positive genus.
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FIGURE 11. Double heavy cycle with two loops

We now establish a structural result concerning double heavy cycles with
two loops,

Theorem 13. Suppose G is a graph with double heavy cycles C1 and Cy
with two loops with cut edges, e; and ey, as in Figure 11. If g(P) = 6, then
the interior lattice polygon of the heavy component, i.e., int(P3) is a unit
parallelogram.

Proof. We fix the triangle T; = conv{(0,0), (0,1),(1,0)}, where z; = (0,0)
We know by Lemma 11 that 7' = conv{(0,0),(0,1),(—1,9)},¢ < 0 and the
triangles T', T} and T, each share an edge amongst themselves. By applying
Lemma | on T} we obtain that (1, 1) is the unique interior lattice point of P;.
We see that in this case the interior lattice points of the heavy component
are squeezed between the lines y = (1 —¢)x + 1 and y = 3z — 3. Also,
using convexity of P at the point (1,0), we conclude that (—1,¢q — 1) is an
interior point of Py if (0,—1) € int(Ps). We realize that for the case when
g(Ps) = 4, the point (0, —1) € int(P3) and we need to show that both the
lines x = 0 and * = —1 each have one interior lattice point other than the
points (0,0) and (—1,¢). We assume the contrary, i.e., the line x = 0 has
two interior lattice points. If —1 > ¢ < 0 then this contradicts convexity of
P at the point (—1,¢). If ¢ < —1, then we obtain more interior lattice points
in P3 which contradicts the fact that g(Ps;) = 4. Hence, we conclude that
for g = 6 the interior lattice polygon of the heavy component, i.e., int(Ps)
is a unit parallelogram.
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a
71

FIGURE 12. The triangular faces 7,77 and 15 in a trian-
gulation dual to a graph with double heavy cycle with two
loops

4. CONCLUSIONS

We now furnish conclusions to what our results entail with respect to
classification of skeletons of genus six. Firstly, we call the graph g’ in
Figure 2 as an enve-loop graph (envelope + loop). We also recognize that
the graphs ’a’,’b’,’c¢’ and ’d’ all have a heavy cycle with one loop. Out of
these the heavy component in the graph ’a’ is not hyperelliptic, hence it
can be ruled out by Theorem 7. Also, graph ’b’ does have a genus three
hyperelliptic heavy component, although the orientation of the hyperelliptic
points is not permissible according to Theorem 7, hence it can be ruled
out as well. Graphs ’¢’ and ’d’ both have permissible hyperelliptic heavy
components, but both of them have a genus two component which has a
cut edge, which would correspond to a nontrivial split in P, which is not
possible by Theorem 7, hence these two graphs are also ruled out.

Subsequently, we realize that graphs ’e’, ’f” and 'h’ all have double heavy
cycle with two loops. By Theorem 13, we know that the convex hull of the
interior lattice points of the heavy component Pj is a unit parallelogram, for
a lattice polygon P realizing a double haeavy cycle with two loops. Hence,
graph ’f” is eliminated as the heavy component cannot be a parallelogram
in this case. Let C1,C5,Cs and C4 be the four cycles in the subgraph dual
to the heavy component Ps3, within a realizable graph of ¢ = 6 with double
heavy cycle with two loops. Given that the graph is trivalent, we realize
that the subgraph cannot have two connected components each of genus
two. Only possible connected components are of genus three and genus one.
Since the interior points dual to C/s form a unit parallelogram, this implies
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that either the cycles C1,Cy and C3 share a vertex or the the cycles C,Co
and Cy share a vertex. Hence, we conclude that for a realizable graph G of
genus six with a double heavy cycle with two loops, in the subgraph realizing
the heavy component, at least three cycles should share a vertex. Therefore,
with this characterization we can rule out the graphs ’e¢’ and 'h’. Now we
are ready to state the full charachterization of all tropical planar curves up
to genus six, which can be seen as a generalization of Theorem 3 in [3],

Theorem 14. A trivalent planar graph G other than the enve-loop graph,
of genus g < 6, is tropically planar if and only if none of the following
obstructions occur

(i) it contains a sprawling node, or
(ii) it contains a sprawling triangle and g > 5, or
(i) it is crowded, or
(iv) it is a TIE-fighter, or
(v) it has a heavy cycle with two loops such that the interior lattice
points of the heavy component do not align with the intersection of
the two split lines, or
(vi) for a cut edge e in G, the connected components of G\ {e}, after
smoothing out 2-valent vertices, are not tropically planar, or
(vii) it has a heavy cycle with one loop such that either the interior lattice
points of the heavy component do not align with the intersection of
the two split lines or the connected component with genus greater
than one has a cut edge, or
(viii) it has a double heavy cycle with two loops such that either the inte-
rior lattice points of the heavy component do not form a unit paral-
lelogram or no three cycles in the heavy component share a vertex.

We know that as the genus increases almost all graphs are not troplanar
[2, Theorem 4.2 ]. Additionally, the class of troplanar graphs is not minor-
closed [2, Figure 6]. Hence, such classifications become increasingly difficult
as the genus increases. One area of future exploration could be to finish
the classification for the case of genus seven, however no list of unclassified
graphs is available for it. Also, there has been recent progress in finding
criteria which do not include a cut edge namely the criteria of big face
graphs defined in [5], the techniques of which can be used to define new
criteria for higher genus.
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