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COORBIT SPACES AND DUAL MOLECULES:
THE QUASI-BANACH CASE

JORDY TIMO VAN VELTHOVEN AND FELIX VOIGTLAENDER

ABSTRACT. This paper provides a self-contained exposition of coorbit spaces associated with
integrable group representations and quasi-Banach function spaces. It extends the theory in
[Studia Math., 180(3):237-253, 2007] to locally compact groups that do not necessarily pos-
sess a compact, conjugation-invariant unit neighborhood. Furthermore, the present paper
establishes the existence of dual molecules of frames and Riesz sequences as in [J. Funct.
Anal., 280(10):56, 2021] for the setting of quasi-Banach spaces. To ensure the direct appli-
cability to various well-studied examples, the theory is developed for possibly projective and
reducible unitary representations.
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1. INTRODUCTION

For a continuous representation (m,.A) of a locally compact group G on a Banach or Fréchet
space A and a vector space Y of measurable functions on G, the coorbit method provides a
procedure for constructing an associated distribution space Co(Y"), namely

CoY):={fe A" : V,feY} with V,f(x)=(f,7(x)g), (1.1)

where g € A\ {0} is a fixed vector and where A* denotes the associated (anti)-linear dual
space. Common choices for A are the space of integrable vectors (resp. smooth vectors)
whenever 7 is an integrable representation (resp. G is a Lie group).

The influential series of papers introduced the spaces Co(Y") for an irreducible,
integrable unitary representation w and a Banach function space Y and established general
properties of these spaces. Among others, it was shown that the spaces are independent
of the defining vector g, that each space Cor(Y) admits an atomic decomposition in terms
of a suitably sampled family (7 (z;) g)i e and that properties such as inclusions, embeddings
and minimality /maximality can be completely characterized by the corresponding properties
of associated sequence spaces. In addition, the papers [18-2034] revealed that many classical

1991 Mathematics Subject Classification. 22A10, 42C15, 42B35, 43A15, 46B15, 46E22.
Key words and phrases. Atomic decompositions, convolution relations, group representations, coorbit spaces,
frames, molecules, Riesz sequences, Wiener amalgam spaces.
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2 JORDY TIMO VAN VELTHOVEN AND FELIX VOIGTLAENDER

function spaces in complex and harmonic analysis—such as Bergman spaces, Fock spaces,
Hardy spaces, and (homogeneous) Besov and Sobolev spaces—can be realized as a coorbit
space .

The purpose of the present paper is to provide a self-contained exposition of coorbit spaces
Co(Y) associated with integrable representations 7 and quasi-Banach function spaces Y, i.e.,
spaces where the triangle inequality of a norm is replaced by ||[F1+Fa|ly < C-(||F1|ly +||Fz2lly)-
To some extent this has already been done in [46], but only for the restrictive setting of groups
with a conjugation-invariant compact unit neighborhood (IN groups). The present paper
removes this assumption. In addition, it establishes the existence of dual coorbit molecules
as in [50] for the full range of quasi-Banach spaces.

1.1. Motivation. The motivation for quasi-Banach coorbit spaces is two-fold.

One motivation is that all of the above mentioned classical function spaces have aside their
Banach range also a natural range of parameters yielding quasi-Banach spaces. For example,
the Hardy spaces HP(R%), where p € (0, 0c], are Banach spaces for p € [1,00], but merely
quasi-Banach spaces for p € (0,1). Therefore, in order to treat these examples for the full
range of parameters in the setting of coorbit theory, it is essential for the latter theory to also
apply to quasi-Banach spaces. It should be mentioned that the Hardy spaces can be identified
with coorbit spaces associated with the (non-unimodular) affine group, and hence they cannot
be treated in the setting of [46] as it only applies to IN groups.

Another motivation stems from applications of coorbit theory to non-linear approximation.
Here, given a family (f;);c; C Hr of elements of a Hilbert (or Banach) space H,, the objective

is to seek for given f € H, a good approximation f: diel 5 Ci fi to f under the restriction

|It| < K, i.e., using only a fixed number of elements. The associated map f — fis not neces-
sarily linear. In the context of the finite-dimensional space H, = C and with (f;); = (e;)}¥,
being the standard basis, the best approximation (with respect to any ¢’-norm on CV) to
v € CV is obtained by ¥ = v - 17,, with 17, being the indicator of the set I,, containing the in-
dices of the K largest entries of v (in absolute value). The associated minimal approximation

error is denoted by
ok (v), =min{|lv —ullp : u€ CV is K-sparse},

where u € CV is called K -sparse if at most K entries of u are non-zero. This error obeys the
following bound, sometimes referred to as Stechkin’s inequality:

1 1
k() S KT Jollw for 0<p<q< oo, (1.2)

see, e.g., |25, Proposition 2.3]. Hence, o (v), decays fast for those v € C that have ||v||s» of
reasonable size with a small value of p > 0. In the setting of coorbit spaces, one can similarly
show (based on the discretization theory of coorbit spaces) that elements of Co(L?) with small
p > 0 can be well approximated by “sparse vectors” (i.e., by linear combinations of the family
(m(2i)g),.; With at most K terms) as elements of Co(L?) for ¢ > p, where it is important to
note Co(L?) = H,. Hence, the quasi-Banach spaces Co(LP) with p € (0, 1) play an important
role in non-linear approximation. See also the motivating discussions [29, Section 1.1] and
[46l Section 7] for considering coorbit spaces Co(LP) with p < 1 for the purpose of non-linear
approximation.

1.2. Related work. The theory of coorbit spaces Co(Y') with a Banach function space Y as
developed in [18-20/34] crucially relies on convolution relations of the form

Y*L,(G)—=Y and LL(G)*Y <Y (1.3)
for a suitable weight function w : G — [1,00), often called a control weight for Y. If YV is

merely a quasi-Banach space, then relations such as ((1.3)) cannot be expected to hold, e.g.,
for Y = LP(G) with p € (0,1).
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The paper [46] considered coorbit spaces Co(Y") associated with quasi-Banach spaces Y and
used instead of the embeddings (]1__3[) certain convolution relations for so-called (left) Wiener
amalgam spaces WE(Y) (see, e.g., |5/17/26,37] for such Banach spaces), as proven in [47]. In
[46], the coorbit theory is developed only for invariant neighborhood (IN) groups, i.e., groups
G admitting a compact unit neighborhood U C @G satisfying 2Uz~! = U for all z € G. In the
setting of IN groups, several of the convolution relations in [47] for general locally compact
groups possess simpler versions, but this setting is very restrictive. For example, it excludes
simply connected nilpotent Lie groups (e.g., the non-reduced Heisenberg group) and connected
locally compact groups with exponential volume growth (e.g., affine group), see [38,44]

It should be pointed out that the preprint version [45] of [46] also proposed a coorbit
theory valid on general (possibly, non-IN) locally compact groups. However, as observed in
the PhD thesis [54] of the second named author, an essential convolution relation asserted in
[47] (which is used in [45[46]) is incorrect and fails for general groups. More precisely, two
examples presented in Section below (both taken from [54]) show that

WEL) = [WE)]T ¢ WEY)
with weights v(z) = || Lyt lweyvyoweyy and v(z) = [ Lallwe (v)—wr(v), for the left-transla-

tion operator L,F(y) = F(x~1y) and involution FV(z) = F(z~!). These examples show that
the asserted [47, Theorem 5.2] fails in general.

A corrected and modified version of the theory proposed in [45,46], valid for general locally
compact groups, is contained in [54]. The theory in [54] shows that essentially all the basic
properties of coorbit spaces known in the Banach space setting [18-20,34] remain valid for
quasi-Banach spaces, if essential modifications are made at appropriate places in both the
definition of coorbit spaces and the proofs of their basic properties.

Lastly, a very general theory of quasi-Banach coorbit spaces has been developed in [40],
where also coorbit spaces associated with general reproducing formulae not necessarily arising
from group representations can be treated, see also [24)48]. Some of the basic properties of
coorbit spaces for the group case can be extracted from the general theory [40], but this can
be a rather daunting task (especially for interested non-experts) due to the many technical
assumptions required in [40]. In addition, as the present article shows, many of these tech-
nicalities can simply be avoided or considerably simplified in the group case considered here.
There are also significant parts of the present article that are currently not available outside
the group setting, most notably the theory of coorbit molecules.

1.3. Contributions. The present paper provides a self-contained, greatly simplified and gen-
eralized, exposition of coorbit spaces associated with integrable representations and quasi-
Banach function spaces. The exposition is similar to [54], but contains important further sim-
plifications and improvements, which will be commented on at the relevant places throughout
the text. As one of the biggest simplifications, it is not assumed here (in contrast to [45,47,54])
that the so-called control weight w satisfies w(z) > || Rullywr(v)we(v); instead, it is only re-

quired that w(z) > ||Rs|ly—y. Although it is true that the Wiener amalgam space W% (Y")
is right-invariant whenever Y is (cf. |47, Corollary 4.2]), it does not seem possible to readily
estimate || Ryl (yvywe(y) in terms of || Rylly—y whenever G is a non-IN group, see, e.g.,
[54, Lemma 2.3.18]. This simplification of using ||R;|ly—y instead of || Rullyry)we(yvy is
important, since having a control weight of only moderate growth is essential for obtaining
sharp explicit conditions on atoms yielding atomic decompositions. To see that just estimat-
ing || Rz |ly—y instead of [|Ry|[ywe(yy—wer(y) is advantageous, we mention that large parts of
the recent PhD thesis [4] are concerned with deriving usable bounds for the operator norm
| Rz llwev)y—we(y) for settings in which || R.||y—y can be readily estimated.

The biggest improvements in the present article compared to [46,54] are the results on
atomic decompositions. Instead of adapting the classical sampling techniques from [1934] as
done in [46,54], the present article provides an extension of the recent results on dual molecules
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as in [50] to the setting of quasi-Banach spaces. This approach is more easily accessible and
at the same time yields much stronger conclusions on the localization of the dual system
by showing that it also forms a family of molecules satisfying similar envelope conditions
as the basic atoms. In particular, the obtained results on molecules close a gap between
what was known for general (quasi-Banach) coorbit spaces [54] and the concrete setting of
Besov-Triebel-Lizorkin spaces [27,32].

Lastly, several arguments presented in this article are different and often simpler than
the classical arguments in [18-20,34], even for the setting of Banach spaces. For example,
the present article avoids the use of an atomic decomposition to prove that the space of
integrable vectors (so-called analyzing vectors) is dense, and instead provides a direct proof
using Bochner integration, cf. Section in particular, Lemma

1.4. Extensions. To ensure a wide applicability, all the results in the present article will
be proved for possibly reducible and/or projective group representations. This flexibility is
essential for treating several key examples. For example, reducible representations occur
naturally in high-dimensional wavelet theory [28/30l41], whereas the use of (possibly non-
continuous) projective representations is convenient for treating weighted Bergman spaces
[7.8.10] or representations of nilpotent Lie groups that are only square-integrable modulo a
central subgroup [2135].

As possible extensions of the theory [18-20434], it was already mentioned in [18] that the
case of quasi-Banach spaces, reducible and/or projective representations would be desirable for
treating several key examples. For coorbit spaces associated with Banach spaces, extensions
to reducible and projective representations can be found in [9,14] and 7,11}, respectively. For
quasi-Banach spaces, the present article seems to be the first to develop these extensions.

1.5. Overview. Section [2] introduces general notation used throughout the paper and pro-
vides background on quasi-Banach function spaces and local maximal functions. Convolution
relations for Wiener amalgam spaces are proved in Section In addition, Section [3.3| con-
tains two counterexamples to convolution relations asserted in [47]. Section 4]is devoted to
the definition of coorbit spaces and to studying their basic properties as quasi-Banach spaces.
Convolution-dominated integral operators and matrices form the subject of Section[5] Among
others, it will be shown that these classes of operators and matrices form algebras and possess
a local holomorphic functional calculus. The results on convolution-dominated operators will
be exploited in Section [] to prove the existence of dual coorbit molecules of frames and Riesz
sequences and to derive associated decompositions of coorbit spaces. Section[7]presents several
applications of the obtained results to the boundedness of operators. Simplified statements of
the main results for irreducible, square-integrable representations are given in Section [§] The
proofs of several miscellaneous and technical results are postponed to the appendix.

2. QUASI—BANACH FUNCTION SPACES AND LOCAL MAXIMAL FUNCTIONS

This section provides background on solid function spaces, twisted convolution and quasi-
Banach spaces.

2.1. General notation. Throughout this article, G denotes a second countable locally com-
pact group and @ C G denotes a fixed open, relatively compact symmetric neighborhood of
the identity element eg € G. In addition, a left Haar measure ug on G is fixed and the
associated modular function is denoted by A : G — (0, 00).

We write T := {z € C: |z| = 1}. For z € R? or x € C, we denote by B,(z) the open ball
(with respect to the usual Euclidean norm) of radius > 0 around z. For a subset V of a
“base set” X that is usually implied by the context, the notation 1y denotes the indicator
function of V, i.e., 1y (z) =1 if z € V and 1y (z) = 0 otherwise. A pairwise disjoint union of
sets will be denoted by the symbol [¢).
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For functions F1,F» : X — [0,00) on a set X (which in most cases will be implied by
the context), the notation F; < Fy means that there exists a constant C' > 0 such that
Fi(x) < C- Fy(x) for all z € X. The notation Fy < F, is used if F; < Fy and Fy < Fy. For a
function F : G — C, its involution FV : G — C is defined by FV(z) = F(2™!) for z € G. A
function w : G — (0, 00) will be called submultiplicative if w(xy) < w(z)w(y) for all z,y € G.

The Lebesgue space of r-integrable functions is denoted by L"(G) for 0 < r < oo and
defined relative to ug. For a (measurable) function w : G — (0, 00), the associated weighted
spaces Ly, (G) are equipped with the norm || F'|[z; := ||F - w||rr. For r € [1,00), the bi-linear

+, while the
LTw7L;‘/u17

sesquilinear pairing (which is anti-linear in the second component) is denoted by (-, -)

dual pairing between L (G) and its dual space qu/w(G) is denoted (-,-)

!
Ly.Ly),

If the involved spaces are clear from the context, these pairings will also sometimes simply be
denoted by (-,-) and (-, ).

2.2. Quasi-Banach function spaces. A vector space Y is called a quasi-normed space if it
is equipped with a map || - || : ¥ — [0, 00) that is positive definite (i.e., || f| > 0 for f # 0),
absolute homogeneous (i.e., || f|| = || ||f]|) and such that there exists a constant C' > 0
satisfying || f + g|| < C - (|| f]| + |lg||) for all f,g € Y; such a map || - || is called a quasi-norm
on Y with triangle constant C > 0. For p € (0,1], amap || - || : Y — [0,00) is a p-norm
if ||f4+glP < [IfIIP+ |lgl|P. If| -] : Y — [0,00) satisfies the p-norm property, then it is a

quasi-norm with triangle constant C' = 2571; see, e.g. |33, Exercise 1.1.4].
By the Aoki-Rolewicz theorem (see, e.g., the proof of |15, Chapter 2, Theorem 1.1]), given

a quasi-norm || - || : Y — [0, 00), there exists some p € (0,1] such that
n % n
I s=int { (A1) 5 m e NF =D fi froesfu €Y (21)
i=1 =1
defines a p-norm on Y which is equivalent to || - ||, i.e., || - || =< ||-||- A vector space Y
with quasi-norm || - || is a quasi-Banach space if it is complete with respect to the metric

d(f,9) = |If — gll”, where ||-]| is any p-norm (for some p € (0, 1]) equivalent to || - ||.

Let L(G) be the space of (jug-equivalence classes of) measurable functions f : G — C. A
quasi-Banach function space (Y, | - ||y) is a quasi-Banach space satisfying Y ¢ L(G). It is
called solid if for each measurable f : G — C satisfying |f| < |g| pg-a.e. for some g € Y, it
follows that f € Y with || f|ly < |lgly-

It is not difficult to see (cf. [54, Corollary 2.2.12] for a proof) that if (Y| - ||y) is a solid
quasi-Banach function space, then the p-norm ||-|| defined in Equation is solid as well.
Hence, we can (and will) always assume that solid quasi-Banach function spaces are equipped
with a solid p-norm, for some p € (0, 1] depending on Y.

The space YV = {FV: F € Y} associated with a quasi-normed space Y C L°(G) is equipped
with the quasi-norm || F|lyv = ||FV||y.

2.3. Discrete sets. Let A = ()\;);cr be a countable family in G. Then A is called relatively
separated if
Rel(A) :=sup#{i € I: \; € zQ} = sup Z]l)\iQ(a:) < 0.
zeG z€G o7

Let U C G be a relatively compact unit neighborhood. The family A is said to be U-dense if
G = Ujer MU, and is called U-separated if AU N A\yU = @ for all 4,4’ € I with i # . If A
is separated, then it is also relatively separated. A family A is called relatively dense if it is
V-dense for some unit neighborhood V. A relatively separated and U-dense family exists for
any chosen U, cf. [3].

For a measurable unit neighborhood U, and any countable, U-dense family A = ()\;);cs in
G, there exists a family (U;);cr of measurable sets U; C \;U satisfying G = |¢);c; Us; see, e.g.,
[0, Lemma 2.1]. Any such family (U;);cs is called a disjoint cover associated with A and U.
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2.4. Sequence spaces. Let Y be a solid quasi-Banach function space on G with p-norm
| - |ly. For a relatively separated family A in G, the discrete sequence space associated with
Y and A is defined as

Yd(A) = Yd(A, Q) = {C = (Ci)iel € (CI : Z ‘Ci|]l>\iQ € Y}
el
and equipped with the p-norm

Z|CZ‘1>\Q

el

lellvaa

‘ ;. c=(ci)ier € Ya(A). (2.2)

The space Y;(A) is a quasi-Banach space. If Y is right-invariant, then Y;(A, @) is independent
of the choice of the neighborhood @, with equivalent quasi-norms for different choices. In fact,
the implied constant of the norm equivalence for different choice of ) is independent of A. To
see this, note that if Q' is a relatlvely compact unit neighborhood, then Q) C UJ 1 Q’ ~1 for

a certain n € N and zy, .. € G. Hence, for any famlly A= (N)ier C G,
Z’Ci“l)\iQ’ < Z|CZ‘Z]1)\ Q' 71 Rac]Z’CzUl)\ Q’
iel Y iel j=1 iel (2.3)
Sy (ZHRMHHQ Z\cmi@ ,
j=1 i€l Y

where the implied constants only depend on @, @', Y and are independent of A.

If Y = LB(G) for p € (0,00] and a (measurable) weight v : G — (0,00) satisfying
v(zy) < w(z)v(y) and v(zy) < v(z)w(y) for a submultiplicative, measurable w : G — (0, 00),
then Y;(A) = ¢8(I), where u(i) := v()\;) for ¢ € I. The space of finite sequences on A will be
denoted by coo(A).

For further properties and proofs, cf. [47, Section 2] and [54) Section 2.3.2].
2.5. Cocycles and twisted convolution. A cocycle or multiplier on G is a Borel measurable
function o : G x G — T satisfying the properties

(1) For all z,y,z € G, it holds o(x,y2)o(y, z) = o(zy, 2)o(x,y);
(2) For any x € G, it holds o(z,eq) = o(eq,z) = 1.

Given a cocycle o, the associated twisted translation operators L and RZ, where z € G,
act on a measurable function F': G — C as

(LSF)(y) = o(z, 2 'y)F(z7'y) and (RIF)(y) =o(y,x)F(yz), yeG. (2.4)

If o =1, then L7 (resp. R7) will simply be denoted by L, (resp. R;) and called a translation
operator. The twisted convolution of two measurable functions Fi, Fy : G — C is defined by

Fy x5 Fo(x /F1 )Ly Fo](z) duc(y /F1 o(y,y 2)Fa(y'z) dug(y) (2.5)

whenever the integral converges. As for twisted translation, if ¢ = 1, the ordinary convolution
product will be denoted by *. Note that
|F1 #g Fo(2)] < ([F1] + [Faf)(2)
for all x € G.
2.6. Local maximal functions. For a measurable (resp. continuous) function F' : G — C,

the left and right (local) mazimal functions defined by

MLYF(z) = esssup |F(y)| resp. MPTF(z) = esssup|F(y)], (2.6)
YyeETQ YEQT
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are measurable (resp. continuous) on G. The maximal functions satisfy the commutation
relations
MY[L,F] = L, [M*F] and  MT[R,F] = R,[M"F] (2.7)
for arbitrary x € G.
The notation Mé, (resp. Mg/) will be used if maximal functions are defined as in (2.6),

but relative to a (relatively compact) unit neighborhood @’ that is possibly different from the
canonical neighborhood @ (cf. Section .

By symmetry of @, the left and right maximal functions are related by (ML F)¥ = MEFV.
For any measurable functions Fj, F» : G — C for which F} %, Fy is (almost everywhere)
well-defined, the estimates

ML (Fy 5o Fy)(z) < (|[F1|* MEFy)(z) and  ME(F) x, Fy)(z) < (MEF « |Fy|)(z)  (2.8)
hold for all z € G.

For a solid quasi-Banach function space Y that is invariant under left- and right translation
and with p-norm | - |ly, the associated left and right Wiener amalgam spaces WL (Y) and
WR(Y) are defined by

WEY)={F e LZ.(G): M*F €Y} and WH(Y)={F e L. (G): MEF e Y},

loc

respectively. These spaces are equipped with the canonical p-norms || F|lyryy = [[M LRy
and ||Fllyryy = |[MEF|y. Note that WH(Y) = [WH(Y"Y)]Y, as can be deduced from
the identity (MLF)V = ME(FV). The spaces WE(Y) and W (Y) are complete and con-
tinuously embedded into Y; in notation, WX (Y), WE(Y) < Y. In addition, the spaces
WE(Y) and WE(Y) are independent of the choice of defining neighborhood @, with equiva-
lent norms for different choices. Furthermore, WE(Y), WE(Y) are invariant under left- and
right-translations, and satisfy the following estimates

[Lallwevysweyy < [ Lallvsy  and  [[Rellwryyswereyy < [ Relly—y- (2.9)

These estimates are easy consequences of Equation ([2.7)).

The following simple pointwise estimates for continuous functions will be used repeatedly.
For a proof, see, e.g., [0, Lemma 2.4].

Lemma 2.1. Let A = (\)ier C G be relatively separated. If Fy,Fy : G — [0,00) are
continuous functions, then

S R\ FB(yin) < 1;21((3; (MLFy« MEF) (y~'2) (2.10)
el
>RGN < o S Rl (2.11)

iel
for all x,y € G.
In addition, if Fy € L'(G) is continuous and satisfies F\Y € WE(L'), then the mapping
Dpp: (A = L*G), (ciier— Y Ly Fi
i€l
is well-defined and bounded, with absolute convergence of the defining series a.e. on G. Its

. A
operator norm satisfies || Dy all% ;2 < 1:21((Q§ I Fl 1Y lwe -

The (two-sided) mazimal function is defined by M := M*M? = MREM?¥. The associated
two-sided Wiener amalgam space is the subspace of WE(Y) N W#(Y) defined by

W(Y):={F e LZ<(G): MF € Y}.

loc

The (closed) subspace of W(Y') consisting of continuous functions is denoted by We(Y).
Both W(Y) and W¢(Y) are quasi-Banach function spaces when equipped with the p-norm
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IF|lw ) = |[MF|y. These properties follow from W(Y) = WHE(WX(Y)). In addition, note
that

W)Y =wHWrY)]Y) = wHWwEYY)) = w().
For further properties and proofs, see [47, Sections 2 and 3| and [54, Section 2.3].

