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COORBIT SPACES AND DUAL MOLECULES:
THE QUASI-BANACH CASE

JORDY TIMO VAN VELTHOVEN AND FELIX VOIGTLAENDER

Abstract. This paper provides a self-contained exposition of coorbit spaces associated with
integrable group representations and quasi-Banach function spaces. It extends the theory in
[Studia Math., 180(3):237–253, 2007] to locally compact groups that do not necessarily pos-
sess a compact, conjugation-invariant unit neighborhood. Furthermore, the present paper
establishes the existence of dual molecules of frames and Riesz sequences as in [J. Funct.
Anal., 280(10):56, 2021] for the setting of quasi-Banach spaces. To ensure the direct appli-
cability to various well-studied examples, the theory is developed for possibly projective and
reducible unitary representations.
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1. Introduction

For a continuous representation (π,A) of a locally compact group G on a Banach or Fréchet
space A and a vector space Y of measurable functions on G, the coorbit method provides a
procedure for constructing an associated distribution space Co(Y ), namely

Co(Y ) :=
{
f ∈ A∗ : Vgf ∈ Y

}
with Vgf(x) = 〈f, π(x)g〉, (1.1)

where g ∈ A \ {0} is a fixed vector and where A∗ denotes the associated (anti)-linear dual
space. Common choices for A are the space of integrable vectors (resp. smooth vectors)
whenever π is an integrable representation (resp. G is a Lie group).

The influential series of papers [18–20,34] introduced the spaces Co(Y ) for an irreducible,
integrable unitary representation π and a Banach function space Y and established general
properties of these spaces. Among others, it was shown that the spaces (1.1) are independent
of the defining vector g, that each space Coπ(Y ) admits an atomic decomposition in terms
of a suitably sampled family

(
π(xi)g

)
i∈I , and that properties such as inclusions, embeddings

and minimality/maximality can be completely characterized by the corresponding properties
of associated sequence spaces. In addition, the papers [18–20,34] revealed that many classical
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2 JORDY TIMO VAN VELTHOVEN AND FELIX VOIGTLAENDER

function spaces in complex and harmonic analysis—such as Bergman spaces, Fock spaces,
Hardy spaces, and (homogeneous) Besov and Sobolev spaces—can be realized as a coorbit
space (1.1).

The purpose of the present paper is to provide a self-contained exposition of coorbit spaces
Co(Y ) associated with integrable representations π and quasi-Banach function spaces Y , i.e.,
spaces where the triangle inequality of a norm is replaced by ‖F1+F2‖Y ≤ C ·(‖F1‖Y +‖F2‖Y ).
To some extent this has already been done in [46], but only for the restrictive setting of groups
with a conjugation-invariant compact unit neighborhood (IN groups). The present paper
removes this assumption. In addition, it establishes the existence of dual coorbit molecules
as in [50] for the full range of quasi-Banach spaces.

1.1. Motivation. The motivation for quasi-Banach coorbit spaces is two-fold.
One motivation is that all of the above mentioned classical function spaces have aside their

Banach range also a natural range of parameters yielding quasi-Banach spaces. For example,
the Hardy spaces Hp(Rd), where p ∈ (0,∞], are Banach spaces for p ∈ [1,∞], but merely
quasi-Banach spaces for p ∈ (0, 1). Therefore, in order to treat these examples for the full
range of parameters in the setting of coorbit theory, it is essential for the latter theory to also
apply to quasi-Banach spaces. It should be mentioned that the Hardy spaces can be identified
with coorbit spaces associated with the (non-unimodular) affine group, and hence they cannot
be treated in the setting of [46] as it only applies to IN groups.

Another motivation stems from applications of coorbit theory to non-linear approximation.
Here, given a family (fi)i∈I ⊂ Hπ of elements of a Hilbert (or Banach) space Hπ, the objective
is to seek for given f ∈ Hπ a good approximation f̃ =

∑
i∈If ci fi to f under the restriction

|If | ≤ K, i.e., using only a fixed number of elements. The associated map f 7→ f̃ is not neces-
sarily linear. In the context of the finite-dimensional space Hπ = CN and with (fi)i = (ei)Ni=1
being the standard basis, the best approximation (with respect to any `p-norm on CN ) to
v ∈ CN is obtained by ṽ = v ·1Iv , with 1Iv being the indicator of the set Iv containing the in-
dices of the K largest entries of v (in absolute value). The associated minimal approximation
error is denoted by

σK(v)p = min
{
‖v − u‖`p : u ∈ CN is K-sparse

}
,

where u ∈ CN is called K-sparse if at most K entries of u are non-zero. This error obeys the
following bound, sometimes referred to as Stechkin’s inequality:

σK(v)q ≤ K
1
q
− 1
p · ‖v‖`p for 0 < p ≤ q ≤ ∞, (1.2)

see, e.g., [25, Proposition 2.3]. Hence, σK(v)q decays fast for those v ∈ CN that have ‖v‖`p of
reasonable size with a small value of p > 0. In the setting of coorbit spaces, one can similarly
show (based on the discretization theory of coorbit spaces) that elements of Co(Lp) with small
p > 0 can be well approximated by “sparse vectors” (i.e., by linear combinations of the family(
π(xi)g

)
i∈I with at most K terms) as elements of Co(Lq) for q � p, where it is important to

note Co(L2) = Hπ. Hence, the quasi-Banach spaces Co(Lp) with p ∈ (0, 1) play an important
role in non-linear approximation. See also the motivating discussions [29, Section 1.1] and
[46, Section 7] for considering coorbit spaces Co(Lp) with p < 1 for the purpose of non-linear
approximation.

1.2. Related work. The theory of coorbit spaces Co(Y ) with a Banach function space Y as
developed in [18–20,34] crucially relies on convolution relations of the form

Y ∗ L1
w(G) ↪→ Y and L1

w(G) ∗ Y ↪→ Y (1.3)

for a suitable weight function w : G → [1,∞), often called a control weight for Y . If Y is
merely a quasi-Banach space, then relations such as (1.3) cannot be expected to hold, e.g.,
for Y = Lp(G) with p ∈ (0, 1).
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The paper [46] considered coorbit spaces Co(Y ) associated with quasi-Banach spaces Y and
used instead of the embeddings (1.3) certain convolution relations for so-called (left) Wiener
amalgam spaces WL(Y ) (see, e.g., [5,17,26,37] for such Banach spaces), as proven in [47]. In
[46], the coorbit theory is developed only for invariant neighborhood (IN) groups, i.e., groups
G admitting a compact unit neighborhood U ⊂ G satisfying xUx−1 = U for all x ∈ G. In the
setting of IN groups, several of the convolution relations in [47] for general locally compact
groups possess simpler versions, but this setting is very restrictive. For example, it excludes
simply connected nilpotent Lie groups (e.g., the non-reduced Heisenberg group) and connected
locally compact groups with exponential volume growth (e.g., affine group), see [38,44]

It should be pointed out that the preprint version [45] of [46] also proposed a coorbit
theory valid on general (possibly, non-IN) locally compact groups. However, as observed in
the PhD thesis [54] of the second named author, an essential convolution relation asserted in
[47] (which is used in [45,46]) is incorrect and fails for general groups. More precisely, two
examples presented in Section 3.3 below (both taken from [54]) show that

WL(Lpv) ∗
[
WL(Y ∨)

]∨ *WL(Y )
with weights v(x) = ‖Lx−1‖WL(Y )→WL(Y ) and v(x) = ‖Lx‖WL(Y )→WL(Y ), for the left-transla-
tion operator LxF (y) = F (x−1y) and involution F∨(x) = F (x−1). These examples show that
the asserted [47, Theorem 5.2] fails in general.

A corrected and modified version of the theory proposed in [45,46], valid for general locally
compact groups, is contained in [54]. The theory in [54] shows that essentially all the basic
properties of coorbit spaces known in the Banach space setting [18–20,34] remain valid for
quasi-Banach spaces, if essential modifications are made at appropriate places in both the
definition of coorbit spaces and the proofs of their basic properties.

Lastly, a very general theory of quasi-Banach coorbit spaces has been developed in [40],
where also coorbit spaces associated with general reproducing formulae not necessarily arising
from group representations can be treated, see also [24,48]. Some of the basic properties of
coorbit spaces for the group case can be extracted from the general theory [40], but this can
be a rather daunting task (especially for interested non-experts) due to the many technical
assumptions required in [40]. In addition, as the present article shows, many of these tech-
nicalities can simply be avoided or considerably simplified in the group case considered here.
There are also significant parts of the present article that are currently not available outside
the group setting, most notably the theory of coorbit molecules.

1.3. Contributions. The present paper provides a self-contained, greatly simplified and gen-
eralized, exposition of coorbit spaces associated with integrable representations and quasi-
Banach function spaces. The exposition is similar to [54], but contains important further sim-
plifications and improvements, which will be commented on at the relevant places throughout
the text. As one of the biggest simplifications, it is not assumed here (in contrast to [45,47,54])
that the so-called control weight w satisfies w(x) ≥ ‖Rx‖WL(Y )→WL(Y ); instead, it is only re-
quired that w(x) ≥ ‖Rx‖Y→Y . Although it is true that the Wiener amalgam space WL(Y )
is right-invariant whenever Y is (cf. [47, Corollary 4.2]), it does not seem possible to readily
estimate ‖Rx‖WL(Y )→WL(Y ) in terms of ‖Rx‖Y→Y whenever G is a non-IN group, see, e.g.,
[54, Lemma 2.3.18]. This simplification of using ‖Rx‖Y→Y instead of ‖Rx‖WL(Y )→WL(Y ) is
important, since having a control weight of only moderate growth is essential for obtaining
sharp explicit conditions on atoms yielding atomic decompositions. To see that just estimat-
ing ‖Rx‖Y→Y instead of ‖Rx‖WL(Y )→WL(Y ) is advantageous, we mention that large parts of
the recent PhD thesis [4] are concerned with deriving usable bounds for the operator norm
‖Rx‖WL(Y )→WL(Y ) for settings in which ‖Rx‖Y→Y can be readily estimated.

The biggest improvements in the present article compared to [46,54] are the results on
atomic decompositions. Instead of adapting the classical sampling techniques from [19,34] as
done in [46,54], the present article provides an extension of the recent results on dual molecules
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as in [50] to the setting of quasi-Banach spaces. This approach is more easily accessible and
at the same time yields much stronger conclusions on the localization of the dual system
by showing that it also forms a family of molecules satisfying similar envelope conditions
as the basic atoms. In particular, the obtained results on molecules close a gap between
what was known for general (quasi-Banach) coorbit spaces [54] and the concrete setting of
Besov-Triebel-Lizorkin spaces [27,32].

Lastly, several arguments presented in this article are different and often simpler than
the classical arguments in [18–20,34], even for the setting of Banach spaces. For example,
the present article avoids the use of an atomic decomposition to prove that the space of
integrable vectors (so-called analyzing vectors) is dense, and instead provides a direct proof
using Bochner integration, cf. Section 4.2; in particular, Lemma 4.3.

1.4. Extensions. To ensure a wide applicability, all the results in the present article will
be proved for possibly reducible and/or projective group representations. This flexibility is
essential for treating several key examples. For example, reducible representations occur
naturally in high-dimensional wavelet theory [28,30,41], whereas the use of (possibly non-
continuous) projective representations is convenient for treating weighted Bergman spaces
[7,8,10] or representations of nilpotent Lie groups that are only square-integrable modulo a
central subgroup [21,35].

As possible extensions of the theory [18–20,34], it was already mentioned in [18] that the
case of quasi-Banach spaces, reducible and/or projective representations would be desirable for
treating several key examples. For coorbit spaces associated with Banach spaces, extensions
to reducible and projective representations can be found in [9,14] and [7,11], respectively. For
quasi-Banach spaces, the present article seems to be the first to develop these extensions.

1.5. Overview. Section 2 introduces general notation used throughout the paper and pro-
vides background on quasi-Banach function spaces and local maximal functions. Convolution
relations for Wiener amalgam spaces are proved in Section 3. In addition, Section 3.3 con-
tains two counterexamples to convolution relations asserted in [47]. Section 4 is devoted to
the definition of coorbit spaces and to studying their basic properties as quasi-Banach spaces.
Convolution-dominated integral operators and matrices form the subject of Section 5. Among
others, it will be shown that these classes of operators and matrices form algebras and possess
a local holomorphic functional calculus. The results on convolution-dominated operators will
be exploited in Section 6 to prove the existence of dual coorbit molecules of frames and Riesz
sequences and to derive associated decompositions of coorbit spaces. Section 7 presents several
applications of the obtained results to the boundedness of operators. Simplified statements of
the main results for irreducible, square-integrable representations are given in Section 8. The
proofs of several miscellaneous and technical results are postponed to the appendix.

2. Quasi-Banach function spaces and local maximal functions

This section provides background on solid function spaces, twisted convolution and quasi-
Banach spaces.

2.1. General notation. Throughout this article, G denotes a second countable locally com-
pact group and Q ⊂ G denotes a fixed open, relatively compact symmetric neighborhood of
the identity element eG ∈ G. In addition, a left Haar measure µG on G is fixed and the
associated modular function is denoted by ∆ : G→ (0,∞).

We write T := {z ∈ C : |z| = 1}. For x ∈ Rd or x ∈ C, we denote by Br(x) the open ball
(with respect to the usual Euclidean norm) of radius r > 0 around x. For a subset V of a
“base set” X that is usually implied by the context, the notation 1V denotes the indicator
function of V , i.e., 1V (x) = 1 if x ∈ V and 1V (x) = 0 otherwise. A pairwise disjoint union of
sets will be denoted by the symbol

⋃· .
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For functions F1, F2 : X → [0,∞) on a set X (which in most cases will be implied by
the context), the notation F1 . F2 means that there exists a constant C > 0 such that
F1(x) ≤ C · F2(x) for all x ∈ X. The notation F1 � F2 is used if F1 . F2 and F2 . F1. For a
function F : G → C, its involution F∨ : G → C is defined by F∨(x) = F (x−1) for x ∈ G. A
function w : G→ (0,∞) will be called submultiplicative if w(xy) ≤ w(x)w(y) for all x, y ∈ G.

The Lebesgue space of r-integrable functions is denoted by Lr(G) for 0 < r ≤ ∞ and
defined relative to µG. For a (measurable) function w : G→ (0,∞), the associated weighted
spaces Lrw(G) are equipped with the norm ‖F‖Lrw := ‖F · w‖Lr . For r ∈ [1,∞), the bi-linear
dual pairing between Lrw(G) and its dual space Lr′1/w(G) is denoted (·, ·)

Lrw,L
r′
1/w

, while the
sesquilinear pairing (which is anti-linear in the second component) is denoted by 〈·, ·〉

Lrw,L
r′
1/w

.
If the involved spaces are clear from the context, these pairings will also sometimes simply be
denoted by (·, ·) and 〈·, ·〉.

2.2. Quasi-Banach function spaces. A vector space Y is called a quasi-normed space if it
is equipped with a map ‖ · ‖ : Y → [0,∞) that is positive definite (i.e., ‖f‖ > 0 for f 6= 0),
absolute homogeneous (i.e., ‖α f‖ = |α| ‖f‖) and such that there exists a constant C > 0
satisfying ‖f + g‖ ≤ C · (‖f‖ + ‖g‖) for all f, g ∈ Y ; such a map ‖ · ‖ is called a quasi-norm
on Y with triangle constant C > 0. For p ∈ (0, 1], a map ‖ · ‖ : Y → [0,∞) is a p-norm
if ‖f + g‖p ≤ ‖f‖p + ‖g‖p. If ‖ · ‖ : Y → [0,∞) satisfies the p-norm property, then it is a
quasi-norm with triangle constant C = 2

1
p
−1; see, e.g. [33, Exercise 1.1.4].

By the Aoki-Rolewicz theorem (see, e.g., the proof of [15, Chapter 2, Theorem 1.1]), given
a quasi-norm ‖ · ‖ : Y → [0,∞), there exists some p ∈ (0, 1] such that

|||f ||| := inf
{( n∑

i=1
‖fi‖p

) 1
p

: n ∈ N, f =
n∑
i=1

fi, f1, ..., fn ∈ Y
}

(2.1)

defines a p-norm on Y which is equivalent to ‖ · ‖, i.e., ‖ · ‖ � |||·|||. A vector space Y
with quasi-norm ‖ · ‖ is a quasi-Banach space if it is complete with respect to the metric
d(f, g) = |||f − g|||p, where |||·||| is any p-norm (for some p ∈ (0, 1]) equivalent to ‖ · ‖.

Let L0(G) be the space of (µG-equivalence classes of) measurable functions f : G→ C. A
quasi-Banach function space (Y, ‖ · ‖Y ) is a quasi-Banach space satisfying Y ⊂ L0(G). It is
called solid if for each measurable f : G → C satisfying |f | ≤ |g| µG-a.e. for some g ∈ Y , it
follows that f ∈ Y with ‖f‖Y ≤ ‖g‖Y .

It is not difficult to see (cf. [54, Corollary 2.2.12] for a proof) that if (Y, ‖ · ‖Y ) is a solid
quasi-Banach function space, then the p-norm |||·||| defined in Equation (2.1) is solid as well.
Hence, we can (and will) always assume that solid quasi-Banach function spaces are equipped
with a solid p-norm, for some p ∈ (0, 1] depending on Y .

The space Y ∨ = {F∨ : F ∈ Y } associated with a quasi-normed space Y ⊂ L0(G) is equipped
with the quasi-norm ‖F‖Y ∨ = ‖F∨‖Y .

2.3. Discrete sets. Let Λ = (λi)i∈I be a countable family in G. Then Λ is called relatively
separated if

Rel(Λ) := sup
x∈G

#{i ∈ I : λi ∈ xQ} = sup
x∈G

∑
i∈I

1λiQ(x) <∞.

Let U ⊂ G be a relatively compact unit neighborhood. The family Λ is said to be U -dense if
G =

⋃
i∈I λiU , and is called U -separated if λiU ∩ λi′U = ∅ for all i, i′ ∈ I with i 6= i′. If Λ

is separated, then it is also relatively separated. A family Λ is called relatively dense if it is
V -dense for some unit neighborhood V . A relatively separated and U -dense family exists for
any chosen U , cf. [3].

For a measurable unit neighborhood U , and any countable, U -dense family Λ = (λi)i∈I in
G, there exists a family (Ui)i∈I of measurable sets Ui ⊂ λiU satisfying G =

⋃· i∈I Ui; see, e.g.,
[50, Lemma 2.1]. Any such family (Ui)i∈I is called a disjoint cover associated with Λ and U .



6 JORDY TIMO VAN VELTHOVEN AND FELIX VOIGTLAENDER

2.4. Sequence spaces. Let Y be a solid quasi-Banach function space on G with p-norm
‖ · ‖Y . For a relatively separated family Λ in G, the discrete sequence space associated with
Y and Λ is defined as

Yd(Λ) := Yd(Λ, Q) :=
{
c = (ci)i∈I ∈ CI :

∑
i∈I
|ci|1λiQ ∈ Y

}
and equipped with the p-norm

‖c‖Yd(Λ) :=
∥∥∥∥∑
i∈I
|ci|1λiQ

∥∥∥∥
Y

, c = (ci)i∈I ∈ Yd(Λ). (2.2)

The space Yd(Λ) is a quasi-Banach space. If Y is right-invariant, then Yd(Λ, Q) is independent
of the choice of the neighborhood Q, with equivalent quasi-norms for different choices. In fact,
the implied constant of the norm equivalence for different choice of Q is independent of Λ. To
see this, note that if Q′ is a relatively compact unit neighborhood, then Q ⊂

⋃n
j=1Q

′x−1
j for

a certain n ∈ N and x1, . . . , xn ∈ G. Hence, for any family Λ = (λi)i∈I ⊂ G,∥∥∥∥∑
i∈I
|ci|1λiQ

∥∥∥∥
Y

≤
∥∥∥∥∑
i∈I
|ci|

n∑
j=1

1λiQ′x−1
j

∥∥∥∥
Y

.n,Y
n∑
j=1

∥∥∥∥Rxj∑
i∈I
|ci|1λiQ′

∥∥∥∥
Y

.n,Y

( n∑
j=1
‖Rxj‖Y→Y

)∥∥∥∥∑
i∈I
|ci|1λiQ′

∥∥∥∥
Y

,

(2.3)

where the implied constants only depend on Q,Q′, Y and are independent of Λ.
If Y = Lpv(G) for p ∈ (0,∞] and a (measurable) weight v : G → (0,∞) satisfying

v(xy) ≤ w(x)v(y) and v(xy) ≤ v(x)w(y) for a submultiplicative, measurable w : G→ (0,∞),
then Yd(Λ) = `pu(I), where u(i) := v(λi) for i ∈ I. The space of finite sequences on Λ will be
denoted by c00(Λ).

For further properties and proofs, cf. [47, Section 2] and [54, Section 2.3.2].

2.5. Cocycles and twisted convolution. A cocycle ormultiplier onG is a Borel measurable
function σ : G×G→ T satisfying the properties

(1) For all x, y, z ∈ G, it holds σ(x, yz)σ(y, z) = σ(xy, z)σ(x, y);
(2) For any x ∈ G, it holds σ(x, eG) = σ(eG, x) = 1.

Given a cocycle σ, the associated twisted translation operators Lσx and Rσx , where x ∈ G,
act on a measurable function F : G→ C as

(LσxF )(y) = σ(x, x−1y)F (x−1y) and (RσxF )(y) = σ(y, x)F (yx), y ∈ G. (2.4)

If σ ≡ 1, then Lσx (resp. Rσx) will simply be denoted by Lx (resp. Rx) and called a translation
operator. The twisted convolution of two measurable functions F1, F2 : G→ C is defined by

F1 ∗σ F2(x) =
∫
G
F1(y)[LσyF2](x) dµG(y) =

∫
G
F1(y)σ(y, y−1x)F2(y−1x) dµG(y) (2.5)

whenever the integral converges. As for twisted translation, if σ ≡ 1, the ordinary convolution
product will be denoted by ∗. Note that

|F1 ∗σ F2(x)| ≤ (|F1| ∗ |F2|)(x)

for all x ∈ G.

2.6. Local maximal functions. For a measurable (resp. continuous) function F : G → C,
the left and right (local) maximal functions defined by

MLF (x) = ess sup
y∈xQ

|F (y)| resp. MRF (x) = ess sup
y∈Qx

|F (y)|, (2.6)
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are measurable (resp. continuous) on G. The maximal functions satisfy the commutation
relations

ML[LxF ] = Lx[MLF ] and MR[RxF ] = Rx[MRF ] (2.7)
for arbitrary x ∈ G.

The notation ML
Q′ (resp. MR

Q′) will be used if maximal functions are defined as in (2.6),
but relative to a (relatively compact) unit neighborhood Q′ that is possibly different from the
canonical neighborhood Q (cf. Section 2.1).

By symmetry of Q, the left and right maximal functions are related by (MLF )∨ = MRF∨.
For any measurable functions F1, F2 : G → C for which F1 ∗σ F2 is (almost everywhere)
well-defined, the estimates
ML(F1 ∗σ F2)(x) ≤ (|F1| ∗MLF2)(x) and MR(F1 ∗σ F2)(x) ≤ (MRF1 ∗ |F2|)(x) (2.8)

hold for all x ∈ G.
For a solid quasi-Banach function space Y that is invariant under left- and right translation

and with p-norm ‖ · ‖Y , the associated left and right Wiener amalgam spaces WL(Y ) and
WR(Y ) are defined by

WL(Y ) =
{
F ∈ L∞loc(G) : MLF ∈ Y } and WR(Y ) =

{
F ∈ L∞loc(G) : MRF ∈ Y },

respectively. These spaces are equipped with the canonical p-norms ‖F‖WL(Y ) = ‖MLF‖Y
and ‖F‖WR(Y ) = ‖MRF‖Y . Note that WR(Y ) = [WL(Y ∨)]∨, as can be deduced from
the identity (MLF )∨ = MR(F∨). The spaces WL(Y ) and WR(Y ) are complete and con-
tinuously embedded into Y ; in notation, WL(Y ),WR(Y ) ↪→ Y . In addition, the spaces
WL(Y ) and WR(Y ) are independent of the choice of defining neighborhood Q, with equiva-
lent norms for different choices. Furthermore, WL(Y ),WR(Y ) are invariant under left- and
right-translations, and satisfy the following estimates

‖Lx‖WL(Y )→WL(Y ) ≤ ‖Lx‖Y→Y and ‖Rx‖WR(Y )→WR(Y ) ≤ ‖Rx‖Y→Y . (2.9)
These estimates are easy consequences of Equation (2.7).

The following simple pointwise estimates for continuous functions will be used repeatedly.
For a proof, see, e.g., [50, Lemma 2.4].

Lemma 2.1. Let Λ = (λi)i∈I ⊂ G be relatively separated. If F1, F2 : G → [0,∞) are
continuous functions, then∑

i∈I
F1(λ−1

i x)F2(y−1λi) ≤
Rel(Λ)
µG(Q) ·

(
MLF2 ∗MRF1

)
(y−1x) (2.10)

∑
i∈I

F1(y−1λi) ≤
Rel(Λ)
µG(Q) ‖F1‖WL(L1) (2.11)

for all x, y ∈ G.
In addition, if F1 ∈ L1(G) is continuous and satisfies F∨1 ∈WL(L1), then the mapping

DF1,Λ : `2(Λ)→ L2(G), (ci)i∈I 7→
∑
i∈I

ciLλiF1

is well-defined and bounded, with absolute convergence of the defining series a.e. on G. Its
operator norm satisfies ‖DF1,Λ‖2`2→L2 ≤ Rel(Λ)

µG(Q)‖F1‖L1‖F∨1 ‖WL(L1).

The (two-sided) maximal function is defined by M := MLMR = MRML. The associated
two-sided Wiener amalgam space is the subspace of WL(Y ) ∩WR(Y ) defined by

W (Y ) :=
{
F ∈ L∞loc(G) : MF ∈ Y

}
.

The (closed) subspace of W (Y ) consisting of continuous functions is denoted by WC(Y ).
Both W (Y ) and WC(Y ) are quasi-Banach function spaces when equipped with the p-norm
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‖F‖W (Y ) = ‖MF‖Y . These properties follow from W (Y ) = WR(WL(Y )). In addition, note
that

[W (Y )]∨ = WL([WL(Y )]∨) = WL(WR(Y ∨)) = W (Y ∨).
For further properties and proofs, see [47, Sections 2 and 3] and [54, Section 2.3].

3. Convolution relations for Wiener amalgam spaces

The purpose of this section is to provide several convolution relations and simple embed-
dings of Wiener amalgam spaces into Lebesgue spaces. These results will play an essential
role in the development of coorbit theory in the subsequent sections.

3.1. Embeddings into Lebesgue spaces. The following conditions on a weight function
will often be assumed in the sequel.

Definition 3.1. Let p ∈ (0, 1]. A function w : G → (0,∞) will be called a p-weight if it
satisfies the following conditions:
(w1) w is measurable and satisfies w ≥ 1,
(w2) w is submultiplicative, i.e., w(xy) ≤ w(x)w(y) for all x, y ∈ G,
(w3) w(x) = w(x−1) ·∆1/p(x−1) for all x ∈ G.

A p-weight is called a control weight for a quasi-Banach function space (Y, ‖ · ‖Y ) with p-norm
‖ · ‖Y if Y is translation-invariant (i.e., invariant under left- and right translations) and w
satisfies
(w4) ‖Ry‖Y→Y ≤ w(y) for all y ∈ G.

A control weight w for Y satisfying additionally
(w5) ‖Ly−1‖Y→Y ≤ w(y) for all y ∈ G

is called a strong control weight for Y .

Remark 3.2. A measurable, submultiplicative weight is automatically locally bounded; see,
e.g., [39, Lemma 1.3.3].

Lemma 3.3. Let r ∈ (0,∞], let w : G → (0,∞) be measurable and submultiplicative, and
let Y be a solid, translation-invariant quasi-Banach function space on G. Then the following
hold:

(i) If v : G → (0,∞) is measurable and satisfies ‖Ly−1‖Y→Y ≤ v(y) for all y ∈ G, then
WL(Y ) ↪→ L∞1/v.

(ii) WL(Lrw) ↪→ Lsw for all s ∈ [r,∞],
(iii) If p ∈ (0, 1] and w is a p-weight, then WR(Lpw) ↪→ [Lsw]∨ for all s ∈ [p,∞].

Remark 3.4. In fact, the lemma implies something slightly stronger: If F ∈ WL(Lrw), then
MLF ∈ WL(Lrw) ↪→ Lsw and hence F ∈ WL(Lsw). This argument easily implies that
WL(Lrw) ↪→WL(Lsw) for s ∈ [r,∞].

Proof. For proving assertions (i)-(iii), it will be used that for every measurable F : G → C,
there exists a null-set N ⊂ G such that for every x ∈ G \N , it holds that

1xQ−1 · |F (x)| ≤MLF a.e. (3.1)

To show this, let Ω :=
{
(x, z) ∈ G×G : 1xQ−1(z)·|F (x)| > MLF (z)

}
. SinceMLF is measur-

able (cf. Section 2.6), it is easy to see that Ω belongs to the Borel σ-algebra onG×G. SinceG is
second countable, the Borel σ-algebra on G×G coincides with the product σ-algebra on G×G;
see e.g. [23, Theorem 7.20]. Let Ωx = {z ∈ G : (x, z) ∈ Ω} and Ωz = {x ∈ G : (x, z) ∈ Ω}.
Then Tonelli’s theorem shows that

∫
G µG(Ωx) dµG(x) =

∫
G µG(Ωz) dµG(z). Therefore, it

suffices to show that Ωz is a null-set for arbitrary z ∈ G. For this, let z ∈ G. By definition
of ML, there exists a null-set Nz ⊂ Q such that MLF (z) ≥ |F (zq)| for all q ∈ Q \ Nz.
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For x ∈ z(G \ Nz) there are two cases. First, if x /∈ zQ, then 1xQ−1(z) = 0 and hence
trivially 1xQ−1(z) · |F (x)| ≤ MLF (z). Second, if x ∈ zQ, then q := z−1x ∈ Q \ Nz and
hence MLF (z) ≥ |F (zq)| = |F (x)| ≥ |F (x)|1xQ−1(z). Overall, this shows that Ωz ⊂ zNz is a
null-set, and establishes inequality (3.1).

