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Discretization of inherent ODEs and the geometric integration
of DAEs with symmetries*

Peter Kunkelt Volker Mehrmann*

May 17, 2022

Abstract. Discretization methods for differential-algebraic equations (DAEs) are consid-
ered that are based on the integration of an associated inherent ordinary differential equation
(ODE). This allows to make use of any discretization scheme suitable for the numerical in-
tegration of ODEs. For DAEs with symmetries it is shown that the inherent ODE can be
constructed in such a way that it inherits the symmetry properties of the given DAE and
geometric properties of its flow. This in particular allows the use of geometric integration
schemes with a numerical flow that has analogous geometric properties.

Keywords. Differential-algebraic equation, inherent ordinary differential equation, geo-
metric integration, symplectic flow, orthogonal flow.

AMS(MOS) subject classification. 37J06, 65L80, 65L05, 65P10.

1 Introduction

We consider the numerical solution of general nonlinear systems of differential-algebraic equa-
tions (DAESs)

F(t,z,z) =0, FeC(IxD, xD;,R") sufficiently smooth, (1)

where D,,D; C R"™ are open domains and I C R is a compact non-trivial interval, together
with a given initial condition

x(to) =x9, to€l, g€ D,. (2)

For this task, numerous discretization schemes that work directly on (1) or on some index-
reduced reformulation have been given in the literature, see e.g. [7, 10, 13]. In this paper, we
consider discretization schemes that work on a so-called inherent ordinary differential equation
(ODE) of the given DAE. The advantage of such an approach is that we can make use of any
discretization scheme suitable for the numerical integration of ODEs. In particular, if we are
able to choose the inherent ODE in such a way that it inherits symmetry properties of the
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given DAFE and thus special properties of its flow, we may be in the situation to use geometric
integration, i.e., to use special discretization schemes whose numerical flow possesses similar
geometric properties, see [8]. Especially in the latter case, we will concentrate on linear
time-varying DAEs

E(t): =At)z+ f(t), FE,AeCIR™), fe C(I,R") sufficiently smooth, (3)
where we are interested in the following symmetry properties.

Definition 1.1 The DAE (3) and its associated pair (E,A) of matriz functions are called
self-adjoint if .

ET=—E, AT =A+F (4)
as equality of functions.

Definition 1.2 The DAE (3) and its associated pair (E,A) of matriz functions are called
skew-adjoint if .

ET=E, AT=-A-FE (5)
as equality of functions.

In the case of linear ODEs
= A(t)x + f(t) (6)

it is well-studied how symmetry properties of the matrix function A are transferred to prop-
erties of the flow ® € C*(I,R™") defined by

d=At)D, D(tg) = I,. (7)

In the context of geometric integration, one is especially interested in flows that lie in a
quadratic Lie group

G={GeGL(n) | GTXG = X}, (8)

with some given X € R™" and GL(n) denoting the general linear group of invertible matrices
in R™". In this case, there are then numerical integration schemes such as Gauf§ collocation
which conserve quadratic invariants such that their numerical flow lies in the Lie group as
well, see again [8]. Actually, the flow lies in G when A lies pointwise in the associated Lie
algebra

A={AcR" | ATX + XA =0}. (9)
This can be seen from ® ()T X®(tg) = X and
L(@TXD) =T XD+ T XD = dTATXD + T X AP = ¢T(ATX + X A)® = 0.

Following [15], we are concerned with the quadratic Lie group Sp(2p) of symplectic matrices
related to

— — 0 IP
X = J—[_% 0] (10)

and the associated Lie algebra of Hamiltonian matrices in the case of self-adjoint DAEs and
with the quadratic Lie group O(p, q) of generalized orthogonal matrices related to

— — IP 0
X =S5, S-[O —@] (11)

in the case of skew-adjoint DAEs.



2 Preliminaries

In the following, we give a concise overview of the relevant theory on DAEs that we make use
of, see e.g. [13]. The basis are the so-called derivative array equations

Fy(t,x, i, ..., ")) =0, (12)
see [3], where Fy has the form

F(t,x, )

d .

SE(t,x,T)
Fit,z,d,... @)= "

¢ . .
(&) Ft,z,)
with Jacobians (denoting the derivative of F' with respect to the variable = by F, and accord-
ingly)

My(t,x, @, . .. ,x(i—i-l)) = Fpyp  per) (t,z,&,... ,x(€+1)), (13)
No(t,z, &, ..., 2D = [ Fpp(t,z, 2, ..., 2Dy 0 ... 0]

The following hypothesis then states sufficient conditions for the given DAE to describe a
regular problem.

Hypothesis 2.1 There exist integers i, a, and d such that the set

L, = {(t,z,&,...,a#) e R B ¢ g o)) = 0} (14)
associated with F' is nonempty and such that for every (to, xo, o, - - - ,:B((]“H)) €L, there exists

a (sufficiently small) neighborhood in which the following properties hold:

1. We have rank M,,(t,z,&,...,2D) = (u + 1)n — a on L, such that there exists a
smooth matrix function Zs of size (u+ 1)n X a and pointwise mazimal rank, satisfying
ZEM, =0 onL,.