3. CONVOLUTION RELATIONS FOR WIENER AMALGAM SPACES

The purpose of this section is to provide several convolution relations and simple embed-
dings of Wiener amalgam spaces into Lebesgue spaces. These results will play an essential
role in the development of coorbit theory in the subsequent sections.

3.1. Embeddings into Lebesgue spaces. The following conditions on a weight function
will often be assumed in the sequel.

Definition 3.1. Let p € (0,1]. A function w : G — (0,00) will be called a p-weight if it
satisfies the following conditions:

(wl) w is measurable and satisfies w > 1,

(w2) w is submultiplicative, i.e., w(zy) < w(x)w(y) for all z,y € G,

(w3) w(z) = w(z) - AVP(z~1) for all z € G.
A p-weight is called a control weight for a quasi-Banach function space (Y, || -|y) with p-norm
| - |ly if Y is translation-invariant (i.e., invariant under left- and right translations) and w
satisfies

(wd) HRy”YﬁY <w(y) for all y € G.
A control weight w for Y satisfying additionally
(W5) || Ly-1lly—y < w(y) forally € G

is called a strong control weight for Y.

Remark 3.2. A measurable, submultiplicative weight is automatically locally bounded; see,
e.g., [39, Lemma 1.3.3].

Lemma 3.3. Let r € (0,00], let w : G — (0,00) be measurable and submultiplicative, and
let Y be a solid, translation-invariant quasi-Banach function space on G. Then the following

hold:

(i) If v : G — (0,00) is measurable and satisfies ||L,-1|ly sy < v(y) for ally € G, then
WHY) < LS,
(i5) WE(LL) < L, for all s € [r,c],
(iii) If p € (0,1] and w is a p-weight, then WE(LP) «— [L3]Y for all s € [p, 00].

Remark 3.4. In fact, the lemma implies something slightly stronger: If F € WL(L"), then
MEF € WE(LY) < LS and hence F € WL(L3). This argument easily implies that
WE(LT) — WE(LS,) for s € [r,00].

Proof. For proving assertions (i)-(iii), it will be used that for every measurable F' : G — C,
there exists a null-set N C G such that for every z € G\ N, it holds that

L, |F(z)| < MYF  ae. (3.1)

To show this, let Q := {(z,2) € GxG: 1,g-1(2):|F(z)| > MYF(z)}. Since M F is measur-
able (cf. Section, it is easy to see that ) belongs to the Borel o-algebra on GxG. Since G is
second countable, the Borel o-algebra on G x G coincides with the product o-algebra on G x G;
see e.g. |23, Theorem 7.20]. Let Q, = {2z € G: (x,2) € Q} and Q* = {z € G: (x,2) € Q}.
Then Tonelli’s theorem shows that [ ua(Q) dug(z) = [ona(Q?) dug(z). Therefore, it
suffices to show that Q7 is a null-set for arbitrary z € GG. For this, let z € G. By definition
of MF, there exists a null-set N, C Q such that MLTF(z) > |F(zq)| for all ¢ € Q \ N..
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For z € 2(G \ N) there are two cases. First, if ¢ 2@, then 1,,-1(2) = 0 and hence
trivially 1,0-1(z) - |[F(z)] < M*F(z). Second, if z € 2Q, then ¢ := 27!z € Q \ N, and
hence MYF(z) > |F(zq)| = |F(x)| > |F(2)|1,0-1(2). Overall, this shows that Q* C zN, is a
null-set, and establishes inequality .

(i) Define C' := 1/|[1g-1|ly, with the understanding that C = 0 if 11 ¢ Y. Let
F € WE(Y). It will be shown that ”F||LT7U < C||F|lwe(y)- For this, let N = N(F) C G be a
null set such that holds for all z € G\ N. For x € G\ N, it follows then by the solidity
of Y that

IF(@)] - [qerlly < IMEFlly = | Fllyyy < oo,
If |F(z)| # 0, then this implies 1,51 € Y, and
Mo-tlly = [Le-11ag-1lly <o) - [Taq-1ly,

so that |F'(x)[/v(z) < C - |[Fllweyy. If [F(z)| = 0, then this trivially holds. In conclusion, it
follows that [F(z)|/v(z) < C - ||F|lyr(y) for all z € G\ N.

(ii) It will be shown that W¥(L") < L. Since W (L") < LT, (cf. Section , this
will then imply that W% (L) < LS for all s € [r,00]. Let F € WE(L!). Choose a null-set

N = N(F) C G such that Equation (3.1]) holds for all x € G\ N. Since L}, is solid, it follows
that, for all z € G\ N,

[F@)] 1 Lag-tllzy, < IMEFlzy, = [ Fllwe ) < oo

There exists C = C(Q,w) > 0 such that w(g) < C for all ¢ € Q (cf. Remark [3.2). Hence, if
z € Q71 then w(z) < w(zz)w(z™!) < C - w(xz) for all x € G. Therefore,

Ll = [ e () = /Q [ dua(s) 2 € @) ke(@)

for all z € G. Overall, this shows |F|-w < [|F[[yz(rr) a.e. on G, as required.

(iii) Condition (w3) combined with the identity [, F(z) duc(z) = [o F(z ) A(z™) dpg(z)
easily implies that [LP]Y = LP  with identical quasi-norms. Hence,

WH(LE) = [WE((LE) )Y = WH(LR)]Y,

with identical quasi-norms (cf. Section [2.6). Therefore, Part (ii) implies for all s € [p, ] that
WH(LE) = [WH(LE)]Y < [L3)]. O

3.2. Convolution relations. This subsection is devoted to convolution relations for Wiener
amalgam spaces. The following compatibility condition between a quasi-Banach function
space and a weight function will play an important role in the sequel.

Definition 3.5. Let w : G — [1,00) be a p-weight for some p € (0,1] and let Y be a
solid quasi-Banach function space Y on G with p-norm || - ||y. The space Y is said to be
L? -compatible if

(cl) Y is translation-invariant.
(c2) The convolution relation W¥(Y) x W(LP) — W(Y) holds.
(c3) The embedding W& (Y) «— LT‘/)w(G) holds.

Remark 3.6. In Corollary it will be shown that Y is L -compatible if w is a strong control
weight for Y. The reason for introducing the concept of LP -compatibility is that there are
some (important) cases in which L2 -compatibility holds even if w is not a strong control
weight for Y. A case in point are the spaces Y = WE(LP) and Y = WE(LP), as well as
Y = W(L), which are always LP -compatible if w is a p-weight; see Corollary

The following result provides a general convolution relation for Amalgam spaces. The most
important consequences of this result are stated in Corollary
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Theorem 3.7. Let p € (0,1] and let w : G — (0,00) be a p-weight. Let Y be a solid,
translation-invariant quasi-Banach function space and assume that w is a control weight for

Y. Suppose there exists a submultiplicative measurable weight v : G — [1,00) satisfying
WEY) — L$), and WE(LP) — [LL]V. Then the convolution relation

WEY)« WE(LE) — vV
holds. More precisely, there exists a constant C = C(p,w,Q) > 0 such that

|71 By < [IF] = B[y < CllFlwe vy 1 Pollwrrn,

for all Fy € WH(Y) and Fy € WE(LR). In addition, |Fy| * |Fs|(x) < oo for all x € G and
Fy x Fy : G — C is continuous.

Proof. The proof will be split into three steps.

Step 1. Since Fy * Fy(x) = (Fi, Ly[FY]) it follows that |Fy| * |Fy|(z) < oo for

L%, LY
all z € G. Furthermore, the map x +— L,[Fy] is continuous from G into L., see, e.g.,
[39, Lemma 1.3.6] or |49, Proposition 3.7.6]. Hence, F} x F» : G — C is continuous as well.

Step 2. In this step, it will be shown that there exists a countable family (z;);e; C G
and a measurable partition of unity (¢;)ic; on G with ¢; *(C\ {0}) C #;Q and a constant
C = C(p,Q,w) > 0 such that

H( )l %HL"O> < Cl|F lwe(zz) (3.2)

[H@p -

for all FF € WL(LP).

For constructing (¢;);er, an application of [3, Lemma 1] yields a subset X C G and some
N € N such that G = |J,c x 2@ and such that each x € G belongs to at most IV of the sets
@ for x € X. Since G is second-countable and hence o-compact, it is possible to extract a
countable subset of X that still satisfies these conditions, so that it may be assumed that X
is countable. Thus, for a suitable M € NU {oco} and for I = {i € N i < M}, we can write
X = {x;:i € I} with ; # x; for i # j. Define Q; := 2;Q \ U 1 24Q inductively and set
@i := 1g,. Then ¢; (C\ {0}) = @ C 2;Q and Zie[ vi=1onG.

For showing (3.2), define Q' := Q7'Q and let F € W¥(LP). Note that if z € z;Q, then

“HC\{0}) € 2;Q C zQ'Q = xQ’. This implies that ||F - ;| pe < ng,F(x) On the other
hand, we have w < 1 everywhere on @ (cf. Remark [3.2)), and thus there exists C; > 0 such
that w(z;) < w(z)w(z'z;) < Crw(z). Overall, these considerations show that

[w(xi) - |F - pillee]” oo S [w- MG F]” forall i€l
By the choice of {z;: i € I} = X, it holds that Ziel ]lzl.Q < N, and hence
iel i€l

Integrating this estimate over G gives

> [w(i) - |IF - gill 1]

el ze[
S HMQ'FHLP S IIFIIWL 7)

w(@i) - |- ill=]" - Loig(x)dpc(x)

where the last estimate follows from the independence of W (LP) = Wé (L) from the choice
of the set @ (cf. Section ) The preceding estimate easily shows that Equation (3.2) holds.

Step 3. With notation as in Step 2, set 1; := ¢, and FQ(i) = Fy -¢); for i € I. Note
that (F{))Y = FY - ¢; and ¢;(C\ {0}) € Q~'z;'. Furthermore, note that L2, = [L2]V,
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which follows from condition (w3) of Definition Hence, applying the estimate (3.2)) to the
function F € WL([LP]V) = WL (LP) shows that

|(wian - 15570=) |, S U lweqn) = 1Plwegyy = 1Plwegg).  (33)

If i € I and FQ(i)(y_la:) # 0, then y~lz € (F2 ) €\ {0}) ¢ @ 'z;' and hence
1,4,0(y) = 1. Thus, FQ(Z)(y_lx) = F( )(y lx)]lmQ(y) and

(5 1B @ = [ 1R 156 ) dua ()

< ||F§) HLooHFl Aaa0llree - pa(zr:Q)
= pa(Q) - HFZZ HLoo MLFl)(xe)
= pa(Q) - HFQZ HLoo - Ry, [MLFl] (z)

for all x € G. By the solidity of Y and since || Rz, ||y—y < w(x;) by assumption (cf. condition
(w4) of Definition [3.1]), this implies

B E < 1S R DBy < e - S Py, i€

Using the estimate (3.3) and Lemma it follows that F' := Y, |Fi| * ‘FQ( )‘ €Y and
. (4)
IFlly S WF e - || (o) - 1F ), S 1 lwe g 1 Ballwees,)-
Since Iy = ) ;¢ Fz(i), an application of the monotone convergence theorem yields
Fix B < R+ |R < Y |FR |+ B | = F
el
which easily implies the claim. O

Remark 3.8. The assumptions W (Y) < L7, and WE(LP) «— [LL]Y in Theorem H are

not actually needed for deriving the convolution relation WX(Y) x WR(LP) < Y these
assumptions are only used to ensure that F; x Fs is well-defined everywhere and continuous.

As a consequence of Theorem [3.7} it follows, in particular, that Y is L? -compatible when-
ever w is a strong control weight for Y. This sufficient condition for compatibility is particu-
larly convenient for applications. The precise statement is as follows.

Corollary 3.9. Let w: G — [1,00) be a p-weight for some p € (0, 1].
(i) The following convolution relations hold:
WE(ILR)« WER(LP) < LP and  W(LE) « W(LP) < Wa(LP).

(ii) If w is a strong control weight for a solid, translation-invariant quasi-Banach function
space Y in the sense of Definition[3.1], then the following convolution relations hold

Wi« WE(IE) =Y  and  WL(Y)« W(ILP) — WE(Y).
In particular, Y s L -compatible.

Proof. (i) We apply Theorem with Y = LP and v = 1. For this, note that applying the
identity [ R, F dug = A(y~!) [ F dug for measurable F : G — [0, 00] implies for f € LE, that

1R, £ = [ ooy ™)) P duc(a) < [wly ™) [ Ryl £7] duc

= [wly™") APy 1f 117

and hence |Ry|ly—y < w(y™') - AYP(y™1). Since w(y™') - AVP(y~1) = w(y) by condition
(w3) of Definition [3.1] this shows that w is a control weight for Y. Furthermore, Lemma
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shows because of w > 1 =v = % and p < 1 that WH(LP) — L — L® = L9, Similarly,

Lemma shows that WE(LE) < [LL]Y < [LL]V. This shows that all assumptions of
Theorem are satisfied, and thus W (L) « WE(LE) «— LP.

Finally, for Fy, F5 € W(LP), an application of Equation ([2.8) yields

1y Bolly gy = IMEME(Fy < Byl < [(MPF) 5 (MEF)|

5 HMRFlHWL(L{;)||MLF2||WR(L1;) < HF1||W(LZ)HF2||W(LZ,)7
as asserted, where Theorem [3.7|shows that Fy * I is continuous for Fy € W(LE)) < WL(LP)
and Fy € W(LE) — WE(LP).
(ii) By assumption, ||L,-1|y—y < w(y) for all y € G, and thus Lemma shows that
WEY) — L7, Furthermore, Lemma also shows that W (LE) < [LL]V. Thus, Theo-

rem [3.7|is applicable and shows W% (Y) * W®(LP) < Y. Combining this convolution relation
with Equation (2.8)) and the solidity of Y, we see for F; € W¥*(Y) and Fy € W (LE) that

|Fy * Ballwr gy = [MP(FL « Bo)lly < [[|F3] « MY Fylly

S IAwew 1M Fellywriey = 1Fulwe o 1B llw 2z,
completing the proof. O

Corollary 3.10. Let p € (0,1] and let w: G — (0,00) be a p-weight. Then each of the spaces
WE(Lr), WE(LR) and W (LP) is LP -compatible.

Proof. This easily follows by combining Corollary [3.9] and Lemma [3.3] O

The last result of this subsection concerns genuine Banach function spaces satisfying the
so-called Fatou property, see, e.g., [56, Chapter 15, § 65]. Among others, it applies to weighted
Lebesgue spaces.

Lemma 3.11. Let Y be a solid Banach function space that is right-translation-invariant and
satisfies the weak Fatou property, meaning that there exists a constant C > 0 such that

n—o0

H limiannH < C-liminf ||F,|ly
Y n—oo

for every sequence (Fy)nen of non-negative functions F,, € Y with liminf,, . ||F,|ly < oo.

If w: G — (0,00) is measurable with w(x) > ||Rg|ly—y for all x € G, then Fy x Fy is
almost-everywhere well-defined for every Fy € Y and Fy : G — C with Fy € L., and it holds

w?
1Fy * Fally S Fully - 17 Il -
In particular, if w is a 1-weight, then the following convolution relations hold:

YL <Y  and  WEY)«W(LL) > YV« WHLL) — WE®Y).

Proof. Let M™ denote the set of all non-negative measurable functions F : G — [0, oo], where

functions are identified whenever they agree almost everywhere. The norm | - ||y will be
extended to a map M™ — [0, 0c0] by setting | F|ly := oo if F ¢ Y. It is then straightforward
to verify that || - ||y : M™ — [0,00] is a function norm in the sense of |56, Section 63]. By
our assumptions, it also follows that || - ||y satisfies the weak Fatou property as defined in
[56, Section 65]; see [56, Theorem 3 in Section 65].

In accordance with [56, Section 68|, the associated seminorms || - Hgf) : MT — [0,00] are
inductively defined by || - Hgﬁ]) = |- |ly and

IF| = sup{/ F-Hdpg : He M* with [|H||\"™ < 1} for n > 1.
G

Since || - ||y satisfies the weak Fatou property, an application of [56, Theorem 3 in Section 71]

shows that || - ||y < || - Hg)
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Let Fy,Fo,H € M with Fy € Y, Fy € L., and ||H|y (1) < 1. Tonelli’s theorem shows
Fi«Fy € M*. Further, Fyx F5(2) = [ Fi(y)Fo(y'2)duc(y) = [o(R.F1)(x) Fa(z7 Y duc(2).
Based on this identity, another application of Tonelli’s theorem yields that

LFs Ry @)t (@) duc(e) = [ B [ (RFO@) H(@) duc(@dp2).

By definition of |- ||\, it follows [ (R.F1)(z) H(x)dug(z) < ||[H|\Y - |R.Filly < w(z)-||Fily-
Hence,

/G(Fl * Fy)(2) H (x)dpc(r) < HF1||Y/G w(z) - Fy (2)dpc(z) = [|Filly |7yl s,
Since this holds for every H € M+ with ||H||§,1) < 1, this implies

2
IFy* Bolly S 1B+ Bl < I Rlly - 1F I

Thus, the convolution relation Y * [LL]Y < Y holds for non-negative functions; by solidity,
this easily implies the general case.

Finally, if w is a 1-weight, it follows that L. = [LL]Y with identical norms, so that the
preceding convolution relation implies that Y % Ll < Y. Moreover, using the estimate (2.8)),
it follows for F; € Y and Fy € WE(LL) that

IFy # Bl = IME(Fy = By < [||Fi] « MYy,
SEy - IM*Fallry = 1Ry - 1 Fallwe ),

as asserted. O

3.3. Counterexamples. In this section two examples (both taken from [54, Section 2.3]) are
provided, showing that in general

WELE) « WEYY)Y ¢ WEY

with v(z) = [|Ly-1[lwe(yyswe(r) and/or v(z) = |]Lz\|WL(y)_>WL(Y). These examples show
that the convolution relation asserted in [47, Theorem 5.2] fails in general. This (incorrect)
convolution relation is used several times in the coorbit theory developed in [45/46].

The first example shows that one cannot use the weight v(z) = || L1 |lwryv)y—wey)-

Example 3.12. Let G = R and consider the weight w : R — (0,00), = — €*. Let
Y := LL(R). For f €Y and z € R, it follows that

Loty = [ 1f@=a)lerdy = [ 7)™ dz = e |l

and hence || Ly|ly—y = €®. As seen in Equation ({2.9)), this implies

v(z) = ([ Lp-1llwevyswey) < [[Le-tlly—y =e™7,

-1

where we have written G = R multiplicatively, as well as additively, i.e., x7" = —x. Moreover

note, for any measurable f : R — C that
19y = [ 1f@ledy =171

for u: R — (0,00), 2+ e~*. Thus, YV = L (R).
Let T > 0 be arbitrary and define f := 17711y as well as g := 1(_p_; _7). Using the
(open, relatively compact, symmetric) unit neighborhood @ := (—1,1), it follows that

(M 14) (2) = esssup La(y) < Lasq()
yex+Q
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for each measurable A C R, since 1 4(y) # 0 for some y € z + @ implies z + ¢ =y € A for a
suitable ¢ € @, which in turn yields x =y —¢€ A—Q = A+ Q. Note that |- ||z = ||y is
a p-norm with p = 1. Thus,

T2 T (.1 2 T
< e fdr=e" (e —e“)<e-e
L} T—1

v

1w = IME Ll < [ Ta-1rio)|

and |glwevy = 19V lweyy = IMP L riylly < Mool <e-e ™.

Since f,g € L?(R), it is easy to see that f * ¢ is continuous with
fxg(0 /]1(TT+1 Lr1,-7(0—2) de =1
Hence, for arbitrary x € (—1,1), we have MZ[f  g](x) > f * g(0) = 1, which yields that
If *g”WL(Y) > f(—1,1) e dr > 1,

Assume towards a contradiction that WE(LE) x [WE(YV)]Y € WE(Y). As an easy conse-
quence of the closed graph theorem, this implies existence of a constant C' = C(w,Q) > 0
satisfying [|f = glly vy < Cllfllwe ey 19llwrvyv - Then the above estimates yield that

V< *glweyy < C M llweeeny l9llprravygy <C-e2-e =0 as T — oo,

a contradiction. Thus, WE(LE) « [WE(YV)Y ¢ Wl(Y ]
The next example shows that |47, Theorem 5.2] also failsﬂ for v(z) = | Lallwevymweyy-
Example 3.13. Let G denote the affine group, i.e., G := R x (0, 00) with multiplication given

by
(x,a) - (y,b) = (x + ay, ab).

Neutral element and inverse in G are given by eq = (0,1) € G and (z,a)"! = (=Z,a71),
respectively. The left Haar integral on G is given by

L@ ducto) = [ [ foayde S

with modular function A((z,a)) =a~
Define the weight

w: G—(1,00), (a:,a)»—>1+a:1+A((x,a)*1).

Then w is clearly continuous and submultiplicative. Set Y := L. (G). Since L'(G) is right
invariant and isometrically left invariant, it follows that W% (Y') is left and right invariant (cf.

Section with

v(z,a) = [|Liga)llweyyswey) < [L@allysy Sw(z,a) =1+a.
Moreover, as seen in Section Wéﬁ(Y) is independent of the choice of the (open, relatively
compact) unit neighborhood Q' C G. In addition, a direct calculation using the identity

JoF(2) dpa(z)=[o F 2z ) duc(z) shows that
171, = / £E) w o) = [ [5G duatz) + [ 5G] AG)dual2)
=[£I A due:) + [ 15 due(z) = 1l
so that Y =Y.
Let o € (1,00) and 5 € (0,1) and set 6 := max{«a,8} = a. Define f : G — (0,00)
by f((z,a)) = eIl . min {aa,a_ﬂ}. Then f is clearly continuous and is easily seen to
IThe weight v(z) = | Lo lwz (vy—wer(y)y does not occur in the statement of [47, Theorem 5.2], but it is this

weight that is used in its proposed proof.
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satisfy | f[ls,, < 1. In the following, we use the (open, relatively compact) unit neighbor-
hoods Qo := (—1,1) x (,2) and @' := Qy'. Then the substitutions (z,c) = (y,b)"! and

(s v) = (z,¢) - (x, )y1€1d
(M5FY) (@a) < sup b= swp [f(z0)
(y,b)€(z,a)Q’ (2,¢)€Qo(z,a)~1
= sup f v ) (ac,a)_l = Sup f w, v ) _%7a_1
(G- e = s[5 (7))
= sup |f(p—%z, %)= sup i -min{(u/a)o‘ , (I//a)_ﬁ} )
(/J"V)GQO (:qu)GQO

Using that (u,v) € Qo = (—1,1) x (3,2), we see

v v ||
—|z| = [pu] = —|z] -1= 5~ —1
a a 2a

v
-t
a

g

and thus e_|"“_§$‘ < e_(2a ) — e - e~1#l/2a¢ Furthermore, % < Z< %, which entails

(L) < (2)* < 2%-a® and (%)—B = (%)B < 20.4% < 29.48. Combining these estimates yields
(Mé,fv) (z,a) < 2%e- e~ 17120 min {a_o‘,aﬂ} for all (x,a) € G. (3.4)
For a € (0,00), using the identity C; := [, e W dy = [, e~1*/204Z it follows that
R R 2a

17 g o < 2 [ % - amin {a=*, @} w0 (a0

in<a"*d’ - (1+a)
cominda~% a a
:256/ { } -2a/ e*|x‘/2ad—xda
R

0 a? a

o minfa—e 8L
:25+1eC’1/ mln{a ,a} (1+a)

da

§2(5+1 |:/ B . 1—|—CL +/ da:|
a

Using 1 +a <2 forae€ (0,1) and 1 +a < a+ a=2a for a € [1,00), this gives
Load
vaHWL(Y)<25+2601'|:/ 5a+/ ]<oo
Q/

because of > 0 and a > 1. This implies f¥ € WE(Y) = WL (YY) and thus f € [WE(YV)]",
since f¥Y € WE(Y) = WE(LL) < WE(L}), since v < w.