(i) Define C := 1/‖1Q−1‖Y , with the understanding that C = 0 if 1Q−1 /∈ Y . Let
F ∈WL(Y ). It will be shown that ‖F‖L∞1/v ≤ C ‖F‖WL(Y ). For this, let N = N(F ) ⊂ G be a
null set such that (3.1) holds for all x ∈ G \N . For x ∈ G \N , it follows then by the solidity
of Y that

|F (x)| · ‖1xQ−1‖Y ≤ ‖MLF‖Y = ‖F‖WL(Y ) <∞.
If |F (x)| 6= 0, then this implies 1xQ−1 ∈ Y , and

‖1Q−1‖Y = ‖Lx−11xQ−1‖Y ≤ v(x) · ‖1xQ−1‖Y ,

so that |F (x)|/v(x) ≤ C · ‖F‖WL(Y ). If |F (x)| = 0, then this trivially holds. In conclusion, it
follows that |F (x)|/v(x) ≤ C · ‖F‖WL(Y ) for all x ∈ G \N .

(ii) It will be shown that WL(Lrw) ↪→ L∞w . Since WL(Lrw) ↪→ Lrw (cf. Section 2.6), this
will then imply that WL(Lrw) ↪→ Lsw for all s ∈ [r,∞]. Let F ∈ WL(Lrw). Choose a null-set
N = N(F ) ⊂ G such that Equation (3.1) holds for all x ∈ G \N . Since Lrw is solid, it follows
that, for all x ∈ G \N ,

|F (x)| · ‖1xQ−1‖Lrw ≤ ‖M
LF‖Lrw = ‖F‖WL(Lrw) <∞.

There exists C = C(Q,w) > 0 such that w(q) ≤ C for all q ∈ Q (cf. Remark 3.2). Hence, if
z ∈ Q−1, then w(x) ≤ w(xz)w(z−1) ≤ C · w(xz) for all x ∈ G. Therefore,

‖1xQ−1‖rLrw =
∫
xQ−1

[w(y)]rdµG(y) =
∫
Q−1

[w(xz)]rdµG(z) ≥ C−r · [w(x)]r · µG(Q−1)

for all x ∈ G. Overall, this shows |F | · w . ‖F‖WL(Lrw) a.e. on G, as required.
(iii) Condition (w3) combined with the identity

∫
G F (x) dµG(x) =

∫
G F (x−1)∆(x−1) dµG(x)

easily implies that [Lpw]∨ = Lpw, with identical quasi-norms. Hence,

WR(Lpw) = [WL((Lpw)∨)]∨ = [WL(Lpw)]∨,

with identical quasi-norms (cf. Section 2.6). Therefore, Part (ii) implies for all s ∈ [p,∞] that
WR(Lpw) = [WL(Lpw)]∨ ↪→ [Lsw]∨. �

3.2. Convolution relations. This subsection is devoted to convolution relations for Wiener
amalgam spaces. The following compatibility condition between a quasi-Banach function
space and a weight function will play an important role in the sequel.

Definition 3.5. Let w : G → [1,∞) be a p-weight for some p ∈ (0, 1] and let Y be a
solid quasi-Banach function space Y on G with p-norm ‖ · ‖Y . The space Y is said to be
Lpw-compatible if

(c1) Y is translation-invariant.
(c2) The convolution relation WL(Y ) ∗W (Lpw) ↪→WL(Y ) holds.
(c3) The embedding WL(Y ) ↪→ L∞1/w(G) holds.

Remark 3.6. In Corollary 3.9, it will be shown that Y is Lpw-compatible if w is a strong control
weight for Y . The reason for introducing the concept of Lpw-compatibility is that there are
some (important) cases in which Lpw-compatibility holds even if w is not a strong control
weight for Y . A case in point are the spaces Y = WL(Lpw) and Y = WR(Lpw), as well as
Y = W (Lpw), which are always Lpw-compatible if w is a p-weight; see Corollary 3.10.

The following result provides a general convolution relation for Amalgam spaces. The most
important consequences of this result are stated in Corollary 3.9.
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Theorem 3.7. Let p ∈ (0, 1] and let w : G → (0,∞) be a p-weight. Let Y be a solid,
translation-invariant quasi-Banach function space and assume that w is a control weight for
Y . Suppose there exists a submultiplicative measurable weight v : G → [1,∞) satisfying
WL(Y ) ↪→ L∞1/v and WR(Lpw) ↪→ [L1

v]∨. Then the convolution relation

WL(Y ) ∗WR(Lpw) ↪→ Y

holds. More precisely, there exists a constant C = C(p, w,Q) > 0 such that∥∥F1 ∗ F2
∥∥
Y
≤
∥∥|F1| ∗ |F2|

∥∥
Y
≤ C‖F1‖WL(Y )‖F2‖WR(Lpw)

for all F1 ∈ WL(Y ) and F2 ∈ WR(Lpw). In addition, |F1| ∗ |F2|(x) < ∞ for all x ∈ G and
F1 ∗ F2 : G→ C is continuous.

Proof. The proof will be split into three steps.

Step 1. Since F1 ∗ F2(x) =
(
F1, Lx[F∨2 ]

)
L∞1/v ,L

1
v
, it follows that |F1| ∗ |F2|(x) < ∞ for

all x ∈ G. Furthermore, the map x 7→ Lx[F∨2 ] is continuous from G into L1
v, see, e.g.,

[39, Lemma 1.3.6] or [49, Proposition 3.7.6]. Hence, F1 ∗ F2 : G→ C is continuous as well.

Step 2. In this step, it will be shown that there exists a countable family (xi)i∈I ⊂ G
and a measurable partition of unity (ϕi)i∈I on G with ϕ−1

i (C \ {0}) ⊂ xiQ and a constant
C = C(p,Q,w) > 0 such that∥∥∥(w(xi) · ‖F · ϕi‖L∞

)
i∈I

∥∥∥
`p
≤ C‖F‖WL(Lpw) (3.2)

for all F ∈WL(Lpw).
For constructing (ϕi)i∈I , an application of [3, Lemma 1] yields a subset X ⊂ G and some

N ∈ N such that G =
⋃
x∈X xQ and such that each x ∈ G belongs to at most N of the sets

xQ for x ∈ X. Since G is second-countable and hence σ-compact, it is possible to extract a
countable subset of X that still satisfies these conditions, so that it may be assumed that X
is countable. Thus, for a suitable M ∈ N ∪ {∞} and for I = {i ∈ N : i < M}, we can write
X = {xi : i ∈ I} with xi 6= xj for i 6= j. Define Ωi := xiQ \

⋃i−1
`=1 x`Q inductively and set

ϕi := 1Ωi . Then ϕ
−1
i (C \ {0}) = Ωi ⊂ xiQ and

∑
i∈I ϕi ≡ 1 on G.

For showing (3.2), define Q′ := Q−1Q and let F ∈ WL(Lpw). Note that if x ∈ xiQ, then
ϕ−1
i (C\{0}) ⊂ xiQ ⊂ xQ−1Q = xQ′. This implies that ‖F ·ϕi‖L∞ ≤ML

Q′F (x). On the other
hand, we have w . 1 everywhere on Q (cf. Remark 3.2), and thus there exists C1 > 0 such
that w(xi) ≤ w(x)w(x−1xi) ≤ C1w(x). Overall, these considerations show that[

w(xi) · ‖F · ϕi‖L∞
]p · 1xiQ . [w ·ML

Q′F
]p for all i ∈ I.

By the choice of {xi : i ∈ I} = X, it holds that
∑
i∈I 1xiQ ≤ N , and hence∑

i∈I

[
w(xi) · ‖F · ϕi‖L∞

]p · 1xiQ . [w ·ML
Q′F

]p ·∑
i∈I

1xiQ .
[
w ·ML

Q′F
]p
.

Integrating this estimate over G gives∑
i∈I

[
w(xi) · ‖F · ϕi‖L∞

]p = 1
µG(Q)

∑
i∈I

∫
G

[
w(xi) · ‖F · ϕi‖L∞

]p · 1xiQ(x)dµG(x)

. ‖ML
Q′F‖

p
Lpw
. ‖F‖p

WL(Lpw),

where the last estimate follows from the independence of WL(Lpw) = WL
Q(Lpw) from the choice

of the set Q (cf. Section 2.6.) The preceding estimate easily shows that Equation (3.2) holds.

Step 3. With notation as in Step 2, set ψi := ϕ∨i and F
(i)
2 := F2 · ψi for i ∈ I. Note

that (F (i)
2 )∨ = F∨2 · ϕi and ψ−1

i (C \ {0}) ⊂ Q−1x−1
i . Furthermore, note that Lpw = [Lpw]∨,
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which follows from condition (w3) of Definition 3.1. Hence, applying the estimate (3.2) to the
function F∨2 ∈WL([Lpw]∨) = WL(Lpw) shows that∥∥∥(w(xi) · ‖F (i)

2 ‖L∞
)
i∈I

∥∥∥
`p
. ‖F∨2 ‖WL(Lpw) = ‖F2‖[WL(Lpw)]∨ = ‖F2‖WR(Lpw). (3.3)

If i ∈ I and F
(i)
2 (y−1x) 6= 0, then y−1x ∈ (F (i)

2 )−1(C \ {0}) ⊂ Q−1x−1
i and hence

1xxiQ(y) = 1. Thus, F (i)
2 (y−1x) = F

(i)
2 (y−1x)1xxiQ(y), and(

|F1| ∗ |F (i)
2 |
)
(x) =

∫
G
|F1(y)| ·

∣∣F (i)
2 (y−1x)

∣∣dµG(y)

≤
∥∥F (i)

2
∥∥
L∞
‖F1 · 1xxiQ‖L∞ · µG(xxiQ)

= µG(Q) ·
∥∥F (i)

2
∥∥
L∞
· (MLF1)(xxi)

= µG(Q) ·
∥∥F (i)

2
∥∥
L∞
·Rxi

[
MLF1

]
(x)

for all x ∈ G. By the solidity of Y and since ‖Rxi‖Y→Y ≤ w(xi) by assumption (cf. condition
(w4) of Definition 3.1), this implies∥∥ |F1| ∗

∣∣F (i)
2
∣∣ ∥∥
Y
.
∥∥F (i)

2
∥∥
L∞

∥∥Rxi[MLF1
]∥∥
Y
≤ w(xi) ·

∥∥F (i)
2
∥∥
L∞
‖F1‖WL(Y ), i ∈ I.

Using the estimate (3.3) and Lemma A.2, it follows that F :=
∑
i∈I |F1| ∗

∣∣F (i)
2
∣∣ ∈ Y and

‖F‖Y . ‖F1‖WL(Y ) ·
∥∥∥(w(xi) ·

∥∥F (i)
2
∥∥
L∞

)
i∈I

∥∥∥
`p
. ‖F1‖WL(Y )‖F2‖WR(Lpw).

Since F2 =
∑
i∈I F

(i)
2 , an application of the monotone convergence theorem yields

|F1 ∗ F2| ≤ |F1| ∗ |F2| ≤
∑
i∈I
|F1| ∗

∣∣F (i)
2
∣∣ = F,

which easily implies the claim. �

Remark 3.8. The assumptions WL(Y ) ↪→ L∞1/v and WR(Lpw) ↪→ [L1
v]∨ in Theorem 3.7 are

not actually needed for deriving the convolution relation WL(Y ) ∗ WR(Lpw) ↪→ Y ; these
assumptions are only used to ensure that F1 ∗ F2 is well-defined everywhere and continuous.

As a consequence of Theorem 3.7, it follows, in particular, that Y is Lpw-compatible when-
ever w is a strong control weight for Y . This sufficient condition for compatibility is particu-
larly convenient for applications. The precise statement is as follows.

Corollary 3.9. Let w : G→ [1,∞) be a p-weight for some p ∈ (0, 1].
(i) The following convolution relations hold:

WL(Lpw) ∗WR(Lpw) ↪→ Lpw and W (Lpw) ∗W (Lpw) ↪→WC(Lpw).
(ii) If w is a strong control weight for a solid, translation-invariant quasi-Banach function

space Y in the sense of Definition 3.1, then the following convolution relations hold
WL(Y ) ∗WR(Lpw) ↪→ Y and WL(Y ) ∗W (Lpw) ↪→WL(Y ).

In particular, Y is Lpw-compatible.

Proof. (i) We apply Theorem 3.7 with Y = Lpw and v ≡ 1. For this, note that applying the
identity

∫
RyF dµG = ∆(y−1)

∫
F dµG for measurable F : G→ [0,∞] implies for f ∈ Lpw that

‖Ryf‖pLpw =
∫
G

∣∣w(xyy−1)f(xy)
∣∣pdµG(x) ≤

[
w(y−1)

]p ∫
G
Ry
[
|w · f |p

]
dµG

=
[
w(y−1) ∆1/p(y−1)

]p · ‖f‖p
Lpw
,

and hence ‖Ry‖Y→Y ≤ w(y−1) · ∆1/p(y−1). Since w(y−1) · ∆1/p(y−1) = w(y) by condition
(w3) of Definition 3.1, this shows that w is a control weight for Y . Furthermore, Lemma 3.3
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shows because of w ≥ 1 ≡ v = 1
v and p ≤ 1 that WL(Lpw) ↪→ L∞w ↪→ L∞v = L∞1/v. Similarly,

Lemma 3.3 shows that WR(Lpw) ↪→ [L1
w]∨ ↪→ [L1

v]∨. This shows that all assumptions of
Theorem 3.7 are satisfied, and thus WL(Lpw) ∗WR(Lpw) ↪→ Lpw.

Finally, for F1, F2 ∈W (Lpw), an application of Equation (2.8) yields∥∥F1 ∗ F2
∥∥
W (Lpw) =

∥∥MLMR(F1 ∗ F2)
∥∥
Lpw
≤
∥∥(MRF1) ∗ (MLF2)

∥∥
Lpw

.
∥∥MRF1

∥∥
WL(Lpw)

∥∥MLF2
∥∥
WR(Lpw) ≤ ‖F1‖W (Lpw)‖F2‖W (Lpw),

as asserted, where Theorem 3.7 shows that F1 ∗F2 is continuous for F1 ∈W (Lpw) ↪→WL(Lpw)
and F2 ∈W (Lpw) ↪→WR(Lpw).

(ii) By assumption, ‖Ly−1‖Y→Y ≤ w(y) for all y ∈ G, and thus Lemma 3.3 shows that
WL(Y ) ↪→ L∞1/w. Furthermore, Lemma 3.3 also shows that WR(Lpw) ↪→ [L1

w]∨. Thus, Theo-
rem 3.7 is applicable and shows WL(Y )∗WR(Lpw) ↪→ Y . Combining this convolution relation
with Equation (2.8) and the solidity of Y , we see for F1 ∈WL(Y ) and F2 ∈W (Lpw) that

‖F1 ∗ F2‖WL(Y ) = ‖ML(F1 ∗ F2)‖Y ≤ ‖|F1| ∗MLF2‖Y
. ‖F1‖WL(Y )‖MLF2‖WR(Lpw) = ‖F1‖WL(Y )‖F2‖W (Lpw),

completing the proof. �

Corollary 3.10. Let p ∈ (0, 1] and let w : G→ (0,∞) be a p-weight. Then each of the spaces
WL(Lpw),WR(Lpw) and W (Lpw) is Lpw-compatible.

Proof. This easily follows by combining Corollary 3.9 and Lemma 3.3. �

The last result of this subsection concerns genuine Banach function spaces satisfying the
so-called Fatou property, see, e.g., [56, Chapter 15, § 65]. Among others, it applies to weighted
Lebesgue spaces.

Lemma 3.11. Let Y be a solid Banach function space that is right-translation-invariant and
satisfies the weak Fatou property, meaning that there exists a constant C > 0 such that∥∥∥ lim inf

n→∞
Fn
∥∥∥
Y
≤ C · lim inf

n→∞
‖Fn‖Y

for every sequence (Fn)n∈N of non-negative functions Fn ∈ Y with lim infn→∞ ‖Fn‖Y <∞.
If w : G → (0,∞) is measurable with w(x) ≥ ‖Rx‖Y→Y for all x ∈ G, then F1 ∗ F2 is

almost-everywhere well-defined for every F1 ∈ Y and F2 : G→ C with F∨2 ∈ L1
w, and it holds

‖F1 ∗ F2‖Y . ‖F1‖Y · ‖F∨2 ‖L1
w
.

In particular, if w is a 1-weight, then the following convolution relations hold:
Y ∗ L1

w ↪→ Y and WL(Y ) ∗W (L1
w) ↪→ Y ∗WL(L1

w) ↪→WL(Y ).

Proof. LetM+ denote the set of all non-negative measurable functions F : G→ [0,∞], where
functions are identified whenever they agree almost everywhere. The norm ‖ · ‖Y will be
extended to a map M+ → [0,∞] by setting ‖F‖Y :=∞ if F /∈ Y . It is then straightforward
to verify that ‖ · ‖Y : M+ → [0,∞] is a function norm in the sense of [56, Section 63]. By
our assumptions, it also follows that ‖ · ‖Y satisfies the weak Fatou property as defined in
[56, Section 65]; see [56, Theorem 3 in Section 65].

In accordance with [56, Section 68], the associated seminorms ‖ · ‖(n)
Y : M+ → [0,∞] are

inductively defined by ‖ · ‖(0)
Y := ‖ · ‖Y and

‖F‖(n)
Y := sup

{∫
G
F ·H dµG : H ∈M+ with ‖H‖(n−1)

Y ≤ 1
}

for n ≥ 1.

Since ‖ · ‖Y satisfies the weak Fatou property, an application of [56, Theorem 3 in Section 71]
shows that ‖ · ‖Y � ‖ · ‖(2)

Y .
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Let F1, F2, H ∈ M+ with F1 ∈ Y , F∨2 ∈ L1
w, and ‖H‖

(1)
Y ≤ 1. Tonelli’s theorem shows

F1 ∗F2 ∈M+. Further, F1 ∗F2(x) =
∫
G F1(y)F2(y−1x)dµG(y) =

∫
G(RzF1)(x)F2(z−1)dµG(z).

Based on this identity, another application of Tonelli’s theorem yields that∫
G

(F1 ∗ F2)(x)H(x) dµG(x) =
∫
G
F2(z−1)

∫
G

(RzF1)(x)H(x) dµG(x)dµG(z).

By definition of ‖·‖(1)
Y , it follows

∫
G(RzF1)(x)H(x)dµG(x) ≤ ‖H‖(1)

Y ·‖RzF1‖Y ≤ w(z)·‖F1‖Y .
Hence, ∫

G
(F1 ∗ F2)(x)H(x)dµG(x) ≤ ‖F1‖Y

∫
G
w(z) · F∨2 (z)dµG(z) = ‖F1‖Y ‖F∨2 ‖L1

w
.

Since this holds for every H ∈M+ with ‖H‖(1)
Y ≤ 1, this implies

‖F1 ∗ F2‖Y . ‖F1 ∗ F2‖(2)
Y ≤ ‖F1‖Y · ‖F∨2 ‖L1

w
.

Thus, the convolution relation Y ∗ [L1
w]∨ ↪→ Y holds for non-negative functions; by solidity,

this easily implies the general case.
Finally, if w is a 1-weight, it follows that L1

w = [L1
w]∨ with identical norms, so that the

preceding convolution relation implies that Y ∗L1
w ↪→ Y . Moreover, using the estimate (2.8),

it follows for F1 ∈ Y and F2 ∈WL(L1
w) that

‖F1 ∗ F2‖WL(Y ) = ‖ML(F1 ∗ F2)‖Y ≤
∥∥|F1| ∗MLF2

∥∥
Y

.
∥∥|F1|

∥∥
Y
· ‖MLF2‖L1

w
= ‖F1‖Y · ‖F2‖WL(L1

w),

as asserted. �

3.3. Counterexamples. In this section two examples (both taken from [54, Section 2.3]) are
provided, showing that in general

WL(Lpv) ∗ [WL(Y ∨)]∨ *WL(Y )

with v(x) = ‖Lx−1‖WL(Y )→WL(L) and/or v(x) = ‖Lx‖WL(Y )→WL(Y ). These examples show
that the convolution relation asserted in [47, Theorem 5.2] fails in general. This (incorrect)
convolution relation is used several times in the coorbit theory developed in [45,46].

The first example shows that one cannot use the weight v(x) = ‖Lx−1‖WL(Y )→WL(Y ).

Example 3.12. Let G = R and consider the weight w : R → (0,∞), x 7→ ex. Let
Y := L1

w(R). For f ∈ Y and x ∈ R, it follows that

‖Lxf‖Y =
∫
R
|f(y − x)| ey dy =

∫
R
|f(z)| ez+x dz = ex · ‖f‖Y ,

and hence ‖Lx‖Y→Y = ex. As seen in Equation (2.9), this implies

v(x) := ‖Lx−1‖WL(Y )→WL(Y ) ≤ ‖Lx−1‖Y→Y = e−x,

where we have written G = R multiplicatively, as well as additively, i.e., x−1 = −x. Moreover
note, for any measurable f : R→ C that∥∥f∨∥∥Y =

∫
R
|f(y)| e−y dy = ‖f‖L1

u

for u : R→ (0,∞), x 7→ e−x. Thus, Y ∨ = L1
u(R).

Let T > 0 be arbitrary and define f := 1(T,T+1) as well as g := 1(−T−1,−T ). Using the
(open, relatively compact, symmetric) unit neighborhood Q := (−1, 1), it follows that(

ML1A

)
(x) = ess sup

y∈x+Q
1A(y) ≤ 1A+Q(x)
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for each measurable A ⊂ R, since 1A(y) 6= 0 for some y ∈ x+Q implies x+ q = y ∈ A for a
suitable q ∈ Q, which in turn yields x = y− q ∈ A−Q = A+Q. Note that ‖ · ‖L1

w
= ‖ · ‖Y is

a p-norm with p = 1. Thus,

‖f‖WL(Lpv) =
∥∥ML 1(T,T+1)

∥∥
L1
v
≤
∥∥∥1(T−1,T+2)

∥∥∥
L1
v

≤
∫ T+2

T−1
e−x dx = e−T · (e1 − e−2) ≤ e · e−T

and ‖g‖[WL(Y ∨)]∨ = ‖g∨‖WL(L1
u) = ‖ML1(T,T+1)‖L1

u
≤ ‖1(T−1,T+2)‖L1

u
≤ e · e−T .

Since f, g ∈ L2(R), it is easy to see that f ∗ g is continuous with

f ∗ g(0) =
∫
R
1(T,T+1)(x) · 1(−T−1,−T )(0− x) dx = 1.

Hence, for arbitrary x ∈ (−1, 1), we have ML[f ∗ g](x) ≥ f ∗ g(0) = 1, which yields that
‖f ∗ g‖WL(Y ) ≥

∫
(−1,1) e

x dx ≥ 1.
Assume towards a contradiction that WL(Lpv) ∗ [WL(Y ∨)]∨ ⊂ WL(Y ). As an easy conse-

quence of the closed graph theorem, this implies existence of a constant C = C(w,Q) > 0
satisfying ‖f ∗ g‖WL(Y ) ≤ C ‖f‖WL(Lpv) ‖g‖[WL(Y ∨)]∨ . Then the above estimates yield that

1 ≤ ‖f ∗ g‖WL(Y ) ≤ C ‖f‖WL(Lpv) ‖g‖[WL(Y ∨)]∨ ≤ C · e
2 · e−2T → 0 as T →∞,

a contradiction. Thus, WL(Lpv) ∗ [WL(Y ∨)]∨ *WL(Y ). �

The next example shows that [47, Theorem 5.2] also fails1 for v(x) = ‖Lx‖WL(Y )→WL(Y ).

Example 3.13. Let G denote the affine group, i.e., G := R×(0,∞) with multiplication given
by

(x, a) · (y, b) = (x+ ay, ab).
Neutral element and inverse in G are given by eG = (0, 1) ∈ G and (x, a)−1 =

(
−x
a , a
−1),

respectively. The left Haar integral on G is given by∫
G
f(g) dµG(g) =

∫ ∞
0

∫
R
f(x, a)dx da

a2

with modular function ∆
(
(x, a)

)
= a−1.

Define the weight

w : G→ (1,∞), (x, a) 7→ 1 + a = 1 + ∆
(
(x, a)−1

)
.

Then w is clearly continuous and submultiplicative. Set Y := L1
w(G). Since L1(G) is right

invariant and isometrically left invariant, it follows that WL(Y ) is left and right invariant (cf.
Section 2.6) with

v(x, a) := ‖L(x,a)‖WL(Y )→WL(Y ) ≤ ‖L(x,a)‖Y→Y ≤ w(x, a) = 1 + a.

Moreover, as seen in Section 2.6, WL
Q′(Y ) is independent of the choice of the (open, relatively

compact) unit neighborhood Q′ ⊂ G. In addition, a direct calculation using the identity∫
GF (z) dµG(z)=

∫
G F (z−1)∆(z−1)dµG(z) shows that∥∥f∨∥∥L1

w
=
∫
G

∣∣f∨(z)
∣∣ · w(z) dµG(z) =

∫
G

∣∣∣f(z−1)
∣∣∣ dµG(z) +

∫
G

∣∣∣f(z−1)
∣∣∣ ·∆(z−1) dµG(z)

=
∫
G
|f(z)| ·∆(z−1) dµG(z) +

∫
G
|f(z)| dµG(z) = ‖f‖L1

w
,

so that Y = Y ∨.
Let α ∈ (1,∞) and β ∈ (0, 1) and set δ := max {α, β} = α. Define f : G → (0,∞)

by f
(
(x, a)

)
= e−|x| · min

{
aα, a−β

}
. Then f is clearly continuous and is easily seen to

1The weight v(x) = ‖Lx‖WL(Y )→WL(Y ) does not occur in the statement of [47, Theorem 5.2], but it is this
weight that is used in its proposed proof.
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satisfy ‖f‖sup ≤ 1. In the following, we use the (open, relatively compact) unit neighbor-
hoods Q0 := (−1, 1) × (1

2 , 2) and Q′ := Q−1
0 . Then the substitutions (z, c) = (y, b)−1 and

(µ, ν) = (z, c) · (x, a) yield(
ML
Q′f
∨
)

(x, a) ≤ sup
(y,b)∈(x,a)Q′

∣∣f∨(y, b)
∣∣ = sup

(z,c)∈Q0(x,a)−1
|f(z, c)|

= sup
(µ,ν)∈Q0

∣∣∣f ((µ, ν) · (x, a)−1
)∣∣∣ = sup

(µ,ν)∈Q0

∣∣∣f ((µ, ν) ·
(
−x
a , a
−1
))∣∣∣

= sup
(µ,ν)∈Q0

∣∣f (µ− ν
ax,

ν
a

)∣∣ = sup
(µ,ν)∈Q0

e−|µ−
ν
a
x| ·min

{
(ν/a)α , (ν/a)−β

}
.

Using that (µ, ν) ∈ Q0 = (−1, 1)× (1
2 , 2), we see∣∣∣∣µ− ν

a
x

∣∣∣∣ ≥ ν

a
|x| − |µ| ≥ ν

a
|x| − 1 ≥ |x|2a − 1

and thus e−|µ−
ν
a
x| ≤ e−

( |x|
2a−1

)
= e · e−|x|/2a. Furthermore, 1

2a ≤
ν
a ≤

2
a , which entails

(νa )α ≤ ( 2
a)α ≤ 2δ ·a−α and

(
ν
a

)−β =
(
a
ν

)β ≤ 2β ·aβ ≤ 2δ ·aβ. Combining these estimates yields(
ML
Q′f
∨
)

(x, a) ≤ 2δe · e−|x|/2a ·min
{
a−α, aβ

}
for all (x, a) ∈ G. (3.4)

For a ∈ (0,∞), using the identity C1 :=
∫
R e
−|y| dy =

∫
R e
−|x|/2a dx

2a , it follows that∥∥f∨∥∥WL
Q′ (Y ) ≤ 2δe

∫
G
e−|x|/2a ·min

{
a−α, aβ

}
· w(x, a) dµG(x, a)

= 2δe
∫ ∞

0

min
{
a−α, aβ

}
· (1 + a)

a2 · 2a
∫
R
e−|x|/2a

dx

2ada

= 2δ+1eC1

∫ ∞
0

min
{
a−α, aβ

}
· (1 + a)

a
da

≤ 2δ+1eC1 ·
[∫ 1

0
aβ · (1 + a)da

a
+
∫ ∞

1
a−α · (1 + a)da

a

]
.

Using 1 + a ≤ 2 for a ∈ (0, 1) and 1 + a ≤ a+ a = 2a for a ∈ [1,∞), this gives∥∥f∨∥∥WL
Q′ (Y ) ≤ 2δ+2eC1 ·

[∫ 1

0
aβ
da

a
+
∫ ∞

1
a1−αda

a

]
<∞,

because of β > 0 and α > 1. This implies f∨ ∈WL(Y ) = WL(Y ∨) and thus f ∈
[
WL(Y ∨)

]∨,
since f∨ ∈WL(Y ) = WL(L1

w) ↪→WL(L1
v), since v ≤ w.

Note that Y = L1
w(G) is a Banach space, so that ‖ · ‖Y is a p-norm for p = 1. Now, if the

convolution relation WL(Lpv) ∗ [WL(Y ∨)]∨ ⊆WL(Y ) would hold, then the above would yield
f∨ ∗ f ∈ WL(Y ). We will now show that in fact f∨ ∗ f /∈ WL(Y ). For this, note first that
f∨ ∈ WL(L1

w) ↪→ L1 since w ≥ 1. Furthermore, f is bounded, so that f∨ ∗ f : G → C is a
well-defined, continuous, bounded function. A direct calculation gives(

f∨ ∗ f
)

(x, a) =
∫
G
f∨(y, b) · f

(
(y, b)−1 · (x, a)

)
dµG(y, b)

=
∫ ∞

0

∫
R
f

(
−y
b
,
1
b

)
· f
(
x− y
b

,
a

b

)
dy
db

b2

=
∫ ∞

0
min

{
b−α, bβ

}
min

{(
a

b

)α
,

(
a

b

)−β}
· b
b2

∫
R
e−|−

y
b |e−|

x−y
b |dy

b
db

=
∫ ∞

0
min

{
b−α, bβ

}
·min

{(
a

b

)α
,

(
b

a

)β}
·
∫
R
e−|z|e−|z−

x
b |dz db

b
.
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Let x = 0 and a ≥ 1. Then, for each b ∈ (0, 1), it follows that bβ ≤ 1 ≤ b−α as well as b < 1 ≤ a,
and thus (b/a)β ≤ 1β = 1 ≤ (a/b)α. With the abbreviation C2 :=

∫
R(e−|z|)2dz ∈ (0,∞), these

considerations and the above calculation imply

(
f∨ ∗ f

)
(0, a) ≥ C2 ·

∫ 1

0
bβ · (b/a)β db

b
= C2 · a−β ·

∫ 1

0
b2β−1db = C2 · a−β ·

b2β

2β

∣∣∣∣1
0

= C2
2β · a

−β (3.5)

for all a ≥ 1. For using this to obtain a lower bound on ML(f∨ ∗ f), first note for (y, b) ∈ G
that

(y, b)Q0 = [y + (−b, b)]×
(
b

2 , 2b
)

=: Bb(y)×
(
b

2 , 2b
)
.