2. We have rank Ag(t, e, i, ..., ")) = a, where Ay = ZINLIL,0 - 017 such that there
exists a smooth matriz function Ty of size n X d, d = n — a, and pointwise mazximal
rank, satisfying AxTo = 0.

3. We have rank F;(t, z,2)Ts(t, x, &, . . . ,x(/”l)) = d such that there exists a smooth matrix
function Z1 of size n X d and pointwise mazximal rank, satisfying rank F1Ts = d, where
By = Z{F;.

Note that the local existence of functions Zs,T5, Z1 can be guaranteed by the application
of the implicit function theorem, see [13, Theorem 4.3]. Moreover, we may assume that they
possess (pointwise) orthonormal columns. Note also that due to the full rank requirement we
may choose Z; to be constant.

Following the presentation in [11], we use the shorthand notation y = (,...,z#*Y) and
Yo = (Zo, - - . ,x(()“ H)). The system of nonlinear equations
F,(t -7
Hit,x.y,a) = | THhi) — 2200 (15)

T (y — wo) ’



with the columns of 77 ¢ forming an orthonormal basis of kernel F},.,(to, zo, yo) and Zyg =
Zs(to, xo,yo) according to Hypothesis 2.1, is then locally solvable for y, a in terms of (t,x)
due to the implicit function theorem. In particular, a = £y (t,z) with some function F,. One
can show that Fg(t,a:) = 0 describes the whole set of algebraic constraints implied by the
original DAE. Setting furthermore F} (t,x,3) = ZI F(t,z, &) yields a so-called reduced DAE

Fi(t,z, &) =0, (d differential equations) (16)
Fy(t,z) =0, (a algebraic equations)

in the sense that it satisfies Hypothesis 2.1 with g = 0.

Moreover, one can show that Fb., possesses full row rank implying that we can split x
possibly after a renumeration of the components according to = (x1,z2) such that Fj.;, is
nonsingular. The implicit function theorem then yields zo = R(¢,x1) with some function R.
Differentiating this relation to eliminate xo and #2 in the first equation of (16), we can
apply the implicit function theorem once more (requiring the solvability of the DAE) yielding
x1 = L(t,z1), a so-called inherent ODE, with some function £. Putting both parts together,
we end up with a second kind of reduced DAE

x1 = L(t, z1), (d differential equations) (17)
x2 = R(t,x1). (a algebraic equations)

Note that, once we have fixed the splitting of the variables, the constructed functions £
and R are unique. In particular, the set IL,, 11 can be locally parameterized according to

Fipa(t, o, R(E, 21), L(E, 21), Re(t, 21) + Ry (8, 1) L(E, 21), W(t, 21,p)) =0 (18)

with a suitable parameter p € R* and a related function W.

Under some technical assumptions, see [13], the original DAE and the reduced DAEs
(16) and (17) possess the same solutions. As a consequence, we may discretize the reduced
DAEs instead of the original DAE utilizing the better properties of the latter ones. But this
requires the possibility to evaluate the implicitly defined functions. In the case of Fy in (16)
the standard approach, see [13], is to go back to the definition of F in such a way that we
replace Fy(t,x) = 0 by F,(t,z,y) = 0.

In the special case of linear time-varying DAEs (3), the Jacobians M,, N, used in Hy-
pothesis 2.1 only depend on ¢ such that the functions Zs, 75, Z; can be chosen to depend also
only on t. The corresponding reduced DAE (16) then takes the form

Ei()i = A )z + f(1), (d differential equations) (19)
0= As(t)x + fo(t), (a algebraic equations)
where . . .
E, = Z?E7 z‘}l = Z?Aa Jil = Z?f, (20)
Ay = ZI N1, 0 -+ 0T, fo=Z]g,
with
E A0 0 f
E —A E A 0 0 f
My=|FE 24 26-A E s NMu=14 o 0> 9= 7j (21)



The splitting of the variables as x = (x1,z2) that leads to second form of a reduced DAE
corresponds to a splitting of Ay = [ Ag1 Ago ] with the requirement that Asy is pointwise
nonsingular. It is then obvious that we can solve the second equation of (19) for xs in terms
of z1, differentiate, and eliminate x5 and @5 in the first equation of (19) to obtain a linear
version of (17).

In order to utilize global canonical forms as they were presented in [15], we observe that
the construction of (19) transforms covariantly with global equivalence transformations as
follows. Let (E, fl) be globally equivalent to (E, A), i.e., let sufficiently smooth, pointwise
nonsingular matrix functions P € C(I,R™") and @ € C*(I, R™") be given such that

E=PEQ, A=PAQ- PEQ, (22)

describing scalings of the DAE (3) and the unknown x, respectively. The corresponding
Jacobians are then related by

M, =1,M,0,, N,=I1,N,0,—-1,M,¥, (23)
with
P Q O 0 0
P P 20 Q QO 0 0
L,=1p op p » Op = Q 0 0 |- (24

30 3Q Q Y=

With given choices Z3, T3, Zy for (E, A) along Hypothesis 2.1 we may choose Zy,Ts, Zy for
(E,A) as ) ) )
Zy =Zy10t, Ty=Q 'y, ZI =zIP" (25)
Having summarized the theory for general nonlinear and linear time-varying DAEs, the
next section deals with the construction of a suitable inherent ODEs for a given DAE.

