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Solving inverse problems
with Bayes’ theorem

Jonas Latzll e Bjorn Sprungk

The goal of inverse problems is to find an unknown
parameter based on noisy data. Such problems appear
in a wide range of applications including geophysics,
medicine, and chemistry. One method of solving
them is known as the Bayesian approach. In this
approach, the unknown parameter is modelled as a
random variable to reflect its uncertain value. Bayes’
theorem is applied to update our knowledge given
new information from noisy data.

1 Inverse problems

We begin with a general problem description. Let Z be the set of all integers,
that is, Z = {...,—2,-1,0,1,2,...}. Let f : Z — Z be a function, and let
d € Z be some integer. Moreover, we assume that there is a value t € Z such
that

flt) =d. (1)

The task in inverse problems is to find ¢t € Z using the function f and the
value d.
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1.1 Interpretation

Finding ¢ is similar to root-finding problems: given some equation, such as
2?2 — 2 =0, find the unknown value that satisfies the equation. Here, we will
try to understand the problem a bit differently.

Imagine a mathematical model that can be used to represent some general
system of interest, such as the motion of planets. We would like to tune the
parameters of the general model to study a specific instance, such as the motion
of the dwarf planet Pluto. To this end, we need to find the correct parameter ¢
of the general model that represents the specific behaviour of Pluto.

We assume that ¢ satisfies Equation (1), where d and f are given. Here d is
understood as a dataset. For example, d may be records of positions of Pluto
as seen from Earth. The function f is an “observation operator” and represents
the observations within the model. Hence, we have observed a dataset d and we
aim to use this to find the correct parameter ¢ for our model. For some u, f(u)
predicts which data we would observe, if u were the true parameter. We aim to
find a parameter ¢t which approximates u. Of course, the movement of Pluto
does not really fit in the setting where f, d, and t are discrete. We will, however,
stick to this setting, as it simplifies the following discussion considerably.

Next we consider an example with three different cases.

Example 1. Let f(u) = u?, for u € Z. We consider the following cases:

1. If d =0, we know that t = 0.
2. Ifd=—1, we cannot find any t € Z salisfying f(t) = d.
3. Ifd=1, the true value t can be either 1 or —1.

The inverse problems and their solutions are illustrated in Figure 1. In the
second and third example we cannot identify the true parameter ¢. The issue
of having no or many true parameters is very typical of inverse problems. We
discuss this issue in the next section.

1.2 Issues in inverse problems

In inverse problems, we often face the problem that there is not a unique
parameter satisfying f(¢) = d. As we saw in the previous example, there may
be zero solutions or more than one solution.

When the data d is subject to observational noise, there may be no parameters
which satisfy the equation. In this case, the data is actually given by

F() +n=d, (2)

where n is noise. Noise can arise, for example, from the inaccuracy of the
instruments used for measurements. Since we do not know the value of the
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Figure 1: Plots of the function f and the dataset d in the first case (left figure),
the second case (central figure), and the third case (right figure) in
Example 1. The intersections of the solid line (f) and the dotted
line (d) show the solutions of the inverse problem. We see that we
can have one solution (first case), no solution (second case), or two
solutions (third case).

noise, we now actually need to identify both ¢ and n. In this case, however, we
end up with an infinite number of potential solutions.

Proposition 1. There are infinitely many combinations of t,n € Z satisfying
Equation (2).

Proof. Let t € Z be chosen arbitrarily, and let n = d — f(¢). Then, the tuple
(t,n) satisfies Equation (2). Since there are infinitely many ways to choose t,
Equation (2) has infinitely many solutions. O

When ignoring noise by considering Equation (1) instead of Equation (2),
we may run into an inverse problem with no solution. When considering noise,
as in Equation (2), we obtain an inverse problem with an infinite number of
solutions.

Such situations are typical for inverse problems. In fact, inverse problems are
usually “ill-posed problems”. This simply means that they are not “well-posed”
in the sense described by Jacques Salomon Hadamard (1865-1963): a well-posed
problem admits a unique solution which depends continuously on the data [6].

In order to solve (ill-posed) inverse problems in practice, various approaches
have been developed and discussed in the literature. The most popular of these
is probably the regularised least squares approach. To find the parameter ¢
satisfying Equation (1) using the least squares approach, one computes

minl(f(t) —d)?. (3)

tez 2

This method was developed in the early 19th century by Carl Friedrich Gaufl
(1777-1855) and Adrien-Marie Legendre (1752-1833) independently. It was suc-
cessfully applied by Gauf to determine the motion of the dwarf planet Ceres [12].



The least squares approach can overcome the problem that Equation (1) has

no solutions due to noise in the data. However, there might still be multiple

solutions to Equation (3). To this end, we can add another term in Equation (3)

which encodes additional information or preferences about the sought-after ¢.

For instance, if multiple minimizers in Equation (3) exist, we may prefer the

one closest to zero. In that case, we seek
1

min = (f(t) — d)* +
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where t — %tz denotes the regularising (or penalty) functional, and o > 0 is a
parameter steering the influence of the regularisation.