For b ∈ (1,∞) and y ∈ (−b, b), we thus have (0, b) ∈ (y, b)Q0. Since f∨ ∗ f is continuous and
(y, b)Q0 is open, it follows that, for b ∈ (1,∞) and y ∈ (−b, b),

ML
Q0 [f∨ ∗ f ](y, b) ≥ (f∨ ∗ f)(0, b) ≥ C2

2β · b
−β,

where the estimate (3.5) was used in the last step. Combining the obtained estimates gives∥∥f∨ ∗ f∥∥WL
Q0

(Y ) ≥
C2
2β ·

∫
G
1(1,∞)(b) · 1(−b,b)(y) · b−β · w(y, b) dµG(y, b)

= C2
2β ·

∫ ∞
1

b−β

b2
· (1 + b) ·

∫ b

−b
dy db

≥ C2
2β ·

∫ ∞
1

b−β db =∞,

because of β ∈ (0, 1). Thus, f∨ ∗ f /∈WL(Y ). �

Remark 3.14. The above example also shows that

WL(Lpw) ∗
[
WL(Lpw∗)

]∨ *WL(Lpw) (3.6)

for the weight w∗(x) = ∆(x−1) · w(x−1). Hence, the convolution relation that is stated in
[47, Corollary 5.4] is also false in general (even for p = 1). To see that the above example
indeed implies Equation (3.6), note that the weight w in the example satisfies w∗ = w and
that f∨ ∈WL(L1

w) as well as f ∈
[
WL(L1

w∗)
]∨, but f∨ ∗ f /∈WL(Y ) = WL(L1

w).

4. Coorbit spaces associated with integrable group representations

This section develops the basic theory of coorbit spaces associated with (possibly projective)
integrable representations and quasi-Banach function spaces.

4.1. Admissible vectors and reproducing formulae. Let (π,Hπ) be a unitary σ-repre-
sentation of G on the separable Hilbert space Hπ 6= {0}, i.e., a strongly measurable2 map
π : G→ U(Hπ) into the set U(Hπ) of unitary operators on Hπ satisfying π(eG) = IHπ and

π(x)π(y) = σ(x, y)π(xy), for all x, y ∈ G, (4.1)

for some function σ : G×G→ T. Any such function σ is a cocycle in the sense of Section 2.5.
One also says that (π,Hπ) is a unitary projective representation. The adjoint operator π(x)∗
of π(x) for x ∈ G is given by

[π(x)]∗ = [π(x)]−1 = σ(x, x−1)π(x−1) = σ(x−1, x)π(x−1). (4.2)

2This means that for each f ∈ Hπ, the map G → Hπ, x 7→ π(x)f is measurable.
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In particular, σ(x, x−1) = σ(x−1, x). The map π is called irreducible if {0} and Hπ are the
only closed π-invariant subspaces of Hπ, i.e., if V ⊂ Hπ and π(x)v ∈ V for all v ∈ V and
x ∈ G, then V = {0} or V = Hπ.

For g ∈ Hπ, define its associated coefficient transform Vg : Hπ → L∞(G) by

Vgf(x) = 〈f, π(x)g〉, x ∈ G.

By [53, Lemma 7.1, Theorem 7.5], it follows that

|Vgf | : G→ C is continuous for all f, g ∈ Hπ. (4.3)

A vector g ∈ Hπ is called admissible if Vg : Hπ → L2(G) is well-defined and an isometry.
The following simple lemma collects several identities that will be used repeatedly through-

out this article. Here, the twisted translation operators Lσx and Rσx and twisted convolution
operator ∗σ are as defined in Section 2.5.

Lemma 4.1. Let f, g, h ∈ Hπ.
(i) For x ∈ G, the following intertwining property holds:

Vgf(x−1) = σ(x, x−1)Vfg(x), Vg[π(x)f ] = Lσx[Vgf ] and Vπ(x)gf = Rσx [Vgf ].

(ii) If h ∈ Hπ is admissible, then the following reproducing formula holds:

Vgf = Vhf ∗σ Vgh. (4.4)

Proof. (i) If x, y ∈ G, then

Vg[π(x)f ](y) = 〈f, π(x)∗π(y)g〉 = σ(x, x−1)〈f, π(x−1)π(y)g〉

= σ(x, x−1)σ(x−1, y)Vgf(x−1y).

Using that σ(x, x−1y) = σ(x−1, y)σ(xx−1, y)σ(x, x−1) = σ(x, x−1)σ(x−1, y), it follows that
Vg[π(x)f ] = Lσx[Vgf ]. The other two identities of part (i) are immediate consequences of the
definitions and of Equations (4.1) and (4.2).

(ii) If x ∈ G, then using that Vh : Hπ → L2(G) is an isometry gives

Vgf(x) = 〈f, π(x)g〉 = 〈Vhf, Vh[π(x)g]〉L2 =
∫
G
Vhf(y) 〈π(y)h, π(x)g〉Hπ dµG(y)

=
∫
G
Vhf(y)Lσy [Vgh](x) dµG(y) = (Vhf ∗σ Vgh)(x),

where the penultimate equality marked follows from part (i). �

If g ∈ Hπ is admissible, then the image space Kg := Vg(Hπ) is a closed subspace of L2(G),
since it is the isometric image of the Hilbert space Hπ. For arbitrary F ∈ Kg, say F = Vgf ,
it follows from Lemma 4.1 that for any x ∈ G,

F (x) = 〈f, π(x)g〉 = 〈Vgf, Vg[π(x)g]〉 = 〈Vgf, Lσx[Vgg]〉 =
∫
G
F (y)Lσx[Vgg](y) dµG(y), (4.5)

which shows that Kg is a reproducing kernel Hilbert space, i.e., for any x ∈ G, the point eval-
uation Kg 3 F 7→ F (x) ∈ C is a well-defined, continuous linear functional. The reproducing
kernel of Kg is the function

K : G×G→ C, (x, y) 7→ Vg[π(y)g](x) = Lσx[Vgg](y) (4.6)

satisfying F (x) = 〈F,K(·, x)〉L2 for any F ∈ Kg and x ∈ G.
For an irreducible σ-representation (π,Hπ), a convenient criterion for the existence of admis-

sible vectors is provided by the orthogonality relations for square-integrable representations,
cf. [16, Theorem 3] or [6, Theorem 4.3] for genuine representations, and [2, Theorem 3] for
projective representations.
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Theorem 4.2 ([2,6,16]). Let (π,Hπ) be an irreducible σ-representation of G. Suppose there
exists g ∈ Hπ \ {0} satisfying Vgg ∈ L2(G). Then there exists a unique, self-adjoint, positive
operator Cπ : dom(Cπ)→ Hπ such that〈

Vg1f1, Vg2f2
〉
L2 = 〈Cπg2, Cπg1〉Hπ〈f1, f2〉Hπ (4.7)

for all f1, f2 ∈ Hπ and g1, g2 ∈ dom(Cπ), with dom(Cπ) = {g ∈ Hπ : Vgg ∈ L2(G)}.

Remark. The positivity of Cπ implies, in particular, that Cπ is injective. This can also be
derived from Equation (4.7) by noting that

‖Cπh‖2Hπ = ‖Vhh‖2L2/‖h‖2Hπ > 0 for h ∈ dom(Cπ) \ {0}. (4.8)
Here, the norm ‖Vhh‖L2 is positive since |Vhh| is continuous (see Equation (4.3)) and satisfies
|Vhh(eG)| = ‖h‖2Hπ > 0.

Theorem 4.2 yields that if π is irreducible and dom(Cπ) 6= {0}, then any g ∈ dom(Cπ) is (a
scalar multiple of) an admissible vector. In addition, the orthogonality relations (4.7) yield
that

〈Cπg1, Cπg2〉HπVf2f1 = Vg2f1 ∗σ Vf2g1 (4.9)
for f1, f2 ∈ Hπ and g1, g2 ∈ dom(Cπ); the argument is similar to the proof of Part (ii) of
Lemma 4.1.

4.2. Integrable vectors. Let w : G→ [1,∞) be a measurable submultiplicative weight, i.e.,
such that w(xy) ≤ w(x)w(y) for all x, y ∈ G. Henceforth, the σ-representation π is assumed
to be w-integrable in the sense that the set

Aw :=
{
g ∈ Hπ : Vgg ∈ L1

w(G)
}

is non-trivial; that is, Aw 6= {0}. In addition, it is assumed that there exists an admissible
vector g ∈ Aw. For any such admissible g ∈ Aw, define the space

H1
w := H1

w(g) :=
{
f ∈ Hπ : Vgf ∈ L1

w(G)
}

and equip it with the norm ‖f‖H1
w

:= ‖f‖H1
w(g) := ‖Vgf‖L1

w
.

The following lemma collects several basic properties of the space H1
w.

Lemma 4.3. Fix an admissible vector g ∈ Aw and write H1
w := H1

w(g).
(i) If h ∈ Aw is an admissible vector satisfying Vgh, Vhg ∈ L1

w(G), then H1
w(g) = H1

w(h)
with norm equivalence ‖ · ‖H1

w(g) � ‖ · ‖H1
w(h).

(ii) The pair (H1
w, ‖ · ‖H1

w
) is a π-invariant separable Banach space satisfying H1

w ↪→ Hπ
and π(x)g ∈ H1

w for all x ∈ G. Moreover, H1
w is norm dense in Hπ and π acts on

H1
w, with operator norm bounded by

‖π(x)‖H1
w→H1

w
≤ w(x), x ∈ G.

(iii) For each f ∈ H1
w, the vector-valued maps

Ξf : G→ H1
w, x 7→ π(x)f

and Ff,g : G→ H1
w, x 7→ Vgf(x) · π(x)g

are Bochner measurable. Furthermore, Ff,g is Bochner integrable with f =
∫
G Ff,gdµG.

(iv) The orbit π(G)g is complete in H1
w, i.e., span{π(x)g : x ∈ G} = H1

w.

Proof. (i) If f ∈ H1
w(g), then (4.4) yields that Vhf = Vgf ∗σ Vhg. Since Vgf, Vhg ∈ L1

w by
assumption and since f ∈ H1

w(g), and because of L1
w ∗ L1

w ↪→ L1
w (see, e.g., [49, §3.7]), this

implies that Vhf ∈ L1
w(G) (and hence f ∈ H1

w(h)), with
‖f‖H1

w(h) ≤
∥∥|Vgf | ∗ |Vhg|∥∥L1

w
. ‖Vgf‖L1

w
= ‖f‖H1

w(g).

By symmetry, this yields that ‖ · ‖H1
w(h) � ‖ · ‖H1

w(g). In the sequel, simply set H1
w := H1

w(g).
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(ii) If f ∈ H1
w and x∈G, then

‖π(x)f‖H1
w

= ‖Lσx[Vgf ]‖L1
w

= ‖Lx[Vgf ]‖L1
w
≤ w(x) · ‖Vgf‖L1

w
≤ w(x)‖f‖H1

w

since ‖Lx‖L1
w→L1

w
≤ w(x); see, e.g., [49, Proposition 3.7.6]. Thus, H1

w is π-invariant and
‖π(x)‖H1

w→H1
w
≤ w(x). The orbit π(G)g is complete in Hπ if and only if Vg : Hπ → L2(G)

is injective. Therefore, since Vg is an isometry and since g ∈ Aw and thus g ∈ H1
w, it follows

that H1
w ⊃ π(G)g is norm dense in Hπ. The reproducing formula (4.4), combined with the

convolution relation L1 ∗L2 ↪→ L2 (see e.g. [22, Proposition 2.39]) and with w ≥ 1 yields that

‖f‖2Hπ = ‖Vgf‖2L2 ≤
∥∥|Vgf | ∗ |Vgg|∥∥2

L2 ≤ ‖Vgg‖2L2‖Vgf‖2L1 . ‖f‖2H1
w
. (4.10)

This shows that H1
w ↪→ Hπ and that ‖ · ‖H1

w
is positive definite, hence defines a norm. In

addition, if (fn)n∈N is a Cauchy sequence in H1
w, then (4.10) yields that (fn)n∈N is Cauchy in

Hπ, and hence converges to some f ′ ∈ Hπ. The sequence Fn := Vgfn being Cauchy in L1
w(G)

yields convergence to some F ∈ L1
w(G). Since Fn(x) = Vgfn(x) → Vgf

′(x) as n → ∞ for all
x ∈ G, it follows that Vgf ′ = F , and thus f ′ ∈ H1

w with ‖f ′ − fn‖H1
w

= ‖Fn − F‖L1
w
→ 0.

This shows that (H1
w, ‖ · ‖H1

w
) is a Banach space.

(iii) Part (ii) shows that Ξf and Ff,g are well-defined for f ∈ H1
w. We first show that Ξf

is Bochner measurable. Since Vgf is measurable and g ∈ H1
w, this then easily implies the

measurability of Ff,g = Vgf · Ξg.
To show that Ξf is measurable, first note that the group G is second countable, so that

the space L1
w(G) is separable; see, e.g., [13, Proposition 3.4.5]. As Vg : H1

w → L1
w(G) is an

isometry, also H1
w is separable, hence Pettis’ measurability theorem (cf. [13, Theorem E.9])

implies that Ξf : G → H1
w is strongly measurable whenever ϕ ◦ Ξf is Borel measurable for

each continuous linear functional ϕ ∈ (H1
w)′. To show the latter, given ϕ ∈ (H1

w)′, define
ψ0 : Vg(H1

w) → C by ψ0(Vgh) = ϕ(h) for h ∈ H1
w. Since Vg : H1

w → L1
w(G) is an isometry,

the functional ψ0 is well-defined, linear, and bounded with respect to ‖ · ‖L1
w
. Hence, by the

Hahn-Banach theorem, ψ0 extends to a linear functional ψ ∈ (L1
w(G))′, which is then given

by integration against some H ∈ L∞1/w(G). Thus,

ϕ(Ξf (x)) = ψ0
(
Vg[π(x)f ]

)
=
∫
G
H(y) · Vg[π(x)f ](y) dµG(y)

=
∫
G
H(y) · Lσx[Vgf ](y) dµG(y),

and hence Fubini’s theorem implies the Borel measurability of x 7→ ϕ(Ξf (x)). Thus, by Pettis’
measurability theorem, the map Ξf is strongly measurable, and hence so is the map Ff,g. In
addition, the estimate ‖π(x)g‖H1

w
≤ w(x)‖g‖H1

w
of part (ii) implies directly that

‖Ff,g(·)‖H1
w
≤ w(·)‖g‖H1

w
|Vgf(·)| ∈ L1(G),

whence Ff,g is Bochner integrable. Thus f ′ :=
∫
G Ff,g dµG ∈ H1

w ↪→ Hπ is well-defined. For
showing f = f ′, it suffices to show that Vgf ′ = Vgf , since Vg : Hπ → L2(G) is an isometry. Let
ι : L1

w(G) ↪→ L1(G) be the canonical embedding. Since the Bochner integral commutes with
bounded linear operators (cf. [42, VI, Theorem 4.1]), a direct calculation using Equation (4.4)
entails

ι(Vgf ′) =
∫
G

[(ι ◦ Vg)Ff,g](x) dµG(x) =
∫
G
Vgf(x)Lσx[Vgg](·) dµG(x)

= Vgf ∗σ Vgg = Vgf = ι(Vgf),

which yields that Vgf ′ = Vgf .
(iv) If f ∈ H1

w, then clearly Vgf(x) · π(x)g ∈ span π(G)g ≤ H1
w for each x ∈ G. Hence, by

part (iii), also f =
∫
G Vgf(x)π(x)g dµG(x) ∈ span π(G)g. Thus, H1

w = span π(G)g. �
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The proofs of parts (i) and (ii) of Lemma 4.3 closely follow [18, Lemma 4.2], but the direct
proof of part (iv) using the Bochner integral (see part (iii)) appears to be new.

Remark 4.4. In Part (i) of Lemma 4.3, the assumption that the admissible vectors g, h ∈ Aw
satisfy Vgh, Vhg ∈ L1

w(G) is essential for the independence claim—at least, when π is reducible.
Indeed, in [28, §2.1], an example is given of a reducible representation π admitting admissible
vectors g, h ∈ Aw, but for which Vgh /∈ L1

w(G), showing that h ∈ H1
w(h) but h /∈ H1

w(g).

The following result shows that the behavior discussed in the above remark cannot oc-
cur for irreducible representations; in particular, it shows that the additional assumption
Vgh, Vhg ∈ L1

w(G) in Part (i) of Lemma 4.3 is automatic in the irreducible case.

Lemma 4.5. Let (π,Hπ) be an irreducible unitary σ-representation. Let Y ↪→ L1(G) be a
solid quasi-Banach function space that is left- and right translation invariant and also satisfies
Y ∗ Y ↪→ Y (or, Y ∗ Y ∨ ↪→ Y ). Then the space

CY :=
{
g ∈ Hπ : Vgg ∈ Y

}
is a π-invariant vector space with Vhg ∈ Y for all g, h ∈ CY and with CY ⊂ dom(C2

π), where
Cπ : dom(Cπ) → Hπ is the operator given by Theorem 4.2. If CY is non-trivial, then CY is
norm dense in Hπ.

Proof. If g ∈ CY ⊂ Hπ, then Vgg ∈ L∞(G) and Vgg ∈ Y ↪→ L1(G) and thus Vgg ∈ L2(G).
Therefore, g ∈ dom(Cπ), and Cπg ∈ Hπ is well-defined. We next show that Cπg ∈ dom(C∗π),
for which we can clearly assume that g 6= 0. For f ∈ dom(Cπ), the orthogonality relations
(4.7) gives

|〈Cπf, Cπg〉Hπ | = |〈Vgg, Vfg〉L2 | · ‖g‖−2
Hπ ≤ ‖g‖

−2
Hπ‖Vgg‖L1‖Vfg‖L∞ . ‖g‖−1

Hπ‖f‖Hπ‖Vgg‖Y .

In particular, this shows that the linear functional f 7→ 〈Cπf, Cπg〉Hπ is bounded from
dom(Cπ) into C. Thus Cπg ∈ dom(C∗π) = dom(Cπ) and therefore g ∈ dom(C2

π).
Let g, h ∈ CY \{0} be arbitrary. For showing that Vhg ∈ Y , it will first be shown that there

exists f ∈ CY with 〈Cπg, Cπf〉Hπ 6= 0 6= 〈Cπh,Cπf〉Hπ . Note that if 〈Cπg, Cπh〉Hπ 6= 0, then
choosing f = g gives 〈Cπh,Cπf〉Hπ = 〈Cπh,Cπg〉Hπ 6= 0 and 〈Cπg, Cπf〉Hπ = ‖Cπg‖2Hπ > 0;
see Equation (4.8). Therefore, it remains to consider the case 〈Cπg, Cπh〉Hπ = 0. Since h 6= 0
and Cπ is injective, it follows that Cπh 6= 0 6= C2

πh. Since π is irreducible, the orbit π(G)g is
complete in Hπ, and hence 0 6= 〈π(x)g, C2

πh〉Hπ = 〈Cπ[π(x)g], Cπh〉Hπ for a suitable x ∈ G.
For ε > 0, define fε := g + ε · π(x)g. Then

〈Cπfε, Cπh〉Hπ = 〈Cπg, Cπh〉Hπ + ε〈Cπ[π(x)g], Cπh〉Hπ = ε · 〈Cπ[π(x)g], Cπh〉Hπ 6= 0

and
〈Cπfε, Cπg〉Hπ = ‖Cπg‖2Hπ + ε · 〈Cπ[π(x)g], Cπg〉Hπ 6= 0,

whenever ε > 0 is chosen sufficiently small. For such ε, it remains to show that f := fε ∈ CY .
Using the intertwining properties (Part (i) of Lemma 4.1) and the left- and right invariance
of Y , it follows that

Vff = Vgg + εVπ(x)gg + εVg[π(x)g] + ε2Vπ(x)g[π(x)g]
= Vgg + εRσx [Vgg] + εLσx[Vgg] + ε2LσxR

σ
x [Vgg] ∈ Y,

so f ∈ CY . Applying the reproducing formula (4.9) yields

Vhg = 1
〈Cπh,Cπf〉Hπ

Vfg ∗σ Vhh = 1
〈Cπh,Cπf〉Hπ〈Cπf, Cπg〉Hπ

Vgg ∗σ Vff ∗σ Vhh.

Therefore, if Y ∗Y ↪→ Y , then Vhg ∈ Y . On the other hand, if Y ∗Y ∨ ↪→ Y holds, then using
that Vgg, Vff, Vhh ∈ Y ∩ Y ∨, also easily yields Vhg ∈ Y .
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Next, we show that CY is a π-invariant vector space. The invariance follows directly from
the identity Vπ(x)f [π(x)f ] = LσxR

σ
x [Vff ], where x ∈ G, combined with the left- and right

invariance of Y . For g, h ∈ CY , the identity
Vg+h(g + h) = Vgg + Vgh+ Vhg + Vhh,

and Vgh, Vhg ∈ Y , imply that CY is a vector space.
Finally, if CY 6= {0}, then it is norm dense in Hπ by irreducibility of π and since CY is

π-invariant. �

Lemma 4.3 implies, in particular, that the anti-dual space
Rw := Rw(g) :=

(
H1
w(g)

)∗
is a well-defined Banach space. The associated conjugate-linear pairing will be denoted by

〈f, h〉 := f(h), f ∈ Rw, h ∈ H1
w.

The representation π on Hπ can be extended to act on Rw via
π(x)f : H1

w → C, h 7→ f
(
[π(x)]∗h

)
= σ(x−1, x)f

(
π(x−1)h

)
, (4.11)

for x ∈ G and f ∈ Rw. This is well-defined, since π(x−1) : H1
w → H1

w is well-defined, linear,
and bounded. The associated (extended) matrix coefficients are defined by

Vhf(x) = 〈f, π(x)h〉, f ∈ Rw, h ∈ H1
w

for x ∈ G.
The next lemma collects the most important properties of these objects for the purposes of

this article.

Lemma 4.6. Let g ∈ Aw be admissible and write H1
w = H1

w(g). Then the following hold:
(i) The pairing 〈·, ·〉 : Rw ×H1

w → C is an extension of the inner product 〈·, ·〉Hπ ; that is,
Hπ ↪→ Rw and 〈f, h〉 = 〈f, h〉Hπ for f ∈ Hπ and h ∈ H1

w. Moreover, if f ∈ Hπ ⊂ Rw,
then the definition of π(x)f in Equation (4.11) agrees with the original definition.
Finally, for any f ∈ Rw, the extended mapping

Vh : Rw → L∞1/w(G)

is well-defined, linear, and bounded.
(ii) If f ∈ Rw and h ∈ H1

w, then
Vh[π(x)f ] = Lσx[Vhf ],

for x ∈ G.
(iii) The map Vg : Rw → L∞1/w(G) is injective. In addition,

Vhf = Vgf ∗σ Vhg (4.12)

for any f ∈ Rw and h ∈ H1
w. Moreover, 〈f, h〉 = 〈Vgf, Vgh〉L∞1/w,L1

w
.

(iv) There exists a bounded linear operator
V ∗g : L∞1/w(G)→ Rw

satisfying Vg(V ∗g F ) = F for every F ∈ L∞1/w(G) that satisfies F = F ∗σ Vgg.
(v) The function f 7→ ‖Vgf‖L∞1/w defines an equivalent norm on Rw.

Proof. (i) Using the embedding H1
w ↪→ Hπ of Lemma 4.3, it follows that ι : Hπ → Rw given

by (ιf)(h) = 〈f, h〉Hπ for h ∈ H1
w is well-defined, and |(ιf)(h)| = |〈f, h〉Hπ | . ‖f‖Hπ‖h‖H1

w
for

f ∈ Hπ and h ∈ H1
w. Thus ιf ∈ Rw and ι : Hπ → Rw is bounded. Since H1

w is norm dense
in Hπ by Lemma 4.3, the map ι is injective, and thus a continuous embedding. In particular,
〈ιf, h〉 = (ιf)(h) = 〈f, h〉Hπ , so that 〈·, ·〉 extends 〈·, ·〉Hπ .
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Next, if f ∈ Hπ and h ∈ H1
w ⊂ Hπ, then we have with π(x)f ∈ Hπ as defined before and

π(x)ιf ∈ Rw as defined in Equation (4.11) that

ι[π(x)f ](h) = 〈π(x)f, h〉Hπ = 〈f, [π(x)]∗h〉Hπ = ι(f)
(
[π(x)]∗h

)
= π(x)[ι(f)](h)

and hence ι[π(x)f ] = π(x)[ι(f)], showing that the definition of π(x)f in Equation (4.11)
agrees with the action of π on Hπ ⊂ Rw.

Next, let f ∈ Rw = (H1
w)∗ and h ∈ H1

w and recall from Part (iii) of Lemma 4.3 that the map
Ξh : G → H1

w, x 7→ π(x)h is measurable. Since f : H1
w → C is continuous, this implies that

Vhf : G→ C, x 7→ Vhf(x) = f(π(x)h) is Borel measurable. In addition, the norm estimate of
Part (ii) of Lemma 4.3 shows that

|Vhf(x)| ≤ ‖f‖Rw‖π(x)h‖H1
w
≤ w(x)‖f‖Rw · ‖h‖H1

w
,

whence Vhf ∈ L∞1/w(G).
(ii) If x, y ∈ G, then

(Vhπ(x)f)(y) = σ(x, x−1)〈f, π(x−1)π(y)h〉 = σ(x, x−1)σ(x−1, y)Vhf(x−1y) = Lσx[Vhf ](y),

since σ(x, x−1y) = σ(x−1, y)σ(xx−1, y)σ(x, x−1) = σ(x, x−1)σ(x−1, y).
(iii) By Lemma 4.3, π(G)g is complete in H1

w = H1
w(g); thus, the mapping Vg : Rw → L∞1/w

is injective. Let f ∈ Rw, h ∈ H1
w and x ∈ G. Let (H1

w)′ denote the dual space ofH1
w and define

f ′ ∈ (H1
w)′ by f ′(k) = f(π(x)k) for k ∈ H1

w. Using the Bochner integrable map Fh,g : G→ H1
w

defined in Lemma 4.3, it follows that h =
∫
G Fh,g dµG with convergence in H1

w. Since Bochner
integration commutes with bounded linear functionals (cf. [13, Proposition E.11]), a direct
calculation using Lemma 4.1 entails

Vhf(x) = f ′(h) =
∫
G
f ′(Fh,g(y)) dµG(y) =

∫
G
Vgh(y)f ′(π(y)g) dµG(y)

=
∫
G
Vgh(y)f(π(x)π(y)g) dµG(y) =

∫
G
σ(y, y−1)Vhg(y−1)σ(x, y)f(π(xy)g) dµG(y)

=
∫
G
σ(xy, y−1)Vhg(y−1)Vgf(xy) dµG(y) =

∫
G
σ(z, z−1x)Vhg(z−1x)Vgf(z) dµG(z)

= Vgf ∗σ Vhg(x),

where the sixth step used that σ(xy, y−1) = σ(x, y)σ(x, yy−1)σ(y, y−1) = σ(y, y−1)σ(x, y) for
x, y ∈ G. Setting x = eG, the above calculations also show that 〈f, h〉 = 〈Vgf, Vgh〉L∞1/w,L1

w
.

(iv) For F ∈ L∞1/w(G), define

V ∗g F : Rw → C, h 7→
∫
G
F (y)〈π(y)g, h〉Hπ dµG(y),

which is well-defined since∫
G
|F (y)||〈π(y)g, h〉Hπ | dµG(y) ≤

∫
G

1
w(y) |F (y)|w(y)|Vgh(y)| dµG(y)

≤ ‖F‖L∞1/w‖Vgh‖L1
w

= ‖F‖L∞1/w‖h‖H1
w
<∞.

In particular, this shows that V ∗g : L∞1/w(G)→ Rw is a bounded linear map.
If F ∈ L∞1/w(G) satisfies F = F ∗σ Vgg, then Lemma 4.1 shows

〈π(y)g, π(x)g〉Hπ = Vg[π(y)g](x) = Lσy [Vgg](x)
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and hence

Vg(V ∗g F )(x) =
∫
G
F (y)〈π(y)g, π(x)g〉Hπ dµG(y)

=
∫
G
F (y)Lσy [Vgg](x) dµG(y)

= F ∗σ Vgg(x) = F (x)
for any x ∈ G.

(v) Let f ∈ Rw. The estimate ‖Vgf‖L∞1/w . ‖f‖Rw follows from Part (i). For the converse,
set F := Vgf ∈ L∞1/w(G), so that F = F ∗σVgg by Part (ii). Then, by Part (iv), h := V ∗g F ∈ Rw
with ‖h‖Rw . ‖F‖L∞1/w , and Vgh = F = Vgf . Since Vg : Rw → L∞1/w(G) is injective by
Part (iii), it follows that f = h, and thus ‖f‖Rw . ‖F‖L∞1/w = ‖Vgf‖L∞1/w , where the implied
constant is independent of f ∈ Rw. �

4.3. Coorbit spaces. Throughout this section, Y ⊂ L0(G) will be a solid quasi-Banach
function space on G and w will be a p-weight for some p ∈ (0, 1]. We also assume that Y is
translation-invariant and that Y is Lpw-compatible in the sense of Definition 3.5.

The σ-representation (π,Hπ) will be assumed to be p-integrable in the sense that for
Bpw =

{
g ∈ Hπ : Vgg ∈W (Lpw)

}
,

there exists an admissible g ∈ Bpw. Note that Bpw ⊆ Aw, since W (Lpw) ↪→ WL(Lpw) ↪→ L1
w by

Part (ii) of Lemma 3.3.