3 Construction and Evaluation of an Inherent ODE

To get more flexibility into the choice of an inherent ODE, we introduce a (linear but in
general time-dependent) transformation of the unknown z before we perform the splitting,
i.e., we consider

T2

c=aw | 2|, (26)

where Q € C(I,R™") is sufficiently smooth and pointwise nonsingular. According to [13,
Lemma 4.6] the so transformed DAE (1) satisfies Hypothesis 2.1 as well with the same charac-
teristic values u, a,d. As before, the only requirement for @) is that we can solve the algebraic
constraints for xo in terms of x;. Writing

Q=[T, T;], (27)

the algebraic constraints read X
Fy(t, Tyxy + Thxo) = 0.



Hence, in order to be able to solve for x5 we need FQ;Q;T % to be pointwise nonsingular. If this
is the case, then the chosen @ fixes a reduced DAE of the form (17) satisfying

L2

Fui (t,Q(t) [ ., } Q) [ o ] +Q() [ . ] ’W(t’xl’p)> =0 (28)

T = ﬁ(t,xl), XTo = R(t,xl), To = Rt(t,w1) + Rxl (t,xl)ﬁ(t,xl)

with a suitable parameter p € R® and a related function W.

For a numerical realization, we are confronted with two problems. First, we must be able
to evaluate the implicitly defined functions £ and R. Second, for a nontrivial choice of @) we
must have access to Q.

In the next subsections, we discuss how to overcome these problems.

3.1 Numerical Evaluation of the Inherent ODE
The first problem can be dealt with by solving the system of (nonlinear) equations

Fo(t,z,d,w) =0, [I; 0]Q(t) 'z =2 (29)

for given (¢, 21). Because of the first part in (29), at a solution, the resulting (¢, z, &, w) must
satisfy

220 | gty | 7200 | yrmy s R ety | 0 | mirtey |

Because of the second part in (29), we regain the prescribed x;. Furthermore, we observe
that

R(t,x1) = [0 L Q1) 'z, L(t,21) =[1a 0]Q() ™} (&~ Q(H)QH)'x)
yielding the required evaluations of £ and R.

Since (29) constitutes an underdetermined system of equations, the method of choice to
solve (29) numerically is the Gauf-Newton method. In order to show that the Gau-Newton
method will convergence quadratically for sufficiently good starting values, we need to show
that the Jacobian at a solution possesses full row rank, see e.g. [5].

Theorem 3.1 Let (1) satisfy Hypothesis 2.1 both with u,a,d and with p+ 1,a,d. Then, the
Jacobian of (29) possesses full row rank at every solution provided that FQ;ITQ/ 18 pointwise
nonsingular.

Proof. Due to (15) for u + 1 replacing p we have
Fui1e — Zo0Fss = 0,
omitting for convenience the arguments here and later. Hence,

Py = (Z2TZ2,0)_1Z2TFM+1;:E

in a sufficiently small neighborhood. Completing Z5 to a pointwise nonsingular matrix func-
tion [ Z} Z, |, elementary row operations of the Jacobian of the first part in (29) yield

ZIT F ZIT F
[ Fo F (wt2) ] 2 Y+l 2 Putt;a,... x(nt2)
i prt i@ ZQTI p+1lz 0

6



According to Hypothesis 2.1 the entry Z2 F Lt15,... o(nt2) DOSSesses full row rank such that we
are left with the entry ZI F,11,, together with the Jacobian [I;0]Q! of the second equation
in (29). Multiplying the first part with (Z2 Zyo)” ! from the left and both parts with @ from

the right yields the matrix function

By, Ty Eo, Ty
I, 0

which is pointwise nonsingular provided that Fg;wTZI is pointwise nonsingular. 0O

3.2 Numerical Construction of the Transformation

It remains the question how we can deal with @ in extracting the evaluation of L(t,z1). In
particular, we are interested in applications where a trivial choice as constant ) or beforehand
given Q with implemented functions to evaluate both Q(t) and Q(t) is not possible but where
@ has to be chosen numerically during the integration of the DAE. The main problem in
this context is that we must choose ) in a smooth way, at least on the current interval
[to,to + h] of the numerical integration with h > 0 sufficiently small, and that we must be
able to evaluate Q.

The approach we will follow here is automatic differentiation, see [6]. This means that
we work not only with the value of a variable but with a pair of numbers that represent the
value and the derivative of a variable. Operations on such pairs are then defined by means
of the known differentiation rules. If we use the notation (z,) for such a pair, the typical
operations used in linear algebra then read

(a)  (z,2)+ (y,9) = (x+y, = +79),

(b)  (z,2) = (y,9) = (x —y, & — 7,

() (@) (w9 =(r-y,d y+x-7), (30)
(d) (2, 2)/{y,9) = (&/y, (@ —z-9/y)/y),

() V(i) = (V,5i/Vx).

