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BOUNDED WEIGHT MODULES FOR BASIC CLASSICAL LIE
SUPERALGEBRAS AT INFINITY

DIMITAR GRANTCHAROV, IVAN PENKOV AND VERA SERGANOVA

ABSTRACT. We classify simple bounded weight modules over the complex simple
Lie superalgebras sl(co|oo) and osp(m|2n), when at least one of m and n equals co.
For osp(m|2n) such modules are of spinor-oscillator type, i.e., they combine into one
the known classes of spinor o(m)-modules and oscillator-type sp(2n)-modules. In
addition, we characterize the category of bounded weight modules over osp(m|2n)
(under the assumption dim osp(m|2n) = co) by reducing its study to already known
categories of representations of sp(2n), where n possibly equals co. When classifying
simple bounded weight s[(oo|oo)-modules, we prove that every such module is inte-
grable over one of the two infinite-dimensional ideals of the Lie algebra sl(co|oo)g.
We finish the paper by establishing some first facts about the category of bounded
weight sl(oo]oo)-modules.

2020 MSC: Primary 17B65, 17B10
Keywords and phrases: direct limit Lie superalgebra, Clifford superalgebra, Weyl superal-
gebra, weight module, annihilator.

INTRODUCTION

The representation theory of the three simple infinite-dimensional finitary complex
Lie algebras sl(c0), 0(c0), and sp(oco) has made notable progress in the last three
decades, see for instance [DPS], [DP], [PSerl], [PSer2], [PStyr], [SS]. For a summary
of highlights of this theory see [PH]. The theory of representations of the super-
counterparts of the Lie algebras sl(c0), 0(00), and sp(co) is still much less developed.
For a finite-dimensional Lie superalgebra €, the category of all representations of € is
almost never equivalent to the category of all representations of the Lie algebra €5, the
even part of . However, in that case there is a general result claiming that a category
of representations of £ with fixed strongly typical central character is equivalent to a
corresponding category of representations of &;.

This result does not provide a clear guideline for the case of Lie superalgebras
of infinite rank since the center of the enveloping algebra of Lie superalgebras like
sl(oo|oo) or osp(oo|oo) is trivial. Nevertheless, in the study of reasonably small cat-
egories of representations over the Lie superalgebras sl(co|oo) and osp(oo|oo), one
may rely on different intuition and obtain results not necessarily following the above

pattern. For instance, in [S] it is shown that the category of tensor modules over the
1
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Lie superalgebra osp(ocoloo) (respectively, over sl(oco|oo)) is equivalent to the cate-
gories of tensor modules over each of the Lie algebras o(cc) and sp(oo) (respectively,
over sl(c0)). A somewhat similar phenomenon can be seen in the paper [CP], where
it is proved that the categories of integrable bounded weight modules over various
Lie superalgebras like sl(co|oo) or osp(oo|oo) are semisimple.

In the present paper we study the categories of arbitrary (i.e., not necessarily
integrable) bounded weight modules over the complex Lie superalgebras osp(m|2n),
where at least one of m or n equals oo, and over the Lie superalgebra sl(co|oco).
Before describing our results we should recall that for the infinite-dimensional Lie
algebras sl(00), 0(c0), sp(0c0) simple bounded weight modules have been classified in
[GP] and their structure has been further studied in [C].

Our first main result claims that any simple bounded weight module over an
infinite-dimensional Lie superalgebra osp(m|2n) has just length two (or one for a
trivial module) over the Lie algebra osp(m|2n); = o(m) @ sp(n). Moreover, such
a module (unless it is a natural or trivial module) is determined by a pair (S, N),
where S is a spinor o(m)-module and N is a sp(2n)-module of oscillator type, i.e.,
a close relative of the oscillator representations of sp(2n). (The notions of spinor
o(m)-modules and oscillator-type sp(2n)-modules make sense also for m = oo and
n = oo due to the results of [GP].) This spectacular fact allows us to identify simple
bounded weight osp(m|2n)-modules, other than trivial and natural modules, as mod-
ules of “spinor-oscillator type”. The latter class of modules of osp(m|2n) glues spinor
and oscillator-type modules together, and is the ultimate super-symmetric version of
both spinor o(m)-modules and oscillator-type sp(2n)-modules.

The classification of simple bounded weight s[(co|oo)-modules is also very inter-
esting and constitutes our second main result. In particular, we show that ev-
ery such module is integrable and semisimple with respect to a simple ideal of
sl(oofoo)g =~ (sl(00) @ sl(oc0)) @ C, and this nicely resembles the answer for the case
of osp(ocojoo) where a bounded weight osp(oco|oo)-module is necessarily integrable
and semisimple as an o(co)-module.

Our main method of classification is reduction to weight modules of Weyl and Clif-
ford superalgebras of infinitely many variables. We denote these superalgebras respec-
tively by D(oco|oo) and Cl(oo|oo). There are natural homomorphisms U (0sp(co|o0)) —
Cl(oo|oo) and U(sl(oo|oo)) — D(oo|oo), see Section 2.2. One of our central ideas is
that, with the exception of Schur powers of the natural and conatural representations
(for osp(oo|oo) this exception applies only to the trivial and natural representations),
all simple bounded weight osp(oco|oco)- or sl(oo|oo)-modules are annihilated by the
kernel of the respective homomorphism. This facilitates a reduction of the study of
simple bounded weight 0sp(co|00)- and sl(oo|oc)-modules, as well as of the respective
categories of bounded weight modules, to the study of weight modules of the asso-
ciative superalgebras Cl(co|oco) and D(oco|oo) and their relevant subalgebras. The
above method applies also to the case of osp(m|2n) where m or n is finite, and to
sl(oo|n) for n € Z- as well.
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Here is a brief description of the content of the paper. Section 1 is devoted to
preliminaries. In Section 2 we undertake a study of the categories of weight modules
over Clifford and Weyl superalgebras. In particular, we establish that any such simple
module is multiplicity free. In Sections 3 and 4 we apply the above results to the
case of osp(m|2n) where at least one of m and n equals infinity. We show that
any simple non-integrable bounded weight osp(m|2n)-module is a spinor-oscillator
module. Moreover, we prove that the category of spinor-oscillator representations is
equivalent to the category of multiplicity free non-integrable weight modules over the
Lie algebra osp(m|2n)s = o(m) & sp(2n).

The case of sl(oco|oo) is discussed in Section 5. Here we give a classification of
the simple bounded weight s[(co|oco)-representations and make a first step towards
understanding the category of such representations. A deeper study of this category
should be a separate project.

Acknowledgment. We thank Lucas Calixto for reading a preliminary draft of
the paper. TP and VS acknowledge the outstanding hospitality of Mathematisches
Forschungsinstitut Oberwolfach where this paper was almost completed. DG was
supported in part by Simons Collaboration Grant 855678. IP was supported in part
by DFG grant PE 980/8-1. VS was supported in part by NSF grant 2001191.

1. PRELIMINARIES

The base field is C. By S,, we denote the symmetric group on n letters. A super-
space is a Zo-graded vector space where Zy := Z /27, and a superalgebra is a Zo-graded
algebra. We use the indices 0 and 1 to indicate Zy-gradings. A purely even (respec-
tively, purely odd) superspace is a superspace V such that V' = Vj (resp., V = V7).
By IT we denote the parity change functor on superspaces: (IIV)g = V3, (IIV); = V5.
If V.= V5@ Vi is a superspace, then the dual superspace equals V5" @ Vi, where
Ve = Hom(V5, C), Vi = IHom(IIV;, C) and Hom stands here for homomorphisms of
purely even spaces.

We write S¥V and A¥V for the kth symmetric and exterior powers for a superspace
V. If W is a superspace of parity p € Zy (i.e., W = W for p = 0 and W = Wj for
p = 1), then S*W (respectively, A*IV) is a superspace of parity kp € Z (respectively,
kp + 1 € Z,). For a general superspace V = V5 & V; we have

SV = P SVe@ NVi, AV = P AV @ STV

it+j=k i+j=k

An even symmetric (respectively, even antisymmetric) bilinear form on a superspace
V is a parity-preserving linear operator S?V — C (respectively, A2V — C).

In this paper we work with the Lie superalgebras gl(alb), sl(alb), osp(2al20),
0sp(2a + 1|2b), where a,b € Z>o U {oco}. Their defining representation is the simple
module of respective dimension (alb), (a|b), (2a|2b), (2a + 1|2b). In what follows we
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use the term defining representation more loosely to include also the defining rep-
resentation with changed parity. The Lie superalgebras gl(alb), sl(a|b), osp(2a|2b),
0sp(2a + 1|2b) can be equipped with a fixed even symmetric invariant form (-,-). All
homomorphisms of superalgebras are assumed to preserve the Zs-grading. All mod-
ules over purely even associative algebras or Lie algebras are assumed to be purely
even unless otherwise stated.

We assume that Cartan subalgebras of the Lie superalgebras considered are fixed,
and use standard notation for the roots. Note that these Cartan subalgebras are
purely even and all root spaces are either purely even or purely odd. Therefore the
roots are designated as even or odd. Concretely, the even roots of gl(a|b) and sl(a|b)
are €; — €, 0; — 07, while the odd roots are £(g; — §;), where 1 < i # k < a,1 <
J # 1 < b. The even roots of osp(2a|2b) are *(g; = ¢), £(J; £ §;), £26;, and the odd
roots are £(g; — d;). For osp(2a + 1|2b) we have in addition the even roots +¢; and
the odd roots +9;.

We should point out that for @ = oo the Lie superalgebras osp(2a + 1|2b) and
0sp(2a|2b) are isomorphic, and the difference in root systems is the result of different
choices of Cartan subalgebras. A less brief discussion of the Lie superalgebras we
consider and their root systems can be found in [CP].

Let s be a Lie algebra or Lie superalgebra with a fixed Cartan subalgebra h = bg.
A weight module M is an s-module that is semisimple as h-module. The h-isotypic
components of M are the weight spaces of M: we denote them by M?* for \ € h*.
The weight spaces of M are superspaces. Every weight module M has a well-defined
support:

suppM = {p € b | M" # 0}.

A weight module is bounded if the dimension (dy|d;) of any weight space of M is
less or equal to (alb) for some fixed a,b € Zs, i.e., dy < a, d; < b. The degree d(M)
of a bounded weight module M equals the maximum value of the sum dy + d; over
all weight spaces of M.

Each of our Lie superalgebras has (up to isomorphism) two natural modules which
we denote by V and IIV. These modules are weight modules, and for gl(a|b) and
sl(alb) we assume that the weight spaces of weight &; in V' are purely odd and the
weight spaces of weight ¢; in V' are purely even. For osp(2a + 1]2b) and osp(2a|2b)
we make the opposite choice. We have

{ei,0; 14,5 > 0} if g = sl(a|b) or g = gl(alb),
suppV = ¢ {0, £¢;,+0; | 4,5 > 0} if g = 0sp(2a + 1|2b),
{£ei, £6; | i, > 0} if g = osp(2a|2b).
For gl(a|b) and sl(a|b) modules V, and IIV, are also well defined. They are charac-
terized by equalities suppV, = —suppV/, suppllV, = —suppllV, and by the fact that

the weight spaces of weight —¢; in V, are purely odd and the weight spaces of weight
—g; in 11V, are purely even.
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We now recall some facts about multiplicity free weight s-modules for a finite-
dimensional Lie algebra s, i.e., bounded weight s-modules M with d(M) = 1. Their
classification has been part of a major effort to classify simple weight modules with
finite-dimensional weight spaces. Some of the main contributors have been D. Britten,
F. Lemire, S. Fernando, V. Futorny, G. Benkart, O. Mathieu, and Mathieu’s paper
[Mat| can be considered as the crown of this effort. It follows from a result of Fernando
[Fer] that for s = o(n), n > 5 every multiplicity free simple weight o(n) is finite
dimensional, hence is a trivial module, natural module, or a spinor module. For s =
sp(2n) the only multiplicity free simple finite-dimensional s-modules are the trivial
and the natural modules, and there is a “coherent family” of infinite-dimensional
multiplicity free simple weight s-modules [BBL], [Mat]. For every Borel subalgebra
b D b, there are precisely two nonisomorphic multiplicity free simple b-highest weight
modules in this family. These highest weight modules are known as oscillator or Shale-
Weil modules, and every other infinite-dimensional multiplicity free simple weight
module is obtained from one of them via twisted localization, see [Mat]. For s = sl(n)
the simple multiplicity free weight modules have been classified in [BBL] and have
been further studied by O. Mathieu in [Mat]. In this paper we will not refer to the
description of all simple multiplicity free weight modules for sl(n) and sp(2n), but for
understanding our results it is essential to know that simple multiplicity free weight
modules, and more generally simple bounded weight modules, are well studied.