Definition 4.7. Let Y be Lpw-compatible and let g ∈ Bpw be an admissible vector. The
associated coorbit space Co(Y ) = Cog(Y ) is defined as the collection

Cog(Y ) :=
{
f ∈ Rw : Vgf ∈WL(Y )

}
(4.13)

and equipped with the quasi-norm ‖f‖Co(Y ) := ‖f‖Cog(Y ) := ‖Vgf‖WL(Y ).

Proposition 4.8. Let Y be Lpw-compatible and let g ∈ Bpw be an admissible vector.
(i) If h ∈ Bpw is an admissible vector such that Vhg ∈ W (Lpw), then Cog(Y ) = Coh(Y )

with ‖ · ‖Cog(Y ) � ‖ · ‖Coh(Y ).
(ii) The space Co(Y ) is a π-invariant quasi-Banach space with Co(Y ) ↪→ Rw, and ‖·‖Co(Y )

is a p-norm.

Proof. (i) For f ∈ Cog(Y ), the reproducing formula (4.12) yields that Vhf = Vgf ∗σ Vhg. The
space Y is assumed to be Lpw-compatible, and therefore WL(Y ) ∗W (Lpw) ↪→ WL(Y ), which
yields that

‖f‖Coh(Y ) ≤
∥∥|Vgf | ∗ |Vhg|∥∥WL(Y ) . ‖Vgf‖WL(Y )‖Vhg‖W (Lpw) . ‖f‖Cog(Y ).

Since |Vgh| = |Vhg|∨ and w is a p-weight, it follows that also Vgh ∈ W (Lpw). Therefore,
interchanging the role of g and h also yields ‖ · ‖Cog(Y ) . ‖ · ‖Coh(Y ).

(ii) The π-invariance follows directly from Part (ii) of Lemma 4.6 and the (left) translation-
invariance of Y , which implies the (left) translation-invariance of WL(Y ). To show that
Cog(Y ) ↪→ Rw, let f ∈ Co(Y ) = Cog(Y ). Since Y is assumed to be Lpw-compatible, we
have, in particular, WL(Y ) ↪→ L∞1/w, and thus ‖Vgf‖L∞1/w . ‖Vgf‖WL(Y ) = ‖f‖Co(Y ). Since
the mapping f 7→ ‖Vgf‖L∞1/w defines an equivalent norm on Rw by Lemma 4.6, it follows
immediately that ‖f‖Rw . ‖f‖Cog(Y ).

To prove the completeness of Co(Y ), let (fn)n∈N be a Cauchy sequence in Co(Y ). Then the
embedding Co(Y ) ↪→ Rw yields that (fn)n∈N is Cauchy in Rw, whence convergent to some
f ∈ Rw. In particular, this implies Vgfn(x) → Vgf(x) for x ∈ G as n → ∞. On the other
hand, the sequence (Vgfn)n∈N is Cauchy in WL(Y ), hence converging to some F ∈ WL(Y ).
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Since WL(Y ) ↪→ L∞1/w(G) as Y is Lpw-compatible, it also follows that Vgfn → F in L∞1/w(G).
Thus F = Vgf . Since F ∈WL(Y ), this means that f ∈ Co(Y ), and

‖f − fn‖Co(Y ) = ‖Vgfn − F‖WL(Y ) → 0, as n→∞.

The p-norm properties of ‖ · ‖Co(Y ) follow easily from those of ‖ · ‖WL(Y ). �

The following simple consequence of Lemma 4.6 is often helpful in concrete settings.

Corollary 4.9. Let Y be Lpw-compatible, let S ↪→ Hπ be a π-invariant topological vector space
and let g ∈ S ∩ Bpw be admissible. Suppose that S ↪→ H1

w(g) and that the reproducing formula

〈f, h〉 =
∫
G
〈f, π(x)g〉S∗,S · 〈π(x)g, h〉Hπ dµG(x) (4.14)

holds for all f ∈ S∗ (the anti-dual space of S) and h ∈ S, where 〈·, ·〉S∗,S = 〈·, ·〉 : S∗×S → C
denotes the anti-dual pairing.

Then
Cog(Y ) =

{
f ∈ Rw : Vgf ∈WL(Y )

}
=
{
f ∈ S∗ : Vgf ∈WL(Y )

}
.

in the sense that the restriction map

Cog(Y )→
{
f ∈ S∗ : Vgf ∈WL(Y )

}
, f 7→ f |S

is a bijection. Here, the coefficient transform Vgf for f ∈ S∗ is defined by Vgf(x) = 〈f, π(x)g〉.

Proof. Since S ↪→ H1
w, it follows that the restriction map f 7→ f |S is well-defined from Rw

into S∗ and hence also from Cog(Y ) into
{
f ∈ S∗ : Vgf ∈ WL(Y )

}
. Furthermore, since we

have π(G)g ⊂ S and since π(G)g ⊂ H1
w is norm-dense by Lemma 4.3, this restriction map is

injective.
To show surjectivity, let f ∈ S∗ be such that F := Vgf ∈ WL(Y ). Then also F ∈ L∞1/w(G)

since Y is Lpw-compatible and hence WL(Y ) ↪→ L∞1/w(G). The assumption (4.14) yields, in
particular, that F = F ∗σ Vgg. Hence, by Part (iv) of Lemma 4.6, there exists f̃ := V ∗g F ∈ Rw
such that Vgf̃ = F = Vgf ∈ WL(Y ). Therefore, f̃ ∈ Cog(Y ), and f̃ |S = f by (4.14) and
Part (iii) of Lemma 4.6. �

4.4. Analyzing and better vectors. This section provides (somewhat more) explicit de-
scriptions of the coorbit spaces Co(Y ) for the specific choices Y being L1

w(G), L2(G) or
L∞1/w(G). In particular, this section completely resolves the question of the relation between
the sets of so-called “analyzing vectors” and “better vectors”; see Proposition 4.13. To the
best of our knowledge, this question was an open problem in the literature even for Banach
spaces; see for instance [34, Section 6.3].

As defined in Equation (4.13), the coorbit space Cog(Y ) consists of those f ∈ Rw for which
Vgf ∈ WL(Y ). However, in the literature considering coorbit spaces associated with genuine
Banach function spaces Y , one usually defines Cog(Y ) = {f ∈ Rw : Vgf ∈ Y }. The following
proposition identifies a sufficient condition regarding Y under which both definitions coincide;
in particular, it is applicable to all Banach function spaces.

Proposition 4.10. Let Y be a solid, translation-invariant quasi-Banach function space with
p-norm ‖ · ‖Y (for some p ∈ (0, 1]) and such that Y ∗W (Lpw) ↪→ Y and WL(Y ) ↪→ L∞1/w(G)
for a p-weight w. Then Y is Lpw-compatible, and if g ∈ Bpw is an admissible vector, then

Cog(Y ) :=
{
f ∈ Rw : Vgf ∈WL(Y )

}
=
{
f ∈ Rw : Vgf ∈ Y

}
, (4.15)

with ‖f‖Cog(Y ) � ‖Vgf‖Y .
In addition, if WL(Y ) ↪→ L2(G), then (up to canonical identifications), it holds that

Cog(Y ) =
{
f ∈ Hπ : Vgf ∈WL(Y )

}
=
{
f ∈ Hπ : Vgf ∈ Y

}
. (4.16)
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Proof. Using the estimate (2.8), it holds for F ∈WL(Y ) and H ∈W (Lpw) that
‖F ∗H‖WL(Y ) =

∥∥ML[F ∗H]
∥∥
WL(Y ) ≤

∥∥|F | ∗MLH
∥∥
Y

.
∥∥|F |∥∥

Y
· ‖MLH‖W (Lpw) .

∥∥F∥∥
WL(Y ) · ‖H‖W (Lpw).

Hence, Y is Lpw-compatible.
Assume g ∈ Hπ is admissible and Vgg ∈W (Lpw) ⊆ L1

w. An application of Lemma 4.6 yields
that Vgf = Vgf ∗σ Vgg for f ∈ Rw. Therefore, if Vgf ∈ Y , then the estimate (2.8) shows that

‖Vgf‖WL(Y ) ≤ ‖ML(|Vgf | ∗ |Vgg|)‖Y . ‖Vgf‖Y ‖ML[Vgg]‖W (Lpw) . ‖Vgf‖Y ‖Vgg‖W (Lpw),

wand hence ‖f‖Cog(Y ) . ‖Vgf‖Y . The estimate ‖Vgf‖Y ≤ ‖f‖Cog(Y ) is immediate.

To prove Equation (4.16), it suffices because of Hπ ↪→ Rw to show that each f ∈ Cog(Y )
satisfies f ∈ ι(Hπ), with the canonical embedding ι : Hπ → Rw. For clarity, we denote by V e

g

(resp. Vg) the coefficient transform on Rw (resp. Hπ). Let f ∈ Cog(Y ) be arbitrary and note
that F := V e

g f ∈ WL(Y ) ↪→ L2(G) satisfies F = F ∗σ Vgg; see Lemma 4.6. With the usual
Hilbert-space adjoint V ∗g : L2(G) → Hπ of Vg : Hπ → L2(G), let f̃ := V ∗g F ∈ Hπ. Then, for
any x ∈ G,

V e
g [ιf̃ ](x) = 〈ιf̃ , π(x)g〉Rw,H1

w
= 〈f̃ , π(x)g〉Hπ = 〈V ∗g F, π(x)g〉Hπ = 〈F, Vg[π(x)g]〉L2

=
∫
G
F (y)〈π(x)g, π(y)g〉 dµG(y) =

∫
G
F (y)Vg[π(y)g](x) dµG(y)

=
∫
G
F (y)Lσy [Vgg](x) dµG(y) = (F ∗σ Vgg)(x) = F (x) = V e

g f(x).

Hence, V e
g (ιf̃ ) = V e

g f . Since V e
g : Rw → L∞1/w(G) is injective by Lemma 4.6, this implies

f = ιf̃ ∈ ι(Hπ), as required. �

Remark 4.11. As stated above, Proposition 4.10 could also apply for quasi-Banach spaces,
but the issue is that when Y is not a Banach space but rather a quasi-Banach space, then
the convolution relation Y ∗W (Lpw) ↪→ Y is rarely valid. Nevertheless, the identity (4.15) is
known to hold for certain quasi-Banach spaces in some settings; see, e.g., [31,43,46]. It is an
open problem whether (4.15) holds in general for quasi-Banach spaces.

Lemma 4.12. Let w : G → [1,∞) be a p-weight for some p ∈ (0, 1] and let g ∈ Bpw be
admissible. Then each of the spaces L1

w(G), L2(G), L∞1/w(G) and WR(L1
w) is Lpw-compatible.

Furthermore, the following identifications hold:
(i) Cog(L1

w(G)) = H1
w(g).

(ii) Cog(L2(G)) = Hπ.
(iii) Cog(WR(L1

w)) = {f ∈ Hπ : Vgf ∈W (L1
w)}.

(iv) Cog(L∞1/w(G)) = Rw.

Proof. As a preparation, suppose that v, v0 : G → (0,∞) are measurable and such that
v(xy) ≤ v(x)v0(y) and v(xy) ≤ v0(x)v(y) for all x, y ∈ G. Using the well-known identity∫
G f(ts) dµG(t) = ∆(s−1)

∫
G f(t) dµG(t) (see, e.g., [22, Proposition 2.24]), it then follows that

‖Rxf‖pLpv =
∫
G
|f(yx)|p · [v(yxx−1)]p dµG(y)

= ∆(x−1)
∫
G
|f(z)|p · [v(zx−1)]p dµG(z) ≤ [v0(x−1)]p ·∆(x−1) · ‖f‖p

Lpv
.

A similar computation for the left-translation shows
‖Lxf‖Lpv ≤ v0(x) · ‖f‖Lpv and ‖Rxf‖Lpv ≤ v0(x−1) · [∆(x−1)]1/p · ‖f‖Lpv (4.17)

for all x ∈ G and f ∈ Lpv(G), for arbitrary p ∈ (0,∞); these estimates also remain valid
for p = ∞. Next, note w(x) = w(xyy−1) ≤ w(xy)w(y−1) and hence 1

w(xy) ≤
1

w(x)w
∨(y);
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similar arguments show that also 1
w(xy) ≤ w∨(x) 1

w(y) . Therefore, applying Equation (4.17)
with (v, v0) = (w,w) or (v, v0) = (1, 1) or (v, v0) = ( 1

w , w
∨), respectively, shows that each

space Y ∈ {L1
w, L

2, L∞1/w} is invariant under left- and right-translations. More precisely, we
see because of p ∈ (0, 1] and by conditions (w1) and (w3) that

‖Rx‖L2→L2 ≤ [∆(x−1)]1/2 ≤
{

[∆(x−1)]1/p ≤ w(x−1)∆1/p(x−1) = w(x), if ∆(x−1) ≥ 1,
1 ≤ w(x), if ∆(x−1) < 1.

and ‖Rx‖L∞1/w→L∞1/w ≤ w
∨(x−1) = w(x).

We now verify that Proposition 4.10 is applicable for each of the spaces in question.
First, note that any Y ∈ {L1

w(G), L2(G), L∞1/w(G),WR(L1
w)} is a solid Banach space and

thus, in particular, a p-normed solid quasi-Banach function space. We saw above that each of
the spaces Y ∈ {L1

w(G), L2(G), L∞1/w(G)} is translation-invariant. By the properties of Wiener
amalgam spaces collected in Section 2.6, the same then also holds for Y = WR(L1

w).
Second, it will be shown that Y ∗W (Lpw) ↪→ Y . To handle the case Y = L1

w, we recall from
[49, §3.7] that the convolution relation L1

w ∗ L1
w ↪→ L1

w holds, since w is submultiplicative.
Next, note that W (Lpw) = WR(WL(Lpw)) ↪→WL(Lpw) ↪→ L1

w, where the last step follows from
Lemma 3.3. Overall, we thus see that L1

w ∗ W (Lpw) ↪→ L1
w ∗ L1

w ↪→ L1
w, as required. For

F1 ∈WR(L1
w) and F2 ∈W (Lpw), Equation (2.8) shows that

‖F1 ∗ F2‖WR(L1
w) =

∥∥MR[F1 ∗ F2]
∥∥
L1
w
≤
∥∥MRF1 ∗ |F2|

∥∥
L1
w

. ‖MRF1‖L1
w
· ‖F2‖W (Lpw) = ‖F1‖WR(L1

w) · ‖F2‖W (Lpw),

which proves that WR(L1
w) ∗W (Lpw) ↪→ WR(L1

w), thereby settling the case Y = WR(L1
w).

If Y ∈ {L2, L∞1/w} recall from above that ‖Rx‖Y→Y ≤ w(x); hence, Lemma 3.11 shows that
Y ∗ [L1

w]∨ ↪→ Y . Since W (Lpw) ↪→ WR(Lpw) ↪→ [L1
w]∨ by Lemma 3.3, this implies that

Y ∗W (Lpw) ↪→ Y ∗ [L1
w]∨ ↪→ Y for Y ∈ {L2, L∞1/w}.

Lastly, it will be shown that WL(Y ) ↪→ L∞1/w(G) Since w ≥ 1, we have L∞w ↪→ L∞1/w.
Thus, Lemma 3.3 implies that WL(WR(L1

w)) ↪→ WL(L1
w) ↪→ L∞w ↪→ L∞1/w, which proves the

conclusion for Y ∈ {L1
w,W

R(L1
w)}. Lemma 3.3 also shows WL(L2) ↪→ L∞ ↪→ L∞1/w, where

the last step again used that w ≥ 1. We trivially have WL(L∞1/w) ↪→ L∞1/w.
Overall, Proposition 4.10 shows that each Y ∈ {L1

w, L
2, L∞1/w,W

R(L1
w)} is Lpw-compatible.

We now prove the remaining parts of the lemma.

(i) Lemma 3.3 shows that WL(L1
w) ↪→ L2

w ↪→ L2, since w ≥ 1. Therefore, Proposition 4.10
shows that Cog(L1

w) = {f ∈ Hπ : Vgf ∈ L1
w} = H1

w.

(ii) We trivially haveWL(L2) ↪→ L2, and by admissibility of g it holds that Vgf ∈ L2(G) for
every f ∈ Hπ. Therefore, Proposition 4.10 shows Cog(L2) = {f ∈ Hπ : Vgf ∈ L2(G)} = Hπ.

(iii) We have WR(L1
w) ↪→ L1

w ↪→ L2 (see the proof of (i)). Therefore, Proposition 4.10
shows that Cog(WR(L1

w)) = {f ∈ Hπ : Vgf ∈ WL(WR(L1
w))} = {f ∈ Hπ : Vgf ∈ W (L1

w)}, as
claimed.

(iv) By Lemma 4.6, we have Vgf ∈ L∞1/w(G) for all f ∈ Rw. Therefore, Proposition 4.10
shows Cog(L∞1/w) = {f ∈ Rw : Vgf ∈ L∞1/w} = Rw, as claimed. �

Lastly, it will be shown that the important auxiliary spaces of so-called “analyzing vectors”
and “better vectors” (cf. [19,20]) coincide precisely if the group G is an IN group. That G
being IN is sufficient is simple and well-known (see, e.g., [20, Lemma 7.2]), but its necessity
remained open; see also [34, Section 6.3].

Proposition 4.13. Let w : G → [1,∞) be a p-weight and let g ∈ Bpw be admissible. The
following assertions are equivalent:
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(i) The spaces Cog(L1
w) and Cog(WR(L1

w)) coincide, i.e., Cog(L1
w) = Cog(WR(L1

w)).
(ii) The group G is an IN group, i.e., there exists a relatively compact unit neighborhood

U ⊆ G such that x−1Ux = U for all x ∈ G.

The following result is an essential ingredient in the proof of Proposition 4.13. Its proof
was provided to us by T. Tao [52]; hence, no originality is claimed. The complete argument
is included here, with a few added details.

Proposition 4.14. If there exists an open, relatively compact unit neighborhood Q ⊆ G
satisfying

µG(QxQ) . 1 for all x ∈ G,
then G is an IN group.

Proof. Throughout the proof, let C > 0 be a constant satisfying µG(QxQ) ≤ C for all x ∈ G.

Step 1. This step shows that G is unimodular. If not, then ∆(x0) 6= 1 for some x0 ∈ G.
Replacing x0 by x−1

0 if necessary, it may be assumed that ∆(x0) > 1. Then, by definition of
the modular function,

C ≥ µG(Qxn0Q) ≥ µG(Qxn0 ) = ∆(xn0 )µG(Q) = (∆(x0))n µG(Q)→∞ as n→∞,
which is a contradiction.

Step 2. For the remainder of the proof, the space L2(G) = L2(G;R) will be considered as
a vector space over R. For U := Q∩Q−1, this step will show that there exists δ > 0 such that

〈1xU2x−1 ,1U2〉L2 ≥ δ > 0, x ∈ G. (4.18)

For this, note by unimodularity of G that µG(U · xUx−1) = µG(UxU) ≤ µG(QxQ) ≤ C
for all x ∈ G. Furthermore, (1U ∗ 1xUx−1)−1(C \ {0}) ⊂ U · xUx−1. Hence, using Tonelli’s
theorem, it follows(

µG(U)
)2 = µG(U) · µG(xUx−1) =

∫
G
1U (z)

∫
G
1xUx−1(z−1y)dµG(y)dµG(z)

=
∫
G

(1U ∗ 1xUx−1)(y)dµG(y) ≤ µG(U · xUx−1) · ‖1U ∗ 1xUx−1‖L∞

≤ C · ‖1U ∗ 1xUx−1‖L∞ .
Thus, there exists y = y(x) ∈ G satisfying

0 < δ := (µG(U))2

C
≤ (1U ∗ 1xUx−1)(y−1) =

∫
G
1U (z)1xUx−1(z−1y−1)dµG(z)

=
∫
G
1U (y−1w)1xUx−1(w−1)dµG(w) = µG(yU ∩ xUx−1),

where the change-of-variables w = yz and the identity (xUx−1)−1 = xUx−1 were used.
If W ⊂ G is open and satisfies µG(W ) ≥ δ, then there exists some w ∈ W , which implies

that
µG(W−1W ) ≥ µG(w−1W ) = µG(W ) ≥ δ.

Applying this observation toW = Wy := yU∩xUx−1 and using thatW−1
y Wy ⊂ U2∩xU2x−1,

it follows that
〈1xU2x−1 ,1U2〉L2 = µG

(
U2 ∩ xU2x−1) ≥ µG(W−1

y Wy) ≥ δ, x ∈ G,
which establishes the asserted claim (4.18).

Step 3. Set Ω :=
{
1xU2x−1 : x ∈ G

}
⊂ L2(G). Since 1xU2x−1 = LxRx1U2 , it is easy to

see LxRxΩ ⊂ Ω for all x ∈ G. Furthermore, since U = U−1, each F ∈ Ω satisfies F∨ = F ,
0 ≤ F ≤ 1 almost everywhere, and 〈F,1U2〉L2 ≥ δ > 0 (cf. Step 2). Note that all of these
properties are preserved under convex combinations and under limits in L2; this uses that G
is unimodular so that F 7→ F∨ is a bounded linear map on L2 and that if Fn → F in L2, then
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Fn` → F almost everywhere for a suitable subsequence. Hence, letting Σ := conv Ω ⊂ L2

denote the closed convex hull of Ω, it follows that LxRxΣ ⊂ Σ for all x ∈ G and that each
F ∈ Σ satisfies F = F∨ and 0 ≤ F ≤ 1 almost everywhere, and finally 〈F,1U2〉L2 ≥ δ > 0.

By the Hilbert projection theorem (see, e.g., [51, Theorem 12.3]), there exists a unique
F0 ∈ Σ satisfying ‖F0‖L2 ≤ ‖H‖L2 for all H ∈ Σ. Since G is unimodular, the operator
LxRx : L2 → L2 is unitary; hence, LxRxF0 ∈ Σ with ‖LxRxF0‖L2 = ‖F0‖L2 ≤ ‖H‖L2 for all
H ∈ Σ. By the uniqueness of F0, this implies LxRxF0 = F0 for all x ∈ G. Note that F0 is
non-trivial since 〈F0,1U2〉L2 ≥ δ > 0.

Step 4. Since G is unimodular, the identity F ∗H(x)=〈F,LxH∨〉 shows that the bilinear
map

L2(G)× L2(G)→ Cb(G), (F,H) 7→ F ∗H

is well-defined and continuous. Since F ∗H ∈ Cc(G) for F,H ∈ Cc(G), this implies by density
that F ∗H ∈ C0(G) for all F,H ∈ L2(G). In particular, H0 := F0 ∗ F0 ∈ C0(G), where F0 is
as in Step 3. Furthermore, since F0 satisfies F0 = F∨0 and F0 = LxRxF0, it follows that for all
x, y ∈ G, it holds that F0(z−1x−1yx) = F0(x−1y−1xz) = F0(y−1xzx−1) for almost all z ∈ G.
Since G is unimodular, the change-of-variables w = xzx−1 therefore shows

H0(x−1yx) =
∫
G
F0(z)F0(z−1x−1yx) dµG(z) =

∫
G
F0(z)F0(y−1xzx−1) dµG(z)

=
∫
G
F0(x−1wx)F0(y−1w) dµG(w) =

∫
G
F0(w)F0(w−1y) dµG(w)

= (F0 ∗ F0)(y) = H0(y).

(4.19)

where the fourth step used again that F0 = LxRxF0 and F0 = F∨0 .
Lastly, note because of F0 ≥ 0 and F0 = F∨0 that

H0(eG) =
∫
G
F0(x)F0(x−1) dµG(x)=‖F0‖2L2 > 0.

Since H0 ∈ C0(G), this implies that V :=
{
x ∈ G : H0(x) > ‖F0‖2L2/2

}
is an open, relatively

compact unit neighborhood. In view of Equation (4.19), it follows that xV x−1 = V for all
x ∈ G. Hence, G is an IN group. �

Proof of Proposition 4.13. Throughout the proof, the identifications

Cog(L1
w) = {f ∈ Hπ : Vgf ∈WL(L1

w)} and Cog(WR(L1
w)) = {f ∈ Hπ : Vgf ∈W (L1

w)}

provided by Lemma 4.12 will be used.

First, suppose that G is an IN group. Since the spacesWL(L1
w) andW (L1

w) are independent
of the choice of the neighborhood Q (as L1

w is left- and right invariant), and since G is an
IN group, it may be assumed that xQx−1 = Q for all x ∈ G, that is, xQ = Qx. This easily
implies MLF = MRF for any measurable F : G → C and hence WL(Y ) = WR(Y ) for any
solid quasi-Banach function space Y on G. Therefore,

W (L1
w) = WR(WL(L1

w)) = WL(WL(L1
w)) = WL(L1

w),

which easily implies Cog(L1
w) = Cog(WR(L1

w)).

Second, suppose Cog(WR(L1
w)) = Cog(L1

w). The inclusion ι : Cog(WR(L1
w)) ↪→ Cog(L1

w)
is clearly bounded and linear. Since Cog(L1

w) = Cog(WR(L1
w)), it follows that ι is bijec-

tive. By the bounded inverse theorem, this implies that ι is boundedly invertible, i.e.,
‖ · ‖Cog(WR(L1

w)) � ‖ · ‖Cog(L1
w). In particular, this implies existence of a constant C1 > 0
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satisfying
‖π(x)g‖Cog(WR(L1

w)) ≤ C1 · ‖π(x)g‖Cog(L1
w) = C1 ·

∥∥Vg[π(x)g]
∥∥
WL(L1

w) = C1 ·‖Lσx[Vgg]
∥∥
WL(L1

w)

= C1 ·
∥∥Lx[Vgg]

∥∥
WL(L1

w) = C1 ·
∥∥ML[Lx(Vgg)]

∥∥
L1
w

= C1 ·
∥∥Lx[ML(Vgg)]

∥∥
L1
w

≤ C1 · w(x) ·
∥∥ML[Vgg]

∥∥
L1
w

=: C2 · w(x) (4.20)

for all x ∈ G. Since |Vgg| is continuous with |Vgg(eG)| = ‖g‖2Hπ > 0, there exist δ > 0 and an
open, symmetric, relatively compact unit neighborhood U ⊂ Q satisfying |Vgg(x)| ≥ δ for all
x ∈ U . In particular, this implies that

M(Vg[π(x)g])(y) = ess sup
q1,q2∈Q

∣∣Vg[π(x)g](q1yq2)
∣∣ = ess sup

q1,q2∈Q

∣∣Lσx[Vgg](q1yq2)
∣∣

= sup
q1,q2∈Q

|Lx[Vgg](q1yq2)| ≥ δ · sup
q1,q2∈Q

1U (x−1q1yq2)

= δ · 1QxUQ(y) ≥ δ · 1QxQ(y)

for all x, y ∈ G. Since w is locally bounded (cf. Remark 3.2), there exists a constant
C3 = C3(w,Q) > 0 satisfying w(q) ≤ C3 for all q ∈ Q = Q−1. Hence, if 1QxQ(y) 6= 0,
then x = q−1

1 yq−1
2 for certain q1, q2 ∈ Q and hence w(x) ≤ w(q−1

1 )w(y)w(q−1
2 ) ≤ C2

3 w(y).
Combining these observations with (4.20) gives
C2 · w(x) ≥ ‖π(x)g‖Cog(WR(L1

w)) =
∥∥Vg[π(x)g]

∥∥
W (L1

w) =
∥∥M(Vg[π(x)g])

∥∥
L1
w
≥ δ · ‖1QxQ‖L1

w

≥ C−2
3 δ · w(x) · ‖1QxQ‖L1 = C−2

3 δ · w(x) · µG(QxQ).

It follows therefore that µG(QxQ) ≤ C2C
2
3/δ =: C for all x ∈ G. An application of Proposi-

tion 4.14 shows that G is an IN group. �

5. Convolution-dominated operators and local spectral invariance

This section considers classes of convolution-dominated operators. The first subsection is
devoted to integral operators, whereas the second concerns convolution-dominated matrices.

Throughout the section, the weight w : G→ [1,∞) will always be assumed to be a p-weight
for some p ∈ (0, 1].

5.1. Integral operators. Throughout, let g ∈ Bpw be a fixed admissible vector (see Sec-
tion 4.3). Then the image space

Kg := Vg(Hπ) ≤ L2(G)
is a closed subspace forming a reproducing kernel Hilbert space, with reproducing kernel

K : G×G→ C, (x, y) 7→ Vg[π(y)g](x) = Lσy [Vgg](x),

see Section 4.1. Since g ∈ Bpw by assumption, it follows that |Vgg| ∈WC(Lpw), and

|K(x, y)| = |K(y, x)| ≤ |Vgg|(y−1x), x, y ∈ G.
The following general class of localized kernels will be the central object of study.

Definition 5.1. Let p ∈ (0, 1], let w : G→ [1,∞) be a p-weight, and let g ∈ Bpw be admissible.
A measurable function H : G×G→ C is called Lpw-localized in Kg if it satisfies the following
properties:

(i1) H(·, y) ∈ Kg for all y ∈ G,
(i2) H(x, ·) ∈ Kg for all x ∈ G,
(i3) There exists a non-negative envelope Φ ∈WC(Lpw) satisfying

max
{
|H(x, y)|, |H(y, x)|

}
≤ Φ(y−1x), x, y ∈ G. (5.1)

For a measurable function H satisfying condition (i3), the notation H ≺ Φ will be used.
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Remark 5.2. Note that if Equation (5.1) holds, then it also holds for Φ0 = min{Φ,Φ∨} instead
of Φ. Hence, one can always assume Φ to be symmetric.

The following lemma summarizes the basic elementary properties of Lpw-localized kernels
and of the associated integral operators.

Lemma 5.3. If H is Lpw-localized in Kg, then the associated integral operator

TH : Lr(G)→ Lr(G), THF (x) =
∫
G
H(x, y)F (y) dµG(y)

is well-defined and bounded for arbitrary r ∈ [1,∞], with absolute convergence of the defining
integral for all x ∈ G. Moreover, the following properties hold:

(i) The map TH : L2(G)→ Kg is well-defined.
(ii) For all x, y ∈ G,

H(x, y) =
〈
TH [Vg(π(y)g)], Vg(π(x)g)

〉
L2 (5.2)

and |H(x, y)| ≤ ‖TH‖Kg→L2 · ‖g‖2Hπ .
(iii) The adjoint kernel H̃ : G × G → C defined by H̃(x, y) = H(y, x) is also Lpw-localized

in Kg. In fact, if H ≺ Φ, then H̃ ≺ Φ.
(iv) If L : G×G→ C is also Lpw-localized in Kg, then so is the product H � L defined by

H � L(x, y) :=
∫
G
H(x, z) · L(z, y)dµG(z) = TH [L(·, y)](x).