These operations can be obviously extended in a componentwise way to vector and matrix
operations.

Note that in a programming language like C++ this approach can be implemented by
defining a corresponding new class and overloading the above operations to work with this
class. In this way it is possible to perform tasks of linear algebra like Cholesky decomposition
A=1L-L" in a smooth way yielding (L, L) for given (A, A). This is valid for all numerical
algorithms that do not include if-clauses. If there are if-clauses, as for example in the QR
decomposition A - Il = Q - R, then we can at least locally get a smooth version. To do this
for the QR decomposition, we may proceed as follows. For a reference point, typically tg, we
perform a standard QR decomposition A(ty) - IIp = Qo - Rp. We then freeze all if-clauses and
use automatic differentiation in the evaluation of the QR decomposition A - Il = @ - R. In
this way, we get (Q, Q) and (R, R) for given (A, A).

In particular, we can use this approach to perform the construction of reduced DAEs for
linear time-varying systems as described in Section 2 with the aim to get not only values for
the involved transformations but also values for their derivatives.



To start the construction of the reduced system (19), we need Mm Nw gy besides M,,, N,,, g,,.
Writing M, N, g for the formally infinite extensions of M, N,, g, and defining

0 I,
I, 0 0
S = I, 0 o V=10

we have the relations
=STM - MST+N, N=STN, ¢=45Tg,

see [4]. Hence, from the evaluations M1, Nyy1,gu4+1 we can actually retrieve the desired
(M, M,,), (Ny, N, (Gu gu). A first locally smooth QR decomposition then yields (Z, Zo)
and thus (As, th2> A second locally smooth QR decomposition then gives (Ty, T») and
with a third locally smooth QR decomposition for (E, E) - (T, Tb) we finally get (Z1, Z;).
In the latter case we can also use a standard QR decomposition once at ty and use the so
obtained Z ¢ to set (Z1, Z1) = (Z1,0) if it seems more suited. The remaining quantities of
the reduced DAE are then given by automatic differentiation along the lines of (20).

With a given choice (Q, Q) for fixing an inherent ODE, transforming the reduced DAE
(16) by means of (26) yields

Eii (&1 + Era(t)ie = A (a1 + Ara(t)ze + fi(t),
0= Aoy ()1 + Aga(t)zo + falt),

where A .
Ey = E1T2, Ly = EA11T2/7 o
Ay = ATy — E\Ty, A= ATy — BT},
Ay = AyTy, Agp = ATy,

and we are in the same situation as in the special case described in Section 2. In particular,
we can solve for xo, differentiate, eliminate, and solve for #; to get the fixed inherent ODE.

A spemal choice of () can be obtained by a locally smooth QR decomposition of <E1T, jt E1 )
leading to Erp =0. Hypothesis 2.1 then guarantees that Agy is pointwise nonsingular. If we set
Qo = Q(to) and Qo = Q( 0), we may also replace @) by the constant version Q(t) = Qo or by
the linearized version Q(t) = Qo+ (t—to)Qo. The latter corresponds to the construction of so-
called spin-stabilized integrators introduced in [14]. In the case that u = 0, the constructions
can be simplified by using F instead of F) since no construction of a reduced system is
required.

4 Symmetries and Geometric Integration

In this section we treat linear time-varying DAEs that are self-adjoint or skew-adjoint. The
aim is to utilize the symmetry in the construction of a suitable inherent ODE such that it
inherits certain properties of the original DAE. Note that self-adjointness and skew-adjointness
are invariant under so-called congruence, i.e., under global equivalence (22) with P = Q7 see

g. [15]. As there, we will write (E,A) = (E, A) to indicate that the pairs are congruent. Note
also that regularity of a pair (E, A) of sufficiently smooth matrix function £, A € C(I,R™")
is necessary and sufficient for the asscociated DAE (3) to satisfy Hypothesis 2.1, see e.g. [13].



4.1 Self-Adjoint DAEs

Assuming (4) for (3), we will make use of the following global canonical form taken from [15]
in a slightly rephrased version.

Theorem 4.1 Let (E, A) with E, A € C(I,R™") be sufficiently smooth and let the associated
DAFE (3) satisfy Hypothesis 2.1. If (E, A) is self-adjoint, then we have that

0 I, 0 0 0 0
(E,A)E —Ip 0 0 s 0 A22 A23 s (31)
0 0 Es3 0 Az Ass
where
Egg(t)ig = A33(t)IL’3 -+ fg(t), (32)

1s uniquely solvable for every sufficiently smooth f3 without specifying initial conditions. Fur-
thermore,
Ejy = —Eg3, Ay = Ay, Aly= Ay, A= Asz+ Es. (33)

In order to construct a suitable reduced DAE (19), we follow the lines of Hypothesis 2.1
for the global canonical form, indicated by tildes, and start with