For s = sl(00), sp(00), 0(00), simple bounded weight modules are described explic-
itly in [GP]. In the case of 0(c0), any bounded weight module is integrable, i.c., it is
a direct limit of finite-dimensional o(n)-modules for n — oo. More precisely, if M is
a simple bounded weight o(oco)-module, then M is a trivial module, a natural mod-
ule, or a direct limit of spinor modules. We refer to the latter direct limits simply as
spinor 0(oo)-modules. For s = sp(co) the result is similar. Namely, a simple bounded
weight sp(oo)-module is a trivial module, a natural module, or a direct limit of simple
multiplicity free infinite-dimensional sp(2n)-modules for n — oco. A difference with
the case of 0(00) is that a direct limit of simple multiplicity free infinite-dimensional
modules is not integrable. We call such a direct limit a simple weight sp(oco)-module
of oscillator type.

In the sequel we will need the following general lemma about associative superal-
gebras.

Lemma 1.1. Let A be an associative superalgebra and X be a simple A-module.
Then X5 and X7 are simple Ag-modules.

Proof. It Y C Xj (respectively, Y C Xj) is a proper nonzero Ag-submodule then AY
is an A-submodule of Y and (AY )5 =Y (respectively, (AY); =Y). O

We conclude Section 1 with some facts concerning finite-dimensional Lie (su-
per)algebras s. For a partition (equivalently, a Young diagram) p, let S,- denote
the corresponding Schur functor.
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Proposition 1.2. Let s = sl(n) and V' be the defining s-module. If n > |u| then
d(S,V) equals the dimension of the simple S,-module Z, associated to fu.

Proof. Tt suffices to consider the case n = |u|. Let {e1,...,e,} be the standard b-
eigenbasis of V. Let w = &1+ ---+¢,. Then the weight space (V®")* has a structure
of W x S,-module, where W =~ S,, is the Weyl group of sl(n). Moreover, as an
Sy,-module (V®™)¥ is isomorphic to the regular representation of S,. Therefore, the
isomorphism
(veme = @ EV) @ 2,
I

forces dim(S,V)* = dimZ,. O

Lemma 1.3. Let s be a simple finite-dimensional Lie algebra, and L(u), L(v) be
simple finite-dimensional modules with respective highest weights pi, v. Then d(L(u+

v)) = d(L(p)).

Proof. Let m : L(n) ® L(v) — L(p + v) be the unique surjective homomorphism.
Then the restriction of 7 to L(u)* ® L(v)" is injective, where \ is a weight of L(u)
of maximal multiplicity. This implies the statement. 0

Lemma 1.4. Let s = o(2n + 1),0(2n), or sp(2n). Then L(u) is either multiplicity
free or d(L(p)) > n — 1.

Proof. Let w; be the ith fundamental weight of s. Set s = 0(2n+1). Then d(L(w;)) =
d(L(w,)) = 1. For k=2,...,n—1 we have L(wy) ~ AFV | thus d(L(wy)) = (Lk‘/QJ) >
n — 1. Next we note that

d(L(2w,)) = d(S*V) =

d(L(2w,)) = d(A"V) = (Ln% J> >n -1,

and
d(L(wy + wy)) > d(L(w) @ L(wy,)) — d(L(wy)) = n.

Consequently, for u = wy, ..., wp, 2wy, 2w, w1 + w, we see that d(L(n)) > n — 1. For
any other p the inequality follows from Lemma 1.3.

The case of 0(2n) is similar.

Now let s = sp(2n). Then d(L(wy)) = d(V) = 1. For k > 1 we have L(wg) =

ARV /A*=2V . Hence d(L(wy, <Lk/2J) ( /- ) = n—1. Next, L(2w;) is the adjoint
representation and hence d(L(2w1)) = n. For u # wi,...,w,, 2w, the statement
follows again from Lemma 1.3. OJ

Lemma 1.5. Let s = osp(1|2n) and let L(u) be a finite-dimensional simple s-module
with highest weight p relative to the Borel subsuperalgebra with simple roots 6, —
02, .oey Op1—0p, 0. Assume d(L(p)) < n. Thenp =6y, p =0, or p = —5(614- - -+6,).
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Proof. The restriction of L(\) to so = sp(2n) can have only simple constituents with
highest weights 0, d;, or —%(51 + 4 0n), —%((51 + 4 0p1) — %571- The statement
follows. OJ

In this paper a bounded primitive ideal of U (s) is defined as a primitive ideal which
annihilates a simple bounded weight s-module. It is a result of [PSer3| that if M and
N are simple weight modules annihilated by the same bounded primitive ideal I,
then M and N are bounded and d(M) = d(N). This allows to define the degree of a
bounded primitive ideal I C U(s) by setting d(I) := d(M) for any simple bounded
weight s-module M annihilated by I.

Lemma 1.6. Let s = sp(2n), sl(n) and I be a bounded primitive ideal of U(s) of
degree d. Assume that U(s)/I is infinite dimensional. Then either d > rks — 1 or
d=1. 1Ifd =1 and s = sl(n), then I = AnnyL(aw;) or I = Annys)L(aw,) for
some a ¢ Z>o. If d =1 and s = sp(2n), then I is the Joseph ideal (annihilator of an
oscillator module).

Proof. Assume first d > 1. The inequality d > rks — 1 for s = sl(n) follows from
Lemma 2.25 in [GP].

We proceed to show that d > rks = n for s = sp(2n). Theorem 12.2 in [Mat]
implies d = 5=—dim L,()) for some simple finite-dimensional 0(2n)-module L,()) of
highest weight A = )., \je; with \; € 1/2 4+ Z. Since d > 1, we have X\ # w,_1,wy,.
Moreover, if |A\g| # |Ak41| for some k& > 1, the stabilizer of A in the Weyl group has
at most k!(n — k)! elements. Therefore the orbit of A has at least (})2"~! elements,
implying d > n. Consider now the case when all absolute values |)\;| are equal.
Under this assumption, there are two possibilities: (i) all A; are equal, or (i) \; =
o = A1 = =y Wesset pu=X—(g,_1+¢,) in case (i) and g = XA — (g,1 — €p)
in case (ii). Then pu is a weight of L,(\) and the Weyl group orbit of u has at least
n2"~ 1 elements. This implies again d > n. O

2. CLIFFORD AND WEYL SUPERALGEBRAS AND WEIGHT MODULES OVER THEM

2.1. Definitions and main properties. Let a,b € Z>oU{co}. The Weyl superalge-

bra D(alb) is the associative superalgebra with generators {x;,0; | i =1, ...,a; —1, ..., —b}
of parity
= 0if ¢
T; = 0; = 1 Z 0 ;
life<0

satisfying the relations
[z, 2] = [0:,0;] =0, [0, %] = by,

where [u,v] := uv — (—1)""vu and J;; is Kronecker’s delta. The Clifford superalgebra
Cl(a|b) is the associative superalgebra with generators {&;,n; | i =1,...,a; —1,...,—b}
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- 0if >0
fi:m:{ )

with generators of parity

1if2<0
satisfying the relations
{6 &Gy =Animi} =0, {ni. &} = 04,
where {u,v} := wv + (—1)"™vu. In what follows, whenever z;, 0;,;,n; are used we
assume that the index 7 is nonzero.

We define a Z-grading on D(alb) (respectively, on Cl(alb)) by setting degx; :=
1, deg0; := —1 (respectively, deg¢&; := 1, degn; := —1). If A = D(alb) or A =
Cl(a|b) we denote by A., the subsuperalgebra of elements of even degree, and by
A, the subsuperspace of elements of degree n. Note that Ag, Ag, and A., are three
different subsuperalgebras of A.

For a, b € Z>q, D(a|b) (respectively, Cl(alb)) is naturally embedded in D(a + 1]b)
and D(alb+ 1) (respectively, in Cl(a + 1]b) and Cl(a|b+ 1)), and

D(oo|o0) = @D(cﬂb), Cl(oo|oo) = liﬂC’l(aH}).
2.2. Connection to classical Lie superalgebras. Let V5,9 be the subsuper-
space of D(alb) with basis {x;,0; | —b < ¢ < a}. Then Va9 has an even anti-
symmetric form given by the commutator map [Vagjos, Vaaj2s] = C. The Lie superal-

gebra 0sp(2b|2a) for which this form is invariant can be identified canonically with
S?Vaap2s- The symmetrization map

1 _
V.22, = D(alb), v @ w §(v®w+ (=1)""w ),

2al2

factors through S*Va,je, and defines a homomorphism of Lie superalgebras
0sp(2b|2a) — D(alb). This induces a homomorphism of associative superalgebras

Py, - Ulosp(20]2a)) — D(alb).

Similarly, let Usq 2, be the subsuperspace of Cl(a|b) with basis {&;,7; | —b <i < a}.
Then Uy, has an even symmetric bilinear form given by the symmetrizer map
{Usaj2p; Uzaj2e} — C. The Lie superalgebra osp(2a|2b) for which this form is invariant
can be identified canonically with A2U2a|2b. The alternization map

1 -
Usatay = Cl(alb), v @ w 3 (v@w—(—1)""w ),

factors through A2U2a‘2b and defines a homomorphism of Lie superalgebras
0sp(2a|20) — Cl(a|b). This induces a homomorphism of associative superalgebras
W : U(osp(2al20)) — Cl(alb).
The Chevalley basis vectors e, and the respective relations of the Lie superalgebras

05p(2b|2a) (and also of 0sp(2a|2b)) have been computed in [FG], §3.2. Up to scalar
multiples, the homomorphism ®,, has the form



BOUNDED WEIGHT MODULES 9

eak—al = x—la—k’v e—Ek—El = LTy, eak-i-al = 8—k8—l7
2 2

6762'7(53‘ = xia:j? 67262' = xi) 65i+(5]‘ = 828]7 6251‘ — 81'7

678]@%»51‘ — x*ka’h eakféi — xia*k7 efskféi = Ty, 65k+6i = afka’h

and the homomorphism ¥,, has the form

Cep—e; — glnk; [ — — §k§l, Cer+e; — nem,

€_gi—s, > Eif_j, €—a5, > E24 €5ips, > N—ill—j, €25, — N,

€ cpt5, 7 SkT—is Cep—s; P Meb—in e—s; F Er€is €opps;, = MT—is

where k # 1,1 # j.

Lemma 2.1. The image of ®,, coincides with D(al|b)., and the image of U, coin-
cides with Cl(alb)e.

Proof. Let us consider ®,;, : U(osp(2b|2a)) — D(a|b). For any vw € 5?Va2, we have
Py (vw) € D(alb)y ® D(alb)o @ D(alb)—s. Therefore

D5 (U(08p(20|2a))) C D(alb)ey.
Moreover, the above formulas for ®,;, show that ®4,(C ® 0sp(20[2a)) is the span of
S = {1,xi8j,8,0j,xixj | —b S ’L,j S a}.