In addition, if H ≺ Φ and L ≺ Θ with Φ,Θ symmetric, then H�L ≺ max{Φ∗Θ,Θ∗Φ}.
Moreover, the identity (TH ◦ TL)F = TH�LF holds for all F ∈ L2(G).

Proof. Throughout the proof, let Φ ∈WC(Lpw) be symmetric with H ≺ Φ, so that

|H(x, y)| ≤ Φ(y−1x) = Φ(x−1y) (5.3)

for all x, y ∈ G. Before proving the individual statements of the lemma, we collect a few
auxiliary observations and prove the boundedness of TH : Lr → Lr.

By Lemma 3.3 and because of w ≥ 1, it follows that W (Lpw) ↪→ WL(Lpw) ↪→ Ls for all
s ∈ [1,∞]. The estimate |H(x, y)| ≤ Φ(x−1y) shows that H(x, ·) ∈ Ls for all x ∈ G and
s ∈ [1,∞], which implies that the integral defining THF (x) exists for any F ∈ Lr and x ∈ G.
Moreover, the estimate (5.3) yields∫

G
|H(x, y)| dµG(y) ≤ ‖Φ‖L1 and

∫
G
|H(x, y)| dµG(x) ≤ ‖Φ‖L1

for all x, y ∈ G. An application of Schur’s test (see, e.g., [23, Theorem 6.18]) therefore yields
that TH : Lr(G)→ Lr(G) is bounded for arbitrary r ∈ [1,∞].

Let F1, F2 ∈ L2(G). Then, using the Cauchy-Schwarz inequality, the pointwise estimate
|H(x, y)| ≤

√
Φ(x−1y)Φ(y−1x) and Tonelli’s theorem, it follows that∫

G

∫
G
|F2(x)| · |H(x, y)| · |F1(y)| dµG(y)dµG(x)

≤
∫
G
|F2(x)|

(∫
G

Φ(x−1y) dµG(y)
)1/2(∫

G
Φ(y−1x)|F1(y)|2 dµG(y)

)1/2
dµG(x)

≤ ‖Φ‖1/2L1

(∫
G
|F2(x)|2 dµG(x)

)1/2(∫
G

∫
G

Φ(y−1x)|F1(y)|2 dµG(y)dµG(x)
)1/2

≤ ‖Φ‖1/2L1 · ‖F2‖L2 · ‖Φ‖1/2L1 · ‖F1‖L2 .
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Therefore, Fubini’s theorem is applicable and justifies the calculation

〈THF1, F2〉 =
∫
G

∫
G
F2(x) ·H(x, y) · F1(y) dµG(y)dµG(x)

=
∫
G
F1(y)

∫
G
H(x, y) · F2(x) dµG(x)dµG(y)

=
∫
G
F1(y) · 〈H(·, y), F2〉 dµG(y)

(5.4)

for arbitrary F1, F2 ∈ L2(G).
(i) Let F1 ∈ L2(G). Since Kg ≤ L2(G) is closed, to show THF1 ∈ Kg, it suffices to show

〈THF1, F2〉 = 0 for all F2 ∈ K⊥g . For this, simply note that H(·, y) ∈ Kg for all y ∈ G, so that
Equation (5.4) shows 〈THF1, F2〉 =

∫
G F1(y) · 〈H(·, y), F2〉 dµG(y) = 0.

(ii) Note that the reproducing formula (4.5) gives F (x) = 〈F, Vg(π(x)g)〉L2 for all F ∈ Kg
and x ∈ G. This, combined with the identity (5.4), and H(·, z) ∈ Kg and H(x, ·) ∈ Kg, gives〈

TH [Vg(π(y)g)], Vg(π(x)g)
〉
L2 =

∫
G
Vg(π(y)g)(z) · 〈H(·, z), Vg(π(x)g)〉 dµG(z)

=
∫
G
Vg(π(y)g)(z) ·H(x, z) dµG(z)

= 〈H(x, ·), Vg(π(y)g)〉 = H(x, y),

which shows (5.2). In particular, using the isometry of Vg and because of ‖π(x)g‖Hπ = ‖g‖Hπ
and Vg(π(y)g) ∈ Kg, this implies that

|H(x, y)| ≤ ‖TH‖Kg→L2‖Vg(π(y)g)‖L2‖Vg(π(x)g)‖L2 = ‖TH‖Kg→L2‖g‖2Hπ ,

which proves part (ii).
(iii) Simply note that H̃(·, y) = H(y, ·) ∈ Kg and H̃(x, ·) = H(·, x) ∈ Kg for all x, y ∈ G and

that max{|H̃(x, y)|, |H̃(y, x)|} = max{|H(x, y)|, |H(y, x)|} ≤ Φ(y−1x), even without assuming
that Φ is symmetric.

(iv) By part (i) and because of L(·, y) ∈ Kg, it follows that (H�L)(·, y) = TH [L(·, y)] ∈ Kg.
Another direct calculation shows that (H � L)(x, ·) = T

L̃

[
H̃(·, x)

]
∈ Kg, by Part (i) applied

to L̃ (which is Lpw-localized in Kg by Part (iii) and since H̃(·, x) ∈ Kg.
If H ≺ Φ and L ≺ Θ with symmetric Φ,Θ ∈WC(Lpw), then

∣∣H � L(x, y)
∣∣ ≤ ∫

G
|H(x, z)| · |L(z, y)| dµG(z) ≤

∫
G

Φ(x−1z)Θ(z−1y) dµG(z)

=
∫
G

Φ(w)Θ(w−1x−1y) dµG(w) = (Φ ∗Θ)(x−1y) = (Θ ∗ Φ)(y−1x),

where the last step used the elementary identity (F ∗H)∨ = H∨ ∗ F∨. The calculation from
above also shows |H � L(y, x)| ≤ (Φ ∗Θ)(y−1x). Hence, H � L ≺ max{Φ ∗Θ,Θ ∗ Φ}. Since
Φ ∗Θ,Θ ∗ Φ ∈WC(Lpw) by Corollary 3.9, it follows that H � L is Lpw-localized in Kg.

Lastly, note that Lemma 3.3 shows Φ ∗ Θ ∈ W (Lpw) ↪→ WL(Lpw) ↪→ L2. Hence, it follows
for arbitrary F ∈ L2(G) that∫

G

∫
G
|H(x, y) · L(y, z)||F (z)| dµG(y)dµG(z) ≤

∫
G

∫
G

Φ(x−1y)Θ(y−1z)|F (z)| dµG(y)dµG(z)

=
∫
G
|F (z)| · (Lx(Φ ∗Θ))(z) dµG(z)

≤ ‖F‖L2‖Lx(Φ ∗Θ)‖L2 <∞
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for any x ∈ G. Therefore, Fubini’s theorem is applicable in the calculation[
TH(TLF )

]
(x) =

∫
G
H(x, y) · TLF (y) dµG(y) =

∫
G

∫
G
H(x, y)L(y, z)F (z) dµG(z)dµG(y)

=
∫
G

(H � L)(x, z) · F (z) dµG(z) = (TH�LF )(x),

which completes the proof. �

The next result establishes a form of local spectral invariance of Lpw-localized integral opera-
tors. Concerning the holomorphic spectral calculus appearing in the statement of the theorem,
see, e.g., [51, Sections 10.21–10.29].

Theorem 5.4. Let p ∈ (0, 1] and let w : G→ [1,∞) be a p-weight. Let Φ := |Vgg| ∈WC(Lpw)
for an admissible g ∈ Bpw and let Θ ∈WC(Lpw) be non-negative.

For arbitrary δ > 0, there exists ε = ε(Θ, g,Q,w, p, δ) ∈ (0, δ) with the following property:
If φ : Bδ(1) ⊂ C→ C is holomorphic and if H : G×G→ C is Lpw-localized in Kg satisfying

(1) H ≺ Θ,
(2) ‖TH − idKg‖Kg→L2 ≤ ε,

then there exists an Lpw-localized Hφ : G × G → C such that the operator φ(TH) : Kg → Kg
defined through the holomorphic functional calculus satisfies φ(TH) = THφ |Kg .

Proof. The proof is divided into several steps and closely follows the proof of [50, Theorem 4.3].

Step 1. (Choice of ε). Let δ > 0 be given and set β := ‖g‖2Hπ and Θ0 := min{Θ,Θ∨},
so that H ≺ Θ0. Using Corollary 3.9, choose a constant C1 = C1(w, p,Q) ≥ 1 satisfying
‖F1 ∗ F2‖W (Lpw) ≤ ‖|F1| ∗ |F2|‖W (Lpw) ≤ C1 · ‖F1‖W (Lpw) · ‖F2‖W (Lpw) for all F1, F2 ∈W (Lpw).

For ε > 0, set Ψε := min{εβ,Φ + Θ0}. Since MΨε ≤ min{εβ,MΦ +MΘ} ∈ Lpw, it follows
from the dominated convergence theorem (applied along an arbitrary null-sequence εn → 0)
that ‖Ψε‖W (Lpw) → 0 as ε ↓ 0. Hence, there exists ε = ε(Θ, g, δ, w, p,Q) ∈ (0, δ2) such that
‖Ψε‖W (Lpw) ≤ δ

4C1
.

Step 2. (Series representation of φ(TH)). Let φ : Bδ(1) → C be holomorphic. By as-
sumption, ‖idKg − TH‖Kg→Kg ≤ ε < δ

2 , and hence σ(TH) ⊂ Bδ/2(1). This implies that
φ(TH) : Kg → Kg is a well-defined bounded linear operator. By expanding φ into a power
series, we can write φ(z) =

∑∞
n=0 an (z − 1)n for all z ∈ Bδ(1), for a suitable sequence

(an)n∈N0 ⊂ C. The series representing φ convergences locally uniformly on Bδ(1). Therefore,
elementary properties of the holomorphic functional calculus (see, e.g., [51, Theorem 10.27])
show that

φ(TH) =
∞∑
n=0

an (TH − idKg)n, (5.5)

with convergence in the operator norm. An application of the Cauchy-Hadamard formula
gives δ ≤

[
lim supn→∞ |an|1/n

]−1. Thus, there exists some N = N(φ, δ) ∈ N such that
|an|1/n ≤ 2

δ for all n ≥ N . Consequently, there exists Cφ = Cφ(δ) > 0 such that

|an| ≤ Cφ · (2/δ)n (5.6)

for all n ∈ N0.

Step 3. (Integral representation of TH − idKg). For F ∈ Kg and x ∈ G, the reproducing
formula (4.5) yields that F (x) = TKF (x), where K is the reproducing kernel given by (4.6).
In other words,

TK |Kg = idKg and TH − idKg = TL|Kg for L := H −K. (5.7)
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Since K(x, ·) = Vg[π(x)g] ∈ Kg and K(·, y) = Vg[π(y)g] ∈ Kg for arbitrary x, y ∈ G, it follows
that L(·, y) ∈ Kg and L(x, ·) ∈ Kg for all x, y ∈ G. Since also

|L(y, x)| ≤ Φ(x−1y) + Θ0(x−1y) = Φ(y−1x) + Θ0(y−1x)

and |L(x, y)| ≤ Φ(y−1x) + Θ0(y−1x) and hence L ≺ Φ + Θ0 with Φ + Θ0 ∈WC(Lpw), it follows
that L is Lpw-localized in Kg.

Step 4. (Refined Lpw-localization of L). By Step 3 and the assumptions of the theorem, it
holds that

‖TL‖Kg→L2 = ‖TH − idKg‖Kg→L2 ≤ ε.

Therefore, the pointwise estimate following from the identity (5.2) shows that

|L(x, y)| ≤ ‖TL‖Kg→L2 · ‖g‖2Hπ ≤ εβ, x, y ∈ G.

Combined with the estimate from the end of Step 3, this shows L ≺ Ψε.

Step 5. (Powers of Ψε and L): For n ∈ N, define Ψ∗(1)
ε := Ψε and Ψ∗(n+1)

ε := Ψε ∗ Ψ∗(n)
ε

inductively. Similarly, let L◦(1) := L and L◦(n+1) := L◦(n) � L for n ∈ N, where � is
the product defined in Lemma 5.3. By a straightforward induction, that lemma shows that
(TH − idKg)n = TnL |Kg = TL◦(n) |Kg and that L◦(n) is Lpw-localized in Kg for each n ∈ N. In
particular, this implies

L◦(n)(·, y) ∈ Kg and L◦(n)(x, ·) ∈ Kg, x, y ∈ G. (5.8)

Furthermore, a straightforward induction shows Ψ∗(n+1)
ε = Ψ∗(n)

ε ∗ Ψε and (Ψ∗(n)
ε )∨ = Ψ∗(n)

ε

for all n ∈ N.
Another induction argument shows that L◦(n) ≺ Ψ∗(n)

ε : For n = 1, this was shown in
Step 4. For the induction step, Lemma 5.3 shows by symmetry of Ψε and Ψ∗(n)

ε and because
of L◦(n) ≺ Ψ∗(n)

ε and L ≺ Ψε that

L◦(n+1) = L◦(n) � L ≺ max
{
Ψε ∗Ψ∗(n)

ε ,Ψ∗(n)
ε ∗Ψε

}
= Ψ∗(n+1)

ε ,

as required. Lastly, it holds that

‖Ψ∗(n)
ε ‖W (Lpw) ≤

(
δ/4

)n
, n ∈ N. (5.9)

Indeed, for n = 1 this follows since C1 ≥ 1 and hence ‖Ψε‖W (Lpw) ≤ δ
4C1
≤ δ

4 by the choice of
ε in Step 1. Next, for the induction step note by choice of C1 that

‖Ψ∗(n+1)
ε ‖W (Lpw) = ‖Ψε∗Ψ∗(n)

ε ‖W (Lpw) ≤ C1·‖Ψε‖W (Lpw)·‖Ψ∗(n)
ε ‖W (Lpw) ≤ δ/4·(δ/4)n = (δ/4)n+1,

which establishes the claim (5.9).

Step 6. (Construction of Hφ). Combining Equations (5.6) and (5.9) gives
∞∑
n=1

(
|an| · ‖Ψ∗(n)

ε ‖W (Lpw)
)p ≤ ∞∑

n=1

[
Cφ · (2/δ)n · (δ/4)n

]p = Cpφ ·
∞∑
n=1

(1/2p)n <∞.

Since the norm on WC(Lpw) is a p-norm, the preceding estimate implies by Lemma A.1 that
the series

∑∞
n=1 |an|Ψ

∗(n)
ε is unconditionally convergent in WC(Lpw). Since WC(Lpw) ↪→ Cb(G)

as a consequence of Lemma 3.3, the series in particular converges uniformly.
Define Ψ := |a0|Φ +

∑∞
n=1 |an|Ψ

∗(n)
ε ∈WC(Lpw). Then the kernel Hφ : G×G→ C defined

by

Hφ(x, y) = a0 ·K(x, y) +
∞∑
n=1

an L
◦(n)(x, y)
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is well-defined with the series converging absolutely, and

|Hφ(x, y)| ≤ |a0| · |K(x, y)|+
∞∑
n=1
|an| · |L◦(n)(x, y)|

≤ |a0| · Φ(y−1x) +
∞∑
n=1
|an| ·Ψ∗(n)

ε (y−1x) = Ψ(y−1x) <∞,
(5.10)

since L◦(n) ≺ Ψ∗(n)
ε (cf. Step 5.) Similar arguments show that also |Hφ(y, x)| ≤ Ψ(y−1x) and

thus Hφ ≺ Ψ.
To prove that Hφ is Lpw-localized in Kg, it remains to show Hφ(·, y) ∈ Kg and Hφ(x, ·) ∈ Kg

for all x, y ∈ G. To see this, note that Lemma 3.3 shows Ψ ∈ W (Lpw) ↪→ WL(Lpw) ↪→ L2.
In combination with Equation (5.10) and the dominated convergence theorem, this implies
that the series defining Hφ(·, y) converges in L2(G). Since Kg ⊂ L2(G) is closed, since
L◦(n)(·, y) ∈ Kg by Equation (5.8), and since K(·, y) ∈ Kg, this implies Hφ(·, y) ∈ Kg, as re-
quired. The proof of Hφ(x, ·) ∈ Kg is similar, using that

(
y 7→ Ψ(y−1x) = Ψ(x−1y)

)
∈ L2(G).

Step 7. (φ(TH) = THφ |Kg). Let F ∈ Kg and x ∈ G. Note that Step 6 shows
∞∑
n=1
|an| |L◦(n)(x, ·)| ≤ Ψ(x−1·),

where Ψ ∈ L2(G). Hence, the dominated convergence theorem justifies the following calcula-
tion:

THφF (x) = a0 · TKF (x) +
∞∑
n=1

[an · TL◦(n)F (x)] = a0 · F (x) +
∞∑
n=1

(
an · [(TH − idKg)nF ](x)

)
=
∞∑
n=0

(
an · [(TH − idKg)nF ](x)

)
= [φ(TH)F ](x),

where the second (resp. fourth) equality used (5.7) (resp. (5.5)). Thus, φ(TH) = THφ |Kg . �

Theorem 5.4 provides an extension of [50, Theorem 4.3] from L1
w-localized kernels to general

Lpw-localized kernels for p ∈ (0, 1]. This extension will be crucial for developing the theory of
molecules for quasi-Banach coorbit spaces in Section 6.

5.2. Matrices. This section concerns matrices that are indexed by discrete subsets of G (that
do not need to be subgroups) and that possess a certain off-diagonal decay. The precise notion
is as follows.

Definition 5.5. Let p ∈ (0, 1] and let w : G → [1,∞) be a p-weight. Let Λ = (λi)i∈I and
Γ = (γj)j∈J be relatively separated families in G.

A matrix A = (Ai,j)(i,j)∈I×J ∈ CI×J is called Lpw-localized if there exists an envelope
Φ ∈WC(Lpw) such that

|Ai,j | ≤ min{Φ(γ−1
j λi), Φ(λ−1

i γj)}, i ∈ I, j ∈ J. (5.11)

If condition (5.11) holds, the notation A ≺ Φ will be used. The space of all Lpw-localized
matrices in CΛ×Γ is the collection

Cpw(Λ,Γ) :=
{
A ∈ CI×J : A ≺ Φ for some Φ ∈WC(Lpw)

}
,

and is equipped with the mapping ‖ · ‖Cpw : Cpw → [0,∞) defined by

‖A‖Cpw := inf
{
‖Φ‖W (Lpw) : A ≺ Φ ∈WC(Lpw)

}
.

In case of Λ = Γ, the notation Cpw(Λ) := Cpw(Λ,Λ) will be used.
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The basic properties of Lpw-localized matrices are collected in the following lemma.

Lemma 5.6. Let Λ = (λi)i∈I , Γ = (γj)j∈J , and Υ = (υk)k∈K be relatively separated families
in G. Then the following hold:

(i) The space Cpw(Λ,Γ) forms a quasi-Banach space with p-norm ‖ · ‖Cpw .
(ii) Any A = (Ai,j)(i,j)∈I×J ∈ Cpw(Λ,Γ) satisfies∑

i∈I
|Ai,j | . Rel(Λ) · ‖A‖Cpw and

∑
j∈J
|Ai,j | . Rel(Γ) · ‖A‖Cpw , (5.12)

with an implicit constant depending only on p, w and Q. In particular, the embedding
Cpw(Λ,Γ) ↪→ B(`r(J), `r(I)) holds for all r ∈ [1,∞], with

‖A‖`r(J)→`r(I) . max{Rel(Λ),Rel(Γ)} · ‖A‖Cpw . (5.13)
(iii) If A ∈ Cpw(Υ,Λ) and B ∈ Cpw(Λ,Γ), then the product AB (which is defined as usual by

(AB)k,j =
∑
i∈I Ak,iBi,j) satisfies AB ∈ Cpw(Υ,Γ), with

‖AB‖Cpw . Rel(Λ) · ‖A‖Cpw‖B‖Cpw . (5.14)
for an implicit constant depending only on p, w and Q.

Proof. All implied constants in this proof only depend on p, w,Q.
(i) The absolute homogeneity and the p-norm property ‖A + B‖pCpw ≤ ‖A‖

p
Cpw

+ ‖B‖pCpw of
‖ · ‖Cpw follow directly from the corresponding properties of ‖ · ‖W (Lpw). For A ∈ Cpw(Λ,Γ)
satisfying A ≺ Φ with Φ ∈WC(Lpw), the inequality (cf. Lemma 3.3)

|Ai,j | ≤ Φ(γ−1
j λi) ≤ ‖Φ‖Cb = ‖Φ‖L∞ . ‖Φ‖W (Lpw), (5.15)

directly shows that |Ai,j | . ‖A‖Cpw , and hence that ‖ · ‖Cpw is positive definite.
It remains to show that Cpw(Λ,Γ) is complete. For this, by Lemma A.1, it suffices to show

that if (A(n))n∈N is a sequence in Cpw(Λ,Γ) satisfying
∑
n∈N ‖A(n)‖pCpw <∞, then

∑
n∈NA

(n) con-
verges in Cpw(Λ,Γ). Given such a sequence (A(n))n∈N, define A ∈ CI×J by Ai,j :=

∑
n∈NA

(n)
i,j .

That A is well-defined follows from the observation after Equation (5.15) by noting∑
n∈N
|A(n)

i,j | ≤
∑
n∈N
|A(n)

i,j |
p .

∑
n∈N
‖A(n)‖pCpw <∞.

For n ∈ N, let Φn ∈WC(Lpw) be such that A(n) ≺ Φn and ‖Φn‖W (Lpw) ≤ 2‖A(n)‖Cpw , and define
ΘN :=

∑∞
n=N+1 Φn for N ∈ N0. The choice of Φn implies that∑

n∈N
‖Φn‖pW (Lpw) ≤ 2p

∑
n∈N
‖A(n)‖pCpw <∞,

so that ΘN ∈WC(Lpw) by Lemma A.1. In addition, each ΘN satisfies the envelope property∣∣∣∣(A− N∑
n=1

A(n)
)
i,j

∣∣∣∣ ≤ ∞∑
n=N+1

min{Φn(γ−1
j λi), Φn(λ−1

i γj)} ≤ min{ΘN (γ−1
j λi), ΘN (λ−1

i γj)}

for all i ∈ I and j ∈ J . In particular, this implies that A−
∑N
n=1A

(n) ∈ Cpw(Λ,Γ) with∥∥∥∥A− N∑
n=1

A(n)
∥∥∥∥p
Cpw
≤ ‖ΘN‖pW (Lpw) ≤

∞∑
n=N+1

‖Φn‖pW (Lpw) → 0 as N →∞.

Thus,
∑
n∈NA

(n) converges in Cpw(Λ,Γ). Overall, this shows that Cpw(Λ,Γ) is complete.

(ii) Let A ∈ Cpw(Λ,Γ) and let Φ ∈ WC(Lpw) be such that A ≺ Φ. Because of w ≥ 1, an
application of Lemma 2.1 yields, for all j ∈ J , that∑

i∈I
|Ai,j | ≤

∑
i∈I

Φ(γ−1
j λi) ≤

Rel(Λ)
µG(Q) ‖Φ‖WL(L1

w) .
Rel(Λ)
µG(Q) ‖Φ‖WC(Lpw),
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where the last inequality follows from Lemma 3.3. Similarly,
∑
j∈J |Ai,j | .

Rel(Γ)
µG(Q)‖Φ‖WC(Lpw).

This implies the estimates (5.12). The embedding (5.13) is a direct consequence of Schur’s
test, see, e.g., [23, Theorem 6.18].

(iii) Let Φ,Θ ∈ WC(Lpw) be such that A ≺ Φ and B ≺ Θ. By Lemma 2.1, it follows that,
for arbitrary υk ∈ Υ and γj ∈ Γ,

|(AB)k,j | ≤
∑
i∈I
|Ak,i||Bi,j | ≤

∑
i∈I

Φ(λ−1
i υk)Θ(γ−1

j λi) ≤
Rel(Λ)
µG(Q) ·

(
MLΘ ∗MRΦ

)
(γ−1
j υk).

A similar calculation also gives |(AB)k,j | ≤ Rel(Λ)
µG(Q) ·

(
MLΦ∗MRΘ

)
(υ−1
k γj). Define the function

H : G→ [0,∞) by

H := Rel(Λ)
µG(Q) ·

((
MLΘ ∗MRΦ

)
+
(
MLΦ ∗MRΘ

))
,

so that |(AB)k,j | ≤ min{H(γ−1
j υk), H(υ−1

k γj)} for all j ∈ J and k ∈ K. By Corollary 3.9, it
follows that MLΘ ∗MRΦ ∈ WC(Lpw) and MLΦ ∗MRΘ ∈ WC(Lpw), and thus H ∈ WC(Lpw),
with

‖H‖WC(Lpw) . Rel(Λ) · ‖Θ‖WC(Lpw)‖Φ‖WC(Lpw).

Overall, AB ≺ H with ‖AB‖Cpw ≤ ‖H‖WC(Lpw), which easily yields the desired claim. �

The proof of the following theorem resembles the proof of Theorem 5.4, but for matrices
instead of integral operators. For L1

w-localized matrices, the result can already be found in
[50].

Theorem 5.7. Let w : G → [1,∞) be a p-weight for some p ∈ (0, 1] and let Θ ∈ WC(Lpw).
Let R > 0, and let Λ = (λi)i∈I be a relatively separated family in G with Rel(Λ) ≤ R.

For arbitrary δ > 0, there exists ε = ε(Θ, R, δ, w, p,Q) ∈ (0, δ) with the following property:
If φ : Bδ(1) ⊂ C→ C is holomorphic and if A ∈ Cpw(Λ) satisfies

(1) A ≺ Θ,
(2) ‖A− id`2(I)‖`2(I)→`2(I) ≤ ε,

then the operator φ(A) : `2(I)→ `2(I) defined through the holomorphic functional calculus is
well-defined and its associated matrix is an element of Cpw(Λ).

Proof. Throughout, let Φ ∈WC(Lpw) be such that A ≺ Φ. The proof is split into four steps.

Step 1. (Choice of ε). For a symmetric function ϕ ∈ Cc(G) ⊆ WC(Lpw) such that ϕ ≥ 0
and ϕ(eG) = 1, define Θ := ϕ+ Φ. For k ∈ N, let Θk := min{k−1,Θ} and note the pointwise
estimate and convergence

MΘk(x) ≤ min{k−1,MΘ(x)} → 0 as k →∞.
Since MΘ ∈ Lpw(G), an application of Lebesgue’s dominated convergence theorem implies
‖Θk‖W (Lpw) = ‖MΘk‖Lpw → 0 as k →∞.

Let C = C(p, w,Q) > 0 be the implicit constant appearing in Equation (5.14) and define
C1 := max{1, CR} and C2 := (4/δ) · C1 > 0. By the previous paragraph, there exists k0 ∈ N
satisfying k0 ≥ 2/δ and ‖Θk0‖WC(Lpw) ≤ 1/C2. For such a fixed k0, set ε := k−1

0 throughout.

Step 2. (Series representation of φ(A)). Let (an)n∈N0 with φ(z) =
∑
n∈N0 an · (z − 1)n

for all z ∈ Bδ(1) with uniform convergence on compact subsets of Bδ(1). By assumption,
‖A− id`2(I)‖`2→`2 ≤ ε, and ε ≤ δ/2 by Step 1, and thus σ(A) ⊂ Bδ/2(1) ⊂ Bδ(1). Therefore,
basic properties of the holomorphic functional calculus (see, e.g., [51, Theorem 10.27]) yield
that

φ(A) =
∑
n∈N0

an · (A− id`2(I))n (5.16)



COORBIT SPACES AND DUAL MOLECULES: THE QUASI-BANACH CASE 37

with convergence in the operator norm topology. Since δ ≤
[
lim supn→∞ |an|1/n

]−1 by the
Cauchy-Hadamard formula, there exists N = N(φ, δ) ∈ N such that |an|1/n ≤ 2/δ for all
n ≥ N . In particular, this implies that there exists Cφ = Cφ(δ) > 0 satisfying

|an| ≤ Cφ ·
(
2/δ

)n (5.17)
for all n ∈ N0.

Step 3. (Lpw-localization of A− id`2(I)). Identify the operator A− id`2(I) with the matrix
B ∈ CI×I given by Bi,i′ = Ai,i′ − δi,i′ for i, i′ ∈ I. Since ‖A − id`2(I)‖`2→`2 ≤ ε = k−1

0 , it
follows that |Bi,i′ | ≤ k−1

0 . In addition, a direct calculation gives∣∣Bi,i′ ∣∣ =
∣∣Ai,i′ − δi,i′∣∣ ≤ Φ(λ−1

i′ λi) + ϕ(λ−1
i′ λi) = Θ(λ−1

i′ λi), i, i′ ∈ I.

Similarly, it follows that |Bi,i′ | ≤ Θ(λ−1
i λi′). Thus, B ≺ Θk0 .

Step 4. (Norm convergence of φ(A)). By the choice of C1 ≥ 1 in Step 1, it follows by an
induction argument and Equation (5.14) that Bn ∈ Cpw(Λ), with

‖Bn‖Cpw ≤ C
n
1 · ‖B‖nCpw ≤

(
C1
C2

)n
=
(
δ

4

)n
, n ∈ N,

where the second equality used that ‖B‖Cpw ≤ ‖Θk0‖W (Lpw) ≤ C−1
2 ; see Step 3. Combining

this, together with Equation (5.17), yields∑
n∈N

(
|an| ·

∥∥(A− id`2(I))n‖Cpw
)p ≤∑

n∈N

(
Cφ · (2/δ)n · (δ/4)n

)p
≤ Cpφ

∑
n∈N

(2−p)n <∞.