0o I 0
I, 0 0

0 0 FEjs3
0 0 0 A 0

N 0 — Ao —Aos —Ip 0 0

My=1 0 Ay FEgp—Agp | 0 0 Es3

0 0 0 0 0 0 0 I, 0
0 —2A49  —2A 0 —Aog —Ags -, 0 0
0 —2A3 FE33—2433| 0 —Agp 2E33—As3| 0 0 FEsg

Due to the identities, the only possible rank-deficiency is related to the part belonging to
the pair (Es3, As3). The properties of (32) then imply that d = 2p and a = n — 2p in
Hypothesis 2.1. Furthermore, the left null space of M, is described by

Zg:[* 0 Z;f,o‘* 0 Z;‘Cl‘* 0 227:2‘]

Observing that

422 423
Azo  Ass

o O oo oocoo
AN
[NV
)
AN
[\)
w




we get X X
Ay=[0 Ay I, ]

for the second part of Hypothesis 2.1, where the identity comes from a special choice of Zg .
Choosing

I, 0

o= 0 I,

0 —As

and Z; = Ty yields
0o I, 0 1 0
I, O 0 p P 0 I

ZTET, = [ P . } -I, 0 O 0 1 i P
1o I, —Al ! : —I, A} E;3A5

0 0 Es 0 —As

which is indeed pointwise nonsingular, thus satisfying the third part of Hypothesis 2.1. In
particular, the special choice Z; = Tj is possible. According to (25) with P = Q7 we can
also choose Z; = T, for the original pair such that the reduced DAE inherits some symmetry
properties of the original DAE. Note also that we may assume that T5 possesses pointwise
orthonormal columns.
By construction, the matrix function 7§ ET, is not only pointwise skew-symmetric but
also pointwise nonsingular. We can then proceed similar to [16]. Setting
E ¢
TYET, =
2 Ll [ ~ o ]
there exists a smooth pointwise orthogonal transformation U with U”c = ae;, o # 0, where

e1 denotes the first canonical basis vector of appropriate size, see e.g. [13, Theorem 3.9]. It
follows that

v 1"[ E c¢l[U 1 _[UTEU ae] | ° % N
1 ' 0 11| =t 0 o * ’
—a 0 0

where F is again skew-symmetric and pointwise nonsingular. Thus, inductively after p steps,
we arrive at

WL T ET,W, = [ Bu B } :

~Ef, 0
where Wi collects all the applied transformations. By construction, FE1; is skew-symmetric
and FEjo is anti-triangular and pointwise nonsingular. Finally, setting

_ ‘[p 0
W= [ BB, B }
yields

wiwl T ET,Ww,w, = [ _OIp % } =J.

10



For convenience, we write again 15 instead of the transformed ToW;Ws,. Completing 15
to a pointwise nonsingular @) according to (27), we get

J Eis

* * * *

QTEQ:[ C A12:|'

} , QTAQ-Q"EQ = [

Since self-adjointness is invariant under congruence and J is constant, the matrix function C'
is pointwise symmetric. With (26) the reduced DAE transforms to

Ji1 + Elg (t)j:z = C(t)xl + A12(t)$2 + Ty (t)Tf(t)7
0= 422(75)932 + f2(t)7

where AQQ = AQTé is pointwise nonsingular. Solving the second equation for o, differentiat-
ing, and eliminating xs and @9 from the first equation yields the inherent ODE

iy = JC(t)x + fi(t) (34)
with some transformed inhomogeneity fl.

Theorem 4.2 Let (E, A) with E, A € C(I,R™") be sufficiently smooth and let the associated
DAE (3) satisfy Hypothesis 2.1. If (E, A) is self-adjoint, then @ in (26) can be chosen from
a restricted class of transformations in such a way that the so constructed inherent ODE
possesses a symplectic flow.

Proof. The above construction shows that it is possible to fix an inherent ODE with a sym-
plectic flow. It is special in the sense that it works with pointwise orthogonal transformations
with the exception of W5 which transforms within one half of the variables and adapts the
other half to obtain the matrix J and thus a set of variables for which the inherent ODE is
Hamiltonian. D

In the special case u = 0 a slightly simplified construction is possible. Here, Hypothesis 2.1
says that E has constant rank allowing to choose @ in the form (27) such that

o[ 1]

with B, = TJ ET, pointwise nonsingular. Then, the same modifications of T as before
are possible leading to a modified T5 with Fy; = J. With the corresponding modified @,
observing ET5 = 0, we get that

J 0

QTEQz[O 0}, QTAQ—QTEQz[‘{l“ ‘2112].

A1 Ag
Since congruence conserves self-adjointness, see e.g. [16], we have AT = Ay, AL, = Ay, and

flgTz = 12122. Moreover, Hypothesis 2.1 with © = 0 requires that Ass is pointwise nonsingular.
The corresponding reduced DAE, which is here just the original DAE, transforms to

Ji1 = An(t)xl + Alg(t)xg + TQ(t)Tf(t),
0= Ap(t)Tx1 + Agy(t)zs + TH()T f(2).