By a simple induction argument one shows that S generates D(a|b).,, and the state-
ment follows. A similar argument applies to W 0

By C[x] we denote the symmetric superalgebra of the superspace with basis
{z; | —b < i <a}. The superspace C[z] is a simple faithful D(a|b)-module, and we
call it the defining D(a|b)-module. Furthermore, C[z]., = C[z] N D(a|b)., is a simple
faithful D(a|b)e,-module and hence ker @, is a primitive ideal of U (osp(2b|2a)). The
pullback of C|z]., to U(osp(2b|2a)) is a simple highest weight module of U (0sp(20]2a))

of highest weight % (Z?:l € — Z?:l 5j> relative to the Borel subsuperalgebra with

positive roots
0p £ 0,forp > q, 20,, 0, g4, €, e, forp < g,

where the sum Zle €i — Y_;—1 0; is an infinite formal sum if b = oo or a = oo.
Similarly, the defining Cl(a|b)-module A[¢] is the exterior superalgebra of the su-
perspace with basis {§;| — b < ¢ < a}. The module A[¢] is a simple and faith-
ful Cl(alb)-module. Furthermore, A[¢]l., = A[¢] N Cl(alb)e, is a simple faithful
Cl(alb)e,-module and hence ker W,;, is a primitive ideal of U(osp(2a|2b)). The pull-
back of A[{]., is a simple highest weight o0sp(2a|2b)-module with highest weight

: <Z?:1 €~ D o1 5j), and it is isomorphic to the pullback of Clz].,. These two

isomorphic highest weight modules have purely even highest weight spaces. Next,
the pullback of the odd-degree part A[{]oqq of A[¢] is a simple 0sp(2a|2b)-module with



10 DIMITAR GRANTCHAROV, IVAN PENKOV AND VERA SERGANOVA

highest weight % (Z?Zl € — 23:1 5]-) — d1. The pullbacks of A[¢],qq and Clz]eqq are
isomorphic and have purely odd highest weight spaces.

The pullbacks of C[z]., and C[z],qq¢ (equivalently, of A[¢]e, and A[€]odq), together
with their counterparts with changed parity, are four pairwise nonisimorphic osp(2a|2b)-
modules, which we define to be spinor-oscillator representations. A general spinor-
oscilator representation is the twist of some of these four modules by an automor-
phism of the Lie superalgebra osp(2a|2b). For b = 0 (respectively, for a = 0) the
spinor-oscillator representations are nothing but the spinor representations of 0(2a)
(respectively, the oscillator or Shale-Weil representations of sp(2b)). (It is well known
that for a fixed Borel subalgebra there are precisely two isomorphism classes of purely
even spinor or, respectively, oscillator representations.)

The isomorphisms of the pullbacks of C[z]., and A[{]., imply the following.

Corollary 2.2. ker &y, = ker ¥y, and hence Cl(a|b)., and D(b|a)., are isomorphic
associative superalgebras.

Remark 2.3. 1t is known that Cl(a|b) is the universal enveloping algebra of the Jordan
superalgebra Usqo, @ C1, while D(alb) is the quotient of the universal enveloping
algebra of the Heisenberg superalgebra Vaqj0, @ Cz by the ideal (2 —1). Furthermore,
it is easy to see that the superalgebras D(b|a) and Cl(a|b) are not isomorphic unless

ab = 0. O

Now, we note that W, ,(0sp(2a|2b)) @ Vg2 is closed under supercommutator, and
the corresponding Lie superalgebra is isomorphic to osp(2a + 1]2b). Hence we have a
surjective homomorphism

Oapp : U(0sp(2a + 1]2b)) — Cl(alb).
The explicit formulas for ©,;, are the same as those for ¥,;, with the following
addition:
€ey, = Nk, € ¢ = gk’a e_s; €—i7 €s; > MN—i.
The pullback via O, of the defining Cl(a|b)-module A[{] is an irreducible osp(2a+

1/2b)-module with highest weight 3 (Z?Zl g — Z?Zl (5]-) with respect to the Borel

subsuperalgebra with positive roots
0p £ 0gforp > q, 0p, 20, 0, £ &4, €p £ egforp < g, €p.

We call this highest weight module, together with its counterpart with changed
parity, a spinor-oscillator representation of osp(2a + 1|2b). Moreover, ker O, is the
primitive ideal of a spinor-oscillator representation of osp(2a + 1]2b).

We note also that gl(a|b) is the reductive part of a parabolic subalgebra of 0sp(2a|2b),
and by composing the injection gl(alb) < 0sp(2a|2b) with ®,, we obtain a surjective
homomorphism

(2.1) U(gl(ald)) — D(bla)y =~ Cl(alb)o.
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Similarly, the embedding gl(a|b) < 0sp(2b|2a) induces a surjective homomorphism
(2.2) U(gl(alb)) — D(alb)y ~ Cl(bla)o.
We denote by T, the restriction of the homomorphism (2.1) to U(sl(a|b)), and T;b

the restriction of the homomorphism (2.2) to U(sl(a|b)).
We will use the homomorphisms ij in Section 5.

2.3. Tensor product isomorphisms. Let Ci'(a|b) (respectively, D'(alb)) be the
superalgebra defined by the same generators and relations as Cl(alb) (respectively,
D(alb)), but where the generators x;,0; (respectively, &;,n;) for ¢ > 0 are endowed
with the opposite parity.

Then one can check that the correspondence &_; — x;,n_; — 0;, 1 = 1,..., b, defines
an isomorphism of superalgebras

(2.3) C1(0|b) ~ D'(b]0),

and the correspondence & — x_;,1m; — 0_;, © = 1,...,b, defines an isomorphism of
superalgebras

(2.4) CIT(b|0) ~ D(0|b).

Lemma 2.4. We have the following isomorphisms of associative superalgebras
(2.5) D(alb) ~ D(al0) ® D(0[b) ~ D(a|0) ® CI'(b|0),

(2.6) Cl(a|b)’ ~ D(0|a) @ D'(b|0).

Proof. The isomorphisms (2.5) follow from (2.4) and from the fact that z;, 0; commute
with x_;,0_; for all positive 4, j. Similarly, the isomorphism (2.6) follows from (2.3)
and from the fact that &;,n; anticommute with £_;,n_; for all positive ¢, j. O

Corollary 2.5. We have isomorphisms of (purely even) associative algebras:

(a> D(a|b)6 = D(CL|0) ® Cl(bm)evy Cl(a’|b>6 = Cl<a’0> ® D(b|0)ev§

(b) (D(alb)ev)s = D(al0)ey @ D(0[b)ev,  (Cl(alb)es)o = Cl(al0)ey ® CL(O[b)co-
Proof. Part (a) is a consequence of the existence of isomorphisms CIT(b]0)g =~ C1(b|0).,
and DT(b|0)g ~ D(b|0).,. Part (b) follows straightforwardly from part (a). O

2.4. Simple weight modules over Clifford and Weyl algebras. In the rest of
the paper, A stands for D(a|b) or Cl(a|b) unless a restriction on A is made explicit.
Set u; := x;0; (1 #0) for A = D(a|b), u; :=&mn; (i #0) for A = Cl(alb), and define

b4 = spanf{u; | i # 0}.

Let {¢; | ¢ # 0} C b} be the system dual to {u; | i # 0}. Then b} = ], C¢.
For convenience, we will write the elements of b* as formal (possibly infinite) sums

Zi#o azCz We set
Qa =Pz
i#0
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One can easily see that the abelian Lie algebra h, acts semisimply on A via the
adjoint action. In other words,

A= @ A% A% ={z € A|ady(z) = a(h)x for every h € ha},

aERALl{O}

and Ry is the set of all & € Q4 \ {0} such that A* # 0. If A= Cl(al|b), then

RoL{0} = {Z a;(; € Qa | a; =0 for almost all 4, and a; € {0,1} for i > O} :
i#0
If A= D(alb), then

RoLI{0} = {Z a;(; € Qa | a; =0 for almost all 4, and a; € {0,1} for i < O} )
i#0
Moreover, for A = Cl(a|b) we have & € A%, n; € A=% if i # 0. For A = D(a|b) we
have z; € A%, 9; € A% if 1 £ 0.
Note that each superspace A% is purely even or purely odd. Define the parity
function on Q)4 to be the homomorphism of abelian groups p : Qa4 — Zy which

records the parity of the superspace A for a € R4. Explicitly, p(¢;) = 0 for i > 0
and p(¢;) =1 for j < 0.

Lemma 2.6. (a) The subalgebra H, := A° is generated by b 4.
(b) If A= D(a|b) then H is isomorphic to Clu]/(u? — u;);<o-
(c) If A= Cl(a|b) then H, is isomorphic to Clu]/(u? — u;)i=o-
(d) Every root space 0 # A* is a cyclic Ha-module.

Proof. Straightforward computations. O

Set
by :={pe by | u(u;)=0,1wherei <0 for A= D(alb) and i > 0 for A = Cl(alb)}.

In what follows, we refer to the elements of h} as to the weights of A. An element
p of hY is a formal sum
M= Z piGi

i#0
with the only restriction that p; € {0,1} for i > 0 if A = Cl(a|b), and u; € {0,1} for
i < 01if A= D(alb). Note that b} is not a vector space.

Remark 2.7. Let g be a Lie superalgebra isomorphic to osp(2a|2b) (respectively,
0sp(2a+1]2b)) with fixed Cartan subalgebra . Set A = Cl(a|b) andlet F': U(g) — A
be the homomorphism W, (respectively, ©45). Then F(U(h)) = Ha. We have

Specm H4 = b%, SpecmU(h) = b*,
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where Specm denotes maximal spectrum. Set
1
T = 5(2 Ei — Z(SJ)
i>0 7>0
The map f : b% — b* induced by F'is not linear but affine, i.e.,
flu+v)=fu)+ fv) — f(0)
with f(0) = 7. Moreover,

f(c):{éTi—T, 1>0

0_;—1,1<0
Similarly if g = 0sp(20[2a), A = D(a|b) and F' := ®,;, we have

f(ci):{s_i—T, i <0

(51‘—7', 1 >0

O

Let C,, be the unique (1]0)-dimensional H 4-module on which b4 acts via p. Accord-
ing to Lemma 2.6(a)-(c) every simple H 4-module is one-dimensional and is isomorphic
to C,, for some p € h.

An A-module X is a weight module if X is semisimple as an H 4-module, i.e., if X

has a decomposition
Y- @

HEDY
where X* := {x € X | he = p(h)x for every h € ha} is the p-weight space of X.
The support of a weight module X is

suppX = {u € b | X" # 0}.

Lemma 2.8. Let X be a simple weight A-module. Then the weight spaces of X are
purely even or purely odd. Hence X and I1.X are never isomorphic.

Proof. Let 0 # x € (X*),, where x € Zy. Then
X = Ag — @ (AaZE _ Xa-f—lt),

acQa

i.e., all nonzero vectors in X*** are purely even (respectively, purely odd) if k+p(a) =
0 (respectively, if k + p(a) = 1). O

For the remainder of the paper we fix an extension of the parity function p: Q4 —
Zo to amap p: by — Zy satisfying p(p + o) = p(p) + p(a) for any a € Q4 and any
i € bY%. Note that such an extension is not unique.

We call a weight A-module X preferred if for any p € supp X, the weight space X*
is purely even if p(u) = 0 and the weight space X* is purely odd if p(u) = 1. Lemma



14 DIMITAR GRANTCHAROV, IVAN PENKOV AND VERA SERGANOVA

2.8 implies that, if X is a simple weight module then exactly one of the modules X
or I1.X is preferred. Moreover, any weight A-module X decomposes uniquely into a
direct sum X; @ [1X, for some preferred modules X; and X,.

Proposition 2.9. The category of preferred weight Af-modules is equivalent to the
category of preferred weight A-modules as an abelian category.

Proof. The superalgebra A’ has its own parity function p' : Q. — Z with the
property pf(a) = 1 for a = g;,;. We can extend this function to a map p' : by = Zo
satisfying pf(u + ) = pf(u) + p'(a) for any o € Qt. Then, for a preferred weight

module X we set
xt.— GB 1P (m—p) xn
pesuppX

It is clear that - is a functor from the category of preferred weight A-modules to the
category of preferred weight Af-modules. Moreover, the functor (-)T is isomorphic
to the identity functor. O

In order to proceed with our study of weight A-modules, for any p € b we
introduce a certain multiplicity free weight A-module F'(u) such that o € supp F'(u).

First, assume A = D(a|b) and fix p € Y. We can write u = {p;} with p; € C for
i>0and p; = 0,1 for i <0. Let B be the subalgebra in D(0]b) generated by all z;
for ¢ < 0 such that u; = 1, and by all 9; for i < 0 such that p; = 0. Then B is a local
supercommutative algebra, and we denote by J its maximal ideal.

