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I am going to describe the Robinson–Schensted algo-
rithm which transforms a permutation of the numbers
from 1 to n into a pair of combinatorial objects called
“standard Young tableaux”. I will then say a little bit
about a few of the fascinating properties of this trans-
formation, and how it connects to current research.

1 Introduct ion

I am going to be presenting a mathematical algorithm called the Robinson-
Schensted algorithm. The word “algorithm”, derived from the name of Persian
mathematician al-Khwārizmı̄ (c.780–c.850), is just a fancy way to describe a
set of instructions for doing something, but it carries the particular meaning
that the instructions are clear and unambiguous. We can think of it as being
like the instructions you would write in a computer program.

It turns out, though, that giving precise and unambiguous instructions is
a difficult matter. One strategy is to write something in a language modelled
on an actual computer language. This aids clarity, but it produces something
rather unappealing to most readers. We are not computers, and I do not want
to pretend that we are computers in order to communicate, so I will simply
write in English. However, even written in a natural human language, the
instructions will likely seem somewhat complex and off-putting.

This gets at an interesting fact about mathematics. Mathematics is more
than just words on a page. Mathematics is, in fact, something that you do. In
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thinking about a mathematical object, whether it’s a number, or an equation like
(x + y)2 = x2 + 2xy + y2, or an algorithm like the one I will be describing, what
is going on in your head as you think about it is the actual mathematics. The
words on the page are just there as an aid, to prompt you to have mathematical
thoughts; it is mathematical thought, and not mathematical words, which are
the essence of mathematics.

I think it is instructive to draw the contrast with poetry. Poetry, also, is
more than words on the page. It is full of imagery, of emotions, of rhythm, of
ideas, of ambiguity, and, in fact, of everything that makes us human. But when
we read a great poem, as we let the words wash over us, there is something
magical and enticing about the words themselves. This is more or less not true
of mathematical writing, with its rigorous attention to clarity, and the absence
of a human voice.

Therefore, to read the description of the algorithm that I will give below,
it is not enough to let the words wash over you, and be carried away in
their rich emotional suggestiveness. Indeed, I can pretty much guarantee that
that approach will not work at all. The way to read such a description is
to try it out, to see it in action for yourself. If you try it out, you will be
experiencing mathematics directly. And you will see, I hope, that there is
something fascinating about it.

2 The Robinson-Schensted algor i thm

We are going to start with a permutation of the numbers 1 to n, for some whole
number n, that is to say, we start with a list of the numbers from 1 to n in
some order. As a warm-up, and as an invitation to the kinds of things we will
be thinking about, how many permutations of the numbers from 1 to n are
there? The answer, as you may well know, is n!, which is a notation for the
product n(n − 1)(n − 2) . . . 1. This counts the permutations because there are
n ways to choose the first number, and then, for each of those ways, there are a
further n − 1 ways to choose the second number (the first number no longer
being available) and so on until the last number is the only one remaining, so
we have only one choice at the last step.

It is good to think about even very small values of n as examples. If n = 1,
there is just one permutation, 1. If n = 2, there are two permutations, 1, 2 and
2, 1. If n = 3, there are 6. And so it goes, increasing more and more quickly as
n increases; when n is 10, the number is already 3628800, and when n = 100,
the number is more than scientists’ best guess at the number of atoms in the
universe.

We are going to carry out a strange procedure on each permutation of the
numbers from 1 to n. It is going to transform this list of numbers into a pair
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of what are called standard Young tableaux (or SYT for short), named after
Alfred Young (1873–1940), who introduced them in the paper [5]. An SYT of
size n is a two-dimensional arrangement of the numbers from 1 to n, in which
each number appears exactly once. They are arranged in left-justified rows, one
below the other, and no row has more entries than the one above it. Also, the
entries in each row are in increasing order as you read them from left to right,
and the entries in each column are in increasing order as you read them from
top to bottom.

For example, if n = 2, there are two SYTs:

1 2 1
2

and if n = 3 there are 4:

1 2 3 1 2
3

1 3
2

1
2
3

We call the shape of a standard Young tableau the list of the lengths of its
rows, from top to bottom (so in weakly decreasing order). Thus, when n = 3,
there is one SYT of shape (3), one of shape (1,1,1), and two of shape (2,1).
There is a beautiful formula for the number of standard Young tableaux of
any shape [1], but I can’t stop to explain all the different beautiful topics that
connect to this subject or I would never be finished. You might try to work out
for youself the number of standard Young tableaux whose shape is (m, m). 2

The Robinson-Schensted algorithm takes a permutation of the numbers 1
to n and produces two SYTs from it. They are traditionally denoted P and Q,
and called the “insertion tableau” and the “recording tableau,” respectively.