Since Lemma 5.6 shows that Cpw(Λ) is a quasi-Banach space with p-norm ‖ · ‖Cpw , it follows by
Lemma A.1 that the series

∑
n∈N an(A − id`2(I))n converges in Cpw(Λ). Since id`2(I) ≺ ϕ, it

follows that (A− id`2(I))0 = id`2(I) ∈ Cpw(Λ). Therefore,

φ(A) = a0(A− id`2(I))0 +
∑
n∈N

an(A− id`2(I))n ∈ Cpw,

which completes the proof. �

6. Dual molecules for coorbit spaces

This section is devoted to the notion of molecules in coorbit spaces. The main results
obtained show that coorbit spaces and associated sequence spaces can be decomposed in
terms of dual molecules of frames and Riesz sequences. These results will be used in Section 7
to provide criteria for boundedness of operators on coorbit spaces.

6.1. Frames and Riesz sequences. Let H be a separable Hilbert space. A countable family
(gi)i∈I in H is called a Bessel sequence in H if there exists B > 0 such that∑

i∈I
|〈f, gi〉|2 ≤ B‖f‖2H for all f ∈ H.

Equivalently, (gi)i∈I is a Bessel sequence if the coefficient operator associated to (gi)i∈I ,
C : H → `2(I), f 7→ (〈f, gi〉)i∈I

is well-defined and bounded. The reconstruction operator D := C ∗ : `2(I) → H associated
to (gi)i∈I is given by D(ci)i∈I =

∑
i∈I cigi. The frame and Gramian operator associated to

(gi)i∈I are defined by S := DC : H → H and G := C D : `2(I)→ `2(I), respectively.
A Bessel sequence (gi)i∈I is called a frame for H, if there exist A,B > 0 (called frame

bounds) satisfying

A‖f‖2H ≤
∑
i∈I
|〈f, gi〉|2 ≤ B‖f‖2H for all f ∈ H; (6.1)
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this holds if and only if the frame operator S : H → H is bounded and invertible. Two Bessel
sequences (gi)i∈I and (hi)i∈I are said to be dual frames for H if

f =
∑
i∈I
〈f, gi〉hi =

∑
i∈I
〈f, hi〉gi for all f ∈ H.

If (gi)i∈I is a frame for H, then (S −1gi)i∈I is a dual frame of (gi)i∈I , called the canonical
dual frame. A frame is called Parseval if (6.1) holds with equality, i.e., if S = idH. If (gi)i∈I
is a frame for H, then the system (S −1/2gi)i∈I is a Parseval frame for H.

A Bessel sequence (gi)i∈I is called a Riesz sequence in H, if there exist A,B > 0 (called
Riesz bounds) satisfying

A‖c‖2`2 ≤
∥∥∥∥∑
i∈I

cigi

∥∥∥∥2

H
≤ B‖c‖2`2 for all c = (ci)i∈I ∈ `2(I). (6.2)

Equivalently, (gi)i∈I is a Riesz sequence if and only if the Gramian operator G : `2(I)→ `2(I)
is bounded and invertible. If (gi)i∈I is a Riesz sequence in H, then it admits a unique
biorthogonal system (hi)i∈I in span{gi : i ∈ I}. A Riesz sequence (gi)i∈I is a frame for
span{gi : i ∈ I}, and (S −1/2gi)i∈I is an orthonormal sequence in H, where S is the frame
operator considered as an operator on span{gi : i ∈ I}.

For background, proofs, and further properties, see, e.g., the books [12,55].

6.2. Molecules and their basic properties. Throughout this section, g ∈ Bpw denotes an
admissible vector and Kg := Vg(Hπ) the associated reproducing kernel Hilbert space.

The following definition introduces the central notion of this section.

Definition 6.1. Let w : G → [1,∞) be a p-weight for some p ∈ (0, 1]. Let Λ = (λi)i∈I be
relatively separated in G.

(a) A family (hi)i∈I inHπ is a system of (Lpw, g)-molecules inHπ if there exists a symmetric
envelope Φ ∈WC(Lpw) such that

|Vghi(x)| ≤ Φ(λ−1
i x) (6.3)

for all i ∈ I and x ∈ G.
(b) A family (Hi)i∈I in Kg is a system of Lpw-molecules in Kg if there exists a symmetric

envelope Φ ∈WC(Lpw) such that

|Hi(x)| ≤ Φ(λ−1
i x) (6.4)

for all i ∈ I and x ∈ G.
If condition (6.3) (resp. (6.4)) holds, this will be indicated using the notation (hi)i∈I ≺ Φ
(resp. (Hi)i∈I ≺ Φ).

Remark 6.2. A family (Hi)i∈I is a system of Lpw-molecules in Kg if and only if (V −1
g Hi)i∈I is

a system of (Lpw, g)-molecules in Hπ.

The molecule condition (6.3) is independent of the choice of the admissible vectors g, h ∈ Bpw,
as long as the matrix coefficient Vgh is well-localized.

Lemma 6.3. If g, h ∈ Bpw are admissible with Vgh ∈W (Lpw), and if (hi)i∈I ⊂ Hπ is a system
of (Lpw, g) molecules, then it is also a system of (Lpw, h) molecules.

Proof. Since (hi)i∈I is a system of (Lpw, g) molecules, there exists a symmetric envelope
Φ ∈WC(Lpw) satisfying |Vghi| ≤ LλiΦ for all i ∈ I. Since w is a p-weight, [Lpw]∨ = Lpw, whence
the assumption Vgh ∈W (Lpw) implies by Lemma 4.1 that Ψ0 := |Vgh|+ |Vhg|+ Φ ∈W (Lpw) is
symmetric. Therefore, Corollary 3.9 and the elementary identity (F1 ∗F2)∨ = F∨2 ∗F∨1 imply
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that Ψ := Ψ0 ∗Ψ0 ∈WC(Lpw) is symmetric. Using the reproducing formula Vhhi = Vghi ∗σ Vhg
(cf. Lemma 4.1), it follows that

|Vhhi(x)| ≤
(
|Vghi| ∗ |Vhg|

)
(x) ≤

(
LλiΦ ∗ |Vhg|

)
(x) ≤ Lλi [Φ ∗ |Vhg|](x)

≤ Lλi [Ψ0 ∗Ψ0](x) = Ψ(λ−1
i x),

where it is used that (LλF1) ∗F2 = Lλ[F1 ∗F2]. This shows that (hi)i∈I is a family of (Lpw, h)
molecules. �

In light of Lemma 6.3, a system (hi)i∈I satisfying the molecule condition (6.3) will simply
be referred to as a system of Lpw-molecules in Hπ.

The following lemma shows that the molecule property is preserved under the action of
convolution-dominated matrices and integral operators.

Lemma 6.4. Let (Hi)i∈I be a system of Lpw-molecules in Kg indexed by the relatively separated
family Λ = (λi)i∈I . Then the following hold:

(i) If H : G × G → C is Lpw-localized in Kg (see Definition 5.1), then the family
(H̃i)i∈I ⊂ Kg defined by

H̃i(x) := (THHi)(x) =
∫
G
H(x, y)Hi(x) dµG(y)

is also a system of Lpw-molecules in Kg.
(ii) If Λ = (λi)i∈I and Γ = (γj)j∈J are relatively separated families in G and if the matrix

A = (Aj,i)(j,i)∈J×I ∈ Cpw(Γ,Λ), then the family (H ′j)j∈J ⊂ Kg defined by

H ′j := A(Hi)i∈I :=
∑
i∈I

Aj,iHi

is also a system of Lpw-localized molecules in Kg.

Proof. Let Φ ∈WC(Lpw) be a symmetric envelope such that (Hi)i∈I ≺ Φ.
(i) Let Θ ∈ WC(Lpw) be a symmetric envelope for H. An application of Lemma 5.3 shows

that H̃i = THHi ∈ Kg for all i ∈ I. Moreover, it holds that

|H̃i(x)| ≤
∫
G

Θ(y−1x)Φ(λ−1
i y)dµG(y) = (Φ ∗Θ)(λ−1

i x)

and similarly |H̃i(x)| ≤ (Θ ∗ Φ)(x−1λi). Therefore, using the convolution relation of Corol-
lary 3.9, it follows that Φ ∗Θ + Θ ∗ Φ ∈WC(Lpw) is a (symmetric) envelope for (H̃i)i∈I .

(ii) Let Θ ∈ WC(Lpw) be such that A ≺ Θ. For x ∈ G and j ∈ J , an application of
Lemma 2.1 gives

|H ′j(x)| ≤
∑
i∈I
|Θ(γ−1

j λi)||Φ(λ−1
i x)| ≤ Rel(Λ)

µG(Q)
(
MLΘ ∗MRΦ

)
(γ−1
j x).

Since Φ,Θ ∈ WC(Lpw), it follows that also MLΘ,MRΦ ∈ WC(Lpw) (cf. Section 2.6), and
hence Ψ := MLΘ ∗MRΦ ∈ WC(Lpw) + (MLΘ + MRΦ)∨ by Corollary 3.9 and because of
[WC(Lpw)]∨ = WC(Lpw), which holds since w is a p-weight. Thus, Ψ is a symmetric envelope
for (H ′j)j∈J . �

The frame operator and Gramian associated to a system of molecules are convolution-
dominated operators, as shown next.

Lemma 6.5. Let (Hi)i∈I be a system of Lpw-molecules in Kg, indexed by the relatively sepa-
rated family Λ = (λi)i∈I . Then the following hold:
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(i) The kernel
H : G×G→ C, (x, y) 7→

∑
i∈I

Hi(x)Hi(y) (6.5)

is well-defined (with absolute convergence of the series) and Lpw-localized in Kg.
(ii) The family (Hi)i∈I ⊂ Kg is Bessel and the frame operator S : Kg → Kg is given by

S = TH |Kg .
(iii) If Φ ∈ WC(Lpw) is symmetric and such that (Hi)i∈I ≺ Φ, then the Gramian matrix

G = (〈Hi′ , Hi〉)i,i′∈I is an element of Cpw(Λ) with envelope Φ ∗ Φ ∈WC(Lpw).

Proof. Let Φ ∈WC(Lpw) be a symmetric envelope for (Hi)i∈I .
(i) For x, y ∈ G, an application of Equation (2.10) gives

|H(x, y)| ≤
∑
i∈I
|Hi(x)| |Hi(y)| ≤

∑
i∈I

Φ(λ−1
i x)Φ(y−1λi) ≤

Rel(Λ)
µG(Q)

(
MLΦ ∗MRΦ

)
(y−1x).

Since Φ ∈ WC(Lpw), also MLΦ,MRΦ ∈ WC(Lpw); see Section 2.6. Thus, Corollary 3.9 shows
that Θ := MLΦ ∗MRΦ ∈WC(Lpw) as well and in particular that

(
MLΦ ∗MRΦ

)
(y−1x) <∞.

Thus, the series defining H(x, y) converges absolutely. Since |H(x, y)| = |H(y, x)|, the above
estimate also shows that H ≺MLΦ∗MRΦ. In addition, since H(x, ·) = H(·, x), to show that
H is Lpw-localized in Kg, it remains to show that H(·, y) ∈ Kg for all y ∈ G. For this, first
note as a consequence of Equation (2.11) and Lemma 3.3 that∑

i∈I
|Hi(y)| ≤

∑
i∈I

Φ(y−1λi) ≤
Rel(Λ)
µG(Q) ‖Φ‖WL(L1) .

Rel(Λ)
µG(Q) ‖Φ‖W (Lpw) <∞.

Furthermore, Lemma 3.3 also shows ‖Hi‖L2 ≤ ‖Φ(λ−1
i ·)‖L2 ≤ ‖Φ‖L2 . ‖Φ‖W (Lpw), so that it

follows that
∑
i∈I |Hi(y)| ‖Hi‖L2 <∞. This shows that the series defining H(·, y) converges in

L2(G). Since Hi ∈ Kg for all i ∈ I and since Kg ⊂ L2(G) is closed, it follows that H(·, y) ∈ Kg.

(ii) For showing that (Hi)i∈I is a Bessel sequence in L2(G), let c = (ci)i∈I ∈ `2(I) be
arbitrary. Recall from Equation (2.11) that

∑
i∈I Φ(x−1λi) . 1. Using the Cauchy-Schwarz

inequality and the estimate |Hi(x)| ≤ Φ(λ−1
i x) = Φ(x−1λi), it follows therefore that∫

G

(∑
i∈I
|ci| · |Hi(x)|

)2
dµG(x) ≤

∫
G

(∑
i∈I
|ci|2 Φ(λ−1

i x)
)(∑

i∈I
Φ(x−1λi)

)
dµG(x)

.
∑
i∈I
|ci|2‖Φ‖L1 . ‖c‖2`2 .

This shows that (Hi)i∈I ⊂ L2(G) is a Bessel sequence. Lastly, by the first part of the proof
and Lemma 5.3, it follows that TH |Kg : Kg → Kg is well-defined and bounded. Let F ∈ Kg
and x ∈ G. As shown in the proof of (i), the series H(x, ·) =

∑
i∈I Hi(x)Hi converges in

L2(G), and thus

THF (x) = 〈F,H(x, ·)〉L2 =
∑
i∈I
〈F,Hi(x)Hi〉L2 =

∑
i∈I
〈F,Hi〉L2 Hi(x) = SF (x),

so that S = TH |Kg , as claimed.

(iii) For i, i′ ∈ I, a direct calculation gives

|〈Hi′ , Hi〉| = |〈Hi, Hi′〉| ≤
∫
G

Φ(λ−1
i x)Φ(λ−1

i′ x) dµG(x) =
∫
G

Φ(x−1λi)Φ(λ−1
i′ x) dµG(x)

= (Φ ∗ Φ)(λ−1
i′ λi),

where the penultimate equality used the symmetry of Φ. By Corollary 3.9, Φ ∗Φ ∈WC(Lpw),
and (Φ ∗ Φ)∨ = Φ∨ ∗ Φ∨ = Φ ∗ Φ. Thus, (〈Hi′ , Hi〉)i,i′∈I ∈ Cpw(Λ). �
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6.3. Dual frames of molecules. Henceforth, let w : G → [1,∞) be a p-weight for some
p ∈ (0, 1] and let g ∈ Bpw be an admissible vector. Recall that Kg := Vg(Hπ) is a reproducing
kernel Hilbert space (cf. Equation (4.5)) with reproducing kernel given by

K(x, y) = Vg[π(y)g](x) = Lσx[Vgg](y),

see Equation (4.6). For fixed x ∈ G, the notation

Kx := K(x, ·) = Lσx[Vgg] = Vg[π(x)g]

will be used.
The following result proves the existence of almost tight frames of (weighted) reproducing

kernels. For the notion of a disjoint cover that appears in the statement, cf. Section 2.3.

Proposition 6.6. For every ε ∈ (0, 1), there exists a compact, symmetric unit neighborhood
U ⊂ Q with the following property:

If Λ = (λi)i∈I is a relatively separated, U -dense family in G and (Ui)i∈I is a disjoint cover
of G associated to U and Λ, then the family

(√
µG(Ui) ·Kλi

)
i∈I is a frame for Kg with lower

frame bound 1− ε and upper frame bound 1 + ε.

Proof. The proof is divided into three steps.

Step 1. In this step, it will be shown that there exists a measurable map τ : G×G → T
such that

‖Kx − τ(x, y)Ky‖L2 → 0 as y−1x→ eG. (6.6)

For showing (6.6), consider the map ((x, y), τ) 7→ −‖Kx − τ Ky‖L2 from (G×G)× T into R,
which is clearly measurable with respect to (x, y) and continuous with respect to τ . A straight-
forward application of the measurable maximum theorem (see, e.g., [1, Theorem 18.19]) yields
a measurable map τ : G×G→ T satisfying

‖Kx − τ(x, y)Ky‖L2 = min
z∈T
‖Kx − z Ky‖L2 for all x, y ∈ G.

Since G is first countable, it suffices to show ‖Kxn − τ(xn, yn)Kyn‖L2 → 0 as n → ∞, for
arbitrary sequences (xn)n∈N, (yn)n∈N ⊂ G satisfying y−1

n xn → eG.
Let U := U(Hπ) denote the group of unitary operators on Hπ, equipped with the strong

topology. Furthermore, let P := U/(T idHπ) and let % : U → P denote the canonical projec-
tion. Since π is a σ-representation, an application of [53, Theorem 7.5] implies that the quo-
tient map [π] : G→ P, x 7→ %(π(x)) is continuous. Thus, %(π(x−1

n yn))→ %(π(eG)) = %(idHπ),
and an application of [53, Lemma 7.1] yields a sequence (zn)n∈N of numbers zn ∈ T satisfying
zn · π(x−1

n yn) → idHπ in the strong topology. Since Vg : Hπ → L2(G) is an isometry and
Kx = Vg[π(x)g], it follows that∥∥Kxn − τ(xn, yn)Kyn

∥∥
L2 = inf

z∈T

∥∥Kxn − z ·Kyn

∥∥
L2 = inf

z∈T

∥∥π(xn)g − z · π(yn)g
∥∥
Hπ

= inf
z∈T

∥∥g − z σ(x−1
n , xn)σ(x−1

n , yn)π(x−1
n yn)g

∥∥
Hπ

≤
∥∥g − zn · π(x−1

n yn)g
∥∥
Hπ → 0,

where the penultimate step used that π(xn) is unitary and that

π(xn)−1π(yn) = σ(x−1
n , xn)σ(x−1

n , yn)π(x−1
n yn).

Therefore,
∥∥Kxn − τ(xn, yn)Kyn

∥∥
L2 ≤

∥∥g − zn · π(x−1
n yn)g

∥∥
Hπ → 0 as n→∞.

Step 2. This step shows that also ‖Kx − τ(x, y)Ky‖L1 → 0 as y−1x → eG. For this,
set Θ := |Vgg| and note by Lemma 3.3 and because of Vgg ∈ W (Lpw) and w ≥ 1 that
Θ ∈WC(Lpw) ↪→WL(L1

w) ↪→ L1; see also Equation (4.3). Let δ > 0 be arbitrary and choose a
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compact set Ω ⊂ G satisfying
∫
G\Ω ΘdµG ≤ δ

4 . By Step 1, there exists a compact, symmetric
unit neighborhood V ⊂ Q such that for all x, y ∈ G satisfying y−1x ∈ V ,

‖Kx − τ(x, y)Ky‖L2 ≤
δ/2

1 +
√
µG(QΩ)

≤ δ/2
1 +

√
µG(V Ω)

.

Using the estimate |Kx(y)| ≤ Θ(x−1y) and the Cauchy-Schwarz inequality, it follows therefore
that, for x, y ∈ G with y−1x ∈ V ,

‖Kx − τ(x, y)Ky‖L1

≤
∫
G\xV Ω

Θ(x−1z) + Θ(y−1z)dµG(z) +
∫
G
1xV Ω(z) · |Kx(z)− τ(x, y)Ky(z)|dµG(z)

≤ 2
∫
G\Ω

Θ(w)dµG(w) + ‖1xV Ω‖L2 · ‖Kx − τ(x, y)Ky‖L2

≤ δ

2 +
√
µG(V Ω) · δ/2

1 +
√
µG(V Ω)

≤ δ,

where the second inequality used the change of variables w = x−1z, respectively w = y−1z,
and the inclusions G \ V Ω ⊂ G \ Ω and G \ y−1xV Ω ⊂ G \ Ω, which holds since x−1y ∈ V .

Step 3. Let ε > 0, and choose δ > 0 so small that 1 +
√
δ ≤
√

1 + ε and 1−
√
δ ≥
√

1− ε.
By Step 2, there exists a compact symmetric unit neighborhood U ⊂ Q satisfying

‖Kx − τ(x, y)Ky‖L1 ≤ δ
/(

1 + 2‖MLΘ‖L1
)

for all x, y ∈ G satisfying y−1x ∈ U . Given this choice of U , let Λ = (λi)i∈I and (Ui)i∈I as
in the statement of the proposition. Let F ∈ Kg be arbitrary. Since the family (Ui)i∈I is
pairwise disjoint and satisfies G =

⋃
i∈I Ui, a direct calculation entails

∣∣∣∣‖F‖L2 −
(∑
i∈I

∣∣〈F,√µG(Ui)Kλi

〉∣∣2) 1
2
∣∣∣∣ =

∣∣∣∣∥∥ |F | ∥∥L2 −
∥∥∥∥(∑

i∈I

∣∣〈F, τ(x, λi)Kλi

〉∣∣2 · 1Ui(x)
) 1

2
∥∥∥∥
L2
x

∣∣∣∣
≤
∥∥∥∥|F (x)| −

∣∣∣∑
i∈I

〈
F, τ(x, λi)Kλi

〉
· 1Ui(x)

∣∣∣∥∥∥∥
L2
x

≤
∥∥∥∥∑
i∈I

1Ui(x) ·
(
F (x)− τ(x, λi)F (λi)

)∥∥∥∥
L2
x

,

where the notation ‖ ·‖L2
x
is used to indicate that the L2-norm is taken with respect to x ∈ G.

Thus, setting

H(x) :=
∣∣∣∣∑
i∈I

1Ui(x)
∫
G
F (y) ·

(
Kx(y)− τ(x, λi)Kλi(y)

)
dµG(y)

∣∣∣∣,
it holds that

∣∣‖F‖L2 −
(∑

i∈I |〈F,
√
µG(Ui)Kλi〉|2

)1/2∣∣ ≤ ‖H‖L2 .

Note that if 1Ui(x) 6= 0, then x ∈ Ui ⊂ λiU ⊂ λiQ. On the one hand, this implies
λ−1
i x ∈ U and hence ‖Kx − τ(x, λi)Kλi‖L1 ≤ δ/(1 + 2‖MLΘ‖L1). On the other hand, the

above considerations show for 1Ui(x) 6= 0 that y−1λi = y−1xx−1λi ∈ y−1xQ−1 = y−1xQ and
hence Θ(y−1λi) ≤ MLΘ(y−1x), since Θ is continuous and Q is open. Combining this with
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the estimate |Kx(y)| ≤ Θ(y−1x) and the Cauchy-Schwarz inequality, it follows that

H(x) ≤
∑
i∈I

1Ui(x)
∫
G
|F (y)| · |Kx(y)− τ(x, λi)Kλi(y)|1/2 ·

(
Θ(y−1x) + Θ(y−1λi)

)1/2
dµG(y)

≤
(∑
i∈I

∫
G
1Ui(x) · 2MLΘ(y−1x) · |F (y)|2 dµG(y)

)1
2
(∑
i∈I

1Ui(x) ‖Kx − τ(x, λi)Kλi‖L1

)1
2

≤
(

δ

1 + 2 ‖MLΘ‖L1

)1/2(
2
∫
G
|F (y)|2 ·MLΘ(y−1x) dµG(y)

)1/2
.

Therefore,

‖H‖2L2 ≤
2δ

1 + 2 ‖MLΘ‖L1

∫
G

∫
G
|F (y)|2 ·MLΘ(y−1x) dµG(y)dµG(x)

≤ 2δ
1 + 2 ‖MLΘ‖L1

‖F‖2L2‖MLΘ‖L1 ≤ δ ‖F‖2L2 ,

and hence ∣∣∣∣‖F‖L2 −
(∑
i∈I

∣∣〈F,√µG(Ui)Kλi

〉∣∣2)1/2∣∣∣∣ ≤ ‖H‖L2 ≤
√
δ ‖F‖L2 .

By the choice of δ, this easily implies

(1− ε) · ‖F‖2L2 ≤
∑
i∈I
|〈F,
√
µG(Ui)Kλi〉|

2 ≤ (1 + ε) · ‖F‖2L2

for all F ∈ Kg, as required. �

We aim to apply Theorem 5.4 to prove the existence of a dual frame for the family (Kλi)i∈I
that forms a system of molecules. To this end, we need to construct a frame of molecules
(τiKλi)i∈I with a fixed envelope Φ but such that the associated frame operator S satisfies
‖idKg − S ‖Kg→Kg ≤ ε = ε(Φ). In combination with Proposition 6.6, the following lemma
shows that this can indeed be done.

Lemma 6.7. Let U ⊂ Q be a unit neighborhood and assume that Λ = (λi)i∈I ⊂ G is relatively
separated and that (Ui)i∈I is a family of measurable sets Ui ⊂ λiU satisfying G =

⋃· i∈I Ui.
If (τi)i∈I ⊂ [0,∞) satisfies τi ≤ C · µG(Ui) for all i ∈ I and some C > 0, then the

family
(
τ

1/2
i ·Kλi

)
i∈I is a system of Lpw-molecules in Kg (indexed by Λ) and the kernel H in

Equation (6.5) associated to
(
τ

1/2
i ·Kλi

)
i∈I satisfies

|H(y, x)| = |H(x, y)| ≤ C ·
[
ML(Vgg) ∗MR(Vgg)

]
(y−1x)

for all x, y ∈ G.

Proof. Set Φ := |Vgg| ∈ WC(Lpw) and note that Φ satisfies |Kx(y)| ≤ Φ(x−1y) = Φ(y−1x) for
all x, y ∈ G. Since τi ≤ C · µG(Ui) ≤ C · µG(U), this implies that

(
τ

1/2
i ·Kλi

)
i∈I is a system

of Lpw-molecules in Kg with envelope
√
C · µG(U) · Φ.

Let x, y ∈ G. For i ∈ I and z ∈ Ui ⊂ λiQ, we have λ−1
i x = λ−1

i zz−1x ∈ Qz−1x and
y−1λi = y−1z(λ−1

i z)−1 ∈ y−1zQ−1 = y−1zQ. Since Q is open and Φ is continuous, this
implies |Kλi(x)| ≤ Φ(λ−1

i x) ≤ MRΦ(z−1x) and |Kλi(y)| ≤ Φ(y−1λi) ≤ MLΦ(y−1z) for all
i ∈ I and z ∈ Ui. Hence, by definition of H in Equation (6.5),

|H(x, y)| ≤ C
∑
i∈I

[
µG(Ui) · |Kλi(x)| · |Kλi(y)|

]
≤ C

∑
i∈I

∫
Ui

MRΦ(z−1x)MLΦ(y−1z)dµG(z)

= C

∫
G
MLΦ(w)MRΦ(w−1y−1x)dµG(w) = C ·

(
MLΦ ∗MRΦ

)
(y−1x).

Since H(y, x) = H(x, y), this completes the proof. �
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Using the previous two results, we can prove the main result of this subsection.

Theorem 6.8. There exists a compact unit neighborhood U ⊂ Q with the following property:
If Λ = (λi)i∈I is relatively separated and U -dense in G, the following assertions hold:

(i) The family (Kλi)i∈I is a frame for Kg and admits a dual frame (Hi)i∈I of Lpw-molecules
in Kg.

(ii) There exists a Parseval frame (Fi)i∈I for Kg that is a system of Lpw-molecules in Kg.

Proof. Set C := 1 and Θ := C ·ML(Vgg) ∗MR(Vgg). Since |Vgg| ∈ WC(Lpw) and thus also
ML(Vgg),MR(Vgg) ∈ WC(Lpw), Corollary 3.9 shows that Θ ∈ WC(Lpw) as well. An applica-
tion of Theorem 5.4 yields ε = ε(g,Q,w, p) ∈ (0, 1) such that whenever H : G × G → C is
Lpw-localized in Kg with H ≺ Θ and with ‖TH − idKg‖Kg→L2 ≤ ε, then there exist kernels
H1, H2 : G × G → C that are Lpw-localized in Kg and such that (TH |Kg)−1 = TH1 |Kg and
(TH |Kg)−1/2 = TH2 |Kg , where the operators on the left-hand side are defined by the holomor-
phic functional calculus.

For this choice of ε, let the compact unit neighborhood U ⊂ Q be as provided by Propo-
sition 6.6. Let Λ = (λi)i∈I ⊂G be any relatively separated and U -dense family. Then I is
countable and there exists a disjoint cover (Ui)i∈I associated to Λ and U (cf. Section 2.3),
i.e., pairwise disjoint Borel sets Ui ⊂ λiU satisfying G =

⊎
i∈I Ui. Set τi := µG(Ui) and note

τi ≤ µG(Ui) ≤ C · µG(Ui). Therefore, Lemma 6.7 shows that the family
(
τ

1/2
i Kλi

)
i∈I is a

system of Lpw-molecules in Kg and that the kernel H in Equation (6.5) is Lpw-localized in Kg
with H ≺ Θ. Furthermore, Lemma 6.5 shows that

(
τ

1/2
i Kλi

)
i∈I is a Bessel sequence and that

the associated frame operator S : Kg → Kg satisfies S = TH |Kg . Moreover, the choice of U
(cf. Proposition 6.6) ensures that

−ε ‖F‖2L2 ≤ 〈(S − idKg)F, F 〉 ≤ ε ‖F‖2L2 for all F ∈ Kg.

Since S is self-adjoint and S = TH |Kg , this yields ‖TH−idKg‖Kg→L2 = ‖S −idKg‖Kg→L2 ≤ ε.
By the choice of ε, this implies that

S −1 = (TH |Kg)−1 = TH1 |Kg and S −1/2 = (TH |Kg)−1/2 = TH2 |Kg
for suitable kernels H1, H2 : G×G→ C that are Lpw-localized in Kg.

(i) Since |Vgg| ∈ WC(Lpw) by assumption, it follows directly from the definitions that
(Kλi)i∈I is a system of Lpw-molecules in Kg. By Lemma 6.5, this implies that (Kλi)i∈I is
a Bessel family. Similarly, since 0 ≤ τi ≤ µG(λiU) = µG(U) for all i ∈ I, it follows that(
τiKλi

)
i∈I is also a system of Lpw-molecules in Kg. By the above, S −1 = TH1 |Kg , and thus

Lemma 6.4 shows that (Hi)i∈I :=
(
S −1[τiKλi ]

)
i∈I is also a system of Lpw-molecules in Kg,

and hence a Bessel sequence by Lemma 6.5. Moreover, for arbitrary F ∈ Kg,

F = S −1
(∑
i∈I

〈
F, τ

1/2
i Kλi

〉
τ

1/2
i Kλi

)
=
∑
i∈I
〈F,Kλi〉S

−1(τiKλi) =
∑
i∈I
〈F,Kλi〉Hi.

Since (Kλi)i∈I and (Hi)i∈I are both Bessel families, this implies that they form a pair of dual
frames.