Set R := Clx;,7; ;0. Consider the D(a|0)-module F*(u) := Rz* defined by
the relations d;7* = pz; 'z* and the D(0|b)-module F~(u) := D(0|b) @5 (B/J).
Finally using the first isomorphism of (2.5), we define the A-module F'(u) by setting
F(p) = F*(p) @ IWE ().

Now let A = Cl(alb). Here we use the isomorphism (2.6), and set

F(p) = TPW(F~ () @ F* ()T,

where now F'~(u) is a D(0]|a)-module and F*(u) is a D(b|0)-module.
By construction, p € suppF'(p) and all weight spaces of F'(u) are 1-dimensional.

Lemma 2.10. The A-module F(u) is preferred, indecomposable, and has a simple
socle (i.e., a simple submodule which is contained in any nonzero submodule of F'(11)).
Under the assumption p; ¢ Z for all i > 0 if A = D(a|b), and p; ¢ Z for all j < 0 if
A = Cl(alb), the module F(u) is simple.

Proof. Let A = D(a|b). The fact that F(u) is preferred follows directly from the
definition of F'(u).

Define the weight i € suppF' (i) by setting
. {,uiifi<00r,uz-¢Z

v 0 otherwise
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We claim that F(u)” generates a simple submodule of F'(u) which is the socle of
F(u). Indeed, note that if v € suppF'(u), the construction of F'(u) shows that the
map F(u)” — F(p)"™ of multiplication by z; is an isomorphism for all positive
i, and that the map F(u)” — F(u)"~% of application of 0; is an isomorphism iff
v; # 0. Furthermore, for i < 0 the map F(u)” — F(u)"% of multiplication by z; is
an isomorphism iff v + §; € suppF(u), and similarly the map F(u)” — F(u)" % of
application of 0; is an isomorphism iff v — §; € suppF' (). Consequently, the cyclic
submodule of F'(u) generated by any nonzero weight vector contains the weight space
F(u)”. This proves our claim, and we see that F(u) is indecomposable as it has a
simple socle.

Finally, if py; ¢ Z for all i > 0 then u = 1 and F(p) is simple.

The case of A = Cl(a|b) is handled in a similar manner. O

For p, v € hY we write u ~ v if p — v € Q4 and the respective sets of indices i for
which p; € Z>o and v; € Z>( coincide.

Theorem 2.11. (a) Every simple weight A-module is multiplicity free.

(b) For every p € b, up to isomorphism, there exist precisely two simple A-
modules X (p) and I1X (p) whose supports contain pi, and such that X (u) is preferred.

(c) suppX (p) = {A € by | A~ pu}.

(d) Let f —v € Qa. The modules X (u) and X (v) are isomorphic if and only if
TSR3

Proof. Set P(u) == A ®p, (I"WC,) for p € hY. Then by Frobenius reciprocity
Homy (P (p), F(p)) # 0. Hence the weight space P(u)* is nonzero and generates
P(u). Since each each weight space of P(u) is a cyclic H4-module (Lemma 2.6(d)),
the A-module P(u) is multiplicity free.

Therefore the sum N of all submodules Z of P(u) with Z# = 0 constitutes the
unique maximal proper submodule of P(u). Since P(u) is multiplicity free, the
quotient X (u) := P(u)/N and the module 11X (1) are (up to isomorphism) the only
two simple A-modules whose supports contain p. Note that X (u) is preferred, while
11X (1) is not. This proves (a) and (b).

(c). It follows from (b) that the supports of non-isomorphic simple modules are
disjoint. It remains to check that suppX (u) is exactly the equivalence class of p. Let
A = D(a|b) and v € X(u)”. Then z;v # 0 (respectively, dv # 0) iff v +¢; = v
(respectively, v + ¢; &~ v). Therefore, X (u)” # 0 iff v = p. The case A = D(alb) is
similar.

(d). Direct corollary of (c). O

Next we would like to decompose the simple weight A-modules in accordance with
the isomorphisms (2.5) and (2.6). We start by discussing weight modules of A =
C1(b|0) and A = D(0]b). In these cases we identify the subsets A of Z N [1,b] (where
b = oo is possible) with the weights of A via the map

A (Ca,
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where (y = >, ., G for A= CI(b|0) and (4 = >, (i for A= D(0[b). Accordingly,
we write X (A) instead of X ((a).

Lemma 2.12. Let A(b) = C1(b|0) or A(b) = D(0]b).

(a) If b < oo, then the category of preferred weight A(b)-modules is semisimple
and has, up to isomorphism, one simple object X ().

(b) If b = oo then, up to isomorphism, the simple preferred weight A(b)-modules
can be enumerated by equivalence classes of subsets of Z~y with respect to the fol-
lowing equivalence relation: A is equivalent to B if the symmetric difference AAB
is finite. In other words, up to isomorphism, there is exactly one simple weight
A(b)-module X (A) corresponding to A.

(c) We have X (A) ~ X (B) if and only if AAB is finite.

Proof. Claim (a) for A(b) = C1(b|0) is an immediate consequence of the fact that A(b)
is a matrix algebra. The case A(b) = D(0[b) with b < oo follows from Proposition
2.9.

Claim (b) follows from Theorem 2.11(b).

For part (c¢), we note that (4 = (g if and only if AAB is finite. O

Proposition 2.13. (a) Every simple preferred weight D(a|b)-module X is isomorphic
to Xt ® (X )T for some simple preferred weight D(a|0)-module X* and some simple
preferred weight C1(b|0)-module X ~.

(b) Every simple preferred weight Cl(alb)-module X is isomorphic to ((X )T ® (X*)T)T
for some simple preferred weight Cl(al0)-module X and some simple preferred
weight D(b|0)-module X .

Proof. We prove (a) since (b) is similar. For any weight p € suppX we can choose
a simple preferred weight D(a|0)-module X* and a simple preferred weight C1(b|0)-
module X~ so that p € supp (X TR (X _)T). Moreover, it is clear from the construc-
tion that the module X+ ® (X )T is simple. Therefore Theorem 2.11 implies the
claim. U

2.5. Categories of weight modules over Clifford and Weyl algebras. Let W4

denote the category of preferred weight A-modules. To study the category of all

weight A-modules, it suffices to study the category W,. Indeed, since every weight

A-module decomposes canonically as X; @ [1X, where X; and X, are preferred, the

morphisms in the category of all weight A-modules are recovered by the morphisms

in the category W4 (the latter morphisms necessarily preserve the Z,-grading).
Recall the A-module P(p) introduced in the proof of Theorem 2.11.

Lemma 2.14. The A-module P(u) is an indecomposable projective object in the
category Wa. The category VW, has enough projectives.

Proof. By Frobenius reciprocity we have
Hom (P (), X) ~ Hom,, (IPWC,, X) ~ X*
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for any preferred module X in W,. This implies the projectivity of P(u). The
indecomposability of P(u) follows from the fact that P(u) has a unique maximal
proper submodule.

Noting that any X € W, is a quotient of
has enough projectives.

P(p) ® X*, we see that Wy

pesuppX

OJ

We introduce the following equivalence relation on the set of weights hY%: p ~
v <= pu € v+ Q4. Note that the relation ~ is weaker than the relation =, i.e.,
p ~ v implies  ~ v. Let I denote a ~-equivalence class in b, and let WY be the
full subcategory of W, with objects X satisfying suppX C I'. Since the support of
every indecomposable weight A-module X belongs to I' for some class ', we have a
decomposition

Wa =[] Wi
Proposition 2.15. The subcategories W}; are blocks of W4.

Proof. If X and X' are two simple weight A-modules from W, satisfying p ~ v for
some p € suppX and v € suppX’, then the modules X and X’ occur as simple
constituents in the A-module F(x). We know from Lemma 2.10 that F(u) is a
preferred indecomposable module. This implies the assertion. 0

Lemma 2.16. If A = Cl(a|0) or A = D(0|b) then Wy is a semisimple category.

Proof. 1t suffices to prove that every indecomposable projective module P € Wy is
simple. For this, note that P is an object of WY for some I, and let u € hY belong
to suppP. Then Homy, (Hp(“)(Cu, P) # 0 and Frobenius reciprocity yields a nonzero
homomorphism P — P(u) = A ®p, IPWC,,. The key observation is that under the
assumption A = Cl(al0) or A = D(0[b), the A-module P(yu) is simple. This together
with the projectivity of P(u) allows us to conclude that P ~ P(u). O]

The following proposition extends Proposition 2.13 to indecomposable modules.

Proposition 2.17. (a) If X is an indecomposable module from Wpa), then X is
isomorphic to X+ ® (X )1 for some indecomposable module D(a|0)-module X from
Wh(ajo) and some simple module X~ from Weia)o).-

(b) If X is an indecomposable module from Weyy), then X is isomorphic to
(XT)T® (X)) for some simple module X from Wey(ajo) and some indecomposable
module X~ from Wpo)-

Proof. Let us prove (a). Set A = D(alb). The indecomposability of X implies
suppX C p + Q4 for some p € hY%. If S and S’ are simple subquotients of X
then suppS C suppS’ + Q 4, and therefore S and S’ have the same support when
restricted to D(0]b). This, together with Proposition 2.13(a), implies the existence
of isomorphisms S ~ Y ® (X)) and &' ~ Z ® (X~)' for some simple module
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X~ € Weiepo) and some simple modules Y, Z € Wp,o). Moreover, according to
Lemma 2.16, the restriction of X to D(0[b) is a semisimple D(0]b)-module. Hence
this restriction is isomorphic to an isotypic component of the simple D(0[b)-module
(X7)T. This allows us to conclude that the map

Homp (o (X )1, X) @ (X)) = X

is an isomorphism.

Therefore we can set X := Hompop) ((X~)T, X). Finally, the indecomposability
of X implies the indecomposability of X .

The proof of (b) is similar, but instead of Proposition 2.13(a) one uses Proposition
2.13(b). O

Corollary 2.18. (a) If b < oo then the category Wpap) is equivalent to the category
Whajo)- The category Wp(aoo) decomposes into a direct product of subcategories
Wia) where [A] runs over equivalence classes of subsets of Z~ as in Lemma 2.12, and
each subcategory Wy is equivalent to the category Wp(ao)-

(b) If a < oo then the category Weyap) is equivalent to the category Wpjo)-
The category Wey(sopy decomposes into a direct product of subcategories Wiy where
[A] runs over equivalence classes of subsets of Z~o as in Lemma 2.12, and each
subcategory W) is equivalent to the category Wpo).

(c) Every block of Wp(ap) and of Weyap) is equivalent to the block Wzr)(c\o) of
Wh(ejo) for some ¢ < oo and I' = Qp(co) -

(d) Two blocks B, and By of Wp(.o) are equivalent if and only if ¢(B;) = c¢(B2)
where ¢(*B) denotes the cardinality of the set of isomorphism classes of simple objects
in ‘B.

Proof. Again we prove just (a) since (b) is similar. Let X~ be a preferred simple
C1(b|0)-module and W4 (X ™) be the full subcategory of W4 with objects of the form
X*®(X )T for preferred weight D(a|0)-modules X *. It follows from Proposition 2.17
that W, is the direct product of its subcategories W4 (X ~) where X~ runs over the
set of isomorphism classes of Cl(b|0)-modules. Each category W4 (X ™) is equivalent
to the category of preferred weight D(a|0)-modules via the functors - ® (X ) and
Hompp ((X7)7,). If b < oo, there is a single isomorphism class to which X~
belongs. If b = oo, the isomorphism classes of modules in Wey)0) are enumerated by
the equivalence classes of subsets of Z~y from Lemma 2.12.

Parts (c¢) and (d) follow from parts (a) and (b) and from the classification of blocks
in Wp(qjoy for ¢ < oo in [GS], and in Wp a0y in [FGM]. O

We conclude this section by a structural result on indecomposable weight A-
modules with finite-dimensional weight spaces.

Theorem 2.19. Any indecomposable A-module X in W, with finite-dimensional
weight spaces has a strict A-module filtration X = U,crX, (ie., X, € X, for
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n < m) for some interval R in Z, satistying N,crX, = {0} and such that X,,/ X,
is a simple A-module for any n,n — 1 € R.