I will explain the insertion tableau first. At every step, we will make sure
that each row in the tableau we have generated so far is increasing from left
to right. Say our permutation is (a1, a2, . . . , an), that is to say, we will call the
first number a1, the second number a2, and so on. We take the first number a1
in our permutation, and we put it at the top left of our tableau. Then we take
the second number a2. We want to put it into the first row. If a2 > a1, then
we can add it at the end of the row, and we do that. But if a2 < a1, we cannot
insert a2 at the end of the row, because the result would be a row which is not
increasing. Instead, we remove a1, we put a2 into the spot vacated by a1, and
we put a1 in the second row.

2 We have already seen that when m = 1, there is one tableau. When m = 2, there are two.
If you work out a few more and type the sequence into Google, you will discover a famous
series of numbers studied by Leonhard Euler (1707–1783), along with many other people.
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If our permutation had begun 3, 5, then this is what would have happened:

3 → 3 5

If it had begun 4, 2, then this is what would have happened:

4 → 2
4

Now, we consider a3. Again, we will add it to the first row. If it is larger
than all the numbers in the first row, we add it at the end. If not, we find
the first number in the first row that is bigger than it, and we replace that
number by a3. We now take the number that we replaced, and we insert it into
the second row, in the same way as before. This may cause a number to be
“bumped” out of the second row and inserted into the third row. We keep going
in the same way all through the permutation, always inserting the next number
from our permutation starting at the first row of the tableau. The paths of
possible “bumps” get longer and longer, but they always work their way down
the tableau one row at a time, until we reach the point where the number which
we are currently trying to insert can be placed at the end of the row.

Let us make this clearer by doing a couple of examples. If we start with
the permutation 5, 2, 4, 1, 3, then the process of building the insertion tableau
would look like this:

5 → 2
5

→ 2 4
5

→ 1 4
2
5

→ 1 3
2 4
5

For a second example, take the permutation 2, 6, 1, 5, 4, 3. This time we
obtain:

2 → 2 6 → 1 6
2

→ 1 5
2 6

→ 1 4
2 5
6

→ 1 3
2 4
5
6

The recording tableau is easier to describe. It has the same shape as the
insertion tableau, but we just number the boxes by the step at which that box
appeared in the insertion tableau. So, looking at the two example insertion
tableaux that we worked out above, we see that the corresponding recording
tableaux are, respectively:
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1 3
2 5
4

and 1 2
3 4
5
6

Note that it is easy to check that the recording tableau is a standard Young
tableau. It contains the numbers from 1 to n once each, since on each step,
one new box is added to the insertion tableau. Also, because a box can only
be added after the boxes directly above it and directly to its left are added,
it is clear that entries in the recording tableau increase along rows and down
columns.

The insertion tableau is also a standard Young tableau. Since we started
with a permutation, it is clear that it will contain the numbers from 1 to n once
each. And by the construction, it is clear that the rows are always increasing
from left to right. It is harder (but not too hard) to convince yourself that its
columns are also always increasing, so that it is also a standard Young tableau.

3 Proper t ies of the Robinson–Schensted algor i thm

We have already seen that the Robinson–Schensted algorithm converts a per-
mutation of 1 to n into a pair of standard Young tableaux P and Q of size
n. The tableaux P and Q obviously have the same shape, because of the way
the recording tableau Q is defined. Now the somewhat surprising fact is that
given any pair P and Q of SYTs of the same shape, either two different ones or
the same one twice, there is exactly one permutation π such that applying the
RS algorithm to π produces P as the insertion tableau and Q as the recording
tableau.

How could you prove this? Well, you can easily check it on small examples,
and, if you are interested, it would be a really good idea to try out the examples
of n = 3 and n = 4. To prove it, though, requires more. The simplest way
to prove it is to demonstrate how, given P and Q, it is possible to find π. If
you think about it hard enough, you will see that knowing P and Q gives you
enough information to gradually reverse the RS correspondence and reconstruct
π in reverse (first the last entry of π, then the second-last, and so on).

For example, let’s consider the pair (P, Q) that we generated above starting
from the permutation 5, 2, 4, 1, 3. Let’s imagine we didn’t know that we
had started with 5, 2, 4, 1, 3, and let’s try to deduce it. By finding the 5 in
the recording tableau, we know that when we were inserting the fifth entry in
the permutation, we eventually stopped when we were inserting the 4 into the
second row. By looking at the first row, we see that the element that bumped
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out the 4 must have been the 3. So on the fifth step, we must have started by
inserting the entry 3. This tells us that the permutation we started from must
have ended with 3, which is indeed true. But now, we can figure out what the
insertion tableau looked like before we inserted the 3, and we can then repeat
the same argument to discover the remaining elements of the permutation.

One consequence of this one-to-one correspondence between permutations
and pairs of standard Young tableaux of the same shape is a rather peculiar
equation. Let’s write fλ for the number of SYTs of shape λ. Then, since every
permutation of 1 to n corresponds to exactly one pair of SYTs of the same shape
composed of n boxes, we see that n! equals the sum of f2

λ, over all possible
shapes λ with n boxes.

For example, when n = 3, we said f3 = 1, f2,1 = 2, and f1,1,1 = 1. And,
indeed, 6 = 12 + 22 + 12.