Note that Y = L. (G) is a Banach space, so that || - ||y is a p-norm for p = 1. Now, if the
convolution relation W% (LP) + [WE(YV)]Y C WL (Y) would hold, then the above would yield
Y f € WE(Y). We will now show that in fact f¥ x f ¢ WX(Y). For this, note first that
f¥Y e WE(LL) < L' since w > 1. Furthermore, f is bounded, so that f¥ * f: G — C is a
well-defined, continuous, bounded function. A direct calculation gives

(1 ) @a) = [ ) (007 @) decls.d
- ke (s) e (5 ,> ZS
~ [Cuin{pe.7) mm{(g) } v [ el W,
—/ mm b @ bﬁ mm{(Z) ’(a) }/R “lzle— |Z_7|dzcib
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Let x = 0 and @ > 1. Then, for each b € (0,1), it follows that WP <1<b“aswellasb<1<a,
and thus (b/a)” < 17 =1 < (a/b)®. With the abbreviation Cj := Ja(e7¥N2dz € (0,00), these
considerations and the above calculation imply

v B B db -8 281 -8 . b2 |
(fY*£)(0,a) > Cy- /b (b/a)’ = Cs-a /b db=Cy-a 37|,
_C s
“a95 ¢ (3.5)

for all @ > 1. For using this to obtain a lower bound on M%(fY x f), first note for (y,b) € G
that

b b
10 = s+ (-0, 8)) x (5.20) = By(w) x (5.20).
For b € (1,00) and y € (—b,b), we thus have (0,b) € (y,b)Qp. Since f¥ x f is continuous and
(y,b)Qoq is open, it follows that, for b € (1,00) and y € (—b,b),

MG LY * f(y,b) = (fY * £)(0,b) > 2 s

)

where the estimate (3.5) was used in the last step. Combining the obtained estimates gives

C
va * fHngO(y) > 2/; / 1 1oo bb)( ) b_B ’lU(y,b) d,uG(y7 b)

:Sﬁ?./loobbﬁ 14+b)- / dy db
> ;7; - /1 b db = oo
because of 3 € (0,1). Thus, f¥  f ¢ WE(Y). [
Remark 3.14. The above example also shows that
WE(LL) « WELED) & WH(LE) (3.6)

for the weight w*(z) = A(z~!) - w(z~!). Hence, the convolution relation that is stated in
[47, Corollary 5.4] is also false in general (even for p = 1). To see that the above example
indeed implies Equation (3.6)), note that the weight w in the example satisfies w* = w and

that f¥ € WL(LL) as well as f € [WE(LL)]Y, but f¥« f ¢ WE(Y) = WE(LL).

4. COORBIT SPACES ASSOCIATED WITH INTEGRABLE GROUP REPRESENTATIONS

This section develops the basic theory of coorbit spaces associated with (possibly projective)
integrable representations and quasi-Banach function spaces.

4.1. Admissible vectors and reproducing formulae. Let (7,H,) be a unitary o-repre-
sentation of G on the separable Hilbert space H, # {0}, i.e., a strongly measurableﬂ map
m: G — U(H,) into the set U(H,) of unitary operators on H, satisfying m(eq) = I3, and

m(x)n(y) = o(z,y)m(xy), forall z,y € G, (4.1)

for some function ¢ : G x G — T. Any such function o is a cocycle in the sense of Section
One also says that (m,H,) is a unitary projective representation. The adjoint operator 7(x)*
of m(z) for x € G is given by

[r(@)]" = [n(@) ™! = oz, a7 ) a(@™") = o(@=t, ) w(a™). (4.2)

2This means that for each f € H,, the map G — H,z — m(x)f is measurable.
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In particular, o(x,27!) = o(x~1,2). The map 7 is called irreducible if {0} and H, are the
only closed m-invariant subspaces of Hr, i.e., if V C H, and w(x)v € V for all v € V and
x € G, then V = {0} or V = H,.
For g € Hr, define its associated coefficient transform Vy : H. — L>°(G) by
Vof (@) = (f,m(z)g), z€G.
By [53, Lemma 7.1, Theorem 7.5], it follows that
\Vof| : G = C is continuous for all f,g € Hx. (4.3)

A vector g € H is called admissible if V, : Hr — L*(G) is well-defined and an isometry.

The following simple lemma collects several identities that will be used repeatedly through-
out this article. Here, the twisted translation operators L and RS and twisted convolution
operator *, are as defined in Section

Lemma 4.1. Let f,g,h € H.
(i) For x € G, the following intertwining property holds:
‘/gf(l'il) = 0’(.%',1'_1) Vfg(flf), Vg[ﬂ'(x>f] = Lg[vg.ﬂ and Vﬂ'(x)gf = R;[V:qf]
(ii) If h € Hy is admissible, then the following reproducing formula holds:
Vof = Vi f x5 Vgh. (4.4)

Proof. (i) If x,y € G, then

Volr(@)f1(y) = (f. (@) m(y)g) = o(a, 2™ )(f, m(z ™ )7 (y)g)
=o(zv, 2 oz L, y)V, f(zy)
Using that o(x, 27 y) = o(a=1,y)o(zz™ty) o(x, 27 1) = o(x, 27 o(x~1,y), it follows that

Vylm(x) f] = L[V, f]. The other two identities of part (i) are immediate consequences of the
definitions and of Equations (4.1)) and ( .

(ii) If x € G, then using that Vh : He — L*(G) is an isometry gives

Vol @) = (f.x(a)g) = Vi Valr @Dz = [ V@) m(u)h,7@)g), duc(w)
= [ VaS @)L Vah)@) ducly) = (Vaf =0 Vyh) (a),
where the penultimate equality marked follows from part (i). O

If g € Hy is admissible, then the image space K4 := Vy(H,) is a closed subspace of L*(@),
since it is the isometric image of the Hilbert space H,. For arbitrary F' € g4, say F' =V, f,
it follows from Lemma 1] that for any = € G,

F(z) = (f,m(x)g) = (Vof, Vgl (2)g]) = (Vo f, L[V, /F Lg[Vyal(y) duc(y), (4.5)

which shows that Ky is a reproducing kernel Hilbert space, i.e., for any x € G, the point eval-
uation IOy 3 F — F(z) € C is a well-defined, continuous linear functional. The reproducing
kernel of K4 is the function

K: GxG—=C, (z,y) = Vy[r(y)gl(z) = LI[V49l(y) (4.6)

satisfying F(z) = (F, K(-,x)) 2 for any F' € K4 and z € G.

For an irreducible o-representation (7, H ), a convenient criterion for the existence of admis-
sible vectors is provided by the orthogonality relations for square-integrable representations,
cf. [16, Theorem 3] or |6, Theorem 4.3] for genuine representations, and [2, Theorem 3] for
projective representations.
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Theorem 4.2 ([2,6,16]). Let (7w, H,) be an irreducible o-representation of G. Suppose there
exists g € Hr \ {0} satisfying V,g € L*(G). Then there exists a unique, self-adjoint, positive
operator Cy : dom(Cr) — H, such that

(VgL f1, Vo f2) 12 = (Crg2, Crngt)n, (f1, fo)n., (4.7)
for all f1, f2 € Hx and g1, g2 € dom(Cy), with dom(Cy) = {g € Hr : Vg € L*(G)}.
Remark. The positivity of C; implies, in particular, that C; is injective. This can also be
derived from Equation (4.7) by noting that
IC=h|F,, = IVahli2/lIl3, >0 for he dom(Cr)\{0}. (4.8)
Here, the norm ||Vj,h|| 12 is positive since |V} h| is continuous (see Equation (4.3])) and satisfies
[Vih(ec)| = |13, > 0.

Theorem [4.2| yields that if 7 is irreducible and dom(Cr) # {0}, then any g € dom(Cy) is (a
scalar multiple of) an admissible vector. In addition, the orthogonality relations (4.7]) yield
that

<C7Tgla Cﬂg2>HwVf2f1 = ‘/ngl *o szgl (49)
for fi,fo € Hr and ¢1,92 € dom(Cy); the argument is similar to the proof of Part (ii) of
Lemma 411

4.2. Integrable vectors. Let w: G — [1,00) be a measurable submultiplicative weight, i.e.,
such that w(zy) < w(z)w(y) for all z,y € G. Henceforth, the o-representation 7 is assumed
to be w-integrable in the sense that the set

Ay =1{g€H.: Vg€ LL(G))}

is non-trivial; that is, A, # {0}. In addition, it is assumed that there exists an admissible
vector g € A,,. For any such admissible g € A,,, define the space

MLy = M (9) = {] € Ha: Vyf € LL(G))
and equip it with the norm || f |l = [[fll3a () = IV fllLs -
The following lemma collects several basic properties of the space H. .
Lemma 4.3. Fiz an admissible vector g € Ay, and write H. = HL(g).

(i) If h € Ay, is an admissible vector satisfying Vyh, Vg € LL(G), then Hl (g) = HL (h)
with norm equivalence || - [ () = ||+ I, () -

(it) The pair (H,, |l - ln) is a w-invariant separable Banach space satisfying Hy, — Hx
and 7(x)g € HY for all x € G. Moreover, H} is norm dense in H, and 7 acts on
HL with operator norm bounded by

I7(@) ]I, 21, Swlz), =€
(iii) For each f € HL , the vector-valued maps
Er: G ML, zew(a)f
and Frg: G—=HL, a0 Vf(x) m(2)g
are Bochner measurable. Furthermore, Fy 4 is Bochner integrable with f = [, Fy 4dug.

(iv) The orbit ©(GQ)g is complete in HL, i.e., span{n(x)g:z € G} = HL.

Proof. (i) If f € HL(g), then ([&.4) yields that Vi,f = V,f %, Vhg. Since V,f,Vig € LY by
assumption and since f € HL(g), and because of L. * Ll — Ll (see, e.g., |49, §3.7]), this
implies that V3, f € L. (G) (and hence f € HL (h)), with

1 e,y < NVa L Vagll S Ve lley, = 1 s (o)

By symmetry, this yields that || - |31 ) < || - [l (g)- In the sequel, simply set HL =HL(g).
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(i) If f€ HL and x €@, then
17 (@) fll2, = 1L Ve Sy, = [1L2[Veflllzy, < w(@) - Vg fllry, < w@)l|fllag,

since ||Lzllry o1 < w(x); see, e.g., [49, Proposition 3.7.6]. Thus, HL is m-invariant and
[7(2) [l 31, < w(x). The orbit m(G)g is complete in Hy if and only if Vy : Hy — L*(@)
is injective. Therefore, since V; is an isometry and since g € A, and thus g € HL it follows
that Hl D 7(G)g is norm dense in Hr. The reproducing formula (4.4), combined with the
convolution relation L' x L? — L? (see e.g. |22, Proposition 2.39]) and with w > 1 yields that

2
115 = Va2 < Vo F 1 [Voglll e < IVaglZ2 IV FIlEe S 115, (4.10)

This shows that H. < H, and that || - |7, is positive definite, hence defines a norm. In
addition, if (f,)nen is a Cauchy sequence in H}, then (4.10) yields that (fy,)nen is Cauchy in
Hr, and hence converges to some f’ € H,. The sequence F,, := V, f,, being Cauchy in L. (G)
yields convergence to some F' € L. (G). Since Fy,(z) = V,fn(z) = Vyf'(z) as n — oo for all
z € G, it follows that V,f' = F, and thus f' € Hy, with ||/ — fullsy = [|Fy — Flln — 0.
This shows that (H., || - |7 ) is a Banach space.

(iii) Part (ii) shows that Z; and Fy, are well-defined for f € H.. We first show that =
is Bochner measurable. Since Vf is measurable and g € HL, this then easily implies the
measurability of Fy, =V, f - E,.

To show that Z; is measurable, first note that the group G is second countable, so that
the space L. (G) is separable; see, e.g., [13, Proposition 3.4.5]. As V, : HL, — L1 (G) is an
isometry, also H1 is separable, hence Pettis’ measurability theorem (cf. |13 Theorem E.9])
implies that =y : G — H) is strongly measurable whenever ¢ o Z¢ is Borel measurable for
each continuous linear functional ¢ € (HL). To show the latter, given ¢ € (HL)', define
Yo : Vg(HL) — C by ¢o(Vyh) = ¢(h) for h € HL. Since V, : HL — L1 (G) is an isometry,
the functional ¢ is well-defined, linear, and bounded with respect to || - |1 . Hence, by the
Hahn-Banach theorem, v extends to a linear functional ¢ € (Ll (G))’, which is then given
by integration against some H € Ll/ (G). Thus,

P(E1@) = wVlr@)) = [ HE) - Vilr(@) 1) dia(v)
=memmwmmm@,

and hence Fubini’s theorem implies the Borel measurability of z — ¢(Z¢(x)). Thus, by Pettis’
measurability theorem, the map =y is strongly measurable, and hence so is the map Fy . In
addition, the estimate ||7(x)g|lyy < w(w)|g[ly, of part (ii) implies directly that

1F.g()ll, < w)llgllag [Vef ()] € LYG),

whence Fy 4 is Bochner integrable. Thus f':= [, Ffq dug € HL s H, is well-defined. For
showing f = f’, it suffices to show that V, ' = V, f, since V, : H, — L?(G) is an isometry. Let
t: LL(G) < LY(G) be the canonical embedding. Since the Bochner integral commutes with
bounded linear operators (cf. [42, VI, Theorem 4.1]), a direct calculation using Equation
entails

Vot = [ (0o Vi)Frgl(a) duc(e) = [ Vo @) L51Vig)() dnc(a)
= Vd 40 Vg = Vaf = Vi),
which yields that V, f" =V, f.

(iv) If f € HL, then clearly V, f(z) - m(z)g € span7(G)g < H}, for each z € G. Hence, by
part (iii), also f = [ Vo f(z)m(z)g duc(z) € span(G)g. Thus, H,, = span(G)g. O
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The proofs of parts (i) and (ii) of Lemma [4.3| closely follow |18, Lemma 4.2], but the direct
proof of part (iv) using the Bochner integral (see part (iii)) appears to be new.

Remark 4.4. In Part (i) of Lemma the assumption that the admissible vectors g, h € A,
satisfy Vyh, Vi,g € L1 (G) is essential for the independence claim—at least, when 7 is reducible.
Indeed, in 28, §2.1], an example is given of a reducible representation = admitting admissible

vectors g, h € Ay, but for which Vyh ¢ LL(G), showing that h € HL (k) but h ¢ HL (g).

The following result shows that the behavior discussed in the above remark cannot oc-
cur for irreducible representations; in particular, it shows that the additional assumption
Vyh,Vig € LL(G) in Part (i) of Lemma [4.3|is automatic in the irreducible case.

Lemma 4.5. Let (7, H,) be an irreducible unitary o-representation. Let Y — LY(G) be a
solid quasi-Banach function space that is left- and right translation invariant and also satisfies
Y*Y <Y (or, Y *YY < Y). Then the space

Cy ={9g€eH.:VygeY}

is a m-invariant vector space with Vg € Y for all g,h € Cy and with Cy C dom(C?2), where
Cr : dom(Cr) — Hy is the operator given by Theorem . If Cy is non-trivial, then Cy is
norm dense in H,.

Proof. If g € Cy C Hx, then Vyg € L®(G) and Vyg € Y — L'(G) and thus Vyg € L*(G).
Therefore, g € dom(Cy), and Crg € H is well-defined. We next show that Crg € dom(C%),
for which we can clearly assume that g # 0. For f € dom(Cy), the orthogonality relations

(4.7) gives
{Crf, Crgrn| = [(Vags Vig) 2] - 9lla < N9l 2 1Vagllr IVigliooe < gl 1 f Il Voglly -
In particular, this shows that the linear functional f +— (Crf,Crg)y,. is bounded from

dom(Cy) into C. Thus Crg € dom(C}) = dom(C;) and therefore g € dom(C?2).

Let g, h € Cy \ {0} be arbitrary. For showing that Vg € Y, it will first be shown that there
exists f € Cy with (Crg,Cxf)1, # 0 # (Crh,Crf)n, . Note that if (Crg, Crh)y, # 0, then
choosing f = g gives <C7rh7c7rf>7-lﬁ = <C7rhvc7rg>7'l7r # 0 and <07r9707rf>7-l77 = ”CﬂgH%{ﬂ- > 0;
see Equation (4.8). Therefore, it remains to consider the case (Crg, Crh)3,. = 0. Since h # 0
and C; is injective, it follows that Cyh # 0 # C2h. Since 7 is irreducible, the orbit 7(G)g is
complete in H,, and hence 0 # (m(x)g, C2h)3;, = (Cx[n(x)g], Crh)y, for a suitable z € G.
For € > 0, define f. := g+ ¢-m(z)g. Then

<C7Tf67 th>'H7r = <C7rga th>'r"l7r + €<C7r[7l'<$)g], C7rh>'H7r =E&- <C7T[7T(x>g]7 C7Th>7'l7r 7é 0
and

(Crtfe; Crg)t, = ||C7r9||g-tfr + e (Crlm(2)g], Crg)n. # 0,
whenever € > 0 is chosen sufficiently small. For such ¢, it remains to show that f := f. € Cy.
Using the intertwining properties (Part (i) of Lemma and the left- and right invariance
of Y, it follows that
fo = Vgg + Evﬂ'(a})gg + Evg[’/T(IE)g] + gzvﬂ_(l,)g[ﬂ(;[;)g]
= Vyg + eRI[Vyg) + eL7[Vyg] + €*LIRI[Vyg] € Y,
so f € Cy. Applying the reproducing formula (4.9)) yields
1 1
<Cfrh7 CWf)HW <C7rha C’Trf>7-1(7r <C7rf> C7r9>’H7(

Therefore, if Y *Y < Y then Vg € Y. On the other hand, if Y * YV < Y holds, then using
that Vyg, Vi f,Vah € Y NYY, also easily yields Vg € Y.

Vhg = Vig *o Vih = Vyg %6 Vi [ %o Vih.
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Next, we show that Cy is a w-invariant vector space. The invariance follows directly from
the identity Vi) s[m(z)f] = LIRS[Vyf], where x € G, combined with the left- and right
invariance of Y. For g, h € Cy, the identity

Vorn(g +h) = Vg + Voh + Vg + Vi,

and Vyh, Vg € Y, imply that Cy is a vector space.

Finally, if Cy # {0}, then it is norm dense in H, by irreducibility of 7 and since Cy is
m-invariant. g

Lemma [4:3] implies, in particular, that the anti-dual space
R = Rulg) = (Hi(9)"
is a well-defined Banach space. The associated conjugate-linear pairing will be denoted by
(f,h) == f(h), [f€Ruy, heHy.

The representation m on H, can be extended to act on R,, via

m(x)f: HE = C, h f([r(@)]*h) = ozt 2) f(r(z~h), (4.11)
for z € G and f € Ry,. This is well-defined, since w(z~!) : HL — HL is well-defined, linear,
and bounded. The associated (extended) matrix coefficients are defined by

Vif(z) = (f,m(@)h), [ € Ru,h€Hy,

for x € G.
The next lemma collects the most important properties of these objects for the purposes of
this article.

Lemma 4.6. Let g € Ay, be admissible and write H., = HL (g). Then the following hold:

(i) The pairing {-,-) : Ry x HL, — C is an extension of the inner product (-, )y ; that is,
Hr = R and (f,h) = (f,h)3, for f € Hr and h € HL. Moreover, if f € Hx C Ru,
then the definition of w(x)f in Equation agrees with the original definition.
Finally, for any f € Ry, the extended mapping

Vi Ru — L35,(G)

1s well-defined, linear, and bounded.

(ii) If f € Ry and h € HY, then
Vilm(2) f] = LZ[Va fl,

forx e@.
(7it) The map Vy : Ry — Li’?w(G) is injective. In addition,
Vif = Vof #o Vg (4.12)
for any f € Ry and h € H,. Moreover, (f,h) = (V,f, V9h>Li’7w7L5)'

(iv) There exists a bounded linear operator

V) Tw(G) = Ry

satisfying Vy(V'F) = I for every F' € L‘f?w(G) that satisfies F' = F x4 Vgg.
(v) The function f — ”ng”ij defines an equivalent norm on R,.

Proof. (i) Using the embedding H. < H, of Lemma it follows that ¢ : H, — Ry given
by (¢f)(h) = (f, h)n, for h € Hy, is well-defined, and |(cf)(h)| = [(f, )2, | S | Fllat [2llgy, for
f € Hyand h € H}U Thus ¢f € Ry and ¢ : Hy — Ry is bounded. Since ’Hllu is norm dense
in H,; by Lemma the map ¢ is injective, and thus a continuous embedding. In particular,

(tf,h) = (¢f)(h) = (f, h)3,, so that (-,-) extends (-, )x, .



22 JORDY TIMO VAN VELTHOVEN AND FELIX VOIGTLAENDER

Next, if f € H, and h € HL C H,, then we have with 7(z)f € H, as defined before and
m(x)tf € Ry as defined in Equation (4.11)) that

Ur(@) f1(h) = (m(@)f, M) = (F (@) ), = o(F) ([7(2)]h) = 7(2)[e()](h)

and hence ¢[m(x)f] = m(z)[(f)], showing that the definition of w(x)f in Equation (4.11]
agrees with the action of m on H,; C Ry.

Next, let f € Ry = (H})* and h € H}, and recall from Part (iii) of Lemmal[4.3|that the map
Zn: G — HL, x> w(x)h is measurable. Since f : H. — C is continuous, this implies that
Vif:G— C,x— Vf(x) = f(n(x)h) is Borel measurable. In addition, the norm estimate of
Part (i) of Lemma shows that

VS (@) < [ Fliru 7 (@), < w(@)|[ IRy - (1Pl

whence Vj, f € L1/w(G)
(ii) If x,y € G, then

(Varr(2))(y) = oz, 27 ) (f, n(@™ D (y)h) = o(x, 2™ o (@=L, y)Vif (a7 y) = LIVafl(y),

since o(z,x71y) = o(x= 1, y)o(za=t, y)o(z,271) = o(x, 27 o (z 1, y).