Proof. Due to Corollary 2.18 we can reduce this statement to the case A = D(al0).
If a is finite then X has finite length and the statement is trivial. For any a, a pre-
ferred simple weight D(a|0)-module is determined up to isomorphism by its support.
Therefore, if X belongs to a block B with ¢(*8) < oo, the statement is trivial since
X necessarily has finite length.

We can thus assume that X belongs to a block 8 with ¢(8) = oo, and by Corol-
lary 2.18 (c) we can assume further that I' = Q4. Then, simple objects in B are
enumerated (up to isomorphism) by finite subsets A of Z-,. For a subset A, we set
Ca = — Y ;e G and choose a basis {v}*} of the weight subspace X. Let U be the
union of these bases. Note that every cyclic A-module is multiplicity free and has
at most countably many cyclic submodules generated by vectors of weights of the
form (,. Consider the set X of cyclic submodules of X consisting of all modules Au
for v € U and all cyclic submodules of Au generated by weight vectors (the weights
necessarily having the form (g for finite subsets B of Z-(). Then X is a partially
ordered set with respect to the inclusion order. Clearly, X =3, Y.

We claim that any interval in this partial order is finite. To prove this, it suffices to
consider an interval of the form [Av, Aw] where Av C Aw. Let v € X% and w € X
for some finite sets A, B. Note that Aw is a quotient of the indecomposable projective

A-module P((p). Therefore
v=d H T; H ow

il jeJ

for some d € C* and some finite subsets J C A, I C Z+¢ \ B. If Av C Au C Aw then

uzd'Hazinajw, v:d”Hq:i H d;v.

el jeJ! el jeJ”

Note that I = I'U 1", J = J U J". Since for fixed I,J there exist finitely many
choices for I', 1", .J', J", the claim follows.

Recall that by the Szpilrajn theorem [Mar] any partial order can be extended to a
total order. Moreover, we claim that any interval-finite partial order on a countable
set I can be extended to an interval-finite total order. Indeed, assume that I does
not have a smallest or greatest element. (If I is bounded above or below, the proof
is similar). We can choose a sequence of distinct elements {z; | i € Z} such that if
z; < xj then i < j, and also I = U[z;, 7;41]. Let U, = U [2;,544] for n > 0.
Using induction we can define a total order on U, as required. Indeed, one can see
that U,11 \ U, = Y U Z where all elements of Z are not less than elements of U,
and all elements of Y are not greater than the elements of U,,. On the other hand,
both Y and Z are finite and therefore one can clearly define a suitable total order on
them.
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This argument endows X with a total order < such that the ordered set (X, <) is
isomorphic to (Z, <), (Z<o, <), (Z=o, <), or some finite interval of Z. We enumerate
the elements of X using this isomorphism. Set X,, := )", < YiforY; € X. Let us prove
that the A-module X,,/X,,_; is simple for any n. Indeed, X,,/X,, 1 ~ Y, /(Y,NX,_1).
Since Y,,NX,,_; contains all proper cyclic submodules of Y,,, the submodule Y,,NX,,_;
is the unique maximal submodule of Y;, and the quotient Y,,/(Y,, N X,,_1) is simple. If
(X, <) has no minimal element then clearly N, X,, = {0}. If X; =Y} is the minimal
element of (X, <), then X; is simple and we add X, := {0}. O

Example 2.20. Let A = D(oc0|0), 4 € Qa, and let X be an indecomposable A-
module of infinite length with finite weight multiplicities.

(a) Theorem 2.19 implies that X admits a Z--filtration with simple quotients
whenever X has a simple submodule contained in any nonzero submodule of
X. Therefore the A-module F'(1) has such a filtration by Lemma 2.10.

(b) Similarly, if X has a unique maximal submodule then X admits a Z_o-
filtration with simple quotients. In particular, this applies to the A-module
P(p).

(c¢) Fix an isomorphism A ~ A ® A of associative algebras and consider X :=
F(u) ® P(p) as an A-module via this isomorphism. One can see that X has
neither a simple submodule nor a simple quotient. Nevertheless, by Theorem
2.19 the module X admits a Z-filtration with simple quotients.

2.6. Weight modules over A., and A for A = D(a|b) or A = Cl(alb). Let
T:Qa — Z/27 be a surjective homomorphism of abelian groups. We define

B = @ A*, B = @ A*,
7(p)=0 7(p)=1

Then B is a subsuperalgebra of A containing H 4, and the decomposition A = B& B’
defines a Z/27Z-grading.

In this subsection we establish an equivalence between the category W, and the
category Wp of preferred weight B-modules. This result applies to the particular
cases B = Ay and B = A.,. (For B = Aj preferred B-modules are purely even
B-modules.)

The root lattice Q p = ker 7 is an index-two subgroup in Q 4. Consider the block WY
for some equivalence class I' C hj. Note that I' = IVUT”, where I := (u+Qp)NT for
some p € I'. This decomposition depends on the choice of x but only up to swapping
I'" and I'. By W} we denote the subcategory of Wp of B-modules with support in
I
Theorem 2.21. The abelian categories WY and WY are equivalent.

Proof. We define functors R : W5 — WE and I : W5 — WY by setting

RX)=Px", IY)=AxsY.

pel”
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We observe that R is exact, I is right exact, and [ is left adjoint to R. Therefore,
there are canonical morphisms of functors ¢ : /R — Idyy, and ¢ : Idy, — RI. It
remains to check that both functors are isomorphisms on objects. Recall that for any
p € T the induced module P(u) = A®y, (IIPWC,) is projective in W,. Similarly,
the B-module Q(u) == B ®p, (Hp(”)(:u) is projective in Wp. By construction we
have 1(Q(n)) = P(u) and R(P()) = Q(u). Thus 6(P()) = P() and $(Q(n)) ~
Q(p). Every object in W4 (respectively, Wg) has a resolution with terms given by
direct sums of P(u)-s (respectively, Q(u)-s). Hence ¢ and ¢ are isomorphisms on
objects. O

2.7. Weight modules over Aj. Here we classify simple bounded Ag-modules. We
note that hy C Ay and that the root lattice ()4, is the sublattice of ()4 generated
by (i — ¢; for i,7 # 0, i # j. As before, we can work with preferred modules only.
We introduce a new equivalence relation on h¥ by setting u ~q v iff 4 =~ v and

M_VGQAO'

Theorem 2.22. (a) For every u € b there exists a unique (up to isomorphism)
preferred simple weight module Y (u) such that pu € suppY (u).

(b) Two simple preferred Ayg-modules Y (1) and Y (v) are isomorphic if and only if
H =g V.

Proof. (a) We define the Ag-module Y (1) to be the Ag-submodule of X () generated
by the weight space X (u)*. It is simple since for every proper submodule Z of
Y (p) we have AZ NY () = Z. Furthermore any simple weight Ap-module, whose
support contains p, is isomorphic to the unique simple quotient of the induced module
Ay ®p, C,. This proves (a).

(b) It follows from (a) that Y (u) and Y (v) are isomorphic if and only if p €
suppY (v). On the other hand,

suppY (v) = suppX (v) N (v + Q)
This implies the statement. 0

Let A = D(a|b). Any Ap-module M is also a module over Lie Ay, the Lie superal-
gebra associated to Ag. We call M integrable if M is integrable as an sl(a|b)-module.

Proposition 2.23. (a) A simple weight Ag-module Y (u) is integrable if and only if
Wi € Z>o tfor all i > 0 or p; € Z« for all © > 0.
(b) Every simple weight Ag-module is integrable as a D(0|b)o-module.

Proof. (a) By a direct inspection of suppY (1) one sees that, if u satisfies the condition
of the proposition, then any v € suppY (i) satisfies the same condition. Therefore the
set (v+Za)NsuppY (p) is finite for any v € suppY (u) and any root « of sl(a|b). This
implies that Y (i) is integrable whenever p satisfies the condition of the proposition.

On the other hand, if there exist 4,7 > 0, ¢ # j, such that p; is not an integer or
Wi € Zso and p; € Zo, then x;0; acts freely on Y (u)".
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(b) For any 1 € b} and any o = ¢; — ¢; for 4,57 < 0, at most one of u + a and
p — « lies in hY. Since the support of any weight Ag-module is a subset of b, the
statement follows. O

Proposition 2.24. Suppose A = D(oco|o0). A simple Ap-module Y (u) is faithful if
and only if the set of values

Si = {vi | v € suppY ()}

Is Infinite at least for one i.

Proof. We first note that (by definition) v; € {0,1} for all v € suppY (u) and i < 0. If
i >0 and v; > m for some m € Z~, then (x;0;)"Y ()" # 0 for any j > 0. Similarly,
if i > 0 and v; < —m for some m € Zq, then (x;0;)™Y (u)” # 0 for any j > 0. Thus
the sets \S; are infinite for all ¢ > 0 whenever S; is infinite for some ¢ > 0. Moreover,
we observe that the set Ty := {(v1,..., ) | v € suppY (u)} is Zariski dense in C* for
every k > 0.

Next we notice that if .S; is finite for some 7 > 0 then [], g (u; —s) € Anna,Y (),
where u; = x,;0;.

It remains to show that if \S; is infinite for any positive ¢ then Anng,Y (u) = 0.
Clearly, Anny, Y (p) is a weight h-module with respect to the adjoint action of b.
Furthermore, for any u € A} there exists v € A, " such that uv # 0. Thus, it suffices
to prove that Anng, Y (u) N Ha = {0}. Any u € H4 can be written in the form

!
u=polur, ..., u) + ZP@(Uh e U U
i=1

for some k,l € Z-y and polynomials pg,p1,...,p. The condition u € Anng,Y (1)
implies p;(v1,...,vx) = 0 for all v € suppY () and ¢ = 1,...,l. Therefore p;(T}) = 0,
and hence u = 0. 0

Corollary 2.25. The ideals ker T* are primitive ideals of U(sl(0c0]|o0)).

3. CLASSIFICATION OF SIMPLE BOUNDED WEIGHT 0SP-MODULES AT INFINITY

We are now ready to describe the category of bounded weight g-modules for g =
0sp(2a|2b), 0sp(2a + 1]2b). In what follows we assume that g is infinite dimensional,
i.e., that at least one of a,b equals co. We fix an exhaustion of g as hﬂ gk, where
Ok =~ 08p(2ag|20y) or g =~ 0sp(2ax + 1|2bg), and ay, by € Zg satisfy a, = a for a < oo
and b, = b for b < 00.

We start with the following observation.

Proposition 3.1. If M is a bounded g-module, then the restriction of M to 0(2a)
or 0(2a + 1) is integrable and semisimple.

Proof. M is a bounded semisimple h-module, and hence M is a bounded weight
(0(2a) + b)- or (0(2a + 1) + h)-module. Therefore, as an 0(2a)- or o(2a + 1)-module,
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M is isomorphic to a direct sum of bounded weight 0(2a)- or 0(2a + 1)-modules. As
mentioned in Section 1, a bounded weight 0(2a)- or 0(2a + 1)-module is integrable
for a = 00, and is a sum of finite-dimensional modules for a < oo. Therefore the
semisimplicity claim holds trivially for a < co. For a = oo the semisimplicity claim
follows from Theorem 3.7 in [PSer2]. O

Recall that an odd reflection is the replacement of a Borel subsuperalgebra b of g
by a Borel subsuperalgebra b’ of g such that exactly one odd root « of b is not a root
of b’ (and hence —a is a root of b’). If Ly(A) denotes an irreducible g-module with
b-highest weight A and purely even highest-weight vector, then Ly(\) is isomorphic
either to Ly (A) or to I[ILy (A — «). The latter case, called a typical reflection, occurs
precisely when (A, ) # 0, while the former case, called an atypical reflection, occurs
when (A, a) = 0.

By J; we denote the kernel of W, if g = o0sp(2al2b), and respectively of O,
if g = osp(2a + 1]2b). Recall that J; is the annihilator of any spinor-oscillator
representation. Moreover, it is obvious that J; = h& Jg, whenever g = hﬂ gi for an
inductive system of finite-dimensional Lie superalgebras g; of type osp.