11



Solving the second equation for z9 and eliminating it from the first equation, we again obtain
an inherent ODE of the form (34), where

C= An - A12A521A{2

is pointwise symmetric.

Theoretically, all constructions can be performed globally. For a numerical realization
one typically uses locally smooth variants as described in Section 3, which in this case is
straightforward on the basis of locally smooth QR decompositions.

4.2 Skew-Adjoint DAEs

Assuming (5) for (3), we will make use of the following global canonical form taken from [15]
in a slightly rephrased version.

Theorem 4.3 Let (E, A) with E, A € C(I,R™") be sufficiently smooth and let the associated
DAE (3) satisfy Hypothesis 2.1. If (E, A) is skew-adjoint, then we have that

I, 0 0 00 O
(E, A) = 0 -1, O , 10 0 0 , (35)
0 0 E33 0 0 A33
where
FEs3 (t)x'g = Ass (t)l’?, + f3 (t) (36)

s uniquely solvable for every sufficiently smooth f3 without specifying initial conditions. Fur-

thermore, '
E?Z% = Ej33, Ag?) = —Asz — Ey3 (37)

In order to construct a suitable reduced DAE (19), we proceed as in the self-adjoint case
using the same notation. For the canonical form, we have

I, 0 0
0 —I, 0
0 0 FEss3
0 0 0 I, 0
3 0 0 0 0 —I, 0
MM: 0 0 Egg—Agg 0 0 E33
0 0 0 0 0 0 I, 0 0
0 0 0 0 0 0 0 I, 010
0 0 FE33-24335]0 0 2F33—A33|0 0 FEs3

Due to the identities, the only possible rank-deficiency is related to the part belonging to the
pair (E33, As3). The properties of (36) then imply that d = p+ ¢ and a = n — (p +¢) in
Hypothesis 2.1. Furthermore, the left null space of M), is described by

Zy=[0 0 ZLj|o o zI|o o ZL, |- ].

12



Observing that

O O OO O oo OO
O O OO O OO OO
o

we get that

Ay=[0 0 I, |

for the second part of Hypothesis 2.1, where the identity comes from a special choice of Z2T .
Choosing

and Z; = Ty yields

I, 0 0 I, 0
0o o B L R o1, |=[%7 %1,
O L 04y o E 0 0 0
33

which is indeed pointwise nonsingular, thus satisfying the third part of Hypothesis 2.1. In
particular, the special choice Z; = T is possible. According to (25) with P = Q7 we can
also choose Z; = T, for the original pair such that the reduced DAE inherits some symmetry
properties of the original DAE. Note also that we may assume that T5 possesses pointwise
orthonormal columns.

By construction, the matrix function 7: QT LT, is not only pointwise symmetric but also
pointwise nonsingular. We can then apply the results of [12], which guarantee the existence
of a smooth matrix function W with

WITIET,W = L 0 _g
0 -1,

For convenience, we write again 75 instead of the transformed T5W. Completing T5 to a
pointwise nonsingular @) according to (27), we get

S Fiy

QTEQ = [ .

| @rag-qree- |7 2.

*

Since skew-adjointness is invariant under congruence, see [1, 15], and S is constant, the matrix
function J is pointwise skew-symmetric. With (26) the reduced DAE transforms to

Siy + Eia(t)ig = J(t)x1 + Arp(t)ze + To()T f(2),
0= Agy(t)zs + fo(t),

13



where Ay, = A,T} is pointwise nonsingular. Solving the second equation for xy, differentiat-
ing, and eliminating xs and @9 from the first equation yields the inherent ODE

i1 =S Itz + fi(t) (38)
with a transformed inhomogeneity f;.

Theorem 4.4 Let (E, A) with E, A € C(I,R™") be sufficiently smooth and let the associated
DAFE (3) satisfy Hypothesis 2.1. If (E,A) is skew-adjoint, then @Q in (26) can be chosen
from a restricted class of transformations in such a way that the so constructed inherent ODE
possesses a generalized orthogonal flow.

Proof. The above construction shows that it is possible to fix an inherent ODE with a
generalized orthogonal flow. It is special in the sense that it works with pointwise orthogonal
transformations with the exception of W. [0

In the special case that p = 0, a slightly simplified construction is possible. Here, Hy-
pothesis 2.1 implies that E has constant rank allowing to choose @ in the form (27) such
that .

Fi 0 }

QTEQz[ 0 o

with £, = T4 ET, pointwise nonsingular. Then, the same modifications of T as before
are possible leading to a modified 75 with Fy; = 5. With the corresponding modified @,
observing ET) = 0, we get

S 0

QTEQ:[O O:|’ QTAQ_QTEQ:[%ll "{112:|‘

Ay Ago
Since congruence transformations conserve skew-adjointness, we have fllTl = _121117 AlTQ =
—Agy, and AL, = —A,,. Moreover, Hypothesis 2.1 with 4 = 0 requires that Ags is pointwise
nonsingular. The corresponding reduced DAE, which is here just the original DAE, transforms
to
Siy = An(t)ey + A (t)zs + Ta(t) £ (1),
0= Alg(t)Tl‘l + Agg(t)ﬂjg + T2/ (t)Tf(t).