(iii) By Lemma 7(G)g is complete in HL = H} (g); thus, the mapping V; : Ry, — L
is injective. Let f € Ry, h € HY and x € G. Let (H.,)" denote the dual space of H} and define
€ (HL) by f'(k) = f(m(z)k) for k € H),. Using the Bochner integrable map Fy, , : G — HL,
defined in Lemma it follows that h = [ F, 4 due with convergence in L. Since Bochner
integration commutes with bounded linear functionals (cf. [13, Proposition E.11]), a direct
calculation using Lemma [£.1] entails

Vif @) = P = [ F(Frg) duct) = | Vihw)(x(0)g) dic(v)
= [ VAW (=(@)e(0)9) ductw) = [ olvy™Wagly™ ol 5) (x(@9)g) duc(v)

= / o(a,y Wagl Vol (2y) duc(y) = [ o(z.2" Vgl 2)V, (2) duc(2)
- ng *o th( )7

where the sixth step used that o(zy,y~ 1) = o(z,y)o(x,yy Vo (y,y~ 1) = o(y,y o(z, ) for
z,y € G. Setting x = eg, the above calculations also show that (f, h) = (Vo f, Vgh) e 11

1/w’
(iv) For F' € Ll/w(G), define

VSF: Ry, — C, hi—)/F (Y)g, )2, dpa(y),

which is well-defined since

LIE@I 00, ] diatw) < [~ F@)lw(w)Vyh(y)] dia(y)
G ¢ w(y)

< Flese IVohlizy, = 1F s, [Pl < oo

1/w 1/w

OO

In particular, this shows that V" : / (G) = Ry is a bounded linear map.
If F e LY7, (G) satisfies F' = F %, Vg, then Lemma shows

(m(Y)g, m(2)9)m, = Vym(y)gl(x) = Ly[Vygl(x)
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and hence

VoV )@) = [ F)w)g. w(@)o)u, dic(y

= [ P)L5Vadl@) duc(w)
= F %, Vyg(z) = F(x)
for any z € G.

(v) Let f € Ry. The estimate ||V, f|| L, < Ifllw,, follows from Part (i). For the converse,
set .=V, f € L‘f‘/)w(G), so that F' = F'x,V,g by Part (ii). Then, by Part (iv), h := V'F € Ry
with ||hl|r, < HFHLT‘}UJ’ and Voh = F = Vyf. Since Vg : Ry — L7, (G) is injective by
Part (iii), it follows that f = h, and thus || f||r, S || F]lze

1/w

constant is independent of f € R,,. a

= Hng||L<1>7w, where the implied

4.3. Coorbit spaces. Throughout this section, ¥ C L%(G) will be a solid quasi-Banach
function space on G and w will be a p-weight for some p € (0, 1]. We also assume that Y is
translation-invariant and that Y is L -compatible in the sense of Definition

The o-representation (m, H,) will be assumed to be p-integrable in the sense that for
Bi, = {g € Hr: Vog € W(LL)},

there exists an admissible g € BP. Note that B, C A, since W (LP) — WE(LP) — LL by
Part (ii) of Lemma

Definition 4.7. Let Y be LI -compatible and let ¢ € B be an admissible vector. The
associated coorbit space Co(Y') = Coy(Y) is defined as the collection

Cog(Y) :={f € Ry : Vo f € WE(Y)} (4.13)
and equipped with the quasi-norm || fllco(vy := [|fllco,(v) = Vo fllwev)-
Proposition 4.8. Let Y be L -compatible and let g € BE, be an admissible vector.

(i) If h € B is an admissible vector such that Vg € W(LE), then Co4(Y) = Cop(Y)
with || lco,(v) =< || - llcon(v)-

(i) The space Co(Y') is a m-invariant quasi-Banach space with Co(Y') < Ry, and ||-[|co(y)
1S a p-norm.

Proof. (i) For f € Co4(Y), the reproducing formula (4.12) yields that Vi, f = Vj f %, Vig. The
space Y is assumed to be LP-compatible, and therefore WX (Y) * W(LP) < W(Y), which
yields that

1Fllconry < Vel Vaglllyr vy S WVafllwe o IVagllwzny S 1fllco,(r)-

Since |Vyh| = |Vag|¥ and w is a p-weight, it follows that also Vyh € W/(LE). Therefore,
interchanging the role of g and h also yields | - [|co,(v) < || - llco, (v)-

(ii) The m-invariance follows directly from Part (ii) of Lemma |4.6/and the (left) translation-
invariance of Y, which implies the (left) translation-invariance of W%(Y). To show that
Cog(Y) — Ry, let f € Co(Y) = Coy(Y). Since Y is assumed to be L -compatible, we
have, in particular, W(Y) — L57,,, and thus H‘/:‘JfHUﬁw S IVafllwey = IIfllcory)- Since

the mapping f — ||V, f]| = defines an equivalent norm on R,, by Lemma it follows
immediately that || f|r, < [Ifllco,v)-

To prove the completeness of Co(Y'), let (fy)nen be a Cauchy sequence in Co(Y'). Then the
embedding Co(Y') < R,, yields that (f,)nen is Cauchy in R,,, whence convergent to some
f € Ry. In particular, this implies Vj f,(x) = V,f(z) for z € G as n — co. On the other
hand, the sequence (V; f,)nen is Cauchy in WE(Y), hence converging to some F € WL (Y).
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Since WH(Y) «— L$,(G) as Y is Li,-compatible, it also follows that Vg f, — F in Lf?w(G).
Thus F =V, f. Since F € WL(Y), this means that f € Co(Y), and
”f_anCo(Y) = Hngn_FHWL(y) —)0, as 1nn — 0Q.

The p-norm properties of || - [|co(y) follow easily from those of || - [y z(y)- O

The following simple consequence of Lemma is often helpful in concrete settings.

Corollary 4.9. LetY be L -compatible, let S — H, be a w-invariant topological vector space
and let g € S N BP, be admissible. Suppose that S — HL (g) and that the reproducing formula

() = [ (F7(a)g)se s - (rla)g. B, duc(a) (4.14)

holds for all f € S* (the anti-dual space of S) and h € S, where (-, -)s+s = (-,-) : S* xS = C
denotes the anti-dual pairing.
Then
Cog(Y)={f €ERuy: V,f e WE(Y)} ={f eS*:V,f e WE(Y)}.
in the sense that the restriction map
Cog(Y) = {f €S Vof e WH(Y)}, fr fls
is a bijection. Here, the coeﬁﬁczent transform Vy f for f € S* is defined by V, f(z) = (f, 7(z)g).

Proof. Since S — HL it follows that the restriction map f + f|s is well-defined from R,
into §* and hence also from Co,(Y) into {f € §*: V,f € WE(Y)}. Furthermore, since we
have 7(G)g C S and since 7(G)g C HL, is norm-dense by Lemma this restriction map is
injective.

To show surjectivity, let f € S* be such that F := V,f € WE(Y). Then also F € LS. (G)
since Y is LP-compatible and hence W%(Y) — L$7,(G). The assumption (4.14) yields, in
particular, that F' = F'x, Vyg. Hence, by Part (iv) of Lemma there exists f =VF eRy

such that ng =F = V,f € WE(Y). Therefore, fe Coy(Y), and fls = f by (#.14) and
Part (iii) of Lemma O

4.4. Analyzing and better vectors. This section provides (somewhat more) explicit de-
scriptions of the coorbit spaces Co(Y) for the specific choices Y being Ll (G), L*(G) or
L‘fjw(G). In particular, this section completely resolves the question of the relation between
the sets of so-called “analyzing vectors” and “better vectors”; see Proposition To the
best of our knowledge, this question was an open problem in the literature even for Banach
spaces; see for instance [34, Section 6.3].

As defined in Equation , the coorbit space Co,4(Y') consists of those f € R, for which
V,f € WE(Y). However, in the literature considering coorbit spaces associated with genuine
Banach function spaces Y, one usually defines Coy(Y) = {f € Ry : Vyf € Y}. The following
proposition identifies a sufficient condition regarding Y under which both definitions coincide;
in particular, it is applicable to all Banach function spaces.

Proposition 4.10. Let Y be a solid, translation-invariant quasi-Banach function space with
p-norm || - |y (for some p € (0,1]) and such that Y * W(LP) < Y and WE(Y) — L57,(G)
for a p-weight w. Then'Y is LP -compatible, and if g € BY is an admissible vector, then

Cog(Y):={f € Ruw: Vof e WHY)} = {f €Ru:Vyf €Y}, (4.15)
with || fllcog vy < IVaflly -
In addition, if WE(Y) < L?(G), then (up to canonical identifications), it holds that
Cog(Y) = {f € Hr: Vof e WH(Y)} = {f € Hr: Vyf €Y} (4.16)
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Proof. Using the estimate (2.8)), it holds for F € WX(Y) and H € W(LL) that
|1 F* Hllyryy = HML{F* H]HWL(Y) < [IIF] *MLHHY
SIEy - 1Mz S 1F e, - 1 s,

Hence, Y is L? -compatible.

Assume g € H, is admissible and Vg € W (L%) C LL. An application of Lemma |4.6| yields
that Vy f =V, f x5 Vyg for f € Ry,. Therefore, if V, f € Y, then the estimate (2.8]) shows that

Vo fllwe vy < IME(V 1+ VagDlly S IVaf Iy IMEVaglllw wn) S Ve f Iy IIVagllw )
wand hence || f|lco,v) S [[Vaflly- The estimate [|[Vyflly < [|fllco,(y) is immediate.

To prove Equation , it suffices because of H; < R, to show that each f € Co4(Y)
satisfies f € (H), with the canonical embedding ¢ : H, — R,,. For clarity, we denote by Vy
(resp. Vy) the coefficient transform on R, (resp. Hr). Let f € Coy(Y') be arbitrary and note
that F':= V7f € WL(Y) — L*(G) satisfies F = F *, V,g; see Lemma With the usual
Hilbert-space adjoint V" : L*(G) = Hr of Vy: He — L*(G), let f= VS F € Hy. Then, for
any x € G,

Velufl(z) = <>g>Rw,H1 — (f,m(@)g)n, = (VIF,m(2)g >H,,:<F,vg[w<x>g]>Lz
_/F @) g 7 )9 duy /F 9)9)(z) dpc(y)
= / Fy) L2 [Vog) (@) dpc(y) = (F +4 Vog)(z) = Flz) = V().

HenceN, V;(Lf) Vi f. Since Vi @ Ry — L1/w(G) is injective by Lemma this implies
f=1uf € (Hr), as required. 0

Remark 4.11. As stated above, Proposition could also apply for quasi-Banach spaces,
but the issue is that when Y is not a Banach space but rather a quasi-Banach space, then
the convolution relation Y « W(LE) < Y is rarely valid. Nevertheless, the identity is
known to hold for certain quasi-Banach spaces in some settings; see, e.g., |31443/46]. It is an
open problem whether holds in general for quasi-Banach spaces.

Lemma 4.12. Let w : G — [1,00) be a p-weight for some p € (0,1] and let g € BE be
admissible. Then each of the spaces L. (G), L*(G), L‘f‘/’w(G) and WE(LL) is LP -compatible.
Furthermore, the following identifications hold:

(i) COg(L1 (G)) = Hy(9)-

(ii) Cog(L*(G)) = Hx.
(iii) Cog(WH(Ly,)) = {f € Ha: Vof € W(Ly)}-
(iv) Cog(L 1/w( ) =

Proof. As a preparation, suppose that v,vy : G — (0,00) are measurable and such that
v(zy) < v(x )vo(y) and v(xy) < vo(z)v(y) for all z,y € G. Using the well-known identity
Jo f(ts) dug(t) D) Jo f() duc(t) (see, e.g., [22, Proposition 2.24]), it then follows that

IR £l = /G £ ga)P - folyoe™ ) duc(y)
=86 [ 7@ e P duat:) < (P A 11,

A similar computation for the left-translation shows
Lo fllpz <vo(x)- I fle and  [[Rofllpy <vole ™) - [A M fls (417)
for all z € G and f € LP(G), for arbitrary p € (0,00); these estimates also remain valid

for p = oo. Next, note w(z) = w(zyy™!) < w(ry)w(y~!) and hence wéy) < w(lx)wv(y);
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similar arguments show that also —— < wv(x)ﬁ. Therefore, applying Equation (4.17)

w(zy) —
with (v,v9) = (w,w) or (v,v9) = (1,1) or (v,v9) = (&, w"), respectively, shows that each
space Y € {L} L2 L‘fjw} is invariant under left- and right-translations. More precisely, we
see because of p € (0, 1] and by conditions (wl) and (w3) that

AP < w@ YAV ) = w(@), it A > 1,

R, < [A(z—1V2 < >

and ‘|RxHLTO/w_>L<1></>w < wv(x—l) = w(x).

We now verify that Proposition is applicable for each of the spaces in question.

First, note that any Y € {L}U(G),LQ(G),LE"/’w(G), WHE(LL)} is a solid Banach space and
thus, in particular, a p-normed solid quasi-Banach function space. We saw above that each of
the spaces Y € {LL (@), L*(G), Lcﬁw(G)} is translation-invariant. By the properties of Wiener
amalgam spaces collected in Section the same then also holds for Y = W(LL).

Second, it will be shown that Y * W (LP) < Y. To handle the case Y = L., we recall from
[49) §3.7] that the convolution relation L. % L1 <+ Ll holds, since w is submultiplicative.
Next, note that W (L2) = WE(WL(LP)) «— WE(LP) — L., where the last step follows from
Lemma Overall, we thus see that Ll « W(LP) — L. x L1 < Ll as required. For

w?
Fy e WE(LL) and F, € W(LP)), Equation (2.8)) shows that

|Fy# Ballwrry) = MO = B, < [MPF* (Bl

SIMER Ly - | Bollwn) = 1P lwews) - 1F2llw ).,
which proves that WH(LL) x W(LP) — WHR(LL), thereby settling the case Y = WE(LL).
IfY € {LQ,Lfl’?w} recall from above that ||R;||y—y < w(z); hence, Lemma shows that
Y x [LL]Y < Y. Since W(LE) — WE(LP) — [LL]V by Lemma this implies that
Y« W(LE) = YV * [Ly]Y <= Y for Y € {L? L%, }.

Lastly, it will be shown that WE(Y) — L‘f?w(G) Since w > 1, we have L7 — L7, .
Thus, Lemma [3.3| implies that WEX(WH(LL)) < W (LL) — L — L55,,» which proves the
conclusion for Y € {LL WE(LL)}. Lemma also shows WE(L?) «— L>® — L7, where
the last step again used that w > 1. We trivially have WL(LT?w) — L‘ﬁw.

Overall, Proposition shows that each Y € {LL, L? L35, WHR(LL)} is LP -compatible.
We now prove the remaining parts of the lemma.

(i) Lemma shows that W (LL) < L2 — L2 since w > 1. Therefore, Proposition
shows that Cog(LL) = {f € Hr: Vof € LL} =HL.

(ii) We trivially have WL(L?) < L2, and by admissibility of g it holds that V, f € L*(G) for
every f € Hr. Therefore, Proposition shows Coy(L?) = {f € Hr: V,f € L*(G)} = H,.

(iii) We have WE(LL) < LL < L? (see the proof of (i)). Therefore, Proposition m
shows that Cog(WR(LL)) = {f € Hr: Vyf € WEWR(IL)Y = {f € Ha: Vyf € W(LL)}, as
claimed.

(iv) By Lemma we have V, f € LT‘/)w(G) for all f € Ry. Therefore, Proposition
shows Cog(L77,,) = {f € Ruw: Vyf € L7}, } = Ru, as claimed. O

Lastly, it will be shown that the important auxiliary spaces of so-called “analyzing vectors”
and “better vectors” (cf. [19/20]) coincide precisely if the group G is an IN group. That G
being IN is sufficient is simple and well-known (see, e.g., [20, Lemma 7.2]), but its necessity
remained open; see also |34, Section 6.3].

Proposition 4.13. Let w : G — [1,00) be a p-weight and let g € BE be admissible. The
following assertions are equivalent:
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(i) The spaces Cog4(LL) and Coys(WE(LL)) coincide, i.e., Coy(LL) = Cog(WE(LL)).
(i) The group G is an IN group, i.e., there exists a relatively compact unit neighborhood
U C G such that = 'Uz =U forallx € G.

The following result is an essential ingredient in the proof of Proposition Its proof
was provided to us by T. Tao [52]; hence, no originality is claimed. The complete argument
is included here, with a few added details.

Proposition 4.14. If there exists an open, relatively compact unit neighborhood @@ C G
satisfying

pe(QxQ) <1 for all x € G,
then G is an IN group.

Proof. Throughout the proof, let C' > 0 be a constant satisfying ug(QzQ) < C for all x € G.

Step 1. This step shows that G is unimodular. If not, then A(xg) # 1 for some zy € G.
Replacing xo by z; Lif necessary, it may be assumed that A(zg) > 1. Then, by definition of
the modular function,

C = pe(QryQ) = na(Qrg) = Azg) na(Q) = (A(xo))" pa(@) = 00 as n— oo,
which is a contradiction.
Step 2. For the remainder of the proof, the space L?(G) = L?(G;R) will be considered as
a vector space over R. For U := QN Q™! this step will show that there exists § > 0 such that
<]leQI—1, ]lU2>L2 >6>0, zed. (4.18)
For this, note by unimodularity of G that ug(U - 2Uz™') = pa(UzU) < pe(QzQ) < C

for all # € G. Furthermore, (1 * 1,7,-1) ' (C\ {0}) C U - 2Uz~!. Hence, using Tonelli’s
theorem, it follows

(1eU)® = ne(U) - pe(zUz") :/GﬂU<Z)/G1xux71(z’1y)dua(y)duo(Z)

B /G<]1U * Lyup-1) W)duc(y) < ue(U - 2Uz ™) - [Ty * Lypp-1 | o
<O |1y *Aypgp—|lpee-
Thus, there exists y = y(x) € G satisfying

0<a= WL < (1m0 = [ 10 sy a2
G

- /G 1 (5 w0) Ly (W D dpc(w) = pe(U N alzb),

where the change-of-variables w = yz and the identity (zUz~')~! = 2Uz~! were used.

If W C G is open and satisfies ug (W) > 0, then there exists some w € W, which implies
that

pe(W=W) > pg(w™'W) = ug(W) > 6.
Applying this observation to W = W,, := yUNzUz~! and using that Wy_lwy c U?nzU?z7 1,
it follows that
(Lyp2g—1,1y2) 2 = pe(U* NaU?2™ ) > ug(szlWy) >, r €@,

which establishes the asserted claim (4.18)).

Step 3. Set Q = {1,p2,-1: x € G} C L*(G). Since 1,p2,-1 = LyR;1y2, it is easy to
see LR, C Q for all x € G. Furthermore, since U = U~!, each F € ) satisfies F¥ = F,
0 < F < 1 almost everywhere, and (F,12)r2 > 0 > 0 (cf. Step 2). Note that all of these
properties are preserved under convex combinations and under limits in L?; this uses that G
is unimodular so that F' — FV is a bounded linear map on L? and that if F,, — F in L?, then
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F,, — F almost everywhere for a suitable subsequence. Hence, letting 3 := convQ C L?
denote the closed convex hull of €, it follows that L, R,> C X for all z € G and that each
F € 3 satisfies F = FY and 0 < F' < 1 almost everywhere, and finally (F,12)72 > § > 0.

By the Hilbert projection theorem (see, e.g., |51, Theorem 12.3]), there exists a unique
Fy € X satisfying || Follz2 < ||H||;2 for all H € ¥. Since G is unimodular, the operator
L.R, : L? — L? is unitary; hence, L, R, Fy € ¥ with | Ly R.Fpl|z2 = || Fol| 2 < ||H|| 2 for all
H € 3. By the uniqueness of Fj, this implies L, R, Fy = Fp for all x € G. Note that Fy is
non-trivial since (Fy, Ly2)r2 > 6 > 0.

Step 4. Since G is unimodular, the identity F * H(x)=(F, L,H") shows that the bilinear
map
L*(G) x L*(G) = Cy(G), (F,H)w— FxH
is well-defined and continuous. Since F'x H € C.(G) for F, H € C.(G), this implies by density
that F' x H € Cy(G) for all F, H € L*(G). In particular, Hy := Fy x Fy € Co(G), where Fy is
as in Step 3. Furthermore, since Fo satisfies Fy = Fy and Fy = L, R, Fy, it follows that for all

x,y € G, it holds that Fo( le=tyx) = Fy(z~ 'y~ toz) = Fy(y tazz™!) for almost all z € G.
Since G is unimodular, the change-of-variables w = zzx~! therefore shows

Ho(x yx) /Fo VFo(z~ Ly~ yx) duc(z /F() VFo(y™ Loza™ )dug()

- [ R en Ry w) du(w) = [ ARy digte) 419
= (Fo x Fo)(y) = Ho(y).
where the fourth step used again that Fy = L, R, Fy and Fy = Fy.
Lastly, note because of Fy > 0 and Fy = Fa/ that

Ho(ee) = [ Fol@)Fo(a™) dpc(@) = | Fol32 > .

Since Hy € Co(G), this implies that V := {z € G: Ho(x) > ||Fo|3./2} is an open, relatively
compact unit neighborhood. In view of Equation (4.19), it follows that zVz~! = V for all
x € G. Hence, G is an IN group. O

Proof of Proposition[{.13 Throughout the proof, the identifications
Cog(Ly) ={f € Hn: Vof € WH(Ly)} and  Cog(WH(Ly,)) = {f € Hr : Vof € W(Ly)}
provided by Lemma will be used.

First, suppose that G is an IN group. Since the spaces W (L} ) and W (L) are independent
of the choice of the neighborhood @ (as L}, is left- and right invariant), and since G is an
IN group, it may be assumed that zQz~! = Q for all x € G, that is, zQ = Qz. This easily
implies M*F = MRF for any measurable F : G — C and hence W' (Y) = WE(Y) for any
solid quasi-Banach function space Y on . Therefore,

W (Ly) = WHWH(L,,)) = WEHWE(Ly,)) = WE(Ly,),
which easily implies Cog(LL) = Co,(WE(LL)).
Second, suppose Co,(WE(LL)) = Co,(LL ) The inclusion ¢ : Co,(WE(LL)) < Co,4(LL)
is clearly bounded and linear. Since Co,4(LL) = Coy(WT(LL)), it follows that ¢ is bijec-

tive. By the bounded inverse theorem, this 1mphes that ¢ is boundedly invertible, i.e.,
I lcogwryyy = I+ llcoy(zy)- In particular, this implies existence of a constant C1 > 0
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satisfying

||7T(1’)g||COQ(WR(L}U)) <Ci- ||7T($)9||cog(LgU) =Cr- ||‘/;}[7T($)9]HWL(L}U) = Cl'”Lg[VgQ]HWL(Lb)
= Cr||La[Voglll e ) = CI’HML[Lx(Vgg)]HL}H = Cl'||Lx[ML(V99)H|L11ﬂ
< Or-w(z) - [|MF[Vygl|l ,, = C2 - w(x) (4.20)

for all z € G. Since |Vyg| is continuous with [Vyg(ea)| = [lg[|3, > 0, there exist § > 0 and an
open, symmetric, relatively compact unit neighborhood U C @ satisfying |V g(z)| > ¢ for all
x € U. In particular, this implies that

M (Vy[m(z)g])(y) = esssup|Vy[m(2)g](qryqe)| = esssup|L3[Vygl(q1yq2)|

q1,92€Q q1,92€Q
= sup |L.[Vygl(qiyge)| > 6+ sup 1y(z ' qiyge)
q1,92€Q q1,92€Q

=0 1guq(y) >0 - 1g.q(y)

for all z,y € G. Since w is locally bounded (cf. Remark [3.2), there exists a constant
C3 = C3(w,Q) > 0 satisfying w(q) < C3 for all ¢ € Q = Q~'. Hence, if 1g.q(y) # 0,
then z = ¢ 'ygy ' for certain q1,¢q2 € Q and hence w(z) < w(g; Hwy)w(gy') < CTw(y).
Combining these observations with gives

Co - w(@) = [r(@)gllco, sy = Vol @ally oy, = 1M Vylr(@)a) 1, >3- 11guollz
> 0575 - w(a) - [gaoll = C526 - w(z) - pe(QaQ).