Lemma 3.2. Let q = osp(m|2n) for m,n € Zsq, and I C U(q) be a bounded
primitive ideal of degree d. Assume that at least one of the simple ideals of qj has
rank greater than d. Then d = 1. Moreover I = J,, unless I is the augmentation
ideal or the annihilator of a defining module.

Proof. For m < 1 the statement follows directly from Lemmas 1.5 and 1.6. Therefore
in the rest of the proof we assume that m > 2.

By Musson’s Theorem [M], I = Annyg)Le(A) for some Borel subsuperalgebra b
and some weight A\. For A = 0, the ideal I is the augmentation ideal. For the rest
of the proof we assume A # 0. Let s be a simple ideal of qg of rank greater than
d + 1. We can choose the Borel subsuperalgebra b so that its base of simple roots
contains a base of simple roots for s. By p we denote the weight of s obtained from
A by restriction.

In order to study the annihilator I of the simple highest weight g-module Ly()),
we will consider Ly(\) as a highest weight module over a variable Borel subalgebra
b’ obtained from b by some sequence of odd reflections. Then N will denote the
corresponding highest weight, and p/ will be its restriction to s. Lemma 1.4 implies
that the simple s-modules with highest weights © and u' are necessarily multiplicity
free.

We may assume that b’ is obtained from b by odd reflections with respect to some
isotropic odd roots aq,...,a,. It is essential to note that there are at most four
nonisomorphic multiplicity free simple weight s-modules which have a highest weight
with respect to a fixed Borel subalgebra of 5. (Indeed, these are the trivial, natural,
and spinor modules for s ~ o(m), and the trivial, natural, and oscillator modules for
s ~ sp(2n).) This shows that each of the weights p and p/ can take at most four
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different values. Moreover, since A\, X have the same image modulo the root lattice
of q, it is easy to check that for a given u there is a unique y’ with p' # p. Therefore
in a shortest chain of odd reflections connecting b and b’ there can be at most one
typical reflection.

Assume s = sp(2n). If m = 2¢ + 1 we fix the simple roots

€1 _527"'755_51a"'7(5n71 _(sn?(sn?
and if m = 2¢ we take the simple roots
€1 —52,...,5g—617...,5n_1 —5n,2(5n.

Set A = ajeq + - -+ + agey + p. The above conditions and Lemma 1.6 show that for
i # ' one of the following holds:

(]') p=0, /JJ/ = 01,
(2) pp= 01, ' =0,
(8) p=—5(01 + - 4 0n), ' = =51+ + Gn1) = 50,
(4) p= —%((51 + 4 0p) — %(5n, W= —%((51 + o+ 0,).

Consider the first case. We start by applying the odd reflections corresponding
to the sequence of odd roots ¢y — d1,...,61 — d;. Since A # 0, exactly one of these
reflections must be typical, say with respect to ¢, — ;. This implies ap41 = --- =
ag=0,a; =---=a,1 = —1. Next, an application of the reflections corresponding
to €y — 0, ...,61 — 02 cannot change \. This is only possible for p = 1 and A = ¢4,

and then Ly()) is a defining representation.

Let us deal with the second case. The odd reflections with respect to the roots
gy — 01,...,61 — 01 do not change ), i.e., they are all atypical. Therefore ay = --- =
ag = —1, but then the reflection with respect to e, — d5 is typical and ' = &; + s.
This proves that the second case is impossible.

Now, consider the third case. Here we perform in some order all odd reflections with
roots €, —0;,1=1,...,¢,j =1,...,n—1, and check that all these reflections do not

change A. This forces a; = --- = ay = % Hence A = % (e14 -+ +e0) —%(51—1—' - +d,)
and Ly(A) is a spinor-oscillator representation.
Finally, let us look at the fourth case. We can show that a1 = --- =a, = % in the

same way as in the third case. Therefore, if m is even we have A = % (14 +e0)—
2(61+ -+ 8,1) — 26, and Ly()) is a spinor-oscillator representation not isomorphic
up to parity change to a spinor-oscillator representation that occurred in the third
case. If m is odd, then by Lemma 1.5 the restriction of A\ to osp(1|2n) with roots
+6; £ 0;,06, — &5, £6; for r # s, must equal —%(51 + -+ +0,). This contradicts our
assumption for pu, therefore the fourth case forces m to be even.

This proves our claim for § = sp(2n) since in case (1) I is the annihilator of a
defining representation, while in cases (3) and (4) [ is the annihilator of a spinor-
oscillator representation.
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We conclude the proof by essentially repeating the above argument for s = o(m).
For m = 2/ we fix the simple roots

01 — 02y .oy Op1 — OpyOp — €1,61 — €9, ..., Ep—1 — Eps E0—1 + €4,
and for m = 2¢ 4+ 1 we choose the simple roots
01 — 02y y0p_1 — Op, 0y — €1,61 — €9, ..., Ep_1 — €y, Ep.
A priori there are the following cases for pu # '

(1) H:0> N/:‘Sb
(2) p=e1, W' =0,
B)p=g(er+ - +eo), =31+ +er1 —er),
(4) p=3(er+-+err—en), p =51+ +e0).
All these cases can be treated in the same way as above. 0

Corollary 3.3. Let q and I are as in the previous lemma. Then the superalgebra of
b-invariants (U(q)/I)" is abelian. Hence any weight q-module generated by a single
weight vector is multiplicity free.

We are now ready to prove the following.

Proposition 3.4. Let M be a simple bounded g-module. Then M is multiplicity
free. Moreover, M satisfies Anny )M = Jy or M is a trivial or a natural module.

Proof. Let I := AnnM, U := U(g)/I, and let A be a weight of M. Then a standard
argument shows that M* is a simple U%-module. Next, set

br:=grNb, U :=Ul(ge)/(Ulge) NI).

We have U" = hﬂU ,?’“ Since g is infinite dimensional, Lemma 3.2 implies that for

sufficiently large k the simple U, ,?k—constituents of the module M* are one-dimensional.
By passing to the direct limit we obtain dimM?* = 1. Furthermore, again by Lemma
3.2 we see that the annihilator of U(gx)M* equals Jy,, unless U(gy)M?* is a trivial
representation or a defining representation. The statement follows by passing to the
direct limit. OJ

Remark 3.5. The claim of Proposition 3.4 is proved in [GP] in the case where g = gg,
i.e., for g = sp(00), 0(c0). O

We say that a simple weight g-module M is of spinor-oscillator type if it is anni-
hilated by J;, i.e., M is obtained by pullback along the homomorphism ©,; from a
weight Cl(alb)-module or, respectively, along the homomorphism V¥, ; from a weight
Cl(a|b)e,-module. Proposition 3.4 implies the following.

Corollary 3.6. Let M be a simple bounded weight g-module such that M
V11V, C,1IC. Then M is of spinor-oscillator type.
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Note that every simple weight sp(2b)-module T' of oscillator type (as defined in
Section 1) is the pullback of a (unique, up to isomorphism) simple weight C1(0]b),-
module T. This follows from the fact that the ideal ker Wy, of U(sp(2b)) is the
primitive ideal not only of the oscillator representations but of any simple multiplicity
free weight module of sp(2b). For b < oo this is well known, and for b = oo see [GP)].

Given T as above, the module T' generates a unique simple weight C(0[b)-module
which has the form T @ 7" as a CI(0|b)e,-module. The pullback of 7" to sp(2b) is
by definition the twin of T and is a simple module. Similarly, any spinor o(2a)-
module is the pullback of a simple weight Cl(a|0).,-module, and we call two spinor
0(2a)-modules twins if they are pullbacks of the two simple Cl(a|0),,-constituents of
a simple Cl(a|0)-module. For o(2a + 1) we declare two spinor o(2a + 1)-modules to
be twins if they are isomorphic.

We are ready to state our explicit description of simple bounded weight g-modules.

Theorem 3.7. Let M be a simple bounded weight g-module of spinor-oscillator type.
Then the following statements hold.

(a) My and Mj are simple gg-modules.
(b) There exist twin spinor o(2a)- or 0(2a+1)-modules S and S’, and twin simple
sp(2b)-modules T and T" of oscillator type, such that

(3.1) My~S®T, M ~I(S T

The modules S, S, T,T" are unique up to isomorphism and determine M up
to isomorphism.

(¢) Any pair (S,T) where S is a spinor 0(2a)- or 0(2a + 1)-module and T is a
simple sp(2b)-module of oscillator type determines a simple bounded weight
g-module M of spinor-oscillator type for which (3.1) holds.

Proof. Let A = Cl(alb). Claim (a) follows directly from Lemma 1.1 since the map
Uop : U(go) = (Aew)o (respectively, O : U(gg) — Ap) is surjective.

(b) Note that if the statement holds for M then it holds for TTM.

If g = o0sp(2a+1|2b) then we can assume that M is the pullback of a simple preferred
weight Cl(a|b)-module X. By Proposition 2.13(b) there is an isomorphism X ~

(XN)e (X’)T)T for some simple preferred weight Cl(a|0)-module X+ and some
simple preferred weight D(b|0)-module X ~. Next, using the isomorphism Cl(a|b)y ~
Cl(a|0) ® C1(0]b)y from Corollary 2.5 we see that X ~ XT @ R(X ™) and X7 =~
Xt ® (X~ /R(X™)) where the functor R is defined in Section 2.6. Thus, S = 5’ is
isomorphic to the pullback to 0(2a + 1) of X while 7" and 7" are isomorphic to the
pullbacks to sp(2b) of R(X~) and X~ /R(X ™), respectively.

Now let g = osp(2a|2b). We can assume that M is the pullback of R(X) for a
simple preferred weight Cl(a|b).,-module X. Then

R(X)g = R(XT) @ R(X™), R(X); ~(R(XT)/X") @ (X /R(X")).
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Therefore S and S’ are isomorphic to the respective pullbacks to 0(2a) of R(X™) and
(R(X1)/X™), and T and T" are the same as in the case of osp(2a + 1]2b).

The uniqueness of S and T, and hence also of S" and T”, is clear from the iso-
morphism of gg-modules My ~ S ® T'. The fact that S, S’,T,T" determine M up to
isomorphism is a consequence of the observation that M determines R(X)g, which
in turn determines Xt and R(X ™) for g = osp(2a + 1]2b) (respectively, R(X ™) and
R(X™) for g = 0sp(2a|2b)), and ultimately X+ and X~ since R is an equivalence of
categories. Then M is the pullback of ((X1)" ® (X_)Jf)T for g = osp(2a + 1|2b) and
of R(XT) @ (X‘)T)Jr for g = osp(2a|2b).

(c) The given pair (S,T") determines a pair (X, X ), where S is the pullback of a
simple weight Cl(a|0)-module X and T is the pullback of a simple weight C(0b)-
module (X ~)' for a simple weight D(b|0)-module X . Then M is recovered from X *
and X~ as in the proof of part (b). O

Remark 3.8. There is an alternative definition of pairs of twins (5,5") or (T,7") in
terms of the supports of the weight modules S and T'. Recall that in [GP] the sup-
ports of all simple bounded (equivalently, multiplicity free) weight 0(c0)- and sp(co)-
modules are described explicitly, and moreover a given such module is determined up
to isomorphism by its support. For a finite-dimensional orthogonal or symplectic Lie
algebra it is well known that a simple multiplicity free weight module is determined
by its support as well. Both if a < oo or a = oo, for any spinor 0(2a)-module S there
exists a unique (up to isomorphism) spinor module S’ such that for every i € Z-o,
i+ g; € suppS’ for some p € suppS. Similarly, if b < oo or b = oo, for every
sp(2b)-module T of oscillator type there exists a unique (up to isomorphism) module
T" of oscillator type such that for every i € Z~q, v +¢; € suppS’ for some v € suppS.
It is straightforward to show that the pairs (S,S") and (T, T") are precisely the pairs
of twins defined above. This observation leads to another proof of Theorem 3.7(b)
based on analyzing the supports of the gg-modules Mz and Mj. O

Consider the decomposition gg = g, @ gsp, Where g, =~ 0(2a) or g, >~ 0(2a + 1) and
gsp = 5p(20). Set b, = h Mg, and hgy = h N ggp. Then b* = b5 @ by,. Moreover, if
[y C by and I', C bz, we put I's + Ty := {71 + 72 | 11 € T, 12 € g}

Corollary 3.9. Let M be as in Theorem 3.7. Then
suppM = (suppS U suppS’) + (suppT U suppT’) C b & Hp-

Moreover M is never isomorphic to IIM, and suppM determines the isomorphism
class of M up to application of II.