Solving the second equation for z9 and eliminating it from the first equation, we again obtain
an inherent ODE of the form (34), where

J = 12111 - 14121452114?2

is pointwise skew-symmetric.

Theoretically, all constructions can be performed globally. For a numerical realization one
typically uses locally smooth variants as described in Section 3. The only exception is the
construction of a suitable W, where we are still in need of a locally smooth variant to be used
within an integration. One possibility is given in the following, cp. [12].

We start with a reference factorization

WgEll(to)Wo =95

14



which may be obtained by solving the symmetric eigenvalue problem and then scaling the
eigenvalues by congruence to +1 or by a Cholesky-like factorization for indefinite matrices as
given by [2]. We then consider the matrix function

WOTEMWO = [ E?H F1o ] )

Ey  Fo

where Ef} = By, El; = E,,, and EL, = Ey,. In a sufficiently small neighborhood, the entry
Eqq is close to I, thg entry Eao is close to —I;, and the entry Ejs is small in norm. In
particular, the entry E7; is symmetric positive definite allowing for a Cholesky factorization

- T
Eyy = Ly Ly,
which is a smooth process. We then get

[ ~LT1711~71 0 ] [ E:1T1 Eu } [ LﬁT —EﬂlEn } _ [ Ip ~ ~2 . _
—ELEy I Ey, Ey 0 I 0 Egp—EpE; Ep

In a sufficiently small neighborhood, the Schur complement Ey, — EfyEr' E,, is symmetric
negative definite allowing for a Cholesky factorization

—(Eyy — ELEG E1p) = Lyy L,
such that
[zp 01] [Q, i o0 ][15 0 ] _ [4, 0 ]——5
0 Ly 0 Ey — ELEE, 0 Loy 0 -1,
Gathering all transformations gives the locally smooth

_ Ly’ —EfE, [, 0
W_m{ 0 I, 0 Ly

and all steps can be executed numerically in a smooth way using automatic differentiation.

5 Numerical Experiments

The presented numerical method has been implemented using automatic differentiation in
order to be able to evaluate all needed derivatives and Jacobians. For the determination of
(@, Q) on the current interval [to,to + h| one can choose between the following possibilities.

INHERENT Q(t) = Qo

SPIN_STABILIZED | Q(t) = Qo + (t — to)Qo

ROTATED Q=I[T, Ty], E\T, =0
SELF_ADJOINT Q@ as described in Subsection 4.1
SKEW_ADJOINT Q@ as described in Subsection 4.2
PRESCRIBED () by user-provided routine

In all cases except for the last one, one can choose between the general approach, which
includes transformation to a reduced DAE, and the simplified approach assuming that no

15



such transformation is necessary. Schemes based on the direct discretization of (16) are
labelled as DIRECT. As numerical integration methods we use the following discretization
methods, see e.g. [10, 13].

GAUSS-LOBATTO | collocation methods for DAEs based on Gaufl nodes
for the differential part and Lobatto nodes for the al-
gebraic part, see [17]

RADAU collocation methods for DAEs based on Radau nodes
the simplest of which is the implicit Euler method
DORMAND-PRINCE | Runge-Kutta-Fehlberg methods for ODEs, see [9]

GAUSS collocation methods for ODEs based on Gaufl nodes

Experiment 5.1 The linear DAE

[5_1 5t] [551 ] _{_n(a_n st ] [xl]_k[fl(t)}
0 0 o | 0—1 ot—1 T fa(t) |’

cp. [18], with real parameters n and § # 1 is constructed in such a way that direct discretization
by the implicit Kuler method corresponds to the discretization of an inherent ODE by the
explicit Euler method. Setting § = —10°, 1 = 0 yields a stiff inherent ODE and we expect
stability problems when working directly with the implicit Euler method. For our numerical
experiments we have chosen fi, fo and the initial condition so that the solution is given by
71(t) = x2(t) = exp(—t). Integration interval was [0, 1] and tolerance was 10~°. The following

table gives the cpu times and the number of integration steps for the various versions of the
implicit Euler method.

’ version ‘ cpu time ‘ steps ‘
DIRECT 10.31 | 97840
INHERENT 0.73 10
SPIN_STABILIZED 0.60 10
ROTATED 0.67 10

The stabilizing effect of discretizing an inherent ODE is obvious. The three different versions
in the choice of the inherent ODE do not differ significantly.

Experiment 5.2 A mathematical model of a pendulum is given by the DAE

T3 = 11,
:t4 = T2,
—&1 = 2w3Ts,

—&9 =14 2x425,
0=a2+23 -1,

which is known to satisfy Hypothesis 2.1 with p = 2, a = 3, and d = 2. The equations and
unknowns are ordered in such a way that

0 0 100 10 0 0 0
0 0 010 01 0 0 0
Fi(t,z,#)=| -1 0 0 0 0|, F(tz,)=|0 0 225 0 2z3
0 -1 00 0 00 0 2z5 214
0 0 000 0 0 223 224 O
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Hence, (F;, Fy) is self-adjoint for all arguments. The constructions of Section 4, however, are
only valid for linear DAEs and therefore not applicable. The only valid use of an inherent
ODE as presented here is by the versions INHERENT and PRESCRIBED, since in the nonlinear
case the Jacobians do not only depend on t. The following table shows the performance of
various discretization schemes when integrating over the interval [0, 10] with stepsize control
starting with 2(0) = (0,0,1,0,0)T and using a tolerance of 107°.