It follows therefore that ug(QrQ) < C2C2/§ =: C for all z € G. An application of Proposi-
tion shows that G is an IN group. O

5. CONVOLUTION-DOMINATED OPERATORS AND LOCAL SPECTRAL INVARIANCE

This section considers classes of convolution-dominated operators. The first subsection is
devoted to integral operators, whereas the second concerns convolution-dominated matrices.

Throughout the section, the weight w : G — [1, 00) will always be assumed to be a p-weight
for some p € (0, 1].

5.1. Integral operators. Throughout, let ¢ € B be a fixed admissible vector (see Sec-
tion . Then the image space
Ky = Vy(M) < L(G)
is a closed subspace forming a reproducing kernel Hilbert space, with reproducing kernel
K: GxG—C, ()~ Vyr)g@) = L Vygl(),
see Section Since g € BE, by assumption, it follows that |Vyg| € W (LE), and
K (z,y)] = [K(y,2)| < [Vygl(y™'2), zy€ed.
The following general class of localized kernels will be the central object of study.

Definition 5.1. Let p € (0,1],let w : G — [1,00) be a p-weight, and let g € BE, be admissible.
A measurable function H : G x G — C is called L -localized in K4 if it satisfies the following
properties:
(i1) H(-,y) € Ky for all y € G,
(i2) H(z,-) € K, for all z € G,
(i3) There exists a non-negative envelope ® € W (LE)) satisfying
max {|H(z,y)l, H(y,2)|} < D(y~'), 2.y €GC. (5.1)

For a measurable function H satisfying condition (i3), the notation H < ® will be used.
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Remark 5.2. Note that if Equation (5.1]) holds, then it also holds for ®) = min{®, ®¥} instead
of ®. Hence, one can always assume ® to be symmetric.

The following lemma summarizes the basic elementary properties of LP -localized kernels
and of the associated integral operators.

Lemma 5.3. If H is L -localized in Ky, then the associated integral operator
Ty: L'(G) = L'(Q), TuF(x /H 2,9)F(y) duc(y)

is well-defined and bounded for arbitrary r € [1,00], with absolute convergence of the defining
integral for all x € G. Moreover, the following properties hold:

(i) The map Ty : L*(G) — K, is well-defined.

(i) For all z,y € G,

H(x,y) = (Tu[Vy(n(y)9)], Vg(m(2)9)) 2 (5.2)

and |H(z,y)| < | T, -2 - 913, -

(iii) The adjoint kernel H : G x G — C defined by H(z,y) = H(y, x) is also LP -localized
in Kg. In fact, if H < ®, then H < ®.

(iv) If L : G x G — C is also L -localized in K4, then so is the product H ® L defined by

Ho Ley) = [ H@2)- Le)dio(z) = TalL(.)@)

In addition, if H < ® and L < © with ®,© symmetric, then HOL < max{®+0, OxD}.
Moreover, the identity (Ty o T)F = Tyor F holds for all F € L*(G).

Proof. Throughout the proof, let ® € W (LE) be symmetric with H < ®, so that
[H(z,y)| < Dy ') = ®(ay) (5.3)
for all x,y € G. Before proving the individual statements of the lemma, we collect a few

auxiliary observations and prove the boundedness of Ty : L™ — L".

By Lemma and because of w > 1, it follows that W (LP) < WE(LP) < L? for all

€ [1,00]. The estimate |H(z,y)| < ®(2~'y) shows that H(z,-) € L*® for all z € G and

€ [1, 00|, which implies that the integral defining Ty F'(z) exists for any F' € L" and = € G.
Moreover, the estimate yields

L@yl i) <[l and [ [H)] dic) <[]
G G

for all z,y € G. An application of Schur’s test (see, e.g., [23, Theorem 6.18]) therefore yields
that Ty : L"(G) — L"(G) is bounded for arbitrary r € [1, 00].

Let Fy, Fy € L?(G). Then, using the Cauchy-Schwarz inequality, the pointwise estimate
|H(x,y)| < \/é(m—ly)cb(y—lx) and Tonelli’s theorem, it follows that

//|F2($)!'|H(l’7y)!'|F1(y)|duc(y)duc(l“)
GJG
1/2

< [ [ o6 diw) ([ o6 DIBGE dion) it

< |!¢‘1/2</G|F2($),2 d(e) )1/2</ / By (o) dc(gldna(e ))1/2

1/2

1/2
<2 - 1Bl - @] 127 - [ Bl o
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Therefore, Fubini’s theorem is applicable and justifies the calculation
Wby, Bo) = || Faf@) - Hiw,) - Fu@) duc(v)dc(@)
- [ A /G H(z,y) - Fa(a) dpc(w)dpc () (5.4)
= [ A - (H9). ) duo(y)

for arbitrary Iy, Fy € L*(G).

(i) Let Fy € L*(G). Since K, < L*(G) is closed, to show Ty F; € K, it suffices to show
(T Fy, Fy) =0 for all F; € ICgL. For this, simply note that H(-,y) € Iy for all y € G, so that
Equation shows (TgFi, o) = [ Fi(y) - (H(-,y), F2) dug(y) = 0.

(ii) Note that the reproducing formula gives F(x) = (F,Vy(n(x)g)) 2 for all F' € Ky
and z € G. This, combined with the identity , and H(-,z) € K4 and H(z,-) € K4, gives

(TuVy(m(y)9)], Vg(m(2)9)) 12 =/ Vo(m(y)g)(2) - (H (-, 2), Vy(m(2)g)) duc(z)
_ / V,(x H(x,2) dpc(2)

(1'7 ),Vg(ﬂ(y)g» H(:v,y),

which shows (5.2)). In particular, using the isometry of V, and because of ||7(x)gll%, = ||gl/%,
and Vy(7(y)g) € Kg, this implies that

[H (2, )| < 1 Tr i, 2 IVa(m@) ) 21V (7 (2)9) | 2 = 1T 1, - 22 9113,
which proves part (ii).

(iti) Simply note that H(-,y) = H(y,-) € K, and H(z,-) = H(-, ) € Ky forall z,y € G and
that max{|H (z,y)|, |H (y, z)|} = max{|H(z,y)|,|H(y, z)|} < ®(y~'z), even without assuming
that & is symmetric.

(iv) By part (i) and because of L(-,y) € K, it follows that (H® L)(-,y) = Tu|[L(-,y)] € Kq.
Another direct calculation shows that (H ® L)(z,-) = T; [H(-,z)] € K, by Part (i) applied
to L (which is L2 -localized in K, by Part (iii) and since H(-,z) € K,.

If H< ® and L < © with symmetric ®,0 € W (LE), then

16 L) < [ JHE) - |Lew) dio) < [ 86206y) duo(2)
= [e@)ew ey dug(w) = @+ )@~y = (O &)y )

where the last step used the elementary identity (F' x H)Y = HY x FV. The calculation from
above also shows |H ® L(y, )| < (® * ©)(y~'z). Hence, H ® L < max{® % ©,0 x ®}. Since
® 0,0 %P e We(Lh) by Corollary 3.9} it follows that H ® L is L% -localized in Kg.

Lastly, note that Lemma shows ® * © € W(LE) — WE(LE) < L2. Hence, it follows
for arbitrary F' € L?(G) that

| Gy  LuAIFE) dicwire) < [ [ @96 2)IF )] dic)duc(z)

= [IFG)I- (L@ £ 0)(2) duc(2
< |[Fl| o | L (@ + ©) | 12 < o0
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for any x € G. Therefore, Fubini’s theorem is applicable in the calculation

TalTeP)) (@) = [ @) TuF) dec@) = [ [ @) L) FE) dia(@)due()

= [(HoD@.2)- F() duo(z) = TorP)@)
which completes the proof. O

The next result establishes a form of local spectral invariance of L -localized integral opera-
tors. Concerning the holomorphic spectral calculus appearing in the statement of the theorem,
see, e.g., |51, Sections 10.21-10.29].

Theorem 5.4. Let p € (0,1] and let w : G — [1,00) be a p-weight. Let ® := |Vyg| € W (LE)
for an admissible g € BE, and let © € W (LE)) be non-negative.

For arbitrary 6 > 0, there exists ¢ = (0, g,Q,w,p,0) € (0,0) with the following property:
If ¢ : B5s(1) € C — C is holomorphic and if H : G x G — C is LE -localized in KC4 satisfying

(1) H< 0O,
(2) Ty —idg,llx,~12 <€,

then there exists an LE -localized Hy : G x G — C such that the operator ¢(Tg) : Kg — Ky
defined through the holomorphic functional calculus satisfies $(Tu) = Th, |k, -

Proof. The proof is divided into several steps and closely follows the proof of [50, Theorem 4.3].

Step 1. (Choice of €). Let § > 0 be given and set § := [|g[|3, and ©g := min{6, 0"},
so that H < ©¢. Using Corollary choose a constant C7 = Ci(w,p,Q) > 1 satisfying
1Ey * Fallw ey < [1EL)* [Falllw oy < Cr- I Fullw ez - [ F2llw oz for all Fi, Fy € W(LE).

For € > 0, set ¥, := min{ef, ® 4+ Op}. Since MV, < min{ef, M® + MO} € L it follows
from the dominated convergence theorem (applied along an arbitrary null-sequence &,, — 0)

that H\IIEHW(L — 0 as € | 0. Hence, there exists ¢ = (0, g,0,w,p,Q) € (0, %) such that

P

2)
)

IWellw ey < o7

Step 2. (Series representation of ¢(Ty)). Let ¢ : Bs(1) — C be holomorphic. By as-
sumption, |[idc, — Thllkc,~k, < € < %, and hence o(Ty) C Bs/(1). This implies that
&(Th) : Kg — Kg4 is a well-defined bounded linear operator. By expanding ¢ into a power
series, we can write ¢(z) = > o2gan(z — 1) for all z € Bs(1), for a suitable sequence
(an)nen, C C. The series representing ¢ convergences locally uniformly on Bjs(1). Therefore,
elementary properties of the holomorphic functional calculus (see, e.g., [51, Theorem 10.27])
show that

¢(TH) = i [7%) (TH — id}cg)n, (5.5)
n=0

with convergence in the operator norm. An application of the Cauchy-Hadamard formula
gives 6 < [ limsup,,_,o ]an|1/”]71. Thus, there exists some N = N(¢,d) € N such that
|an |/ < 2 for all n > N. Consequently, there exists C, = Cy(6) > 0 such that

lan| < Cy - (2/8)" (5.6)
for all n € Ny.

Step 3. (Integral representation of Ty —idx,). For ' € Ky and = € G, the reproducing
formula (4.5)) yields that F(z) = Tk F(x), where K is the reproducing kernel given by (|4.6]).
In other words,

Tx|x, = idk, and Ty —idk, = Tr|c, for L:=H - K. (5.7)
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Since K(z,-) = Vy[n(z)g] € Ky and K(-,y) = Vy[n(y)g] € ICy for arbitrary =,y € G, it follows
that L(-,y) € Ky and L(z,-) € K4 for all ,y € G. Since also
|L(y, )| < ®(z7"y) + Oo(z™'y) = By~ ') + Oo(y~'x)

and |L(x,y)| < ®(y~1z)+O(y~'z) and hence L < ® +O¢ with ® +0y € W (LE), it follows
that L is L -localized in /C,.

Step 4. (Refined LY -localization of L). By Step 3 and the assumptions of the theorem, it
holds that

1TLllic,~r2 = 1T — idi, [, 22 <&
Therefore, the pointwise estimate following from the identity (5.2)) shows that
1L(z,9)| < | Trlc,—z2 - l9lF, <eB,  zyed.
Combined with the estimate from the end of Step 3, this shows L < V..
Step 5. (Powers of W, and L): For n € N, define \Ifz(l) := U, and \Il:(nH) = U, * \I/:(n)
inductively. Similarly, let L°W := L and L°tD) := [°®™ @ L for n € N, where ® is
the product defined in Lemma By a straightforward induction, that lemma shows that

(Ty — id,)" = Tpl, = Tpem |k, and that L°™ is LE-localized in K, for each n € N. In
particular, this implies

LW y) ek, and LM (x,-)eKk,  xz,ycGC. (5.8)

Furthermore, a straightforward induction shows \I/;‘(”“) = \Il:(”) * U, and (\I/;(”))V = \Ilz(n)
for all n € N.

Another induction argument shows that L°( < \I':("): For n = 1, this was shown in

Step 4. For the induction step, Lemma shows by symmetry of ¥, and \I’Z(") and because
of L°M < w:™ and L < W, that

Le0H) = 120 o [ < max {W, * U @) g = wrnth)]
as required. Lastly, it holds that
10 ) < (6/4)",  neN. (5.9)

€ in Step 1. Next, for the induction step note by choice of C that
I Dy = 12 P iy < Crll el 192 s < 6/4-(6/4)" = (5/4)"*,

Indeed, for n =1 this follows since C1 > 1 and hence |[W.||y1r) < 767 < % by the choice of

which establishes the claim ((5.9)).

Step 6. (Construction of Hy). Combining Equations (5.6) and (5.9)) gives

> (anl - 192 lyrzp))” Z (2/0)" - (6/9)"]" = CF - Y _(1/2))" < oo
n=1 n=1 n=1

Since the norm on WC(Lp) is a p-norm, the preceding estimate implies by Lemma that
the series > 02 |an| i s unconditionally convergent in W (LE). Since We (LE) — Cy(G)
as a consequence of Lemma [3.3] the series in particular converges uniformly.

Define ¥ := |ag| ® + >0 ; |an| i e We(LE). Then the kernel Hy : G x G — C defined
by

Hy(z,y) = ao- K(z,y) + Y a, L™ (2,y)

n=1
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is well-defined with the series converging absolutely, and

[Hy(2,9)| < laol - [K(z,9)| + Y lan| - L) (@, y)]
e (5.10)
< laol - Dy~ ") + Y |an| - VI (y'a) = U(y @) < o0,

n=1

since Lo < @™ (cf. Step 5.) Similar arguments show that also |Hy(y,z)| < ¥(y~'z) and
thus Hy < W.

To prove that Hy is L -localized in K, it remains to show Hy(-,y) € K, and Hy(z,-) € K,
for all z,y € G. To see this, note that Lemma shows U € W(LP) — WL(L{’U) — L2
In combination with Equation and the dominated convergence theorem, this implies
that the series defining Hy(-,y) converges in L?*(G). Since K, C L*(G) is closed, since
L°M (., y) € K, by Equation , and since K (-,y) € Ky, this implies Hy(-,y) € Ky, as re-
quired. The proof of Hy(z,-) € K, is similar, using that (y — ¥(y~lz) = U(z71y)) € L*(G).

Step 7. (¢(Tu) = Th,lk,). Let F' € Ky and x € G. Note that Step 6 shows

3 lan] [IL°M (2, )| < W(a),
n=1

where ¥ € L?(G). Hence, the dominated convergence theorem justifies the following calcula-
tion:

Ty, F(z) = ao- Tk F(x i [an - Trom F(x)] = ao - F(z +Z an - [(Ty —idk, )" F](z))
=" (an - (T —id,)"Fl(2)) = [¢(Tr) F(2),
n=0

where the second (resp. fourth) equality used (5.7)) (vesp. (5.5)). Thus, ¢(Ty) = Ty, |k, O

Theoremprovides an extension of [50, Theorem 4.3] from L. -localized kernels to general
LP -localized kernels for p € (0,1]. This extension will be crucial for developing the theory of
molecules for quasi-Banach coorbit spaces in Section [6]

5.2. Matrices. This section concerns matrices that are indexed by discrete subsets of G (that
do not need to be subgroups) and that possess a certain off-diagonal decay. The precise notion
is as follows.

Definition 5.5. Let p € (0,1] and let w : G — [1,00) be a p-weight. Let A = (\;)ier and
I' = () jes be relatively separated families in G.

A matrix A = (Aij)ujerxs € CI*7 is called LP -localized if there exists an envelope
& € We(LP) such that

|Aij| < min{®(y;'N), (A1)}, i€, e (5.11)

If condition (5.11)) holds, the notation A < ® will be used. The space of all LP -localized
matrices in C**!' is the collection

Ch(A,T) := {A eC*l . A< ® for some ® € WC(L{’U)},
and is equipped with the mapping || - ||z : CE — [0, 00) defined by

[Alley = it Bl - A= D€ Wo(LD)}.
In case of A =T, the notation CE/(A) := CE (A, A) will be used.
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The basic properties of LP -localized matrices are collected in the following lemma.

Lemma 5.6. Let A = (N)ier, I' = (v5)jer, and T = (vg)rek be relatively separated families
in G. Then the following hold:

(i) The space CL(A,T') forms a quasi-Banach space with p-norm || - ||cp .
(ii) Any A = (Aij)ij)erxs € CH(A,T) satisfies
D 1Al SRel(A) - [Aller  and ) |4y S Rel(T) - [|Allen, (5.12)
icl jed
with an implicit constant depending only on p,w and Q. In particular, the embedding
CP(A,T) = B("(J),£"(I)) holds for all r € [1,00], with

[Aller(1)—er (1) S max{Rel(A), Rel()} - [ Al - (5.13)

(iii) If A€ CP(Y,A) and B € CE(A,T), then the product AB (which is defined as usual by
(AB)1j = > icr AriBij) satisfies AB € CE(Y,T"), with

[ABllcr, < Rel(A) - [|Allez | Blle, - (5.14)

for an implicit constant depending only on p,w and Q.

Proof. All implied constants in this proof only depend on p, w, Q.
(i) The absolute homogeneity and the p-norm property ||A + BHZ5 < HAHZﬁ + ”BHZc)ng of

| - llez, follow directly from the corresponding properties of || - ||y (z2). For A € CL(A,T)
satisfying A < ® with ® € W (LE), the inequality (cf. Lemma
|4ij] < @(v; ' N) < [ @lle, = 1@l S 1@l zn), (5.15)

directly shows that |A; j| < [[Aflcz, and hence that || - [|cz is positive definite.

It remains to show that CP(A,T") is complete. For this, by Lemma it suffices to show
that if (A™),cn is a sequence in CZ, (A, T) satisfying 3, || A™ ”Iég < 00, then 32, ey A™ con-
verges in CB (A, T'). Given such a sequence (A™), ey, define A € CI*/ by A, := 3, cn A(n)
That A is well-defined follows from the observation after Equation by noting

STIAD < ST IAE < Y AL, < oo
neN neN neN

For n € N, let ®,, € W (L2,) be such that A™ < ®,, and [Pl (zry < 2HA(”)||C5), and define
On = > 0 ny1 Pn for N € Ng. The choice of ®,, implies that

Z 125 HW(L” <2 Z HA(H)HZCO& < 00,

neN neN
so that O € W (LE) by Lemma In addition, each Oy satisfies the envelope property

(4-34)

for all i € I and j € J. In particular, this implies that A — 27]1\[:1 A € ¢ (A,T) with

HA ZA”)

Thus, 3,,cny A™ converges in CE (A, T). Overall, this shows that C(A,T) is complete.

(ii) Let A € CP(A,T') and let ® € W (LP) be such that A < ®. Because of w > 1, an
application of Lemma [2.1] yields, for all j € J, that

_ Rl(A) Rel(A
S Al < Y@yt "’(Q>||<I>||Wm>s Z(Q

el el

e}

< D min{®a(y; ' A), Bn(A )} < min{On (v ' A), On (A )}
n=N+1

’j

0
<H@NHW(L2})§ Z ||(I)n||€V(LfU)—>O as N — oo.
n=N+1

~—

1@ llwe ()

~—

=
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where the last inequality follows from Lemma Similarly, = ;¢ s [Ai;] < 521 o 1@l Wz

This implies the estimates (5.12). The embedding (5.13)) is a direct consequence of Schur’s
test, see, e.g., [23, Theorem 6.18].

(iii) Let ®,0 € W (L) be such that A < ® and B < ©. By Lemma it follows that,
for arbitrary vy, € T and ~; € I,

_ _ Rel(A
(AB),| < S Al Bisl < 30 00 Moo ay) < Do)
iel icl MG(Q)

A similar calculation also gives |(AB)y ;| < Rel(( ; (ME® % MFEO) (v; 1v;). Define the function

H:G —[0,00) by

(MO % M ®) (5 up).

_ Rel(A)
na(Q)
so that [(AB)y,;| < min{H (v; Yog), H(vy'v;)} for all j € J and k € K. By Corollary it

follows that M*© x ME® € Wo(LP) and ML x MPO € We(LP), and thus H € W (LP),
with

. ((ML@ «* ME®) + (ME® « MR@)>7

[ H lwerzy < Rel(A) - [1Ollwe 2y 1@ llwe (22,)-
Overall, AB < H with [[ABl|lcr < [[H |lyy(Lz,), which easily yields the desired claim. O

The proof of the following theorem resembles the proof of Theorem but for matrices
instead of integral operators. For Ll -localized matrices, the result can already be found in
50].

Theorem 5.7. Let w : G — [1,00) be a p-weight for some p € (0,1] and let © € W (LE).
Let R > 0, and let A = (\;)icr be a relatively separated family in G with Rel(A) < R.

For arbitrary § > 0, there exists € = £(0, R, 0,w,p, Q) € (0,0) with the following property:

If ¢ : Bs(1) € C — C is holomorphic and if A € CE(A) satisfies

(1) A< 0O,

(2) [JA —idez(pyllez(ry—e2(r) < &,
then the operator ¢(A) : 2(I) — €%(I) defined through the holomorphic functional calculus is
well-defined and its associated matriz is an element of CP(A).

Proof. Throughout, let ® € W (LE) be such that A < ®. The proof is split into four steps.

Step 1. (Choice of €). For a symmetric function ¢ € C.(G) C W¢(LE) such that ¢ > 0
and p(eg) = 1, define © := ¢ + ®. For k € N, let O := min{k~!, ©} and note the pointwise
estimate and convergence

MOy (r) < min{k™', MO(z)} -0 as k — oo.

Since MO € LP(G), an application of Lebesgue’s dominated convergence theorem implies
1Okllw ey = [MOk| 1z — 0 as k — cc.

Let C' = C(p,w,Q) > 0 be the implicit constant appearing in Equation and define
Cy :=max{1l,CR} and Cy := (4/6) - C; > 0. By the previous paragraph, there exists kg € N
satisfying ko > 2/d and [|©k, ||y, zr) < 1/C2. For such a fixed ko, set € := kg' throughout.