Remark 3.10. The pairs (M,IIM) for g are appropriate superanalogs of twin pairs
for 0(2a) or sp(2b). O
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4. ON THE CATEGORY OF BOUNDED WEIGHT 0sp-MODULES

Now we turn our attention to the category By of bounded g-modules. In this
section, g stands for osp(2a + 1|2b) or osp(2a|2b) for all, possibly finite, a and b.

Let B;* denote the full subcategory of By with simple objects of spinor-oscillator
type. Every M € B, decomposes uniquely into a direct sum M'® M” with M’ € Bg**
and M"” being a direct sum of finitely many copies of trivial and defining modules.
This follows from a simple inspection of supports which shows that any simple sub-
quotient of M isomorphic to V,IIV,C,IIC splits as a direct summand of M. By
W™ for g = osp(2a + 1]2b) (respectively, Wﬁ"j for g = osp(2al20)) we denote the
category of all weight A-modules (respectively, A.,-modules) with finite weight mul-
tiplicities. Note that the objects of W™ (respectively, Wﬁg) are not necessarily
preferred A-modules (respectively, A.,-modules).

Observe that, if a and b are finite then the indecomposable modules in B;* have
finite length. Indeed, the support of every such module M lies in a single coset of
the root lattice of g. Since the root lattice of gg has index 2 in the root lattice of
g, the support of M over gg lies in at most 2 cosets of the root lattice of gz. As a
consequence, M has finite length as a gg-module by Lemma 3.3 in [Mat].

The following is our first main result about the category Bg*.

Theorem 4.1. Let A = Cl(a|b) for b # 1. If g = osp(2a + 1|2b) then the category
A fin

Bg* is equivalent to the category Wiy™. If g = 0sp(2a|2b) then the category Bg* is

equivalent to the category VV/AZ
As a first step we prove Theorem 4.1 for finite a and b.

Lemma 4.2. Let dim g < oo. Then the restriction map Extévh(M, N) — Extéa7h(M, N)
is injective.
Proof. We have to show that any exact sequence in Bj*

0 —+N—-R—->M=0

which splits over gg splits also over g. It suffices to show that H'(g, gg; Hom(M, N))y =
0, where Hom stands for the homomorphisms of vector spaces disregarding the Zs-
grading, see §3.1 and §4.5 of [Fuks]. Any indecomposable object in Bg* has finite
length and therefore it is enough to prove that this cohomology vanishes for simple
M and N. Writing down the first three terms of the complex computing relative
cohomology, we have
0 — Hom, (M, N) % Hom! (g7 ® M, N) — Hom, (A%g; @ M, N) — ...,

where Homgﬁ denotes homomorphisms of gg-modules preserving the Zsy-grading. Note
that the second term of the complex does not vanish if and only if supp M7N(supp N+
A7) or suppMg N (suppN7 + Aj) is non-empty. Using Theorem 3.7 we see that this
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can happen if and only if M ~ N. In the latter case
Hom (91®M M) Hom (91®M0,M1)EBHOH} (91®M1,M0) (C

and

Endy (M) = Endy (M;) & Endy (M;) = C*.

Consider ¢y € Hom (gl ® Mg, M7) and ¢, € Hom (gl ® Mj, M) defined by the
formula ¢;(g ® m) = gm where g € g7 and m € M;. Set

m if m € M;
Yilm) = {o it m ¢ M,

Then ; = d(v;). Hence H'(g, gg; End(M))g = 0. O

For g5 = go ® gsp we say that a simple module Z has spinor-oscillator type if
Z ~ 8 ®T for some spinor g,-module S and some ge,-module 7" of oscillator type.
By Bg*“ we denote the category of Z,-graded bounded weight gg-modules with simple
constituents of spinor-oscillator type.

Corollary 4.3. Theorem 4.1 holds in the case dimg < oo (and b # 1).

Proof. Note that if b = 0 the statement is trivial since B;* is a semisimple category
with objects that are finite direct sums of (finite-dimensional) spinor modules. Next,
for g = sp(2b) with 1 < b < oo the statement is proven in [GS]. Therefore, if
g = o0sp(2a + 1]2b) (respectively, g = o0sp(2a|2b)), we have an equivalence of the
categories By ¢ and Wf " (respectively, W(JXZU .), where Wf " (respectively, W(f ”:v)ﬁ)
is the category of Zo- graded weight Ag-modules (respectlvely, (Aey)g-modules) with
finite weight multiplicities. - -

Let us prove that the pullback a projective object P in Wﬁm (respectively, W AZ)
is projective in By*“. Since P is induced from a finite-dimensional H4-module, P is
projective in WZ\T (respectively, )7\7{21)6). By the above equivalence, the pullback of
P is projective in B;*. Now Lemma 4.2 implies that P is projective in ;.

Since any object M in Bj* is a quotient of a projective module, M is obtained by

pullback from WAi” (respectively, Wi . )-module. The statement follows. O
Next we recall the following statement.

Proposition 4.4 ([CP], Corollary A.3). Let g = limg, be a direct limit of Lie
%
superalgebras. Let () = lim Q) and R = lim R;, be weight g-modules. Assume that
— —
R has finite-dimensional weight spaces. Then Ext;k’hk(Qk,Rk) =0 forallk >> 0
implies Exté’h(Q, R)=0.

We are now ready for
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Proof of Theorem 4.1. We only need to consider the case g = osp(2a + 1|2b) or g =
0sp(2a|2b) where dimg = oo. We fix an exhaustion g = lim gy, for g, = o0sp(2a,+1|2by)
H

or g = 0sp(2ax|2b;), where one of the sequences ay, or by may stabilize.

Since our desired equivalence will be obtained simply by pullback via the homo-
morphisms O, or W, it suffices to show that every object in Bgsc is the pullback of
some weight A-module (respectively, A.,-module). For this, notice that Proposition
4.4 implies that if P = lim P is a direct limit of projective objects in B ¢, then

—
P is projective object in By*. Next, Theorem 4.1 holds for g and thus every P
is the pullback of a projective object in WAi" for g = o0sp(2a + 1|2b) (respectively,

W(JZZ)% for g = o0sp(2a[2b)). Since every object of Bg*° is a quotient of some P as

above, we conclude that every object of B;* is the pullback of some object of Wﬁm

(respectively, WAZ") O
Corollary 4.5. Theorem 4.1 shows that for b # 1 any indecomposable object M

of By* has a filtration similar to the filtration which exists on an indecomposable
weight A-module with finite-dimensional weight spaces according to Theorem 2.19.

Remark 4.6. For b =1 every module in B3 has finite length. O

The following is our second main result about the category Bg*. Let (ngc)g be
the category of purely even bounded weight gg-modules with simple constituents of
spinor-oscillator type.

Corollary 4.7. If b > 1 then the category Bg* is equivalent to the category (Bg>“)g.
The functor £ : M — Mj establishes an equivalence.

Proof. The statement follows from Theorem 4.1 and from the equivalence of categories
established in Theorem 2.21 for B = Aj.
O

Corollary 4.8. For b > 2 every non-semisismple block of the category of bounded g-
modules is equivalent to a block of bounded D(k|0)- or D(c0|0)-modules with integral
weights.

The category of bounded weight D(k|0)-modules for finite k is described, for ex-
ample, in [GS]. For the case of D(00|0) see [FGM].

5. SIMPLE BOUNDED WEIGHT sl(00]|00)-MODULES

We start by two lemmas concerning sl(m|n)-modules for m,n € Zs. Given a Lie
superalgebra q ~ sl(m|n) we fix the simple roots of ¢ as

€1 —€&2,---,&m-1 " Em,Em _51a51 - 527"'7571—1 _5n7
and let wy, ..., W1, Wi, Wint1, - - -, Wmin—1 denote the dual basis (fundamental weights).
There is an obvious embedding sl(m) C qg, and we consider wy, ..., w,,_1 also as fun-

damental weights of sl(m).
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Lemma 5.1. Let q = sl(m|n) form > 3. Let M be a simple bounded highest weight
g-module with highest weight A and such that d(M) < m — 1. Assume that M is
not integrable over the simple ideal s{(m) C qg. Then A\ = aw, with a ¢ Z>, or
A= —(14 a)wg_1 + awy, for 2 < k < m.

Proof. Denote by p the weight of s[(m) obtained from A by restriction. By Lemma 1.6,
Anng simy L) = AnnU(s[m))L(awl) or Anngy(simy L) = AnnU<5,(m>>L(awm,1) for
some a ¢ Zzo. Since the primitive ideals Ann,, . L(aw;) and Ann, - L(awm, 1)
have degree 1, the result of [PSer3] mentioned before Lemma 1.6 shows that also
d(L(p)) = 1. Therefore Proposition 3.4 of [BBL] implies that u is one of the following
weights:

(1) aw; for a ¢ Z>,

(2) bwm_l for b g_ﬁ Z207

(3) —(1 + a)wk_1 + awy, for some 2 < k < m — 1 and arbitrary a.

Let us deal first with the cases (1) and (3). Consider the odd reflections with
respect to the roots e, — d1,...,&, — 0, of . Since the restriction to sl(m) of the
highest weight of M with respect to any reflected Borel subsuperalgebra must satisfy
the same respective condition (1) or (3), all these reflections must be atypical. This
is only possible if the restriction of A to the Cartan subalgebra of sl(n) equals zero.
Furthermore, we have (A, £,,—d1) = 0. This implies A = aw; or A = —(1+a)wyg_1+awy
for 2 < k < m — 1, respectively.

Now let u = bw,,—1 as in (2). After performing all odd reflections with respect
to the roots €,, — d1,...,&m — 0,, we obtain a highest weight A" of M such that its
restriction to sl(m) equals cw,,—1 and b — ¢ € Zs(. Next, we perform odd reflections
with respect to the roots €,,_1 —d1,...,6m_1 — 6,. By the same argument as in cases
(1) and (3), these latter reflections must be atypical. Therefore the restriction of A’
to sl(m) equals zero and (N, e,-1 — d01) = 0. In other words, \' = cw,,_; for some
¢ ¢ Z>p. Finally, passing via odd reflections to the original Borel subsuperalgebra
yields A = bwp,—1 + (1 — b)wy,. To finish the proof we set a =1 — b. O

Recall the homomorphisms T:;‘n :U(sl(m|n)) = D(m|n)oand Y : U(sl(m|n)) —
D(n|m) from Section 2.2. Note that those homomorphims map the Cartan algebra
of sl(m|n) to the subalgebra spanned by w; — u; for all 4,j # 0,7 # j. Moreover,
the map f induced by Y, =~ (respectively, Y, ) from (Span {u; —u; | i # j})" to b*
is linear, and is determined by the correspondence (; — ¢;, (_; — 0; (respectively,
Coi > &, GV 65).

Corollary 5.2. Let M be a bounded simple non-integrable q = sl(m|n)-module with
d(M) < min(m,n) — 1. Then d =1 and Annyq)M contains ker T, -~ or ker T;‘n.

Proof. Without loss of generality we can assume that M is not integrable over sl(m).
Then AnnyM = Anng)L(\) where A is one of the weights in Lemma 5.1. It
suffices to show that L(\) is obtained by pullback from a weight D(m|n)o-module.
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Consider the D(m|n)-module

F()\) = 24Cleit, .. xtt ooy, o),

b m -

where k = 1,a ¢ Z>o if A = aw;, and a € Cif A = —(1+a)wi_1 +awy for 2 < k < m.