(ii) Since
(
τ

1/2
i Kλi

)
i∈I is a system of Lpw-molecules in Kg, an application of Lemma 6.4

shows that the same is true for (Fi)i∈I :=
(
S −1/2 [τ1/2

i Kλi ]
)
i∈I =

(
TH2 [τ1/2

i Kλi ]
)
i∈I . The

system (Fi)i∈I is a Parseval frame for Kg. �

6.4. Dual Riesz sequences of molecules. With notation as in Section 6.3, the aim of this
section is to establish the existence of a Riesz sequence (Kλi)i∈I of reproducing kernels

Kλi = Lσλi [Vgg]

whose biorthogonal system also forms a family of Lpw-molecules in Kg := Vg(Hπ).
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The first result shows the existence of almost tight Riesz sequences of reproducing kernels.
This fact could be cited from the general result [50, Lemma 6.1], but the proof is included for
the sake of completeness.

Proposition 6.9. For every ε ∈ (0, 1), there exists a compact unit neighborhood U ⊃ Q in G
with the following property:

If Λ = (λi)i∈I is any countable family in G that is U -separated, then the system (Kλi)i∈I
forms a Riesz sequence in Kg with lower Riesz bound (1− ε)2‖Vgg‖2L2 and upper Riesz bound
(1 + ε)2‖Vgg‖2L2.

Proof. Throughout the proof, let Φ := |Vgg| ∈WC(Lpw) and define the normalized reproducing
kernels K̃y := Ky/‖Vgg‖L2 for y ∈ G. We note that

|Ky(x)| = |Lσy [Vgg]| = Ly|Vgg|(x) = (LyΦ)(x) and hence ‖K̃y‖L2 = ‖LyΦ‖L2

‖Vgg‖L2
= 1. (6.7)

The proof is split into three steps.

Step 1. (Localized norm estimate). The groupG being second-countable, there exists an in-
creasing sequence (Un)n∈N of compact sets Un ⊂ G such that G =

⋃
n∈N Un. By Lemma 3.3, it

follows that Φ ∈W (Lpw) ↪→ L2
w ↪→ L2. In addition, 1Ucn ·Φ→ 0 as n→∞, with pointwise con-

vergence, and |1Ucn ·Φ|
2 ≤ |Φ|2 ∈ L1. Therefore, an application of Lebesgue’s dominated con-

vergence theorem yields the existence of n0 ∈ N such that ‖1Ucn0
·Φ‖L2 ≤ ε

2 ·‖Vgg‖L2 = ε
2 ·‖Φ‖L2 .

Using Equation (6.7), we see for any measurable U ⊃ Un0 in G and any y ∈ G that∣∣∣‖Ky‖2L2 − ‖Ky · 1yU‖2L2

∣∣∣ ≤ ∥∥Ky · 1(yUn0 )c
∥∥2
L2 ≤

∥∥(LyΦ) · (Ly1Ucn0
)‖2L2 =

∥∥Φ · 1Ucn0
‖2L2 .

This, combined with the estimate ‖1Ucn0
· Φ‖L2 ≤ ε

2‖Vgg‖L2 , gives∣∣∣‖K̃y · 1yU‖2L2 − 1
∣∣∣ = ‖Vgg‖−2

L2 ·
∣∣∣‖Ky‖2L2 − ‖Ky · 1yU‖2L2

∣∣∣ ≤ (ε2
)2
.

Using that ε ∈ (0, 1), this easily implies(
1− ε

2

)2
≤ 1−

(
ε

2

)2
≤
∥∥K̃y · 1yU

∥∥2
L2 ≤ 1 +

(
ε

2

)2
≤
(

1 + ε

2

)2
(6.8)

for arbitrary y ∈ G and any Borel set U ⊃ Un0 .

Step 2. (Construction of compact set). For the sequence (Un)n∈N of Step 1, let (Ũn)n∈N
be defined by Ũn := (UnQ)−1. Since Φ is symmetric, it follows that if x ∈ G is such that

0 6= ML((Φ · 1
Ũcn

)∨
)
(x) =

∥∥(Φ · 1
Ũcn

)∨
∥∥
L∞(xQ) =

∥∥Φ · 1(UnQ)c
∥∥
L∞(xQ),

then (UnQ)c ∩ xQ 6= ∅. Therefore, there exists q ∈ Q such that xq ∈ (UnQ)c, which implies
that x /∈ Un. Hence,

0 ≤ML((Φ · 1
Ũcn

)∨
)
≤ 1Ucn ·M

L(Φ∨) = 1Ucn ·M
LΦ→ 0 as n→∞,

with pointwise convergence. An application of Lebesgue’s dominated convergence theorem
yields therefore some m ∈ N such that ‖Φ‖L1‖(Φ · 1

Ũcm
)∨‖WL(L1) < ‖Φ‖L2 · µG(Q) · (ε/2)2.

Choose a symmetric ϕ ∈ Cc(G) satisfying 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on Ũm. Set U ′ := suppϕ. For
Un0 as in Step 1, define U := Q ∪ Un0 ∪ U ′ and Θ := Φ · (1− ϕ). Then 0 ≤ Θ ≤ Φ · 1

Ũcm
, and

thus

‖Θ‖L1‖Θ‖WL(L1) < ‖Φ‖L2 · µG(Q) ·
(
ε

2

)2
(6.9)

by construction.
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Step 3. (ε-Riesz sequences). Let Λ = (λi)i∈I be a U -separated family in G. To ease
notation, set Hλi := K̃λi · 1λiU for i ∈ I. By construction of U , if x ∈ (λiU)c, then
λ−1
i x /∈ U ⊃ suppϕ, so that 1− ϕ(λ−1

i x) = 1. Hence,

1(λiU)c ≤ Lλi(1− ϕ) and |K̃λi −Hλi | = ‖Vgg‖
−1
L2 · |Kλi | · 1(λiU)c ≤ ‖Vgg‖−1

L2 · LλiΘ.

For showing the Riesz inequalities, let c = (ci)i∈I ∈ c00(I) be arbitrary. Then the above
estimate yields∣∣∣∣∣

∥∥∥∥∑
i∈I

ciK̃λi

∥∥∥∥
L2
−
∥∥∥∥∑
i∈I

ciHλi

∥∥∥∥
L2

∣∣∣∣∣ ≤
∥∥∥∥∑
i∈I

ci ·
(
K̃λi −Hλi

)∥∥∥∥
L2
≤ ‖Vgg‖−1

L2

∥∥∥∥∑
i∈I
|ci|LλiΘ

∥∥∥∥
L2
.

Since Λ is U -separated and U ⊃ Q, it follows that Rel(Λ) ≤ 1. Therefore, by Lemma 2.1 and
Equation (6.9) and since Θ∨ = Θ, it follows that∥∥∥∥∑

i∈I
|ci|LλiΘ

∥∥∥∥2

L2
≤ (µG(Q))−1 · ‖Θ∨‖WL(L1) · ‖Θ‖L1 · ‖c‖2`2 ≤ ‖Φ‖L2 ·

(
ε

2

)2
· ‖c‖2`2 .

Combining the obtained inequalities thus gives∣∣∣∣∣
∥∥∥∥∑
i∈I

ciK̃λi

∥∥∥∥
L2
−
∥∥∥∥∑
i∈I

ciHλi

∥∥∥∥
L2

∣∣∣∣∣ ≤ ε

2 · ‖c‖`2 .

The family (Hλi)i∈I of vectors Hλi = K̃λi · 1λiU is orthogonal, since (λiU)i∈I is pairwise
disjoint. Therefore, Equation (6.8) implies that(

1− ε

2

)
· ‖c‖`2 ≤

∥∥∥∥∑
i∈I

ciHλi

∥∥∥∥
L2
≤
(

1 + ε

2

)
· ‖c‖`2 .

Therefore, an application of the triangle inequality easily yields that

(1− ε) · ‖c‖`2 ≤
∥∥∥∥∑
i∈I

ciK̃λi

∥∥∥∥
L2
≤ (1 + ε) · ‖c‖`2 ,

which easily completes the proof. �

The following theorem establishes the existence of Riesz sequences (Kλi)i∈I that admit a
biorthogonal system of Lpw molecules.

Theorem 6.10. There exists a compact unit neighborhood U ⊃ Q with the following property:
If Λ = (λi)i∈I is U -separated in G, the following assertions hold:

(i) The family (Kλi)i∈I is a Riesz sequence in Kg whose unique biorthogonal system
(Hi)i∈I in span{Kλi : i ∈ I} is a family of Lpw-molecules in Kg.

(ii) There exists an orthonormal sequence (Fi)i∈I in span{Kλi : i ∈ I} that is a system of
Lpw-molecules in Kg.

Proof. Throughout, let Θ := ‖Vgg‖−2
L2 ·

(
|Vgg| ∗ |Vgg|). Then Θ ∈WC(Lpw) by Corollary 3.9.

By Theorem 5.7, there exists ε = ε(g, p, w,Q) ∈ (0, 1) such that, for any Q-separated family
Λ = (λi)i∈I in G and any A ∈ Cpw(Λ) satisfying A ≺ Θ and ‖A − id`2(I)‖`2→`2 ≤ ε, it holds
that A−1 ∈ Cpw(Λ) and A−1/2 ∈ Cpw(Λ). Using Proposition 6.9, let U ⊂ G be a compact set
such that Q ⊂ U and such that for every U -separated family Λ = (λi)i∈I in G, the family
(K̃λi)i∈I of normalized kernels K̃λi := ‖Vgg‖−1

L2 ·Kλi satisfies the Riesz inequalities(
1− ε

3

)2
‖c‖2`2 ≤

∥∥∥∥∑
i∈I

ciK̃λi

∥∥∥∥2

L2
≤
(

1 + ε

3

)2
‖c‖2`2 (6.10)

for all c ∈ `2(I).
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Let Λ = (λi)i∈I be an arbitrary U -separated family in G. Clearly, Λ is Q-separated. An
application of Lemma 6.5 yields that the Gramian matrix G̃ =

(
〈K̃λi′ , K̃λi〉

)
i,i′∈I of (K̃λi)i∈I

satisfies G̃ ∈ Cpw(Λ) with G̃ ≺ Θ. Note that G̃ = C̃ ◦D̃ , where C̃ = D̃∗ and D̃ are, respectively,
the analysis and synthesis operators associated to (K̃λi)i∈I . Using Equation (6.10), we see∣∣〈(G̃ − id`2(I))c, c〉

∣∣ =
∣∣〈D̃c, D̃c〉 − ‖c‖2`2∣∣ ≤ max

{
(1 + ε

3)2 − 1, 1− (1− ε
3)2} · ‖c‖2`2

≤ ε · ‖c‖2`2

and hence ‖id`2(I) − G̃ ‖`2→`2 ≤ ε; here, we used that id`2(I) − G̃ is self-adjoint. Thus, the
choice of ε via Theorem 5.7 yields that G̃−1 ∈ Cpw(Λ) and G̃−1/2 ∈ Cpw(Λ).

(i) Let G̃−1 ∈ Cpw(Λ) be the element-wise conjugate matrix of G̃−1. By Lemma 6.4, the fam-
ily (Hi)i∈I := G̃−1(K̃λi′ )i′∈I is a system of Lpw-molecules. Moreover, Lemma 5.6 yields that the
series H̃i :=

∑
i′∈I(G̃−1)i,i′K̃λi′ is norm convergent in L2, and thus H̃i ∈ span{Kλi′ : i′ ∈ I}.

For i ∈ I, let Hi := ‖Vgg‖−1
L2 · H̃i. Then also Hi ∈ span{Kλi′ : i′ ∈ I}, and a direct calculation

entails

〈Hi′ ,Kλi〉 = ‖Vgg‖−1
L2

〈∑
`∈I

(G̃−1)i′,`K̃λ` ,Kλi

〉
=
∑
i∈I

(G̃−1)i′,`〈K̃λ` , K̃λi〉 (6.11)

=
∑
`∈I

(G̃−1)i′,`(G̃ )`,i = (id`2(I))i′,i = δi′,i, (6.12)

which shows the desired biorthogonality.

(ii) By similar arguments as in (i), it follows that the system (Fi)i∈I := G̃−1/2(K̃λi′ )i′∈I
is Lpw-localized and that Fi ∈ span{Kλi′ : i′ ∈ I}. Since G̃ = G̃ ∗, it follows that also
(G̃−1/2)∗ = G̃−1/2, and thus (G̃−1/2)i,i′ = (G̃−1/2)i′,i for all i, i′ ∈ I. Using this, together with
G̃ G̃−1/2 = G̃−1/2G̃ , it follows that

〈Fi′ , Fi〉 =
∑
j,j′∈I

〈
(G̃−1/2)i′,jK̃λj , (G̃−1/2)i,j′K̃λj′

〉
=
∑
j,j′∈I

(G̃−1/2)j,i′(G̃−1/2)i,j′(G̃ )j′,j

=
∑
j∈I

(G̃−1/2G̃ )i,j(G̃−1/2)j,i′ = (G̃−1/2G̃ G̃−1/2)i,i′ = δi,i′

for all i, i′ ∈ I. Hence, the sequence (Fi)i∈I is orthonormal. �

6.5. Dual molecules for coorbit spaces. The purpose of this section is to show that the
canonical reproducing properties of molecular frames and Riesz sequences on Hπ and `2(Λ)
extend to coorbit spaces Co(Y ) and associated sequence spaces Yd(Λ).

The first result shows that the analysis (resp. synthesis) operator associated to a system of
molecules acts boundedly from (resp. into) coorbit spaces.

Proposition 6.11. Let w : G → [1,∞) be a p-weight for some p ∈ (0, 1] and let g ∈ Bpw
be admissible. Let Y be an Lpw-compatible quasi-Banach function space on G. Suppose that
(gi)i∈I is a family of Lpw-molecules in Hπ indexed by the relatively separated family Λ = (λi)i∈I ,
with (gi)i∈I ≺Λ Φ for a symmetric Φ ∈WC(Lpw). Then the following hold:

(i) The coefficient operator

C : Cog(Y )→ Yd(Λ), f 7→ (〈f, gi〉)i∈I
is well-defined and bounded with ‖C ‖ . ‖Φ‖W (Lpw), with implied constant depending
only on g,Q,w, p,Rel(Λ).
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(ii) It holds Yd(Λ) ↪→ (WL(Y ))d(Λ) ↪→ `∞1/w(Λ), and the reconstruction operator

D : Yd(Λ)→ Cog(Y ), c = (ci)i∈I 7→
∑
i∈I

cigi (6.13)

is well-defined and bounded, with the series (6.13) converging unconditionally in the
weak-∗-topology on Rw = Rw(g) and with ‖D‖ . ‖Φ‖W (Lpw), where the implied con-
stant only depends on g,Q,w, p, Y .

Proof. (i) Since W (Lpw) ↪→ WL(Lpw) ↪→ L1
w(G) by Lemma 3.3, it follows from (6.3) that

gi ∈ H1
w(g). Therefore, for every f ∈ Rw and i ∈ I, the pairing 〈f, gi〉Rw,H1

w
∈ C is well-

defined. Using Part (iii) of Lemma 4.6 and noting that Φ is symmetric, it follows from (6.3)
that

|〈f, gi〉| = |〈Vgf, Vggi〉L∞1/w,L1
w
| ≤

∫
G
|Vgf(x)| · Φ(λ−1

i x) dµG(x)

= (|Vgf | ∗ Φ∨)(λi) = (|Vgf | ∗ Φ)(λi)

for every i ∈ I. If x ∈ λiQ, then λi = xq for some q ∈ Q. Since Q is open and Φ is continuous,
this implies Φ(y−1λi) = Φ(y−1xq) ≤MLΦ(y−1x) for all y ∈ G. Thus,

|〈f, gi〉| ≤ [|Vgf | ∗ Φ](λi) =
∫
G
|Vgf(y)| · Φ(y−1λi) dµG(y)

≤
∫
G
|Vgf(y)|MLΦ(y−1x) dµG(y) = [|Vgf | ∗MLΦ](x)

for every x ∈ λiQ. Therefore,

∥∥(〈f, gi〉)i∈I∥∥Yd =
∥∥∥∥∑
i∈I
|〈f, gi〉|1λiQ

∥∥∥∥
Y

≤
∥∥∥∥(|Vgf | ∗MLΦ)

∑
i∈I

1λiQ

∥∥∥∥
Y

≤ Rel(Λ)
∥∥ |Vgf | ∗MLΦ

∥∥
Y
.

Since Φ ∈ W (Lpw), it also holds MLΦ ∈ W (Lpw), with ‖MLΦ‖W (Lpw) . ‖Φ‖W (Lpw), where the
implied constant only depends on p, w,Q. The convolution relationWL(Y )∗W (Lpw) ↪→WL(Y )
from condition (c2) of Definition 3.5 therefore yields that∥∥(〈f, gi〉)i∈I∥∥Yd ≤ Rel(Λ) ·

∥∥ |Vgf | ∗MLΦ
∥∥
Y

.Y,w,p,Q Rel(Λ) · ‖Vgf‖WL(Y ) · ‖MLΦ‖W (Lpw)

.w,p,Q Rel(Λ) · ‖Φ‖W (Lpw) · ‖f‖Cog(Y ),

and thus C : Cog(Y )→ Yd(Λ) is well-defined and bounded, with ‖C ‖ . Rel(Λ) · ‖Φ‖W (Lpw).

(ii) To verify the embedding Yd(Λ) ↪→ (WL(Y ))d(Λ), let c = (ci)i∈I ∈ Yd(Λ). Note for
x, y ∈ G and i ∈ I satisfying 1xQ(y) 6= 0 6= 1λiQ(y) that x ∈ yQ−1 ⊂ λiQQ. Thus,

ML
(∑
i∈I
|ci|1λiQ

)
(x) =

∥∥∥∥1xQ∑
i∈I
|ci|1λiQ

∥∥∥∥
L∞
≤
∑
i∈I
|ci|1λiQQ(x).

Since Yd(Λ, Q) = Yd(Λ, QQ) with equivalent quasi-norms (where the implied constant only de-
pends on Y and Q, but not on Λ; see Equation (2.3)), this shows that

∑
i∈I |ci|1λiQ ∈WL(Y )

with
∥∥∑

i∈I |ci|1λiQ
∥∥
WL(Y ) ≤

∥∥∑
i∈I |ci|1λiQQ

∥∥
Y
. ‖c‖Yd(Λ). In addition, since Y is Lpw-com-

patible, condition (c3) of Definition 3.5 implies that WL(Y ) ↪→ L∞1/w, which then implies the
embedding (WL(Y ))d(Λ) ↪→ (L∞1/w)d(Λ) = `∞1/w(Λ).

To prove the claim regarding the reconstruction operator D , note that if F : G→ C is con-
tinuous, then since Q is open it holds that |F (x)| = |F (qq−1x)| ≤ (MRF )(q−1x) for all q ∈ Q.
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Since (gi)i∈I ≺ Φ, we thus see |Vggi(x)| ≤ Φ(λ−1
i x) ≤ (MRΦ)(q−1λ−1

i x) = (MRΦ)((λiq)−1x)
for all q ∈ Q. Integrating this estimate over q ∈ Q, we obtain

µG(Q) · |Vggi(x)| ≤
∫
G
1Q(q)(MRΦ)((λiq)−1x) dµG(q) =

∫
G
1Q(λ−1

i q̃)(MRΦ)(q̃−1x) dµG(q̃)

= (1λiQ ∗MRΦ)(x)

for every x ∈ G. For c = (ci)i∈I ∈ Yd(Λ), this implies

µG(Q) ·
∑
i∈I
|ci| |Vggi| ≤

(∑
i∈I
|ci|1λiQ

)
∗MRΦ.

An application of the convolution relation WL(Y ) ∗W (Lpw) ↪→WL(Y ) from condition (c1) of
Definition 3.5 and of the embedding Yd(Λ) ↪→ (WL(Y ))d(Λ) from above shows that∥∥∥∥∑

i∈I
|ci| |Vggi|

∥∥∥∥
WL(Y )

.Q

∥∥∥∥(∑
i∈I
|ci|1λiQ

)
∗MRΦ

∥∥∥∥
WL(Y )

.Y,p,w,Q

∥∥∥∥∑
i∈I
|ci|1λiQ

∥∥∥∥
WL(Y )

‖MRΦ‖W (Lpw)

.p,w,Q ‖c‖(WL(Y ))d · ‖Φ‖W (Lpw)

.Q,Y ‖c‖Yd(Λ)‖Φ‖W (Lpw). (6.14)

By the solidity ofWL(Y ), it follows that the map D0 : Yd(Λ)→WL(Y ), (ci)i∈I 7→
∑
i∈I ciVggi

is well-defined and bounded.
For showing that D is well-defined and bounded, let f ∈ H1

w ⊂ Hπ. Since Vg : Hπ → L2(G)
is an isometry,

|〈gi, f〉Hπ | = |〈Vggi, Vgf〉L2(G)| ≤
∫
G
|Vggi(x)| · |Vgf(x)| dµG(x).

This, combined with the embedding WL(Y ) ↪→ L∞1/w(G) (see condition (c2) of Definition 3.5)
and the estimate (6.14), gives∑

i∈I
|ci| |〈gi, f〉Hπ | ≤ ‖Vgf‖L1

w

∥∥∥∥∑
i∈I
|ci| · |Vggi|

∥∥∥∥
L∞1/w

. ‖f‖H1
w

∥∥∥∥∑
i∈I
|ci| · |Vggi|

∥∥∥∥
WL(Y )

. ‖c‖Yd(Λ)‖f‖H1
w
.

The absolute convergence of
∑
i∈I ci〈gi, f〉 for f ∈ Hπ implies that Dc =

∑
i∈I cigi ∈ Rw

is well-defined and that the series defining Dc converges unconditionally in the weak-∗-
topology on Rw. The identity Vg(Dc) =

∑
i∈I ciVggi = D0c and the estimate (6.14) yield

that ‖Dc‖Cog(Y ) = ‖Vg(Dc)‖WL(Y ) = ‖D0c‖WL(Y ) . ‖Φ‖W (Lpw)‖c‖Yd(Λ), which completes the
proof. �

The method of proof used for Proposition 6.11 resembles the one of [50, Lemma A.3], with
several modifications to apply the convolution relation (c1) of Definition 3.5.

The next result will be helpful for extending certain identities from Hπ to Rw by density.

Lemma 6.12. Let (gi)i∈I ⊂ Hπ be a system of Lpw-molecules indexed by the relatively sep-
arated family Λ = (λi)i∈I . Then the associated reconstruction and coefficient operators
D : `∞1/w(I) → Rw(g) and C : Rw(g) → `∞1/w(I) are well-defined, bounded, and weak-∗-
continuous.

Proof. Throughout the proof, it will be used that L1
w and L∞1/w are Lpw-compatible and that

Co(L1
w) = H1

w and Co(L∞1/w) = Rw (cf. Lemma 4.12) and that (L1
w)d(Λ) = `1w(I) and

(L∞1/w)d(Λ) = `∞1/w(I), with the interpretation w(i) = w(λi) for i ∈ I and similarly for 1/w.
(cf. Section 2.3).



50 JORDY TIMO VAN VELTHOVEN AND FELIX VOIGTLAENDER

An application of Proposition 6.11 with Y = L∞1/w (resp. Y = L1
w) yields that the synthesis

operator D : `∞1/w(I)→ Rw and the coefficient operator C0 : H1
w → `1w(I), f 7→ (〈f, gi〉)i∈I are

well-defined and bounded. Therefore, if f ∈ H1
w and c ∈ `∞1/w(I), then

〈Dc, f〉Rw,H1
w

=
∑
i∈I

ci〈gi, f〉Hπ =
∑
i∈I

ci 〈f, gi〉Rw,H1
w

= 〈c,C0f〉.

This easily implies that D : `∞1/w → Rw is continuous if the domain and co-domain are
equipped with the weak-∗-topology.

Similarly, Proposition 6.11 implies that C : Rw → `∞1/w(I) and the reconstruction operator
D0 : `1w(I) → H1

w, (ci)i∈I 7→
∑
i∈I ci gi are well-defined and bounded. Since c =

∑
i∈I ciδi

with unconditional convergence in `1w for c = (ci)i∈I ∈ `1w, this implies that D0c =
∑
i∈I cigi

converges unconditionally in H1
w. Therefore, if c ∈ `1w(I) and f ∈ Rw, then

〈f,D0c〉 =
∑
i∈I
〈f, gi〉 ci = 〈C f, c〉.

This easily implies that the map C : Rw → `∞1/w(I) is weak-∗-continuous. �

As a consequence, we can now show that certain reproducing formulas involving families of
molecules that are valid on Hπ (or even only on H1

w) extend to Rw (and hence to all coorbit
spaces Co(Y )).

Corollary 6.13. Let (gi)i∈I , (hi)i∈I ⊂ Hπ be two systems of Lpw-molecules index by the rela-
tively separated family Λ = (λi)i∈I . Then the following hold:

(i) If f =
∑
i∈I〈f, hi〉gi for all f ∈ H1

w, then the same holds for all f ∈ Rw.
(ii) If ci = 〈

∑
`∈I c` g`, hi〉Hπ holds for all finitely supported sequences c ∈ c00(I) and all

i ∈ I, then

ci =
〈∑
`∈I

c` g`, hi

〉
Rw,H1

w

holds for all c ∈ `∞1/w(I) and all i ∈ I.

Proof. (i) Lemma 4.3 shows that π(G)g ⊂ H1
w is complete in H1

w; therefore, H1
w ↪→ Hπ ↪→ Rw

separates the points of H1
w; i.e., if g ∈ H1

w satisfies f(g) = 〈f, g〉Hπ = 0 for all f ∈ H1
w, then

g = 0. In particular, this implies that H1
w is weak-∗-dense in Rw; see, e.g., [1, Corollary 5.108].

Let Cg (resp. Ch) and Dg (resp. Dh) denote the coefficient and reconstruction operators
associated to (gi)i∈I (resp. (hi)i∈I). By assumption, it holds f = DgChf for all f ∈ H1

w.
Since these operators are bounded between Rw and `∞1/w(I) and continuous with respect to
the weak-∗-topologies on Rw and `∞1/w (cf. Lemma 6.12), it follows that f = DgChf for all
f ∈ Rw.

(ii) Let Cg (resp. Ch) and Dg (resp. Dh) denote the coefficient and reconstruction operators
associated to (gi)i∈I (resp. (hi)i∈I). By Lemma 6.12, these operators are bounded between
Rw and `∞1/w(I) and continuous with respect to the weak-∗-topologies on Rw and `∞1/w. By
assumption, we have c = ChDg for all c ∈ c00(I). Since c00(I) is weak-∗-dense in `∞1/w(I), this
implies the claim. �

The following result establishes an atomic decomposition of the coorbit space Co(Y ) in
terms of two families of molecules.

Theorem 6.14. Let w be a p-weight for some p ∈ (0, 1] and let Y be a solid, translation-
invariant quasi-Banach function space such that Y is Lpw-compatible. Suppose g ∈ Bpw is
admissible.

There exists a compact unit neighborhood U ⊂ G such that for every relatively separated,
U -dense family Λ = (λi)i∈I in G, the following properties hold:
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(i) There exists a family (hi)i∈I of Lpw-localized molecules in Hπ indexed by Λ such that
any f ∈ Cog(Y ) can be represented as

f =
∑
i∈I
〈f, π(λi)g〉hi =

∑
i∈I
〈f, hi〉π(λi)g

with unconditional convergence of the series in the weak-∗-topology on Rw(g).
(ii) There exists a family (gi)i∈I of Lpw-localized molecules in Hπ such that any f ∈ Cog(Y )

can be represented as
f =

∑
i∈I
〈f, gi〉gi

with unconditional convergence of the series in the weak-∗-topology on Rw(g).

Proof. By Theorem 6.8 and since Vg : Hπ → Kg ⊂ L2(G) is unitary and Kλ = Vg[π(λ)g],
there exists a compact unit neighborhood U ⊂ G such that for every relatively separated,
U -dense family Λ in G, there exists a system of (Lpw, g)-localized molecules (hi)i∈I (namely,
hi = V −1

g [Hi] with (Hi)i∈I as in Theorem 6.8) that forms a dual frame of
(
π(λi)g

)
i∈I . The

claim then follows by recalling that Cog(Y ) ⊂ Rw and by combining Part (i) of Corollary 6.13
with Proposition 6.11. This shows (i).

The proof of (ii) is similar, using Part (ii) of Theorem 6.8 and Part (ii) of Corollary 6.13. �

Dual to Theorem 6.14, we show the existence of dual Riesz sequences of molecules for
coorbit spaces.

Theorem 6.15. Let w be a p-weight for some p ∈ (0, 1] and let Y be a solid, translation-
invariant quasi-Banach function space such that Y is Lpw-compatible. Suppose g ∈ Bpw is
admissible.

There exists a compact unit neighborhood U ⊂ G such that for every U -separated family
Λ = (λi)i∈I in G, there exists a family (hi)i∈I ⊂ span{π(λi)g : i ∈ I} ⊂ Hπ which forms a
system of Lpw-localized molecules and such that the moment problem

〈f, π(λi)g〉 = ci, i ∈ I,

admits the solution f =
∑
i∈I cihi ∈ Cog(Y ) for any given sequence (ci)i∈I ∈ Yd(Λ).

Proof. By Theorem 6.10 and since Vg : Hπ → Kg ⊂ L2(G) is unitary and Kλ = Vg[π(λ)g],
there exists a compact unit neighborhood U ⊂ G such that for any U -separated family
Λ = (λi)i∈I in G, the family

(
π(λi)g

)
i∈I is a Riesz sequence in Hπ with unique biorthog-

onal sequence (hi)i∈I in span{π(λi)g : i ∈ I} forming a family of (Lpw, g) molecules in Hπ
indexed by Λ. Let Cg (resp. Ch) and Dg (resp. Dh) denote the coefficient and reconstruction
operators associated to (π(λi)g)i∈I (resp. (hi)i∈I). Then c = CgDhc for all c ∈ c00(Λ). By
Part (ii) of Corollary 6.13, the same then holds for all c ∈ `∞1/w(I). Since Yd(Λ) ↪→ `∞1/w(I) by
Proposition 6.11, this implies the claim. �

7. Applications

This section provides two applications of the existence of dual frames and Riesz sequences
of molecules.

7.1. Boundedness of operators. The first result of this section is an extension of [36,
Theorem 3.5] to quasi-Banach spaces.