Step 2. (Series representation of ¢(A)). Let (an)nen, With ¢(z) = >2,en, @n - (2 — 1)
for all z € Bs(1) with uniform convergence on compact subsets of Bs(1). By assumption,
A —idg(p)ll2—e2 < €, and € < /2 by Step 1, and thus 0(A) C Bja(1) C Bs(1). Therefore,
basic properties of the holomorphic functional calculus (see, e.g., [51, Theorem 10.27]) yield
that

(A = I an (A~ idgqp)" (5.16)

n€eNy
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with convergence in the operator norm topology. Since § < [limsup,,_, |an|"/ ”]_1 by the
Cauchy-Hadamard formula, there exists N = N(¢,8) € N such that |a,|/" < 2/6 for all

n > N. In particular, this implies that there exists Cy = Cy(0) > 0 satisfying
|an] < Cy - (2/0)" (5.17)

for all n € Np.

Step 3. (L%,-localization of A —idp(p)). Identify the operator A —id(;) with the matrix
B € CM™I given by By = A; i — 6 for 4,4’ € I. Since ||A — idellese <e = kot it
follows that |B; /| < ko ! In addition, a direct calculation gives

|Biar| = |Aiir — 8iir| < @A) + (Nt A) = O\ N), Qi e 1.

Similarly, it follows that |B; | < ©(\;'Ay). Thus, B < O,.

Step 4. (Norm convergence of $(A)). By the choice of C7 > 1 in Step 1, it follows by an
induction argument and Equation (5.14) that B"™ € CP (A), with

n " C MN\"
18 < i 18I < (2) = (8) nenm

where the second equality used that | Bllcr < [|Ok |l (1) < Cy'; see Step 3. Combining
this, together with Equation ([5.17)), yields

S (ol - (4 = i)z )" < 3 (Co- 2/0)" - (6/4)") < CE Y (277)" < o0,
neN neN neN

Since Lemma 5.6/ shows that Cf, (A) is a quasi-Banach space with p-norm || - [[¢z, it follows by
Lemma that the series >°, oy an(A — idg2(p))" converges in Cf(A). Since idpzy < ¢, it
follows that (A —idsp(p))? = idg(s) € CB(A). Therefore,
$(A) = ao(A —idpe)’ + Y an(A—idp()" € CE,
neN
which completes the proof. O

6. DUAL MOLECULES FOR COORBIT SPACES

This section is devoted to the notion of molecules in coorbit spaces. The main results
obtained show that coorbit spaces and associated sequence spaces can be decomposed in
terms of dual molecules of frames and Riesz sequences. These results will be used in Section 7]
to provide criteria for boundedness of operators on coorbit spaces.

6.1. Frames and Riesz sequences. Let H be a separable Hilbert space. A countable family
(9i)ier in H is called a Bessel sequence in H if there exists B > 0 such that

YoIfg)? < BlIfIF forall feH.
i€l
Equivalently, (g;);er is a Bessel sequence if the coefficient operator associated to (g;)ier,

€: H—0C0), [ (f 0))ier

is well-defined and bounded. The reconstruction operator 9 = €* : {>(I) — H associated
to (gi)ier is given by Z(c¢;i)icr = > ey cigi- The frame and Gramian operator associated to
(9i)ier are defined by . := 9% : H — H and G := €D : (*(I) — (*(I), respectively.

A Bessel sequence (g;)ier is called a frame for H, if there exist A, B > 0 (called frame
bounds) satisfying

AllfIB < DI 90 < BlIfI5, forall  f € H; (6.1)

el
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this holds if and only if the frame operator . : H — H is bounded and invertible. Two Bessel
sequences (g;)ier and (h;);er are said to be dual frames for H if

f= Z<f7gi>hi = Z<f, hi)g; forall feH.

iel icl
If (gi)ier is a frame for H, then (. ~1g;)ics is a dual frame of (g;)ics, called the canonical
dual frame. A frame is called Parseval if holds with equality, i.e., if . = idy. If (g;)icr
is a frame for 7, then the system (.7 ~/2g;);cs is a Parseval frame for H.
A Bessel sequence (g;)ier is called a Riesz sequence in H, if there exist A, B > 0 (called
Riesz bounds) satisfying

Alle]lz < < Blc|z forall c=(c;)ies € (1), (6.2)

> cigi

i€l

2
H
Equivalently, (g;)icr is a Riesz sequence if and only if the Gramian operator ¢ : ¢2(I) — ¢%(I)
is bounded and invertible. If (g;);cr is a Riesz sequence in H, then it admits a unique
biorthogonal system (h;);c; in span{g; : i € I}. A Riesz sequence (g;)ics is a frame for
spanig; : i € I}, and (. ~Y2g;)icr is an orthonormal sequence in H, where . is the frame
operator considered as an operator on Span{g; : ¢ € I}.

For background, proofs, and further properties, see, e.g., the books [12/55].

6.2. Molecules and their basic properties. Throughout this section, g € B, denotes an
admissible vector and K, := V;(H,) the associated reproducing kernel Hilbert space.

The following definition introduces the central notion of this section.

Definition 6.1. Let w : G — [1,00) be a p-weight for some p € (0,1]. Let A = (\;)ier be
relatively separated in G.

(a) A family (h;)ier in H is a system of (LE, g)-molecules in H if there exists a symmetric
envelope ® € W (L)) such that
Vghi(z)] < @\ z) (6.3)

forall i € I and z € G.
(b) A family (H;)icr in Ky is a system of LE -molecules in K, if there exists a symmetric
envelope & € We (L) such that

|Hi(z)| < @(\ ') (6.4)
forall i € I and =z € G.
If condition (6.3) (resp. (6.4)) holds, this will be indicated using the notation (h;)ier < @
(resp. (H;)ier < ®).
Remark 6.2. A family (H;);cr is a system of LP -molecules in /Iy if and only if (Vg_lHi)ie] is

a system of (L2 g)-molecules in H.

The molecule condition (6.3]) is independent of the choice of the admissible vectors g, h € BE,
as long as the matrix coefficient Vjh is well-localized.

Lemma 6.3. If g, h € Bl are admissible with Voh € W(LE)), and if (hi)icr C Hr is a system
of (LY | g) molecules, then it is also a system of (LY, h) molecules.

Proof. Since (h;)icr is a system of (LP,g) molecules, there exists a symmetric envelope
® € We(LE) satisfying [Vyhi| < Ly, ® for all i € I. Since w is a p-weight, [LF]Y = LE | whence
the assumption Vyh € W (LE) implies by Lemma[L.1]that ¥g := [Vyh|+ [Vig| +® € W(LE) is
symmetric. Therefore, Corollary [3.9|and the elementary identity (Fy * )Y = Fy x F}Y imply
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that U := Vo« Uy € We(L) is symmetric. Using the reproducing formula Vi,h; = Vyh %, Vig
(cf. Lemma , it follows that

(Vihi(z)] < (|Vghi| * |Vagl) (@) < (Lx, @ * |[Vagl) (z) < Ly, [® * [Vig|](x)
< L)\'L [\IIO * \IIO](‘T) = \I’()‘i_lx)7

where it is used that (LyF}) * Fy = Ly[F} % F»]. This shows that (h;);cs is a family of (L2, h)
molecules. O

In light of Lemma a system (h;);er satisfying the molecule condition (6.3]) will simply
be referred to as a system of Lf-molecules in H.

The following lemma shows that the molecule property is preserved under the action of
convolution-dominated matrices and integral operators.

Lemma 6.4. Let (H;);cr be a system of LE -molecules in IKC, indexed by the relatively separated
family A = (N;)ier. Then the following hold:
(i) If H : G x G — C is L -localized in K4 (see Definition , then the family
(H;)icr C Ky defined by

Hi(z) := (TyH;)(z) = /GH(xay)Hl(x) dpc(y)

is also a system of LF -molecules in KCg.
(1t) If A = (Ni)icr and I = (v;)jes are relatively separated families in G and if the matriz
A= (Aji)Gaerxs € CL(T,A), then the family (H})jes C Ky defined by

H]/ = A(Hz)zel = ZAj,sz
il

is also a system of LF -localized molecules in KCg4.

Proof. Let ® € W¢(LE)) be a symmetric envelope such that (H;);er < ®.
(i) Let © € W (LE) be a symmetric envelope for H. An application of Lemma [5.3| shows
that H; = Ty H; € K4 for all ¢ € I. Moreover, it holds that

Hi(@)| < | O )80 Wdua(y) = (@ O)(N )

and similarly |H;(z)| < (© % ®)(z1);). Therefore, using the convolution relation of Corol-
lary it follows that ® * © + O x & € W(LE) is a (symmetric) envelope for (H;);er.

(ii) Let © € We(LP) be such that A < ©. For x € G and j € J, an application of
Lemma [2.1] gives

~—

/ _ _ Rel(A
@) < T 1005 M0 ) < G((Q)

Since ®,0 € W (LE), it follows that also M*©, MRd € W (LP) (cf. Section , and
hence ¥ := MPO x ME® € Wo(LP) + (MLO + ME®)Y by Corollary and because of
(We(LE)]Y = We(LE), which holds since w is a p-weight. Thus, ¥ is a symmetric envelope
for (Hjl»)jej. O

(M*O x ME®) ('y;l:z).

=

The frame operator and Gramian associated to a system of molecules are convolution-
dominated operators, as shown next.

Lemma 6.5. Let (H;)icr be a system of LE -molecules in KCg4, indexed by the relatively sepa-
rated family A = (\;)ier. Then the following hold:
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(i) The kernel

H: GxG—=C, (x,y+— ZHI(:U)Hz(y) (6.5)
il
is well-defined (with absolute convergence of the series) and LE -localized in ICg.
(it) The family (H;)icr C Kg4 is Bessel and the frame operator 7 : Kg — Kg4 is given by
S =Th|x,.
(iii) If @ € We(LE) is symmetric and such that (H;)ier < ®, then the Gramian matriz
9 = ((Hir,H;))ier is an element of Ch(A) with envelope ® x ® € We(LE).

Proof. Let ® € W¢(LP) be a symmetric envelope for (H;)cr.
(i) For x,y € G, an application of Equation (2.10) gives

- _ Rel(A
He)| < X @) H )] < 380 0ot 5 < 250
i€l i€l Ha

Since ® € W¢(LP), also ML®, ME® € W (LP); see Section Thus, Corollary shows

that © := ML®+« ME® € W (LE) as well and in particular that (MX® x« ME®)(y~1z) < cc.

Thus, the series defining H(x,y) converges absolutely. Since |H(x,y)| = |H(y,z)|, the above

estimate also shows that H < ML® % M7 ®. In addition, since H(z,-) = H(-, ), to show that

H is LP-localized in K4, it remains to show that H(-,y) € K, for all y € G. For this, first
note as a consequence of Equation (2.11)) and Lemma that

_ Rel(A) Rel(A)
Hi(y) <> oy 1h) ®llwry < Dl rry < 0.

el i€l

g

(ME® « MRD) (y~tz).

Furthermore, Lemma [3.3] also shows || Hil|z> < [®(A;")[[z2 < |®] 2 S [1®]lyw(zz), so that it
follows that > ;7 |Hi(y)| || Hi||L2 < oo. This shows that the series defining H(-, y) converges in
L*(G). Since H; € K, for all i € I and since Ky C L?(G) is closed, it follows that H (-, y) € K,.

(ii) For showing that (H;);cs is a Bessel sequence in L*(G), let ¢ = (c;)ier € €%(I) be
arbitrary. Recall from Equation (2.11)) that >,c; ®(z71);) < 1. Using the Cauchy-Schwarz
inequality and the estimate |H;(x)| < ®(\; 'z) = ®(x1)\;), it follows therefore that

L(Z@I‘\Hi(w)\)?duc(w)ﬁ/ (Zczl2 >(Z<I>a: by )dﬂg(x)

icl icl icl
S leil @l < llelz-
el
This shows that (H;);c; C L?*(G) is a Bessel sequence. Lastly, by the first part of the proof
and Lemma it follows that Tx|x, : Kg — K4 is well-defined and bounded. Let F' € I,
and z € G. As shown in the proof of (i), the series H(x,-) = > ;c; Hi(x) H; converges in
L?*(@), and thus

TyF(x) = (F.H(z,)) 2 = Y_(F, Hi(x) H;) 2 = ) (F, H;)2 Hi(x) = S F(x),
el el

so that . = Tg|x,, as claimed.
(iii) For 4,4 € I, a direct calculation gives
[(Hy )| = [(He Ho)l < [ @0712)9(0710) duc(@) = | @@ A)8(3;"a) duc(a)
= (@ D) (N, ' \),

where the penultimate equality used the symmetry of ®. By Corollary O« ® e Weo(LP),
and (® x @)Y = OV x« &Y = @ x &. Thus, ((Hy, H;));ier € CE(A). O
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6.3. Dual frames of molecules. Henceforth, let w : G — [1,00) be a p-weight for some
p € (0,1] and let g € B, be an admissible vector. Recall that K, := V,(#) is a reproducing
kernel Hilbert space (cf. Equation (4.5))) with reproducing kernel given by

K(z,y) = Vyln(y)gl(x) = LT[Vegl(y),
see Equation (4.6)). For fixed x € G, the notation

Ky = K(z,) = L7[Vyg] = Vy[m(z)g]
will be used.

The following result proves the existence of almost tight frames of (weighted) reproducing
kernels. For the notion of a disjoint cover that appears in the statement, cf. Section [2.3]

Proposition 6.6. For every e € (0,1), there exists a compact, symmetric unit neighborhood
U C Q with the following property:

If A = (\i)ier is a relatively separated, U-dense family in G and (U;);er is a disjoint cover
of G associated to U and A, then the family (\/uc(U;) - Ky,) .., is a frame for Kg with lower
frame bound 1 — € and upper frame bound 1 + €.

el

Proof. The proof is divided into three steps.

Step 1. In this step, it will be shown that there exists a measurable map 7: G x G — T
such that

Ky — 7(x,y)Kyllpe = 0 as y 'z — eq. (6.6)

For showing (6.6)), consider the map ((z,y),7) — —||Ky — 7 Ky 12 from (G x G) x T into R,
which is clearly measurable with respect to (z,y) and continuous with respect to 7. A straight-
forward application of the measurable maximum theorem (see, e.g., |1, Theorem 18.19]) yields
a measurable map 7 : G x G — T satisfying

| Ky — 7(x,y) Kyl 12 = glel'lrl‘l | Ky — 2 Ky 2 forall z,y € G.

Since G is first countable, it suffices to show || K, — 7(xn,yn) Ky, |12 — 0 as n — oo, for
arbitrary sequences (Z,,)nen, (Yn)nen C G satisfying y, 1z, — eq.

Let U := U(H,) denote the group of unitary operators on H., equipped with the strong
topology. Furthermore, let P := U /(Tidy, ) and let o : Y — P denote the canonical projec-
tion. Since 7 is a o-representation, an application of [53, Theorem 7.5] implies that the quo-
tient map [7] : G — P,z — o(m(z)) is continuous. Thus, o(7(z, y,)) — o(r(eq)) = o(idy, ),
and an application of [53, Lemma 7.1] yields a sequence (zy,)nen of numbers z, € T satisfying
zn - w(x, 'yn) — idy, in the strong topology. Since V, : H, — L?*(G) is an isometry and
K, = Vy[m(x)g], it follows that

| Kz, — T(xn,yn)KynHL2 = ;relﬂfr | Ky, — 2+ Ky, 2= ;gqfr |7 (zn)g — 2 - 7r(yn)gHH7r

= inf |lg = zo(za’, wn)o (@, ya) (@ yn) gy,

< ||g — Zn - 7"-(1‘;13/n)g”9.l7r — 0,

where the penultimate step used that m(z,,) is unitary and that

W(l’n)_lﬂ'(yn> - U(mT_le wn)U(%;lyyn)W(%;lyn)-
Therefore, ||Ky, = 7(@n, yn) Ky, || ;2 < [|g = 20 - 7r(:v,:1yn)gH7_L7T — 0 asn — oo.

Step 2. This step shows that also |K, — 7(x,y)Kyl[;1 — 0 as y~'2 — eg. For this,

set © := |V,g| and note by Lemma and because of Vyg € W(LE) and w > 1 that
O € We(LE) — WE(LL) < L'; see also Equation (4.3)). Let § > 0 be arbitrary and choose a
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compact set Q) C G satisfying fG\Q Odug < %. By Step 1, there exists a compact, symmetric
unit neighborhood V' C @ such that for all ,y € G satisfying y 'z € V,

5/2 5/2
~ 1+ Vel QQ +Via(VQ)

14} and the Cauchy-Schwarz inequality, it follows therefore

1Kz = 7(2, y) Kyll 2 <

Using the estimate |K,(y)

| <
that, for 2,y € G with y~ 'z €

6z~
v,
1K = 7, 9) Kyl

< L@+ O () + [ Tevale) 1K) = (0 0) Ky ()b ()

<2 o O(w)duc(w) + [Levalrz - 1K — (2, y) Kyl 2

5 5/2
<% i Viavy . — Y2 <5,
<5 tVne(VQ) 1+ Vue(VQ) —

1 1

where the second inequality used the change of variables w = x7 "z, respectively w = y~ "z,
and the inclusions G\ VQ C G\ Q and G\ y '2VQ C G \ Q, which holds since 271y € V.

Step 3. Let ¢ > 0, and choose 6§ > 0 so small that 14+v6 < /I +eand 1 —+v6 > /1 —e.
By Step 2, there exists a compact symmetric unit neighborhood U C @) satisfying

1Kz — (2, y) Kyl < 8/(1+2M"0] 1)
for all x,y € G satisfying y~'z € U. Given this choice of U, let A = ()\;)ics and (U;)ies as

in the statement of the proposition. Let F' € ICy be arbitrary. Since the family (U;)icr is
pairwise disjoint and satisfies G = (J;c; U;, a direct calculation entails

2)5’ = |[1F]| . — H(Z (F,7(x,\;) K)\i>|2 ' ]lUi(CC)f

i€l

1Pl — (S P Va0 Ko

i€l

L3

<|ir@i- [T im0 8 @]
i€l 2
<|C 1@ @ @ Fo)|

il Lz

where the notation || -[| 2 is used to indicate that the L*-norm is taken with respect to z € G.
Thus, setting

=[S 10 [ F@) - ) - @ EnW) diot)|

el

it holds that || Fl2 — (Sier |(F, VG (T) Ka)?) %] < |1H] .

Note that if 1y,(z) # 0, then x € U; € \U C A\Q. On the one hand, this implies
Atz € U and hence ||[K, — 7(x,\;) Ky, |l1 < /(1 + 2| M*O][11). On the other hand, the
above considerations show for 1y, (x) # 0 that y=*\; = y ez~ I\ € y t2Q ™! = y~12Q and
hence O(y~1)\;) < M*O(y~'x), since O is continuous and @ is open. Combining this with
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the estimate |K,(y)| < @(yflx) and the Cauchy-Schwarz inequality, it follows that

2) £ Y1) [ IFO)] 1K) = (@ A En )72 (O 2) + 0y~ A) " diua(v)
el

(Z/]lv 2MPO(y ') - [F(y) dua(y )(ZnU HKQ;—T(JI,)\Z‘)KAi]]L1>2

el i€l

Therefore,

1/2

26 _
113 < s arzalss o o FOF MO0 2) dil)duc (x)

20
<
~ 1+ 2| MLO|

IFNZlIM Ol < 8 |1F72,

and hence e
1l = (S KEVRGTI K ) | < [H]12 < VB P,
By the choice of §, this easziif implies
(1—e)-lIFlZ. < E;I (F.Vua(U) Kol < (L+¢) - ||F7
i€
for all F' € Ky, as required. O

We aim to apply Theorem |5.4]to prove the existence of a dual frame for the family (K}, )ies
that forms a system of molecules. To this end, we need to construct a frame of molecules
(i K, )ier with a fixed envelope ® but such that the associated frame operator .7 satisfies
lidic, — Zllc,—k, < € = &(®). In combination with Proposition the following lemma
shows that this can indeed be done.

Lemma 6.7. Let U C Q be a unit neighborhood and assume that A = (\;)icr C G is relatively
separated and that (Us)ier s a family of measurable sets U; C \;U satisfying G = 2,1 U,

If (1i)ier C [0,00) satisfies 7; < C - pug(U;) for all i € I and some C > 0, then the
family (; 1/2 KA ). i1 s a system of LE -molecules in K, (indexed by A) and the kernel H in
Equation (6.5)) associated to (7'-1/2 - K),);; satisfies

[H(y, )| = [H(z,y)| < C - [M*(Vyg) » MF(Vyg)] (y~ ')
for all x,y € G.

Proof. Set ® := |V,g| € We(LE)) and note that ® satisfies |K,(y)| < ®(z71y) = &(y ') for
all z,y € G. Since 7; < C' - ug(U;) < C - ug(U), this implies that (7 1/2 - K)) o is a system
of L -molecules in K, with envelope /C - ug(U) - ®.

Let z,y € G. For i € I and z € U; C \Q, we have )\le = A;lzz_lx € Qz 'z and
y N = yilz()\i_lz)*l € y'12Q7! = y~'2Q. Since Q is open and ® is continuous, this
implies |K)y,(z)| < ®(\; '2) < ME®(2'2) and |Ky,(y)| § O(yIN) < ME®(y12) for all
i € I and z € U;. Hence, by definition of H in Equation (|6 ,

H(x9)| < O [16(0) - 1Kx @) )] <X [ MFeEn) M e 2)dno(2)

el i€l

= C [ MEe@)M ey ) duc(w) = C - (P + MEP) ().

Since H(y,x) = H(z,y), this completes the proof. O
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Using the previous two results, we can prove the main result of this subsection.

Theorem 6.8. There exists a compact unit neighborhood U C Q with the following property:
If A = (Ni)ier is relatively separated and U-dense in G, the following assertions hold:

(1) The family (Ky,)icr is a frame for ICq and admits a dual frame (H;)icr of LY, -molecules
in ICq.
(it) There exists a Parseval frame (Fy)icr for K4 that is a system of LY -molecules in K.

Proof. Set C := 1 and © = C - ML (V,g) * ME(V,g). Since |V,g| € W (LP,) and thus also
ML (V,g), ME(V,g) € We(LE), Corollary shows that © € W (L) as well. An applica-
tion of Theorem yields € = (g, @, w,p) € (0,1) such that whenever H : G x G — C is
Lf,-localized in Ky with H < © and with [Ty — idk,||x,—z2 < €, then there exist kernels
Hi,Hy : G x G — C that are Lf-localized in Ky and such that (Tglx,)™" = Tx,|x, and
(TH|x g)*l/ ? = Ty, |k, where the operators on the left-hand side are defined by the holomor-
phic functional calculus.

For this choice of ¢, let the compact unit neighborhood U C @ be as provided by Propo-
sition Let A = (\)icr C G be any relatively separated and U-dense family. Then I is
countable and there exists a disjoint cover (U;);e; associated to A and U (cf. Section ,
i.e., pairwise disjoint Borel sets U; C AU satisfying G = ;e Us. Set 7 := pg(U;) and note
7i < pe(U;) < C - ug(U;). Therefore, Lemma shows that the family (7'1-1/2 K)‘i)iel is a
system of L -molecules in K, and that the kernel H in Equation is L -localized in KC,
with H < ©. Furthermore, Lemma shows that (Til/ ’K )w.)i ey isa Bessel sequence and that

the associated frame operator .7 : K, — K, satisfies & = Tg[x,. Moreover, the choice of U
(cf. Proposition ensures that

—e|F|72 < (& —idk,)F, F) <e||[F||7. forall FeK,.