Let fy := z7" ... 2; 2% and let Y, denote the D(m|n)p-submodule in F(\) gen-
erated by fr. Note that the weight of fi equals aw; for k = 1, and equals —(1 +
a)wy—1 + awy, for 2 < k < m. Then Y] is a simple D(m|n)o-module and its pullback
along T;‘n is isomorphic to L(aw,), since by direct computation one can see that
any vector annihilated by all x;_10; for 2 < i < m is proportional to f;. For k > 1,
consider the D(m|n)o-submodule Z, C Y generated by x;_10;(f) for 2 < i < m.
Then f ¢ Z; and hence X := Y;/Z; # 0. Furthermore, the pullback along T;;|n of
X, is isomorphic to L(—(1 4 a)wy_1 + awy) (again because any vector annihilated by
all x;_10; is proportional to fi). The statement is proved. O

In the rest of this section g = sl(oo|oo) and A = D(oo|oc). We fix an exhaustion

g = lim gi, where g ~ sl(k|k). By g* we denote the ideals of gy with respective

+

roots €; — €; and 0; — 0;, and we write YT+ instead of Too|oo'

Lemma 5.3. Let M be a simple bounded weight g-module not integrable over g*
or g~. Then Anny M contains ker T, or respectively ker Y~, and therefore M is
multiplicity free.

Proof. Let v € M be a nonzero weight vector and let M := U(gx)v. If k > d(M)
then Corollary 5.2 implies that Anng g, )M contains ker Tf‘ .- Therefore Anng g M =

limg Annyg,) M}, contains ker TE = lim ker Y. Since every simple weight Ag-module
is multiplicity free, the second assertion follows. |

Remark 5.4. One may observe that Lemma 5.3 holds also for the Lie superalgebra
sl(oo|n), n € Zgo, where one replaces g™ by the simple ideal sl(c0) of sl(oo|n); and
T+ by T;In' O

The simple bounded integrable g-modules have been classified in [CP], Theorem
5.9. Therefore, in order to classify all simple bounded weight g-modules it suffices to
prove the following.

Theorem 5.5. Let M be a simple bounded non-integrable g-module. Then

(a) M is multiplicity free.

(b) M is obtained from a simple weight Ag-module by pullback via precisely
one of the homomorphisms Y+ or Y, and accordingly either g~ or g* acts
integrably on M.

(c) Pullback via T* establishes a bijection between isomorphisms classes of sim-
ple, non-integrable over g*, bounded g-modules and isomorphism classes of
simple non-integrable weight Ay-modules.



BOUNDED WEIGHT MODULES 33

Proof. (a) follows directly from Lemma 5.3.

(b) Let C* denote the image of T*. It is easy to see that C* C Aj;. Lemma
5.3 implies that every simple non-integrable weight g-module is obtained by pullback
from a simple C*- or a C~-module. Therefore, to prove (2) we need to show that a
weight g-module obtained by pullback from a weight C*-module is in fact obtained
by pullback from the restriction of a weight Ag-module to C*. It suffices to prove the
statement for C, since the other case follows by applying the obvious automorphism
of g.

Recall the basis {u;}iez of ha introduced in Section 2.4. By a slight abuse of
notation we denote by the same letter the preimage of u; in the Cartan subalgebra
of gl(co|oo). Then {w; = u; —u_; | i # —1} is a basis of the Cartan subalgebra of g.
Let N be a simple weight g-module, p € suppN and ¢ € C. Note that we can endow
N with a gl(oo|oo)-module structure by setting u_jv := (¢ + v(u_1) — p(u_q))v for
every v € N”. We denote this gl(oco|oo)-module by N(u, c).

We claim that if M is the pullback of some simple weight C-module, then we can
find u, ¢ such that the gl(oco|oo)-module N(u,c) is the pullback of some weight Ag-
module. Clearly, we can assume that M is not trivial. We pick some x € suppM such
that x(w;) # 0 for some i < —2. One readily sees that the relation w? = w; implies
r(w;) = £1,0 for i < —2. Next, we choose a negative i such that x(w;) # 0. It easily
follows from the linearity of x that x(w;) = 0 or k(w;) = k(w;) for every negative j.
Finally, we set ¢ = 0 if k(w;) = 1 and ¢ = 1 if kK(w;) = —1. Then suppM (k,c) C b}
and, since the restriction of M (k,¢) to g is the pullback of some weight C*-module,
the gl(oo|oo)-module M (k, ¢) is the pullback of a weight Ag-module.

(c) Follows from Proposition 2.23(b). O

Remark 5.6. Tt is likely that Theorem 5.5 holds also for sl(oo|n). O

Remark 5.7. Note that the definition of hY implies that if M is the pullback of a
weight Ag-module via YT+ (respectively, T7), then for ). a;e; + >_;bjd; € suppM we
have a; € {0,1} (respectively, b; € {0,1}). O

Proposition 5.8. A simple bounded weight g-module M is determined, up to iso-
morphism and a possible parity change, by suppM.

Proof. Here we consider the case of non-integrable modules, and leave as an exercise
to the reader to check our claim for integrable modules using the classification result
of [CP|. Let us observe that if M and N are not integrable, and one is obtained
by pullback via T+ while the other is obtained by pullback via YT~ then M and N
cannot have the same support.

Now, without loss of generality we can assume that M and N are obtained by pull-
back from simple weight Ag-modules X and Y, respectively. Suppose that suppM =
suppN but suppX # suppY. Then suppX = suppY £ 7 where 7 = >_._ (e; — &).
Since the supports of X and Y are subsets of b, this is only possible if suppX = {0},
suppY = {=7} or vice versa. Then, both M and N are necessarily trivial and we have
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a contradiction. Consequently, suppM = suppN implies suppX = suppY, and then
the Ap-modules X and Y are isomorphic up to parity change by Theorem 2.22(a).
This completes the proof. [l

Let M*(p) denote the simple weight g-module obtained by pullback from the
simple weight Ag-module Y () via T*.

Proposition 5.9. Every multiplicity free simple weight g-module M is isomorphic
to the pullback of a simple weight Ag-module via Yt or Y~. If M is obtained by
pullback via both Y+ and Y, then M is isomorphic to V', I1V, V., IIV,, C or TIC.

Proof. By Theorem 5.5 all non-integrable simple bounded g-modules are pullbacks
of Ap-modules via YT or T~, and hence are multiplicity free. Therefore it suffices to
check the statement for integrable multiplicity free modules.

Theorem 5.9 in [CP] implies that, in addition to the six modules V', IV, V,, 11V,
C, IIC there are four families of multiplicity free simple integrable g-modules S¥V/,
SHVi, ARV, AZV,. If one observes that all other three families are obtained from
STV by a twist from a proper automorphism of sl(co|oo), it remains to check that
any simple module of the form S¥V is isomorphic to M~ (p4) or IIM~(p4) for a
weight u4 € bY.

Recall from [CP] that A is a sequence of pairs (ay,,b,) where a; < ag < -+ is a
sequence of positive integers and b, € {0,1} with the condition that b, = b, if
ap = Qpt1. Moreover, STV is defined as the direct limit hﬂ 1’ SV, where V,, is
the natural sl(n|n)-module. Let

g = Z (blf—jl + (ai — Qj—1 — bz)(sz) )

1>0

where we set ap = 0. Then a direct verification shows that suppSTV = suppM ~(p14).
Since a simple multiplicity free weight g-module is determined by its support up to
isomorphism and a possible application by II, we conclude that STV ~ M~ (p.4) if the
weight space (S¥V)* has parity equal to p(pa), and STV ~ IIM~(u4) otherwise.
In fact, the parity of the weight space (S¥V)"* depends only on b;: the weight space
(SFV)*4 is purely even for by = 0 and purely odd for b; = 1.
Finally, the fact that each of the six modules V', IIV, V,, IIV,, C, IIC is obtained
by pullback via both T+ and T~ is straightforward.
O

Proposition 5.10. If M is a simple bounded weight g-module then M is semisimple
as a gg-module.

Proof. The statement is clear for integrable modules since every bounded integrable
gg-module is semisimple by Theorem 3.7 in [PSer2]. Therefore, without loss of gen-
erality we can assume that M is isomorphic to M*(p). Consider the lattice Q(ay),
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with generators ¢; — €;,0; — 0;. Set

Y ()" = o, Y ().
V€M+n(51*61)+Q(A0)6
Then Y(u)" is a simple (Ag)g-module and Y (1) = @,,, Y (1)". Obviously, the
semisimplicity of Y (v) over (Ag)g implies semisimplicity of M over gg.
O

Theorem 5.11. (a) Let g = sl(0c0). The following ideals are all bounded primitive
ideals of U(g):
Anng)S\V, Anng)SyVi, ker T, ker YT~.
(b) Let g = o0sp(2a + 1|2b) (respectively, g = osp(2a|2b)) with at least one of a
and b equal infinity. Then U(g) has exactly three bounded primitive ideals: the
augmentation ideal, Anny )V, and ker O, (respectively, ker o).

Proof. (a) follows from Corollary 2.25, Theorem 5.5, Proposition 5.8, and the classi-
fication of simple bounded integrable g-modules in [CP]. (b) follows from Corollary
3.6. OJ

Lemma 5.12. Let B denote the category of bounded weight g-modules, and let
M, N € B. Denote by @, the root lattice of g.
(a) Exty(M, N) = Extz(N, M).
(b) If M is simple and Exty(M, N) # 0, then suppM C suppN + Q.
(¢) Exty(M*(u), IM*(v)) = 0 for all y,v.
(d) If Exty(M* (), M*(v)) # 0, then pp — v € Q 4, or at least one of M+ () and
M~ (v) is trivial.
(e) If Exty(M™*(u), M~(v)) # 0, then at least one of M*(u) and M~ (v) is iso-
morphic to 'V, V,, C.
(f) If M and N are simple and d(M) > 1 then Exty(M, N) = 0.

Proof. (a) We consider the (contravariant) functor of contragredient duality -V on the
category B. Then MY ~ M, NV ~ N and

Exty(M, N) = Exti(NY, M) = Exty(N, M).

(b) Let 0 —» M — R — N — 0 represent a nonzero element of Exty (M, N). Then,
for some weight vector v € N, the image of M in R is a submodule of U(g)v" where
v’ is a preimage of v in R of weight x. Then suppM C k + @)y C suppN + Q.

(c) follows from comparing the parity of weight spaces of the modules M* () with
the parity of the weight spaces of the modules [TM*(v).

(d) follows from (b).

(e) For a g-module M and a Lie subsuperalgebra ¢ of g we denote by I'eM the set
of locally finite ¢-vectors, i.e.,

LeM = {m € M | dimspan{m, km, k*m, ...} < co Vk € £}.
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The superspace 't M is a g-submodule of M. This is established for Lie algebras in
particular in Theorem 8.2 in [PH], and the proof for Lie superalgebras is the same.

By the semisimplicity result in [CP], at least one of M*(u) and M~ (v) can be
assumed non-integrable. Moreover, by (a), the statement is symmetric with respect to
M™(n) and M~ (v). Without loss of generality, assume that M~ (v) is not integrable.
Consider a non-split exact sequence

0— M (v)—= N— M (u) — 0.

Since I'y+ M~ (v) = M~ (v), there exists a root a of g~ such that g, acts freely
on M~ (v). If Ty, N # 0 then I'y, N is a submodule of N which does not coincide
with M~ (v), ie., the sequence splits. Consequently, I'y, N = 0. Hence, for any
0 € suppM™(u) we have 0 + na € suppM~(v) for n > 2. Thus, we get that
6; € {0,1} for all i > 0, and therefore for all ¢ by Remark 5.7. This is possible if and
only if M~ (v) is isomorphic to V, V, or C.

(f) If d(M) > 1 then using Theorem 5.9 in [CP] and Proposition 1.2 one can verify
that M is isomorphic to SV, IIS,\V, S, V4, or IIS,V, for some Young diagram \ with
more than one row or more than one column. Assume M = S,V and Ext'(M, N) # 0.
Then the semisimplicity result (Theorem 6.1) in [CP] implies that IV is not integrable.
Consider a non-split exact sequence

O—N—-R—M-—0.

Suppose N ~ M~(v) for some v. The argument in the proof of (e) can be easily
modified to show that (0, a") € {£1,0} for any weight 6 of M and any root a of g*.
This implies that A\ consists of a single column, and hence d(M) = 1. Similarly, if
N =~ M™*(v) one proves that A consists of a single row and d(M) = 1. O
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