’ method ‘ version ‘ stages ‘ order ‘ cpu time ‘ steps ‘
GAUSS-LOBATTO | DIRECT 2-3 4 0.93 55
RADAU DIRECT 4 7 0.99 28
DORMAND-PRINCE | INHERENT 7 4 1.33 47
DORMAND-PRINCE | INHERENT 13 7 1.29 28
GAUSS INHERENT 2 4 11.76 55
RADAU INHERENT 4 7 12.92 34

In particular, we observe that we are able to solve the given problem by explicit schemes for
the chosen inherent ODE with nearly the same efficiency as the standard direct methods.

In the following experiments we measure the geometric error in the flow ® with respect to a
quadratic Lie group (8) by ||®7 X®—X||, where [|A|| = max; j=1,_n |Ai;] for A = [A;;] € RV,

Experiment 5.3 The self-adjoint DAE E(t)& = A(t)x given by
E=Q"EQ, A=Q"AQ-Q"EQ,

where

o

with s(t) = Lsinwt, w = 1, possesses a symplectic flow with respect to the first two compo-
nents of the transformed unknown = = Q.

The following table shows the performance and the maximal geometric error in the flow
for various discretization schemes when integrating over the interval [0,2007] using 1,000
equidistant steps. We used the simplified approach due to p = 0.

’ method version \ stages \ order \ cpu time \ error ‘
GAUSS-LOBATTO | DIRECT 2-3 4 1.44 1.380e-02
DORMAND-PRINCE | INHERENT 7 4 5.36 2.468e-01
GAUSS ROTATED 2 4 23.68 | 7.281e-04
GAUSS SELF_ADJOINT 2 4 24.88 1.224e-07

Experiment 5.4 The skew-adjoint DAE E(t)z = A(t)x given by
E=Q"EQ, A=Q"AQ-Q"EQ,

where

eyl

I
OO O =
OO = O
o O OO
o O OO

o

I

[en}
OO O =
O~ OO

Q

I
SO »w =
O »w ~ »
[V NV e
= n OO



with s(t) = % sinwt, w = 1, possesses an orthogonal flow with respect to the first two compo-
nents of the transformed unknown & = Q.

The following table shows the performance and the maximal geometric error in the flow
for various discretization schemes when integrating over the interval [0,2007] using 1,000

equidistant steps. We used the simplified approach due to p = 0.

’ method version ‘ stages ‘ order ‘ cpu time ‘ error ‘
GAUSS-LOBATTO | DIRECT 2-3 4 2.05 1.226e-01
DORMAND-PRINCE | INHERENT 7 4 12.52 1.965e-02
GAUSS ROTATED 2 4 74.85 9.363e+00
GAUSS SKEW_ADJOINT 2 4 80.64 1.312e-07

Experiment 5.5 The skew-adjoint DAE E(t)z = A(t)z given by

E=QTEQ, A=QTAQ-Q"EQ,

where
10 0 00 0 10 0 0 1 s 000
01 0 00 -1 00 0 0 s 1 s 00
E={00 -1001|, A= 0 00 0 0], Q=103s 1 s 0],
00 0 00 0 00 0 1 00 s 1 s
00 0 00 0 00 —10 000 s 1

with s(t) = %sin wt, w =1, possesses a generalized orthogonal flow in O(2,1) with respect to
the first three components of the transformed unknown & = Qx.

The following table shows the performance and the maximal geometric error in the flow
for various discretization schemes when integrating over the interval [0,2007] using 1,000
equidistant steps. We used the simplified approach due to p = 0.

method version ‘ stages ‘ order ‘ cpu time ‘ error ‘
GAUSS-LOBATTO | DIRECT 2-3 4 3.33 | 4.548e-01
DORMAND-PRINCE | INHERENT 7 4 32.40 | 8.957e-01
GAUSS ROTATED 2 4 226.55 | 6.912e-01
GAUSS SKEW_ADJOINT 2 4 288.55 | 1.858e-07

6 Conclusions

We have presented discretization methods for DAEs that are based on the integration of an
inherent ODE which is extracted from the derivative array equations associated with the
given DAE utilizing automatic differentiation. We have shown that for this inherent ODE we
can use classical discretization schemes for the numerical integration of ODEs that cannot
be used be for DAEs directly. For self-adjoint and skew-adjoint linear time-varying DAEs we
have shown that the inherent ODE can be constructed in such a way that it inherits these
symmetry properties of the given DAE and thus also the geometric properties of its flow. We
then have exploited this to construct geometric integration schemes with a numerical flow
that preserves these geometric properties.
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