Since . is self-adjoint and . = Ty |xc,, this yields || Ty —idg, [, ~z2 = [ —idk, [lx,~12 < e
By the choice of ¢, this implies that

S = (Tulk,) ™ = T Ik, and V2= (Tyl,) " = Tu, |k,

for suitable kernels Hy, Hs : G x G — C that are L? -localized in K.

(i) Since |Vyg| € We(LE) by assumption, it follows directly from the definitions that
(K),)ier is a system of LP-molecules in ICy. By Lemma this implies that (Ky,)ier is
a Bessel family. Similarly, since 0 < 7, < pug(ANU) = pug(U) for all ¢ € I, it follows that
(i K)oy 18 also a system of L% -molecules in KCy. By the above, "1 = Ty, |x,, and thus
Lemma shows that (H;)icr == (& [m K]);c; is also a system of LF-molecules in Ky,
and hence a Bessel sequence by Lemma @ Moreover, for arbitrary F' € g,

= 5"1(2 (P77 Ky K)\i) =Y (FK\).S (i Ky,) = > _(F, K ) H.
icl iel iel
Since (K, )icr and (H;)ier are both Bessel families, this implies that they form a pair of dual
frames.
(ii) Since (Tl-l/ °K Ai)iep 18 a system of LF-molecules in Ky, an application of Lemma
shows that the same is true for (Fj)ics := (£ 71/2 [T,L-l/Q Kz ))ier = (T, [7'141/2 K\ 1);e; The
system (Fj);cr is a Parseval frame for IC,. O

6.4. Dual Riesz sequences of molecules. With notation as in Section the aim of this
section is to establish the existence of a Riesz sequence (Ky,);cr of reproducing kernels

whose biorthogonal system also forms a family of L -molecules in K4 := V;(Hx).
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The first result shows the existence of almost tight Riesz sequences of reproducing kernels.
This fact could be cited from the general result |50, Lemma 6.1], but the proof is included for
the sake of completeness.

Proposition 6.9. For every e € (0,1), there exists a compact unit neighborhood U D Q in G
with the following property:

If A = (Ni)ier is any countable family in G that is U-separated, then the system (Ky,)ier
forms (; Riesz2sequence in Kg with lower Riesz bound (1 — €)?||Vygl|2. and upper Riesz bound
(1+e)*[Vygllz-

Proof. Throughout the proof, let ® := |V,g| € W (LE)) and define the normalized reproducing
kernels K, := K, /||Vyg||12 for y € G. We note that

L,®

Ky (2)] = |5 [Vygll = Ly|Vygl(@) = (L,®)(x) and hence | K,|| 2 = A
Vagllz2

The proof is split into three steps.

Step 1. (Localized norm estimate). The group G being second-countable, there exists an in-
creasing sequence (U, )nen of compact sets U, C G such that G = U,,cy Un. By Lemma it
follows that ® € W (LE) < L2 < L*. In addition, 1ye-® — 0 as n — oo, with pointwise con-
vergence, and |1y - ®|2 < |®|? € L. Therefore, an application of Lebesgue’s dominated con-
vergence theorem yields the existence of ny € N such that H]IU,‘;O @ 2 < 5-|[Vggllr2 = 5| @[ 2-

Using Equation , we see for any measurable U D U, in G and any y € G that

12 < N(Ly®) - (LyLug )32 = |@ - Lo |32

o\ 2
< () .
—\2
Using that € € (0, 1), this easily implies

(1 - ;)2 <1- (;)2 <Ky 1yl <1+ (;)2 < (1 n ;)2 (6.8)

for arbitrary y € G and any Borel set U D Uy,.

12 = 1Ky - |2

S HKy ' IL(yUno)c

This, combined with the estimate H]lUﬁO O 2 < 5[Vygl L2, gives

1K, - Lyulla = 1) = [Vegll 2 - |15, 72 — 1K, - Lyl

Step 2. (anstruction of compact set). For the sequence (U,)nen of Step 1, let (Uy,)nen
be defined by U, := (U,Q)~!. Since ® is symmetric, it follows that if x € G is such that

04 ME((@- 1)) (@) = (@1 ~ o1,

V
ﬁz) ”Loo@@) UnQ)°ll Lo (2Q)°

then (U,Q)¢ N xQ # @. Therefore, there exists ¢ € Q such that zq € (U,Q)¢, which implies
that = ¢ U,. Hence,
0< M ((®-15,)Y) <lyg - MH(@Y) =1yg - M*® -0 as n— oo,
with pointwise convergence. An application of Lebesgue’s dominated convergence theorem
yields therefore some m € N such that ||[|p1[|(® - 15, )Y [lwerr) < |19z - pa(Q) - (6/2)*.
Choose a symmetric ¢ € Cc(G) satisfying 0 < ¢ <1l and ¢ =1 on Upn. Set U’ := supp ¢. For
Up, as in Step 1, define U := QU Up, UU" and © := @ (1 —¢). Then 0 <O < & -1, and
thus "
€

2
IOl lhwe ey < 1912 - (@) - (5) (6:9)

by construction.
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Step 3. (e-Riesz sequences). Let A = ()\;)ier be a U-separated family in G. To ease
notation, set Hy, := K), - 1),y for i € I. By construction of U, if z € (A\U)¢ then
Atz ¢ U D supp g, so that 1 — () 'x) = 1. Hence,

Loy € In(1—¢) and Ky, — Hy| = [Vogll 2 - [En |- Lgoye < 1Vagll 2 - La,©-

For showing the Riesz inequalities, let ¢ = (¢;)ier € coo(I) be arbitrary. Then the above
estimate yields
-| <|
L2 il

Since A is U —separated and U D @, it follows that Rel(A) < 1. Therefore, by Lemma and
Equation (6.9) and since ©V = O, it follows that

‘ﬁki Hy, Zci ) (KAZ - HAz‘)

el

< [|Vyallz2

L2 L2 =yl

3

2
< (ho(Q)) " 18 lvaony - 10 el < @l - (5) el

el

Combining the obtained inequalities thus gives

| ZCZK)\ ZClH)\

icl el
The family (H),)ier of vectors Hy, = K A, - 1y, is orthogonal, since (A\;U);er is pairwise
disjoint. Therefore, Equation implies that
€
< <1 + > el
L2 2

<1 - > el < || S e,
el
Therefore, an application of the triangle inequality easily yields that

Z Ciﬁki

el

L2

(1—¢)-lelle <

< (1 +e)-lefle,
L2

which easily completes the proof. O

The following theorem establishes the existence of Riesz sequences (K}, )ier that admit a
biorthogonal system of L? molecules.

Theorem 6.10. There exists a compact unit neighborhood U D Q with the following property:
If A = (N)ier is U-separated in G, the following assertions hold:
(i) The family (Ky,)icr is a Riesz sequence in Ky whose unique biorthogonal system
(Hi)ier in span{Ky, : i € I} is a family of LY -molecules in ICy.
(ii) There exists an orthonormal sequence (F;)icr in Span{Ky, : i € I} that is a system of
L -molecules in KCg4.

Proof. Throughout, let © := HVggH;2 (V9| % [Vggl). Then © € W (LE) by Corollary

By Theorem|[5.7] there exists ¢ = (g, p,w, Q) € (0,1) such that, for any Q-separated family
A = (Ni)ier in G and any A € C(A) satisfying A < © and ||A — idp (gl < €, it holds
that A=' € CP(A) and A='/2 € C2(A). Using Proposition let U C G be a compact set
such that Q C U and such that for every U- separated family A = (\;)ier in G, the family
(K. »; )ier of normalized kernels K N o= Vgl s 12 - K, satisfies the Riesz inequalities

2 2
(1= ) el < Sk < (1+5) Tl (6.10)
3 i€l L? 3

for all ¢ € £2(I).
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Let A = (\i)ier be an arbitrary U-separated family in G. Clearly, A is Q- separated. An
application of Lemma [6.5| yields that the Gramian matrix ¥ = (<K A, K M) el of (K. A )iel

satisfies @ € CP(A) with & < ©. Note that & = €09, where € = 2* and 7 are, respectlvely,
the analysis and synthesis operators associated to (K Ai)ze 1. Using Equation (|6 , we see
(F — dpm)e,d)] = [(Fe, Ge) — &) < max {(1+ 92 =1, 1— (12} |lel%
<e el
and hence |lidgp ) — “||;2_p2 < & here, we used that idp () — ¢ is self-adjoint. Thus, the
choice of & via Theorem [5.7] yields that ¢! € C2(A) and ¥~1/2 € CP(A).

(i) Let &1 C (A) be the element-wise conjugate matrix of ¢~1. By Lemma the fam-

ily (H;)ier “1(K, . )irer is a system of LF -molecules. Moreover, Lemmaylelds that the
series H; := i EI( )”/K,\Z_, is norm convergent in L2, and thus H; € span{Ky, : 4 € I}.

Forie I,let H; := |\Vgg||221 - H;. Then also H; € span{ K, : i € I}, and a direct calculation
entails

(Hy, ) = Vgl (S @R Ko ) = Y@ ol Ko (6:11)
Lel s
= Z(gﬁil)i’,f(g (ldﬁ(l)) =0y )i (6'12)
tel

which shows the desired biorthogonality.

(ii) By similar arguments as in (i), it follows that the system (F;)ier := 52—1/2(}6\1_,)1»/61
is Lf-localized and that F; € span{K), : i € I}. Since G = &*, it follows that also
(9~1/2)* =412 and thus (gflﬂ)m-/ = (9_1/2)1-/,1- for all 7,7 € I. Using this, together with
Gg=1/2 = ,‘!7*1/2%7, it follows that

(Fy,Fy) =Y <(£47—1/2)i/,jf(}j,(?—1/2)¢,jfﬁxj/> = > (G0 G (D)

']"EI J.g'el
_ Z 1/2g 1/2)j = (gfl/Qgg?fl/Z)m, = 5,4
jel
for all 4,7' € I. Hence, the sequence (F});c; is orthonormal. a

6.5. Dual molecules for coorbit spaces. The purpose of this section is to show that the
canonical reproducing properties of molecular frames and Riesz sequences on H, and £?(A)
extend to coorbit spaces Co(Y) and associated sequence spaces Yy(A).

The first result shows that the analysis (resp. synthesis) operator associated to a system of
molecules acts boundedly from (resp. into) coorbit spaces.

Proposition 6.11. Let w : G — [1,00) be a p-weight for some p € (0,1] and let g € BE,
be admissible. Let' Y be an LP -compatible quasi-Banach function space on G. Suppose that
(9i)icr s a family of LE -molecules in H, indexed by the relatively separated family A = (N\;)ier,
with (gi)icr <a © for a symmetric ® € We(LE). Then the following hold:

(i) The coefficient operator
¢ Cog(Y) = Ya(A), [ ((f,9i))ier

is well-defined and bounded with ||€|| < |®|lw(zzr)y, with implied constant depending
only on g,Q,w,p,Rel(A).
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(ii) It holds Yy(A) — (WE(Y))g(A) — él/w(A), and the reconstruction operator
2 Yq(A) = Coy(Y), c=(ci)icr — Zcigi (6.13)
i€l

is well-defined and bounded, with the series (6.13|) converging unconditionally in the
weak-+-topology on Ry = Ru(g) and with | 2| S | @llw (Lr,), where the implied con-
stant only depends on g,Q,w,p,Y .

Proof. (i) Since W(LE) — WL (LP) — LL(G) by Lemma it follows from (6.3) that
gi € Hl(g). Therefore, for every f € R, and i € I, the pairing (f, 9i)Ry .y, € Cis well-
defined. Using Part (iii) of Lemma and noting that ® is symmetric, it follows from (6.3))
that

(£200] = Vo Vagihnzs, s | < [ IVf (@) @0 0) dpc()

= (Vg f# @) (Ni) = (IVa ]+ 2)(Ni)

for every i € I. If z € \;Q, then \; = xq for some ¢ € (). Since @ is open and ® is continuous,
this implies ®(y~1)\;) = ®(y tzq) < ML®(y~'z) for all y € G. Thus,

(1,901 < (Vo |+ @10 = [ Vol )] 2N duc(w)
< [ Vel IME0(2) duc(y) = [V f]» M0 @)

for every x € \;Q. Therefore,

S g ag

el

||(<fa g’L zGIHY

‘ < H(|ng « ML ®) ZHWH < Rel(A) || [V, f] *ML<I>||Y.
i€l Y

Since ® € W(LP), it also holds M*® € W(LP), with ||ML<I>||W(L{JU) S I1@llw Lz, where the

implied constant only depends on p, w, Q. The convolution relation W (Y)W (LP) < WE(Y)
from condition (c2) of Definition therefore yields that

1((f,9))ierlly, < Rel(A) - [[[Vyf]« M D],
S REA) - [Vl - IME®pzn)
Swp@ Rel(A) - [[®flyw ) - [ fllco,(v)
and thus € : Coy(Y) — Yy(A) is well-defined and bounded, with ||Z’|| < Rel(A) - [|@|lyy 1z

(ii) To verify the embedding Yz(A) < (WX (Y))aq(A), let ¢ = (ci)ier € Ya(A). Note for
z,y € G and i € I satisfying 1,0(y) # 0 # 1),0(y) that z € yQ = C \;QQ. Thus,

ML<ZCz|]1)\Q) —‘ leg Y leillyg

el el

<D leiltrgo(®).

Lee iel

Since Y;(A, Q) = Yy(A, QQ) with equivalent quasi-norms (where the implied constant only de-
pends on Y and @, but not on A; see Equation (2.3))), this shows that ;< |ci|1x,o € WE(Y)
with || Yier vy < | Xier leil Tx,00lly < llellvya)- In addition, since Y is LE,-com-
patible, condition (c3) of Definition implies that W1 (Y) — L3S T which then implies the
embedding (WL (Y))g(A) — (L‘ﬁw)d(A) EI/W(A)

To prove the claim regarding the reconstruction operator &, note that if F': G — C is con-
tinuous, then since @ is open it holds that |F(z)| = |F(qq 'z)| < (MEF)(¢g~'z) for all ¢ € Q.
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Since (g;)ier < ®, we thus see |Vygi(z)| < @(A;lx) < (MRé)(qflAi_lx) = (ME®)((\ig)"'z)
for all ¢ € Q. Integrating this estimate over ¢ € (), we obtain
16(Q) Vo) < [ 1o@(I®)(ig) ™) dicla) = [ 1o DM @) ) duc(@)
= (Lng * M) ()
for every x € G. For ¢ = (¢;)ier € Y4(A), this implies
h6(Q)+ Y leil Vil < (X leling) < Mr"e.
icl icl

An application of the convolution relation WX (Y) * W(LE) < WL(Y) from condition (c1) of
Definition and of the embedding Yz(A) < (WX(Y))4(A) from above shows that

S leil (Vg <o H( lire) MR@H
iel WL(Y) icl WL(Y)

mewH MRy n
WL(Y)

el

SYp w,Q

Spaw@ el we vy, - 12wz

Sy llellyym 1 @llw ez (6.14)
By the solidity of WL(Y), it follows that the map % : Yy(A) — WE(Y), (¢i)icr = Yier ciVygi
is well-defined and bounded.

For showing that 2 is well-defined and bounded, let f € HL C H,. Since V; : H, — L*(G)
is an isometry,

(96> Py = |(Vogi, Vaf) 12(c)] < /G Vogi(@)| - Vo f (2)] duc(z).

This, combined with the embedding W% (Y) «— Ifl’jw(G) (see condition (c2) of Definition
and the estimate (6.14)), gives

> leil Kgis Haea| < Vo flly,

el

Z|CZ‘ |ngz

el
S lellvaay 1 £ 11, -

The absolute convergence of Y ,c;ci(gi, f) for f € Hr implies that Zc = > ",crcigi € Ruw
is well-defined and that the series defining Zc¢ converges unconditionally in the weak-x-
topology on R,. The identity Vy(Zc) = > ;crciVy9: = Zoc and the estimate yield
that 9l v) = IVo(Z ) = [ Zuclsiv) % Rl sz el whic completes tho
proof.

S e,

§£:|Ci|'|vbgd

el

Loe

WE(Y)

The method of proof used for Proposition resembles the one of |50, Lemma A.3], with
several modifications to apply the convolution relation (c1) of Definition

The next result will be helpful for extending certain identities from H, to R, by density.
Lemma 6.12. Let (g;)icr C Hx be a system of LY -molecules indexed by the relatively sep-
arated family A = (N\;)ier- Then the associated reconstruction and coefficient operators

9 f‘/)w(l) = Ruw(g) and € : Ry(g) — El/w( ) are well-defined, bounded, and weak-*-
continuous.

Proof. Throughout the proof, it will be used that L. and LS T Are L?P -compatible and that
Co(LL) = HL and Co(L l/w) = Ry (cf. Lemma [4.12) and that (L!)4(A) = £L(I) and
(L(ﬁw) (A) = E‘f?w( ), with the interpretation w(i) = w(\;) for ¢ € I and similarly for 1/w.

(cf. Section
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An application of Proposition with ¥ = L99, (resp. Y = L) yields that the synthesis
operator  : E‘f?w(l) — Ry and the coefficient operator 6y : H — €L (1), f — ((f, gi))ier are

well-defined and bounded. Therefore, if f € H. and c € €‘1>7w(1 ), then

(De, Pruar =Y cilgi . =D i (f 90y 11 = (e, C0f)
icl il
This easily implies that Z : E‘f?w — Ry is continuous if the domain and co-domain are
equipped with the weak-*-topology.

Similarly, Proposition implies that € : R, — 6‘1’7w (I) and the reconstruction operator
Dy (1) — HL, (ci)ier — > ic1 Ci gi are well-defined and bounded. Since ¢ = ) ;<7 ¢id;
with unconditional convergence in £, for ¢ = (¢;)icr € €L, this implies that Zpc = 3,c; cigi
converges unconditionally in L. Therefore, if ¢ € £1 (I) and f € Ry, then

(fs Doc) =Y (f, 9@ = (€ f,c).
el
This easily implies that the map € : Ry, — f‘l"}w (I) is weak-#-continuous. O

As a consequence, we can now show that certain reproducing formulas involving families of
molecules that are valid on H, (or even only on HL) extend to R,, (and hence to all coorbit
spaces Co(Y)).

Corollary 6.13. Let (g;)icr, (hi)ier C Hr be two systems of LE -molecules index by the rela-
tively separated family A = (N\;)icr. Then the following hold:

(i) If f =X ;c1{fshi)gi for all f € HL, then the same holds for all f € Ry,.
(i) If c; = (Oper Co ge, hi)n, holds for all finitely supported sequences ¢ € coo(I) and all

1 €1, then
¢ = <Zcege>hi>

lel R’wv,Hzlu
holds for all c € E?ﬁw(f) and alli € 1.

Proof. (i) Lemma [4.3|shows that 7(G)g C HL, is complete in H}; therefore, H}, < Hr — Ry
separates the points of H.: i.e., if g € HL satisfies f(g) = (f, g)3,. = 0 for all f € H}, then
g = 0. In particular, this implies that L is weak-*-dense in R,; see, e.g., [1, Corollary 5.108].

Let €, (resp. ¢}) and 2, (resp. Z5) denote the coefficient and reconstruction operators
associated to (g;)icr (resp. (hi)ier). By assumption, it holds f = Z,%,,f for all f € H..
Since these operators are bounded between R, and ¢79, (I) and continuous with respect to
the weak-*-topologies on R,, and Ki’jw (cf. Lemma , it follows that f = Z,%)f for all

fEeERy.

(ii) Let €, (resp. 63) and %, (resp. Z,) denote the coefficient and reconstruction operators
associated to (g;)icr (resp. (h;)icr). By Lemma these operators are bounded between
R and €T‘;w(1 ) and continuous with respect to the weak-x-topologies on R, and ff‘}w. By
assumption, we have ¢ = 63,9, for all ¢ € cpo(I). Since cpo(I) is weak-*-dense in 6 (I), this
implies the claim. O

The following result establishes an atomic decomposition of the coorbit space Co(Y) in
terms of two families of molecules.

Theorem 6.14. Let w be a p-weight for some p € (0,1] and let Y be a solid, translation-
invariant quasi-Banach function space such that Y is L -compatible. Suppose g € BE, is
admissible.

There exists a compact unit neighborhood U C G such that for every relatively separated,
U-dense family A = (\;)icr in G, the following properties hold:
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(i) There exists a family (h;)icr of L -localized molecules in H, indexed by A such that
any f € Coy(Y') can be represented as

f=2 fmN)ghhi =Y (f, hiyw(Ni)g
el i€l
with unconditional convergence of the series in the weak-x-topology on R, (g).
(it) There exists a family (g;)icr of LP, -localized molecules in Hr such that any f € Cog(Y')
can be represented as
F=>{f 99
1€l
with unconditional convergence of the series in the weak-x-topology on Ry (g).

Proof. By Theorem and since V, : Hy — K, C L?(G) is unitary and K, = V,[7(\)g],
there exists a compact unit neighborhood U C G such that for every relatively separated,
U-dense family A in G, there exists a system of (LP, g)-localized molecules (h;)ic; (namely,
hi = V, '[H;] with (H;)ier as in Theorem that forms a dual frame of (7(\;)g),_,- The
claim then follows by recalling that Co,(Y') C R, and by combining Part (i) of Corollary
with Proposition This shows (i).

The proof of (ii) is similar, using Part (ii) of Theorem [6.§and Part (ii) of Corollary O

Dual to Theorem [6.14] we show the existence of dual Riesz sequences of molecules for
coorbit spaces.

Theorem 6.15. Let w be a p-weight for some p € (0,1] and let Y be a solid, translation-
invariant quasi-Banach function space such that Y is LP -compatible. Suppose g € BE is
admissible.

There exists a compact unit neighborhood U C G such that for every U-separated family
A = (N)ier in G, there exists a family (hi)ier C span{m(X\;)g : @ € I} C H, which forms a
system of LP -localized molecules and such that the moment problem

(fimN)g) =c, i€,
admits the solution f =3 ,c;cih; € Coy(Y') for any given sequence (¢;)icr € Ya(A).

Proof. By Theorem and since V, : H, — K, C L*(G) is unitary and Ky = V,[r(\)g],
there exists a compact unit neighborhood U C G such that for any U-separated family
A = (N)ier in G, the family (7’[’()\1‘>g)i ¢; is a Riesz sequence in M, with unique biorthog-
onal sequence (h;)ier in span{m(A\;)g : @ € I} forming a family of (L%, ¢g) molecules in H,
indexed by A. Let €, (resp. 63,) and Z, (resp. %)) denote the coefficient and reconstruction
operators associated to (m(A;)g)ier (resp. (hi)ier). Then ¢ = €;Zpc for all ¢ € cpo(A). By
Part (ii) of Corollary the same then holds for all ¢ € Ei’?w(I). Since Yy(A) — E‘f?w(l) by
Proposition [6.17], this implies the claim. O

7. APPLICATIONS

This section provides two applications of the existence of dual frames and Riesz sequences
of molecules.

7.1. Boundedness of operators. The first result of this section is an extension of |36
Theorem 3.5] to quasi-Banach spaces.

Theorem 7.1. Let w be a p-weight for some p € (0,1] and let Y be a solid, translation-
invariant quasi-Banach function space such that Y is LP -compatible. For an admissible
g € B, let A = (N)ier be a relatively separated family in G such that (W()‘i)g)iel s a
frame for Hr with a dual frame (h;)ier forming a family of LE -molecules in Hr.
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IfT:HY — Ry is a bounded linear operator such that the vectors
m; =T [r(Ni)g], €1,

define a system of LI -molecules with envelope ® € W (L), then T' extends to a well-defined
bounded linear operator T : Coy(Y) — Cog(Y) with

1T]lcov)—scov) S 1@lwzz), (7.1)

where the implicit constant only depends on g,Q,w,p,Y, A, and (h;)icr.