Theorem 7.1. Let w be a p-weight for some p ∈ (0, 1] and let Y be a solid, translation-
invariant quasi-Banach function space such that Y is Lpw-compatible. For an admissible
g ∈ Bpw, let Λ = (λi)i∈I be a relatively separated family in G such that

(
π(λi)g

)
i∈I is a

frame for Hπ with a dual frame (hi)i∈I forming a family of Lpw-molecules in Hπ.
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If T : H1
w → Rw is a bounded linear operator such that the vectors

mi := T [π(λi)g], i ∈ I,

define a system of Lpw-molecules with envelope Φ ∈WC(Lpw), then T extends to a well-defined
bounded linear operator T : Cog(Y )→ Cog(Y ) with

‖T‖Co(Y )→Co(Y ) . ‖Φ‖W (Lpw), (7.1)

where the implicit constant only depends on g,Q,w, p, Y,Λ, and (hi)i∈I .

Proof. Since
(
π(λi)g

)
i∈I and (hi)i∈I are dual frames of molecules, it follows by Corollary 6.13

and because of Co(Y ) ⊂ Rw that any f ∈ Co(Y ) can be represented as f =
∑
i∈I〈f, hi〉π(λi)g.

In addition, Proposition 6.11 provides the estimate ‖Ch‖Yd(Λ) = ‖(〈f, hi〉)i∈I‖Yd(Λ) . ‖f‖Co(Y ),
where the implicit constant is independent of f (in fact, only depending on Y,Q,Λ, (hi)i∈I).
With the family (mi)i∈I =

(
T [π(λi)g]

)
i∈I from the statement of the theorem, Proposition 6.11

also shows that the reconstruction operator Dm : Yd(Λ) → Cog(Y ), (ci)i∈I 7→
∑
i∈I cimi is

well-defined and bounded, with unconditional convergence of the series in the weak-∗-topology
of Rw ⊃ Cog(Y ) and with ‖Dm‖Yd→Co(Y ) . ‖Φ‖W (Lpw), where the implied constant only
depends on g,Q,w, p, Y .

Now, define T̃ : Cog(Y )→ Cog(Y ) by

T̃ := Dm ◦ Ch, that is, T̃ f =
∑
i∈I
〈f, hi〉mi =

∑
i∈I
〈f, hi〉T [π(λi)g].

As a composition of bounded linear operators, T̃ : Co(Y ) → Co(Y ) is itself a well-defined
bounded linear operator, with

‖T̃‖Co(Y )→Co(Y ) ≤ ‖Ch‖ · ‖Dm‖ . ‖Φ‖W (Lpw),

where the implied constant only depends on g,Q,w, p, Y,Λ, and (hi)i∈I . This shows (7.1).
To prove that T̃ is an extension of T , let Dg denote the reconstruction operator associated

to the family
(
π(λi)g

)
i∈I . Since H

1
w = Cog(L1

w) by Lemma 4.12 and since (L1
w)d(Λ) = `1w(I),

Proposition 6.11 shows that Dg : `1w(I) → H1
w is well-defined and bounded. Since we have

c =
∑
i∈I ci δi with unconditional convergence in `1w(I) for all c ∈ `1w(I), it follows that the

series defining Dgc =
∑
i∈I ci π(λi)g converges unconditionally in H1

w for any c ∈ `1w(I). Since
Proposition 6.11 also implies that (〈f, hi〉)i∈I ∈ `1w(I) for any f ∈ H1

w = Cog(L1
w), and since

(hi)i∈I is a dual frame for
(
π(λi)g

)
i∈I , we thus see f =

∑
i∈I〈f, hi〉π(λi)g for all f ∈ H1

w ⊂ Hπ,
where the series converges unconditionally in H1

w. Because T : H1
w → Rw is a bounded linear

operator, this implies

Tf = T

(∑
i∈I
〈f, hi〉π(λi)g

)
=
∑
i∈I
〈f, hi〉T [π(λi)g] = DmChf = T̃ f

for all f ∈ H1
w. Thus, T̃ : Cog(Y )→ Cog(Y ) is indeed a bounded extension of T . �

The proof of Theorem 7.1 follows the arguments in [36] closely.

Remark 7.2. With notation as in Theorem 7.1, the following hold:

(a) The existence of a frame (π(λi)g)i∈I for Hπ with a dual frame (hi)i∈I forming a family
of (Lpw, g)-molecules is guaranteed by Theorem 6.8, for Λ “sufficiently dense”.

(b) The assumption that T : H1
w → Rw is bounded is satisfied, in particular, whenever

T : Hπ → Hπ is bounded, since H1
w ↪→ Hπ ↪→ Rw by Section 4.2.
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7.2. Embeddings. In this section, we show that the embedding property Cog(Y ) ↪→ Cog(Z)
can be decided at the level of sequence spaces; namely, this embedding is valid if and only if
Yd(Λ) ↪→ Zd(Λ). For Banach spaces, this result is already known; see [20, Theorem 8.4].

We start by showing that the boundedness of the embedding Yd(Λ) ↪→ Zd(Λ) does not
depend on the choice of the relatively separated and relatively dense family Λ.

Lemma 7.3. Let Y,Z be translation-invariant, solid quasi-Banach function spaces on G. Let
Λ = (λi)i∈I ⊂ G be relatively separated and relatively dense and assume that Yd(Λ) ↪→ Zd(Λ).
Then, if Γ = (γj)j∈J ⊂ G is any relatively separated family, the embedding Yd(Γ) ↪→ Zd(Γ)
holds.

Proof. Since Λ is relatively dense, there exists a relatively compact unit neighborhood U ⊂ G
satisfying

∑
i∈I 1λiU (x) ≥ 1 for all x ∈ G. Let c = (cj)j∈J ∈ Yd(Γ) be arbitrary and note for

ei :=
∑
j∈J |cj |1γjQ∩λiU 6=∅ that

0 ≤
∑
j∈J
|cj |1γjQ(x) ≤

∑
i∈I

[
1λiU (x)

∑
j∈J
|cj |1γjQ(x)1λiU (x)

]
≤
∑
i∈I

ei 1λiU (x). (7.2)

Let V := QU−1Q; we claim for arbitrary x ∈ G, i ∈ I, and j ∈ J that
1λiQ(x)1γjQ∩λiU 6=∅ ≤ 1λiQ(x)1γjV (x).

Indeed, this is trivial if the left-hand side vanishes. If not, then x = λiq for some q ∈ Q and
there exists some y = λiu ∈ γjQ ∩ λiU . This implies

x = λiq = λiuu
−1q = yu−1q ∈ γjQU−1Q = γjV,

from which the claimed estimate follows easily. Combining this estimate with the definition
of ei, it follows that

0 ≤
∑
i∈I

ei1λiQ(x) =
∑
j∈J

[
|cj |

∑
i∈I

1λiQ(x)1γjQ∩λiU 6=∅

]

≤ sup
x∈G

[∑
i∈I

1λiQ(x)
]
·
∑
j∈J
|cj |1γjV (x) = Rel(Λ) ·

∑
j∈J
|cj |1γjV (x);

for arbitrary x ∈ G.
Lastly, let us write ‖ · ‖Yd(Λ,U) to denote the (quasi)-norm on the discrete sequence space

Yd(Λ), but using the set U instead of Q in Equation (2.2); similar notation will also be used for
Zd. As noted in Section 2.4, since Y,Z are translation-invariant, different choices of relatively
compact unit neighborhoods for the set Q yield equivalent (quasi)-norms. By combining
Equation (7.2) with the solidity of Z, then using the embedding Yd(Λ) ↪→ Zd(Λ) and finally
combining the previous estimate with the solidity of Y , we thus see

‖c‖Zd(Γ) =
∥∥∥∥∑
j∈J
|cj |1γjQ

∥∥∥∥
Z

≤
∥∥∥∥∑
i∈I

ei1λiU

∥∥∥∥
Z

= ‖e‖Zd(Λ,U) . ‖e‖Zd(Λ) . ‖e‖Yd(Λ) =
∥∥∥∥∑
i∈I

ei 1λiQ

∥∥∥∥
Y

≤ Rel(Λ)
∥∥∥∥∑
j∈J
|cj |1γjV

∥∥∥∥
Y

= Rel(Λ) ‖c‖Yd(Γ,V ) . ‖c‖Yd(Γ).

This shows that Yd(Γ) ↪→ Zd(Γ) and thus completes the proof. �

Using the previous lemma, we can now state and prove the main result of this subsection.

Theorem 7.4. Let w : G → [1,∞) be a p-weight for some p ∈ (0, 1] and let g ∈ Bpw be
admissible. Let Y, Z be solid, translation-invariant quasi-Banach spaces on G that are both
Lpw-compatible.
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Then the embedding Cog(Y ) ↪→ Cog(Z) holds if and only if Yd(Λ) ↪→ Zd(Λ) holds for some
(every) relatively separated and relatively dense family Λ = (λi)i∈I ⊂ G.

Proof. First, suppose that the identity map ι : Cog(Y ) → Cog(Z), f 7→ f is well-defined and
bounded. Choose a compact unit neighborhood U ⊂ G as provided by Theorem 6.15. Let
Λ = (λi)i∈I be a maximal U -separated family in G. For every x ∈ G we then either have x = λi
for some i ∈ I (and hence x ∈

⋃
i∈I λiUU

−1) or x /∈ {λi : i ∈ I} and then xU ∩ λiU 6= ∅ for
some i ∈ I, by maximality; hence, x ∈ λiUU−1. Overall, this shows that G =

⋃
i∈I λiUU

−1,
which easily implies that Λ is relatively separated and relatively dense in G.

Theorem 6.15 yields a family (hi)i∈I ⊂ Hπ that forms a system of Lpw-localized molecules
and such that c = CgDhc for every c ∈ Yd(Λ), where Cg and Dh are the coefficient and recon-
struction operators associated to

(
π(λi)g

)
i∈I and (hi)i∈I , respectively. By Proposition 6.11,

we know that Dh : Yd(Λ)→ Cog(Y ) and Cg : Cog(Z)→ Zd(Λ) are bounded. Hence, for every
c ∈ Yd(Λ),

‖c‖Zd(Λ) = ‖CgιDhc‖Zd(Λ) ≤ ‖Cg‖Cog(Z)→Zd ·‖ι‖Cog(Y )→Cog(Z)·‖Dh‖Yd(Λ)→Cog(Y )·‖c‖Yd(Λ)<∞.

This proves that Yd(Λ) ↪→ Zd(Λ). Since Λ is relatively separated and relatively dense in G,
Lemma 7.3 shows that in fact Yd(Γ) ↪→ Zd(Γ) for every relatively separated family Γ in G.

Conversely, suppose that the identity map ι : Yd(Λ) → Zd(Λ) is well-defined and bounded
for some (hence, every) relatively separated and relatively dense family Λ in G by Lemma 7.3.
Theorem 6.14 shows that there exists a relatively separated and relatively dense set Λ = (λi)i∈I
in G and a family (gi)i∈I of Lpw-localized molecules in Hπ indexed by Λ such that f = DgCgf
for all f ∈ Cog(Y ). By Proposition 6.11, it follows that that Cg : Cog(Y ) → Yd(Λ) and
Dg : Zd(Λ)→ Cog(Z) are well-defined and bounded. Hence, we see for any f ∈ Cog(Y ) that
f = DgιCgf ∈ Cog(Z) with

‖f‖Cog(Z) = ‖DgιCgf‖Cog(Z) ≤ ‖Dg‖Zd(Λ)→Cog(Z) · ‖ι‖Yd(Λ)→Zd(Λ) · ‖Cg‖Cog(y)→Yd(Λ).

This shows that Cog(Y ) ↪→ Cog(Z). �

8. Main results for irreducible, square-integrable representations

This section provides an overview of the key results of this paper for the case of irreducible,
square-integrable representations. Several of the results obtained in the main text have sim-
plified statements for such representations, which recover known results for Banach spaces.
We include these statements here to allow for an easy reference.

In what follows, we will always assume that the following assumptions are met.

Assumption 8.1. Assume that the following hold:
(a1) G is a second countable, locally compact group.
(a2) π : G → U(Hπ) is an irreducible unitary representation of G on a separable Hilbert

space Hπ 6= {0}.
(a3) w : G→ [1,∞) is a p-weight for p ∈ (0, 1] (see Definition 3.1).
(a4) The Wiener amalgam spaces WL,WR,W (see Section 2.6) are defined relatively to a

fixed open, symmetric, relatively compact unit neighborhood Q ⊂ G.
(a5) With the coefficient transform Vgf as defined in Section 4.1, it is assumed that

Bpw 6= {0}, where
Bpw :=

{
g ∈ Hπ : Vgg ∈W (Lpw)

}
,

and we fix some g ∈ Bpw \ {0}.
(a6) The space Y ⊂ L0(G) is assumed to be a solid, translation-invariant quasi-Banach

function space with p-norm ‖ · ‖Y . In addition, Y is assumed to be Lpw-compatible
(see Definition 3.5).
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8.1. Admissibility. Since w is a p-weight (in particular, w ≥ 1), it follows from an appli-
cation of Lemma 3.3 that W (Lpw) ↪→ WL(Lpw) ↪→ L1

w ∩ L∞w ↪→ L2, so that every h ∈ Bpw
satisfies

∫
G |〈h, π(x)h〉|2 dµG(x) <∞, i.e., the representation π is square-integrable. Then, by

Theorem 4.2, there exists a unique, self-adjoint, positive operator Cπ : dom(Cπ) → Hπ such
that ∫

G
|〈f, π(x)h〉|2 dµG(x) = ‖Cπh‖2Hπ‖f‖

2
Hπ (8.1)

for all vectors f, h ∈ Hπ. The domain of Cπ is given by dom(Cπ) = {h ∈ Hπ : Vhh ∈ L2(G)}.
This implies that Bpw ⊂ dom(Cπ). Furthermore, Equation (8.1) implies that any vector in
dom(Cπ) \ {0} can be normalized to obtain an admissible vector h for π, i.e., such that
Vh : Hπ → L2(G) is an isometry.

8.2. Coorbit spaces. With the fixed vector g ∈ Bpw \ {0} from Assumption 8.1, define
H1
w := H1

w(g) :=
{
f ∈ Hπ : Vgf ∈ L1

w(G)
}

and equip it with the norm ‖f‖H1
w

= ‖f‖H1
w(g) = ‖Vgf‖L1

w
. Note that W (Lpw) ↪→ L1

w by
Lemma 3.3, so that Bpw ⊂ H1

w; in particular, g ∈ H1
w.

Although the space H1
w(g) is defined relative to the fixed vector g ∈ Bpw \ {0}, the following

lemma shows that the space H1
w is actually independent of the choice of g ∈ Bpw \ {0}. This

crucially uses that π is an irreducible representation; see also Remark 4.4.

Lemma 8.2. Under Assumption 8.1, the following hold:
(i) If h ∈ Bpw \ {0}, then H1

w(g) = H1
w(h) with ‖ · ‖H1

w(g) � ‖ · ‖H1
w(h).

(ii) The space H1
w is a π-invariant Banach space satisfying H1

w ↪→ Hπ.

Proof. As explained in Section 8.1, we have Bpw ⊂ dom(Cπ), and the normalized vector
g̃ = g/‖Cπg‖Hπ is admissible for π. Since clearly H1

w(g) = H1
w(g̃), we can assume that g

is admissible and similarly (for proving Part (i)) also that h is admissible.
(i) Since L1

w∗L1
w ↪→ L1

w (see, e.g., [49, Section 3.7]), it follows by an application of Lemma 4.5
that the collection CL1

w
= {f ∈ Hπ : Vff ∈ L1

w} is a vector space and that Vf2f1 ∈ L1
w for all

f1, f2 ∈ CL1
w
. In particular, this implies that Vgh, Vhg ∈ L1

w(G), so that the conclusion follows
from Lemma 4.3.

Assertion (ii) follows directly from Lemma 4.3. �

Let Rw = (H1
w)∗ be the anti-dual space of H1

w(g). Denote the associated conjugate-linear
pairing by

〈f, h〉 := f(h), f ∈ Rw, h ∈ H1
w.

The action π of G on H1
w can be naturally extended to act on an element f ∈ Rw by

π(x)f : H1
w → C, x 7→ f([π(x)]∗h), h ∈ H1

w,

for x ∈ G. The associated matrix coefficients are defined as Vhf : G→ C, x 7→ 〈f, π(x)h〉.
For g ∈ Bpw \ {0}, the coorbit space of Y is the collection

Co(Y ) = Cog(Y ) =
{
f ∈ Rw : Vgf ∈WL(Y )

}
,

where WL(Y ) is the left-sided Wiener amalgam space of Y (cf. Section 2.6). The space is
equipped with the norm ‖f‖Co(Y ) = ‖Vgf‖WL(Y ).

As for the space H1
w (cf. Lemma 8.2), also the coorbit spaces are independent of the choice

of the analyzing vector g ∈ Bpw \ {0}, whenever π is irreducible.

Proposition 8.3. Under Assumption 8.1, the following assertions hold:
(i) If h ∈ Bpw \ {0}, then Cog(Y ) = Coh(Y ) with ‖ · ‖Cog(Y ) � ‖ · ‖Coh(Y ).
(ii) The space Co(Y ) is a π-invariant quasi-Banach space with p-norm ‖ · ‖Co(Y ) and

satisfies Co(Y ) ↪→ Rw.
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Proof. As in the proof of Lemma 8.2, the normalized vector g̃ := g/‖Cπg‖Hπ is admissible for
π, and (for proving Part (i)) the same holds for the normalized version of h. Furthermore, we
clearly have Cog(Y ) = Cog̃(Y ) and similarly for h. Hence, we can assume that g and h are
admissible.

(i) By Corollary 3.9, it holds that W (Lpw) ∗W (Lpw) ↪→ W (Lpw). Since Bpw = CW (Lpw), where
CW (Lpw) is as defined in Lemma 4.5, an application of that result yields that Vhg ∈ W (Lpw).
The equivalence ‖ · ‖Cog(Y ) � ‖ · ‖Coh(Y ) follows therefore from Proposition 4.8.

Assertion (ii) is a direct consequence of Proposition 4.8. �

8.3. Molecular decompositions. This subsection provides self-contained statements of the
main results on molecular decompositions.

A family (hi)i∈I of vector hi ∈ Hπ, indexed by a relatively separated Λ = (λi)i∈I ⊂ G, is
called a system of Lpw-molecules, if there exists an envelope Φ ∈WC(Lpw) satisfying

|Vghi(x)| ≤ Φ(λ−1
i x) (8.2)

for all i ∈ I and x ∈ G.
The following result summarizes the main properties of a system of molecules.

Lemma 8.4. Under Assumption 8.1, the following hold:
(i) The notion of a system of Lpw-molecules is independent of the choice of g ∈ Bpw \ {0},

i.e., if (hi)i∈I ⊂ Hπ satisfies condition (8.2) for some Φ ∈WC(Lpw) and if h ∈ Bpw \{0}
is arbitrary, then there exists Θ ∈WC(Lpw) satisfying

|Vhhi(x)| ≤ Θ(λ−1
i x)

for all i ∈ I and x ∈ G.
(ii) If (hi)i∈I ⊂ Hπ is a system of Lpw-molecules indexed by the relatively separated family

Λ = (λi)i∈I , then (hi)i∈I ⊂ H1
w and the associated coefficient operator

C : Rw → `∞1/w(I), f 7→
(
〈f, hi〉Rw,H1

w

)
i∈I

and reconstruction operator

D : `∞1/w(I)→ Rw, (ci)i∈I 7→
∑
i∈I

cihi

are well-defined and bounded, with unconditional convergence of the series in the weak-
∗-topology on Rw.

(iii) The following restrictions of the operators C and D are well-defined and bounded:
(a) C : Hπ → `2(I), C : H1

w → `1w(I), and C : Co(Y )→ Yd(Λ).
(b) D : `2(I)→ Hπ, D : `1w(I)→ H1

w, and D : Yd(Λ)→ Co(Y ).
Here, the space Yd(Λ) ↪→ `∞1/w(I) is as defined in Section 2.4.

Proof. (i) If (hi)i∈I is a family of Lpw-molecules with respect to the window g, then the same
holds with respect to the normalized (admissible) window g̃ = g/‖Cπg‖Hπ , and vice versa.
Therefore, we can assume that both g, h ∈ Bpw \ {0} are admissible. By Corollary 3.9, it
holds that W (Lpw) ∗W (Lpw) ↪→ W (Lpw). Since Bpw = CW (Lpw), where CW (Lpw) is as defined in
Lemma 4.5, an application of that result yields that Vhg, Vgh ∈W (Lpw). Therefore, Lemma 6.3
yields the claimed independence.

Assertions (ii) and (iii) follow from Proposition 6.11. For this, note that Lemma 3.3 shows
that Φ ∈W (Lpw) ↪→WL(Lpw) ↪→ L1

w. Because of Equation (8.2) and the translation-invariance
of L1

w, this easily implies Vghi ∈ L1
w and hence hi ∈ H1

w for all i ∈ I. Lemma 4.12 shows that
L2(G), L1

w(G) and L∞1/w are all Lpw-compatible and that Co(L2) = Hπ, Co(L1
w) = H1

w, and
Co(L∞1/w) = Rw. Therefore, Proposition 6.11 implies all the stated properties. �
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The next result shows that the orbit π(G)g always contains discrete subsystems that form
a frame for Hπ and admit a dual system consisting of Lpw-molecules.

Theorem 8.5. Under Assumption 8.1, there exists a compact unit neighborhood U ⊂ G such
that for every relatively separated, U -dense family Λ = (λi)i∈I in G there exists a family
(hi)i∈I of vectors hi ∈ H1

w with the following properties:

(i) The system (hi)i∈I forms a system of Lpw-molecules.
(ii) Any f ∈ Co(Y ) can be represented as

f =
∑
i∈I
〈f, hi〉π(λi)g =

∑
i∈I
〈f, π(λi)g〉hi,

with unconditional convergence of the series in the weak-*-topology on Rw.

Proof. Both claims follow from Theorem 6.14, strictly speaking after replacing g by the ad-
missible vector g̃ = g/‖Cπg‖Hπ . �

A complementing result on dual Riesz sequences of molecules in Hπ is provided by the
following.

Theorem 8.6. Under Assumption 8.1, there exists a compact unit neighborhood U ⊂ G such
that for every U -separated family Λ = (λi)i∈I in G there exists a family (hi)i∈I ⊂ H1

w of
vectors hi ∈ span{π(λi)g : i ∈ I} ⊂ Hπ with the following properties:

(i) The system (hi)i∈I forms a system of Lpw-molecules.
(ii) For any sequence (ci)i∈I ∈ Yd(Λ), the vector f =

∑
i∈I cihi is an element of Co(Y )

that solves the moment problem

〈f, π(λi)g〉 = ci, i ∈ I.

Proof. Both claims follow from Theorem 6.15, strictly speaking after replacing g by the ad-
missible vector g̃ = g/‖Cπg‖Hπ . �

Appendix A. Miscellany on quasi-Banach spaces

This appendix contains two auxiliary results on quasi-Banach spaces used throughout the
main text. As no reference could be found in the literature, their proofs are provided.

Lemma A.1. Let Y be a quasi-normed vector space with p-norm ‖ · ‖ for some p ∈ (0, 1].
If Y is complete, then for every countable family (fi)i∈I in Y satisfying

∑
i∈I ‖fi‖p <∞, the

series
∑
i∈I fi is unconditionally convergent in Y .

Conversely, if for every sequence (fi)i∈N with
∑
i∈N ‖fi‖p <∞ the series

∑∞
i=1 fi converges

in Y , then Y is complete.

Proof. Suppose first that Y is complete. It clearly suffices to consider the case I = N. Thus,
assume that

∑
i∈N ‖fi‖p <∞. Let Fn :=

∑n
i=1 fi. For n ≥ m ≥ n0, the p-norm property gives

‖Fn − Fm‖p =
∥∥∥∥ n∑
i=m+1

fi

∥∥∥∥p ≤ n∑
i=m+1

‖fi‖p ≤
∞∑

i=n0+1
‖fi‖p → 0 as n0 →∞..

Hence, (Fn)n∈N ⊂ Y is Cauchy. Since Y is complete, it follows that (Fn)n∈N converges to some
F ∈ Y ; i.e., F =

∑∞
i=1 fi. It remains to show that unconditional convergence of the defining

series. For this, let ε > 0 be arbitrary and choose N0 ∈ N such that
∑∞
i=N0+1 ‖fi‖p < εp. Let

J ⊂ N be any finite set with J ⊃ {1, . . . , N0}. Since ‖ · ‖Y is a p-norm, ‖ · ‖p is a metric and
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hence continuous; therefore,∥∥∥∥F −∑
j∈J

fj

∥∥∥∥p = lim
n→∞

∥∥∥∥Fn −∑
j∈J

fj

∥∥∥∥p = lim
n→∞,
n≥N0

∥∥∥∥ ∑
i∈{1,...,n}\J

fi

∥∥∥∥p

≤ lim
n→∞,
n≥N0

∑
i∈{1,...,n}\J

‖fi‖p ≤
∞∑

i=N0+1
‖fi‖p < εp.

Since this holds for any finite set J ⊂ N with J ⊃ {1, . . . , N0}, the series converges uncondi-
tionally.

For the remaining implication, let (gn)n∈N be a Cauchy sequence in Y . Choose a strictly
increasing sequence (ni)i∈N such that ‖gn − gm‖ ≤ 2−i for all n,m ≥ ni. Note that ni ≥ i
for all i ∈ N. Define fi := gni+1 − gni and note ‖fi‖ ≤ 2−i, so that

∑
i∈N ‖fi‖p < ∞. By

assumption, F :=
∑∞
i=1 fi ∈ Y , and

F = lim
N→∞

N∑
i=1

fi = lim
N→∞

N∑
i=1

(gni+1 − gni) = lim
N→∞

(gnN+1 − gn1).

For fixed, but arbitrary ε > 0, choose N0 ∈ N such that ‖gn − gm‖p < εp

2 for all n,m ≥ N0
and such that ‖F − (gnN0+1 − gn1)‖p < εp

2 . Then, it holds for all n ≥ N0 that

‖gn − (F + gn1)‖p ≤ ‖gn − gnN0+1‖
p + ‖F − (gnN0+1 − gn1)‖p < εp.

Thus, (gn)n∈N has the limit limn→∞ gn = F + gn1 ∈ Y , showing that Y is complete. �

Lemma A.2. Let (Y, ‖·‖Y ) be a solid quasi-Banach function space on a locally compact group
G. Suppose that ‖ · ‖Y is a p-norm, with p ∈ (0, 1].

Let I 6= ∅ be countable and let (Fi)i∈I ⊂ Y with
∑
i∈I ‖Fi‖

p
Y <∞. Then the series defining

F :=
∑
i∈I Fi is almost everywhere absolutely convergent, and F ∈ Y with

‖F‖Y ≤
(∑
i∈I
‖Fi‖pY

)1/p
.

Proof. The claim is trivial if I is finite; hence, we can assume that I is countably infinite and
then without loss of generality that I = N. The proof consists of three steps.

Step 1. Let Hn :=
∑n
i=1 |Fi| for n ∈ N. In this step, we show that (Hn)n∈N converges to

some H ∈ Y . For this, note for N ∈ N and n ≥ m ≥ N that

‖Hn −Hm‖pY =
∥∥∥∥ n∑
i=m+1

|Fi|
∥∥∥∥p
Y

≤
n∑

i=m+1

∥∥ |Fi| ∥∥pY ≤ ∞∑
i=N
‖Fi‖pY

and hence

sup
n,m≥N

‖Hn −Hm‖Y ≤
( ∞∑
i=N
‖Fi‖pY

)1/p
→ 0 as n→∞.

Hence, (Hn)n∈N is a Cauchy sequence in Y . Since Y is complete, the claim follows.

Step 2. We show that the function H from Step 1 satisfies H =
∑∞
i=1 |Fi| almost every-

where. For n ∈ N, define

Ξn :=
∣∣∣∣H − n∑

i=1
|Fi|

∣∣∣∣ = |H −Hn|

Then ‖Ξn‖Y = ‖H − Hn‖Y → 0 as n → ∞. Setting Ξ(n) := inf i≥n Ξi yields 0 ≤ Ξ(n) ≤ Ξi
for all i ≥ n, and hence ‖Ξ(n)‖Y ≤ ‖Ξi‖Y → 0 as n → ∞ by solidity of Y . Therefore,
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Ξ(n) = 0 almost everywhere for all n ∈ N, showing that there exists a null-set N ⊂ G satisfying
Ξ(n)(x) = 0 for all n ∈ N and x ∈ G \N . For x ∈ G \N , it follows therefore that

0 = lim
n→∞

Ξ(n)(x) = lim inf
n→∞

Ξn(x) = lim inf
n→∞

∣∣∣∣H(x)−
n∑
i=1
|Fi(x)|

∣∣∣∣,
so that there exists a subsequence (n`)`∈N (possibly dependent on x) such that

0 = lim
`→∞

∣∣∣∣H(x)−
n∑̀
i=1
|Fi(x)|

∣∣∣∣.
Hence, H(x) = lim`→∞

∑n`
i=1 |Fi(x)| =

∑∞
i=1 |Fi(x)|. Since this holds for all x ∈ G \ N , we

conclude H =
∑∞
i=1 |Fi| almost everywhere.

Step 3. First, note for Ω := {x ∈ G : |H(x)| = ∞} that n · 1Ω ≤ |H| for arbitrary
n ∈ N. Hence ‖1Ω‖Y ≤ 1

n‖H‖Y → 0 as n →∞, so that 1Ω = 0 almost everywhere and thus
|H(x)| <∞ almost everywhere. Combined with Step 2, this shows

∑∞
n=1 |Fn(x)| <∞ almost

everywhere. Hence, the series defining F :=
∑∞
n=1 Fn converges absolutely almost everywhere,

with |F (x)| ≤
∑∞
n=1 |Fn(x)| ≤ |H(x)| for a.e. x ∈ G.

Second, note that d(f, g) := ‖f − g‖pY is a metric and that d(Hn, H) → 0 as n → ∞.
Therefore, ‖Hn‖pY = d(Hn, 0)→ d(H, 0) = ‖H‖pY . This means

‖F‖pY ≤ ‖H‖
p
Y = lim

n→∞
‖Hn‖pY = lim

n→∞

∥∥∥∥ n∑
i=1
|Fi|

∥∥∥∥p
Y

≤ lim
n→∞

n∑
i=1

∥∥ |Fi| ∥∥pY =
∞∑
i=1
‖Fi‖pY ,

which implies ‖F‖Y ≤
(∑∞

i=1 ‖Fi‖
p
Y

)1/p, as claimed. �
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