Now that we have this correspondence between permutations and pairs of
SYTs, we can see how interesting properties on one side correspond to interesting
properties on the other side. For example, in a permutation π, we could ask
about the maximum length of an increasing subsequence. It turns out that
this corresponds to the length of the first row of the shape of the tableaux
corresponding to π. For example, in the permutation we looked at before, 5, 2,
4, 1, 3, the increasing subsequences (of length more than 1) are 2, 4; 2, 3; and
1, 3. The maximum length is therefore 2, and this does agree with the length of
the first row of SYTs associated to π, which is 2.

It might seem obvious that the length of the first row should have something
to do with the longest increasing subsequence, because the first row is itself
increasing. However, if you look carefully, you will see that the first row of the
insertion tableau is not necessarily an increasing subsequence of the permutation
you started with. For example, the result of inserting the permutation 1, 3, 4, 2
is the tableau

1 2 4
3

and we see that 1, 2, 4 is not an increasing subsequence of 1, 3, 4, 2. However,
there is indeed a length three increasing subsequence, namely 1, 3, 4.

Can you find an interpretation for the length of the first column of the shape
of the pair of tableaux corresponding to π?

4 Robinson–Schensted and quiver representat ions

The facts that I have presented here about the Robinson–Schensted correspon-
dence date back to work of Robinson [3] and Schensted [4] in, respectively, the
1930’s and the 1960’s. So why was this being discussed at Oberwolfach in 2020?
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Roughly speaking, the idea is as follows. Whereas up until now, we have
been considering permutations as nothing but a list of numbers, it turns out
that, associated to a permutation, there is an algebraic object called a “quiver
representation”. It would require too much background to explain what quiver
representations are, so I am going to have to be rather imprecise. The key
fact, for my purposes, about quiver representations, is that if we have a quiver
representation X, we can talk about functions from X to itself, just as you might
study functions from R to R. It turns out that if you start with a permutation
π, and you take the associated quiver representation Xπ, and then you consider
the collection of maps from Xπ to itself, then, by studying that collection of
maps, you can find encoded in them the pair of tableaux which result from
applying the Robinson-Schensted correspondence to π. This newly observed
connection between seemingly very different mathematical objects allows us to
generalize the Robinson–Schensted correspondence in a novel way.

5 Fur ther reading and acknowledgements

A possible source for further reading about the Robinson–Schensted correspon-
dence is the book [2] by William Fulton, to whom this snapshot is gratefully
dedicated.

I would like to thank the organizers of the Oberwolfach workshop number
2004 on finite-dimensional algebras for the chance to present there the work
described in this note, and for the invitation to prepare this snapshot. Thanks
to Henning Krause for reading the manuscript and providing helpful suggestions.

References

[1] J. S. Frame, G. de B. Robinson, and R. M. Thrall, The hook graphs of the
symmetric group, Canadian Journal of Mathematics 6 (1954), 316–324.

[2] W. Fulton, Young tableaux, Cambridge University Press, 1997.

[3] G. de B. Robinson, On the representations of the symmetric group, American
Journal of Mathematics 60 (1938), 745–760.

[4] C. Schensted, Longest increasing and decreasing subsequences, Canadian
Journal of Mathematics 13 (1961), 179–191.

[5] A. Young, On quantitative substitutional analysis, Proceedings of the London
Mathematical Society 33 (1900), 97–145.

7



Hugh Thomas is a professor at the
Universi té du Québec à Montréal . He
studies algebraic combinator ics and
representat ion theory.

Mathematical subjects
Algebra and Number Theory, Discrete
Mathematics and Foundat ions

License
Creat ive Commons BY-SA 4.0

DOI
10.14760/SNAP-2022-002-EN

Snapshots of modern mathematics from Oberwolfach provide exciting insights into
current mathematical research. They are written by participants in the scientific
program of the Mathematisches Forschungsinstitut Oberwolfach (MFO). The
snapshot project is designed to promote the understanding and appreciation of
modern mathematics and mathematical research in the interested public worldwide.
All snapshots are published in cooperation with the IMAGINARY platform and
can be found on www.imaginary.org/snapshots and on www.mfo.de/snapshots.

ISSN 2626-1995

Junior Edi tor
Sara Munday
junior- edi tors@mfo.de

Senior Edi tor
Anja Randecker
senior- edi tor@mfo.de

Mathematisches Forschungsinst i tut
Oberwolfach gGmbH
Schwarzwaldstr. 9 –11
77709 Oberwolfach
Germany

Director
Gerhard Huisken

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.14760/SNAP-2022-002-EN
https://www.imaginary.org/snapshots
https://www.mfo.de/snapshots
mailto:junior-editors@mfo.de
mailto:senior-editor@mfo.de

	The Robinson-Schensted algorithm
	Introduction
	The Robinson-Schensted algorithm
	Properties of the Robinson–Schensted algorithm
	Robinson–Schensted and quiver representations
	Further reading and acknowledgements