Proof. Since (W(Ai)g)i ¢y and (hi)ier are dual frames of molecules, it follows by Corollary 6.13
and because of Co(Y') C Ry, that any f € Co(Y') can be represented as f = 3, (f, hi)m(\)g.
In addition, Propositionprovides the estimate || |ly,(a) = [((f, hi))ierllv,a) S 1flcovys
where the implicit constant is independent of f (in fact, only depending on Y, @, A, (hi)er).
With the family (m;)ier = (T'[7(Ai)g]),; from the statement of the theorem, Proposition
also shows that the reconstruction operator %, : Yy(A) — Coy(Y), (¢i)icr — e cim; is
well-defined and bounded, with unconditional convergence of the series in the weak-*-topology
of Ry D Coyg(Y) and with [[Znlly,scorv) S 1@l (rp,), Where the implied constant only
depends on ¢g,Q,w,p, Y.

Now, define T : Coy(Y) = Coy(Y) by

T = -@m o (gh, that iS, Tf = Z<f7 h1>mz = Z<f7 h1>T[7F(>\@)g]

el el

As a composition of bounded linear operators, 7' : Co(Y) — Co(Y) is itself a well-defined
bounded linear operator, with

1Tl cor)—scorry < IGhll - 1 Zmll S 12w 2z,

where the implied constant only depends on g, @, w,p,Y, A, and (h;);c;. This shows ([7.1)).

To prove that T is an extension of T, let %4 denote the reconstruction operator associated
to the family (7(X;)g),,- Since HL = Co,(LL) by Lemma and since (LL)q(A) = £L (1),
Proposition shows that 2, : £L(I) — ML is well-defined and bounded. Since we have
¢ = 3,7 ¢ 0; with unconditional convergence in £} (1) for all ¢ € ¢1(I), it follows that the
series defining Zyc = 3,1 ¢; m(\;)g converges unconditionally in H), for any ¢ € ¢(I). Since
Proposition also implies that ((f,h;))icr € €L,(I) for any f € HL = Co,(LL), and since
(hi)ier is a dual frame for (W(Ai)g)iep we thus see f = 3,/ (f, hi)m(N\;)g for all f € HL C H,,
where the series converges unconditionally in H.,. Because T : H. — R, is a bounded linear
operator, this implies

Tf = T(Z<f, hi>7r<xz->g) = S ) TR(M)g) = P f = Tf
el el

for all f € HL. Thus, T : Coy(Y') = Coy(Y) is indeed a bounded extension of T'. O

The proof of Theorem follows the arguments in [36] closely.

Remark 7.2. With notation as in Theorem the following hold:

(a) The existence of a frame (7w(\;)g)ier for Hr with a dual frame (h;);cr forming a family
of (LP, g)-molecules is guaranteed by Theorem for A “sufficiently dense”.

(b) The assumption that T : HL — R, is bounded is satisfied, in particular, whenever
T : H, — Hx is bounded, since ’H}U — Hr — Ry by Section
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7.2. Embeddings. In this section, we show that the embedding property Coq(Y') — Coy(Z)
can be decided at the level of sequence spaces; namely, this embedding is valid if and only if
Ya(A) < Z4(A). For Banach spaces, this result is already known; see [20, Theorem 8.4].

We start by showing that the boundedness of the embedding Y;(A) < Zz(A) does not
depend on the choice of the relatively separated and relatively dense family A.

Lemma 7.3. Let Y, Z be translation-invariant, solid quasi-Banach function spaces on G. Let
A = (N\i)ier C G be relatively separated and relatively dense and assume that Yg(A) — Zy(A).
Then, if I' = (v;)jes C G is any relatively separated family, the embedding Yq(I') — Z4(T')
holds.

Proof. Since A is relatively dense, there exists a relatively compact unit neighborhood U C G
satisfying > ;c; Ix,u(z) > 1 for all z € G. Let ¢ = (¢j)jes € Yq(I') be arbitrary and note for

e; 1= Eje] ‘Cj|]l»ijm)\iU7§g that
0< > gl Ly <Z{1AU )Y lejl 1y,0(2) Lyu (@ ] > eilyu(x) (7.2)
JjeJ el JjeJ el
Let V := QU'Q; we claim for arbitrary z € G, i € I, and j € J that
L@ lyenauze < Txq(@)lyv ().

Indeed, this is trivial if the left-hand side vanishes. If not, then x = \;q for some ¢ € ) and
there exists some y = A\u € v;Q N A\;U. This implies

z=XNg = uuTlqg=yuTlg € QUTIQ =75V,
from which the claimed estimate follows easily. Combining this estimate with the definition
of e;, it follows that

0< Y eilyol@) =) |:’CJ‘ > @)Ly, 0mue

iel Jje€J il
<sup | 3 10(0)] - X les v () = Relld) - 3 [y, (o)
z€G Lier jed jed
for arbitrary = € G.
Lastly, let us write || - [|y,(a,) to denote the (qua81) -norm on the discrete sequence space

Y4(A), but using the set U instead of @) in Equation (2.2 , similar notation will also be used for
Z4. As noted in Section 2.4] since Y, Z are translatlon invariant, different choices of relatively
compact unit neighborhoods for the set @ yield equivalent (quasi)—norms. By combining
Equation with the solidity of Z, then using the embedding Y;(A) < Z;(A) and finally
combining the previous estimate with the solidity of Y, we thus see

Z‘CJM%'Q Zel]b\ U

jeJ i€l

HCHZd(F) =

g,

el

= llellzaaw) S lellzawy S llellvaw

Z |CJ| ]l’YJ

JjeJ
This shows that Yy(T') < Z4(T") and thus completes the proof. O

< Rel(A = Rel(A) llelly, vy S llellv, @

Using the previous lemma, we can now state and prove the main result of this subsection.

Theorem 7.4. Let w : G — [1,00) be a p-weight for some p € (0,1] and let g € BE, be
admissible. Let Y, Z be solid, translation-invariant quasi-Banach spaces on G that are both
L -compatible.
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Then the embedding Cogy(Y') — Coy(Z) holds if and only if Ya(A) — Zg(A) holds for some
(every) relatively separated and relatively dense family A = (N\;)ier C G.

Proof. First, suppose that the identity map ¢ : Co,(Y) = Coy(Z), f +— f is well-defined and
bounded. Choose a compact unit neighborhood U C G as provided by Theorem Let
A = (\;)ier be a maximal U-separated family in G. For every x € G we then either have x = \;
for some i € I (and hence z € J;e; NUU ) or © ¢ {\;: i € I} and then 2U N \;U # @ for
some i € I, by maximality; hence, x € ,;UU~!. Overall, this shows that G = Uier NUUL,
which easily implies that A is relatively separated and relatively dense in G.

Theorem yields a family (h;);c; C Hr that forms a system of L2 -localized molecules
and such that ¢ = €, Zc for every ¢ € Y (A), where €, and 2, are the coefficient and recon-
struction operators associated to (m(X;)g), ., and (h;)ier, respectively. By Proposition
we know that 7, : Yy(A) = Coy(Y') and € : Coy(Z) — Z4(A) are bounded. Hence, for every
ce Yd(A)7

el zaa) = 1€t Dnell zyn) < N Cgllco,(2)— 24 1l oy (v)—sCoy(2) 1 Zhlva(a)—sCoy(v) el v a) < 00

This proves that Yg(A) < Z4(A). Since A is relatively separated and relatively dense in G,
Lemma shows that in fact Yy(T') < Z4(T') for every relatively separated family I" in G.

Conversely, suppose that the identity map ¢ : Y3(A) — Z4(A) is well-defined and bounded
for some (hence, every) relatively separated and relatively dense family A in G by Lemma
Theorem shows that there exists a relatively separated and relatively dense set A = (\;)ier
in G and a family (g;)icr of L% -localized molecules in H, indexed by A such that f = Z,%, f
for all f € Co4(Y). By Proposition it follows that that €, : Cog(Y) — Yy(A) and
Dy : Zg(A) — Coy(Z) are well-defined and bounded. Hence, we see for any f € Co,4(Y) that
f=246,f € Coy(Z) with

[ fllco,(z) = 12915 fllcoy(2) < N1 Zgll za(n)=Coy(2) * 1tlvaa)—zaa) - 165l coyy)—va(a)-
This shows that Cog(Y) — Cog4(2). O

8. MAIN RESULTS FOR IRREDUCIBLE, SQUARE-INTEGRABLE REPRESENTATIONS

This section provides an overview of the key results of this paper for the case of irreducible,
square-integrable representations. Several of the results obtained in the main text have sim-
plified statements for such representations, which recover known results for Banach spaces.
We include these statements here to allow for an easy reference.

In what follows, we will always assume that the following assumptions are met.

Assumption 8.1. Assume that the following hold:

(al) G is a second countable, locally compact group.

(a2) m : G — U(H,) is an irreducible unitary representation of G on a separable Hilbert
space H. # {0}.

(a3) w: G — [1,00) is a p-weight for p € (0,1] (see Definition [3.1]).

(a4) The Wiener amalgam spaces WX, W W (see Section re defined relatively to a
fixed open, symmetric, relatively compact unit neighborhood Q C G.

(ab) With the coefficient transform V,f as defined in Section it is assumed that
B # {0}, where

B :={g€Hr: Voge W(LE)},

and we fix some g € BE \ {0}.
(a6) The space Y C L°(G) is assumed to be a solid, translation-invariant quasi-Banach
function space with p-norm || - ||y. In addition, Y is assumed to be LF -compatible

(see Definition [3.5).
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8.1. Admissibility. Since w is a p-weight (in particular, w > 1), it follows from an appli-
cation of Lemma that W(LE) — WE(LR) — LL N LY «— L2 so that every h € BP,
satisfies [ |(h, m(x)h)|? duc(z) < oo, i.e., the representation m is square-integrable. Then, by
Theorem there exists a unique, self-adjoint, positive operator Cy : dom(Cy) — H, such
that

/G [(f, m(@)h)|* duc(z) = [|Cxh|7, |IfII3, (8.1)

for all vectors f,h € H,. The domain of Cy is given by dom(Cy) = {h € H, : V,h € L*(G)}.
This implies that BY, C dom(Cy). Furthermore, Equation implies that any vector in
dom(Cr) \ {0} can be normalized to obtain an admissible vector h for m, i.e., such that
Vi : Hy — L*(G) is an isometry.

8.2. Coorbit spaces. With the fixed vector g € BE \ {0} from Assumption define
Hy = My(9) = {f € Hn : Vof € Li,(G)}
and equip it with the norm | fll = [[fllaz ) = IVyfllzy. Note that W(LE) — L} by

Lemma so that BP, C HL: in particular, g € H}.

Although the space H. (g) is defined relative to the fixed vector g € B2 \ {0}, the following
lemma shows that the space H. is actually independent of the choice of g € BE, \ {0}. This
crucially uses that 7 is an irreducible representation; see also Remark [4.4]

Lemma 8.2. Under Assumption[8.1), the following hold:

(i) If h € B\ {0}, then Hy,(g) = Huy(h) with || - s ) = |+ Iz, )-
(ii) The space HY is a m-invariant Banach space satisfying HL — H.

Proof. As explained in Section we have B C dom(Cy), and the normalized vector
g = 9//ICrglln,. is admissible for 7. Since clearly HL(g) = H1l(g), we can assume that g
is admissible and similarly (for proving Part (i)) also that h is admissible.

(i) Since LL+LL < L} (see, e.g., [49, Section 3.7]), it follows by an application of Lemma
that the collection Cr1 = {f € Hr : Vi f € L%} is a vector space and that Vy, f1 € L, for all

J1, f2 € Cpy . In particular, this implies that Vyh, Vg € L} (@), so that the conclusion follows
from Lemma [£.3]

Assertion (ii) follows directly from Lemma O

Let Ry, = (HL)* be the anti-dual space of H} (g). Denote the associated conjugate-linear
pairing by
(F.h) = f(h), fE€Ru, heH,
The action 7 of G on HL, can be naturally extended to act on an element f € R,, by
r@)f: HL—C, e f(m@)]h), he M,
for x € G. The associated matrix coefficients are defined as Vj,f : G — C, z — (f, w(x)h).
For g € BE \ {0}, the coorbit space of Y is the collection

Co(Y) = Coy(Y) = {f € Ry : V,f € WE(Y)},
where WE(Y) is the left-sided Wiener amalgam space of Y (cf. Section [2.6). The space is
equipped with the norm || f{lcotyy = [V fllwe(vy-
As for the space H}, (cf. Lemma, also the coorbit spaces are independent of the choice
of the analyzing vector g € BE, \ {0}, whenever 7 is irreducible.
Proposition 8.3. Under Assumption[8.1], the following assertions hold:

(i) If h € BE,\ {0}, then Cog(Y) = Con(Y) with || - [coy(v) = II - [lcon(v)-
(i) The space Co(Y') is a m-invariant quasi-Banach space with p-norm | - [|coryy and
satisfies Co(Y) < Ry .-
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Proof. As in the proof of Lemma [8.2] the normalized vector g := g/||Crg||3, is admissible for
7, and (for proving Part (i)) the same holds for the normalized version of h. Furthermore, we
clearly have Co,4(Y) = Co3(Y') and similarly for h. Hence, we can assume that g and h are
admissible.

(i) By Corollary it holds that W (L) « W(LL)) — W (LE,). Since Bf, = Cy 1z, where
Cw (e is as defined in Lemma an application of that result yields that V,g € W(LP).
The equivalence || - [lco,(v) < || - l[coy (v follows therefore from Proposition

Assertion (ii) is a direct consequence of Proposition O

8.3. Molecular decompositions. This subsection provides self-contained statements of the
main results on molecular decompositions.

A family (h;);er of vector h; € Hr, indexed by a relatively separated A = (\;)ier C G, is
called a system of LE -molecules, if there exists an envelope ® € W (L)) satisfying

Vghi(z)] < @A\ ') (8.2)

foralli € I and z € G.
The following result summarizes the main properties of a system of molecules.

Lemma 8.4. Under Assumption[8.1], the following hold:

(i) The notion of a system of LE -molecules is independent of the choice of g € BE, \ {0},
i.e., if (hi)ier C Hr satisfies condition (8.2)) for some ® € W (LE) and if h € BE \ {0}
is arbitrary, then there exists © € W (LE) satisfying

[Vihi(z)| < O(X; ')

foralliel and x € G.
(ii) If (hi)ier C Hr is a system of LP -molecules indexed by the relatively separated family
A = (\)ier, then (hi)ier C HL and the associated coefficient operator

G R = 50(Ds [ (Fhidrua)ieq

and reconstruction operator

7 039,(I) = Ru, (¢i)ier = Zcihi
i€l
are well-defined and bounded, with unconditional convergence of the series in the weak-
x-topology on R.,.
(iii) The following restrictions of the operators € and 2 are well-defined and bounded:
(a) € :Hp — (), € :HL — LL(I), and € : Co(Y) — Yy(A).
(b) 2 :03(I) = Hy, 2 : 0L (1) = HL, and 2 : Y4(A) — Co(Y).
Here, the space Yg(A) — Kfc/)w(f) is as defined in Section .

Proof. (i) If (h;)er is a family of LE-molecules with respect to the window g, then the same
holds with respect to the normalized (admissible) window g = g/||Crgll7,, and vice versa.
Therefore, we can assume that both g,h € BE \ {0} are admissible. By Corollary it
holds that W (LL)) « W(Lf,) < W(LL). Since B, = Cy (1), where Cyy(rpy is as defined in
Lemma an application of that result yields that Vj,g, Vyh € W(LE)). Therefore, Lemma
yields the claimed independence.

Assertions (ii) and (iii) follow from Proposition For this, note that Lemma |3.3| shows
that ® € W(LE) — WEL(LP) < L. Because of Equation and the translation-invariance
of L}, this easily implies V;h; € L, and hence h; € H., for all i € I. Lemma shows that
L*(G), L (G) and L7, are all Lf,-compatible and that Co(L?) = H,, Co(Ly,) = HL, and
Co(L‘f?w) = R,. Therefore, Proposition implies all the stated properties. O
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The next result shows that the orbit m(G)g always contains discrete subsystems that form
a frame for H, and admit a dual system consisting of L? -molecules.

Theorem 8.5. Under Assumption[8.1], there exists a compact unit neighborhood U C G such
that for every relatively separated, U-dense family A = (N;)ier in G there exists a family
(hi)ier of vectors h; € HL with the following properties:

1) The system (h;);cr forms a system of LP -molecules.
(i) y y #
(ii) Any f € Co(Y) can be represented as

F=Y (L ha) m(N)g =D (f, m(Ni)g) ha,

i€l el

with unconditional convergence of the series in the weak-*-topology on R,.

Proof. Both claims follow from Theorem strictly speaking after replacing g by the ad-
missible vector g = ¢/(|Cr gl - O

A complementing result on dual Riesz sequences of molecules in H, is provided by the
following.

Theorem 8.6. Under Assumption[8.1], there exists a compact unit neighborhood U C G such
that for every U-separated family A = (N\;)ie; in G there exists a family (h;)ic; C HL of
vectors h; € span{m(\;)g : i € I} C Hr with the following properties:

(i) The system (h;)icr forms a system of LY -molecules.
(ii) For any sequence (¢;)icr € Ya(A), the vector f = > ,crcih; is an element of Co(Y')
that solves the moment problem

(fim(\)g) =ci, i€l

Proof. Both claims follow from Theorem strictly speaking after replacing g by the ad-
missible vector g = ¢/[|Cr g%, - O

APPENDIX A. MISCELLANY ON QUASI-BANACH SPACES

This appendix contains two auxiliary results on quasi-Banach spaces used throughout the
main text. As no reference could be found in the literature, their proofs are provided.

Lemma A.1. Let Y be a quasi-normed vector space with p-norm || - || for some p € (0,1].
If Y is complete, then for every countable family (f;)icr in'Y satisfying > ;1 || fillP < oo, the
series Y ;1 fi is unconditionally convergent in'Y .

Conversely, if for every sequence (f;)ien with Y ;cn || fillP? < oo the series Y ;2 fi converges
Y, then'Y is complete.

Proof. Suppose first that Y is complete. It clearly suffices to consider the case I = N. Thus,

assume that ;o || fil|P < oco. Let F, := i fi. For n > m > ng, the p-norm property gives
n P n o)
[Fo = FnlP =1 > fi < X IflIP< > AP =0 as ng— oo
i=m-+1 i=m-+1 1=ng+1

Hence, (F))nen C Y is Cauchy. Since Y is complete, it follows that (F),),cn converges to some
FeY;ie, F=>72 fi. It remains to show that unconditional convergence of the defining
series. For this, let € > 0 be arbitrary and choose No € N such that >y, .1 [|fil|? < €P. Let
J C N be any finite set with J D {1,..., Np}. Since || - ||y is a p-norm, || - ||P is a metric and
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hence continuous; therefore,

p p p
- = n -] = | T s
jeJ jed >No ' ie{l,...,n}\J
oo
<lm Y EPs Y P <en
n>No i€{l,..n}\J i=No+1

Since this holds for any finite set J C N with J D {1,..., Ny}, the series converges uncondi-
tionally.

For the remaining implication, let (g,)neny be a Cauchy sequence in Y. Choose a strictly
increasing sequence (n;);en such that g, — gml|| < 27 for all n,m > n;. Note that n; > i
for all i € N. Define f; := gn,,, — gn, and note || fi|| < 277, so that > ;e[| fil|? < co. By
assumption, F':=> 2, f; € Y, and

F = lim Zfl = lim Z(gniﬂ — Gn;) = A}gn (Gnni1 — Iny)-

For fixed, but arbitrary e > 0, choose Ny € N such that [g, — g [|P < & for all n,m > Np
and such that [[F' — (gny, ; — gnd) [P < % Then, it holds for all n > Ny that

lgn = (F' 4+ gn)I” < llgn = gnugsa lI” + [1F = (gnuga — gn)[IP < €P.
Thus, (gn)nen has the limit lim, o0 gn, = F + gn, € Y, showing that Y is complete. O

Lemma A.2. Let (Y, |||ly) be a solid quasi-Banach function space on a locally compact group
G. Suppose that || - ||y is a p-norm, with p € (0, 1].

Let I # @ be countable and let (F)ie; CY with > ;c; | Fi|l}: < oo. Then the series defining
F :=3%".c1 F; is almost everywhere absolutely convergent, and F' €'Y with

1/p
7l < (SI71g)
iel

Proof. The claim is trivial if [ is finite; hence, we can assume that I is countably infinite and
then without loss of generality that I = N. The proof consists of three steps.

Step 1. Let Hy, := > ;- |F;| for n € N. In this step, we show that (H,,),en converges to
some H €Y. For this, note for N € N and n > m > N that

n p
> < Z 1E <ZHFHp
Y i=m-+1

i=m-+1

HHn - Hme =

and hence

00 1/p
sup |Hy,, — Hyp Hy<<Z||Fl||€,> —0 as n— oc.

nm

Hence, (Hj,)nen is a Cauchy sequence in Y. Since Y is complete, the claim follows.

Step 2. We show that the function H from Step 1 satisfies H = ) ;2 |F;| almost every-
where. For n € N, define

‘H = |H — H,|

=1
Then ||E,|y = [|[H — Hully —> 0 as n — oo. Setting 2™ : = inf;>, 5; yields 0 < = =) < =,
for all i > n, and hence |2y < ||Zi]ly — 0 as n — oo by solidity of Y. Therefore,
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(") = 0 almost everywhere for all n € N, showing that there exists a null-set N C G satisfying
(M(z)=0foralln € Nand z € G\ N. For z € G\ N, it follows therefore that

n

H(x) =) | Fi(=)]],
i=1

so that there exists a subsequence (ng)sen (possibly dependent on z) such that

0= lim ‘H(a;) _ i |Fi(x)\’.

l—00

[11 [1]

— lim 2™ (2) = liminf =, (z) = lim i
0= 5" () = imnf En(e) = mlnf

Hence, H(z) = limy_ Y14y |Fi(x)| = 352, |Fi(2)|. Since this holds for all z € G\ N, we
conclude H = >, | F;| almost everywhere.

Step 3. First, note for Q := {x € G: |H(z)| = oo} that n-1g < |H| for arbitrary
n € N. Hence |[1olly < 1||H|y — 0 as n — oo, so that 1o = 0 almost everywhere and thus
|H(x)| < oo almost everywhere. Combined with Step 2, this shows > 2 ; |F,(x)| < oo almost
everywhere. Hence, the series defining F' := )" > | F;, converges absolutely almost everywhere,
with |F(z)| < Y02 |Fn(z)| < |H(z)| for a.e. z € G.

Second, note that d(f,g) := ||f — gl is a metric and that d(H,,H) — 0 as n — oo.
Therefore, || Hy|l§ = d(Hpy,0) — d(H,0) = | H|[}.. This means

n p n 0o
I < 7l = Jim (G =t | ST IE] < o SRR = 15,
i=1 Y i=1 i=1
which implies || F|ly < (X2, [|Eil5) YP as claimed. O
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