In recent years, the Bayesian approach to inverse problems has gained
popularity. In this approach, regularisation and additional information to
inverse problems is introduced in a probabilistic way. We will explain and
discuss the Bayesian approach in this snapshot.

2 Conditional probability and Bayesian statistics

2.1 Probability and knowledge

We say that U is a random variable taking values in Z if the value of U € Z
is unknown and determined by the outcome of a random experiment, such as
tossing a coin. We describe the value of U by its probability distribution. The
probability that the value of U is in a set A, where A C Z, is denoted P(U € A).

What does this mean? We follow the “Bayesian” or “subjective interpretation”
of probabilities. In his original essay, Thomas Bayes (1702-1761) [2] gave the
following definition: “The probability of any event is the ratio between the value
at which an expectation depending on the happening of the event ought to be
computed, and the value of the thing expected upon it’s happening.” Let us
translate this into modern terms. Let A C Z be some event. (In probability
theory, an event is some subset of the possible outcomes.) We anticipate that we
obtain €1 if the event A occurs. Hence, the “value of the thing expected upon
it’s happening” is €1. The probability is “the value at which an expectation
depending on the happening of the event ought to be computed”. We interpret
this now as the price that we are paying in a fair game to win €1 if A occurs.

Example 2. Somebody tosses a coin. We win €1 if the coin shows head. Since
we expect the coin to be fair, we bet €0.50. After we hand over the money, the
coin is tossed, and we see whether we get €1 or not. Now, assume somebody
places a coin in a box and asks us whether it shows head or not. If we guess
correctly, we win €1. Again, we would bet €0.50, but this time the game is



entirely based on our limited knowledge or uncertainty about the coin rather
than actual randomness.

How do we know that €0.50 is a fair price to win €1 in the first game
discussed in Example 27 Probabilities of random experiments are typically
defined using their frequentist interpretation: the probability P(A) of an event A
is the value obtained in the ratio

number of occurences of event A within n independent experiments

n

when n goes to infinity. If we flip a coin infinitely often, we will see head half
of the time. We note that this interpretation is indeed useful to describe the
outcome of a random and repeatable experiment.

However, this interpretation fails if we consider uncertainty about non-
repeatable events, say, the outcome of a particular football match. The Bayesian
interpretation, on the other hand, is capable of interpreting probabilities for
any kind of event, including repeatable random experiments where it coincides
with the frequentist interpretation. Thus, we stick to the Bayesian approach in
the following.

We consider the value of the variable U to be uncertain and use P(U € -)
to describe our knowledge concerning U. The function P(U € -) is called the
probability distribution of U.

2.2 Learning by conditioning

If we model knowledge concerning a variable by a probability measure, we also
need a way to model the process of learning. We do this using conditional
probability®. Let B C Z, with P(B) > 0. Then, the probability that U € A
occurs given that we know already that B occurs, is given by

P(U € AN B)

P{UeA|B)= P(B)

: ()

The function P(U € A | B) is called the conditional probability distribution of A
given B4 Learning that the event B occurs is represented by the map
PUe:)—PUe€-|B).

Example 3. We shuffle a complete poker deck. Then, we draw a card and
check its suit, that is, whether it is $,Q, &, or &. If it is &, we obtain €1.

You can refer to [10] for an interactive and visual introduction to conditional proabability.
Intuitively, P(U € A | B) indicates how likely it is that U is in A, assuming that the event
B holds.



Otherwise, we get no money. Since the suits are uniformly distributed among
the deck, we know that

P(U =) =P(U = 0) =P(U = &) = P(U = &) = 0.25, (6)

which we have again computed with the frequentist interpretation of probabilities.
Hence, we would pay €0.25 to participate in the game above. However, if
somebody checks the card and tells us whether it is red or black, we would decide
differently. If the person tells us that the suit is red, we obtain the following
conditional probability:

PU=&|suitisred) =P(U=&|U € {{,0}) (7)
_PU € {0,9) N {&))
P(U €{0,V})
P(U € 0) 0

“PUe(o.o) 05

Hence, we will not spend any money on a game in which we cannot win anything.
Mowing on to the case where the suit is black.

P(U = & | suit is black) =P(U =& | U € {#, &}) (8)
P (8N {8))
P(U € {&. &})
_ _PU=&) _025 _ .
P{Uec{® &}) 05 o

Hence, we know that there is a 50% chance for the card to show &. Now, we
would spend €0.50 to play the game mentioned above.

2.3 Bayes’ theorem

In practice, we typically cannot compute the conditional probability using the
formula in Equation (5), since we cannot access the joint probability in the
numerator of the term on the right-hand side. However, we sometimes can access
the inverted conditional probability P(B | U € A), which is the probability of B
given that the value of U is in A. In this case, we can use Bayes’ theorem to go
from P(B|U € A) to P(U € A| B).

Theorem 1 (Bayes). Let A,B CZ and P(B) > 0. Then,

P(B|U€eA)-P(Ue€A)

P(UcA|B)= (5]



Proof. Let us first assume that P(U € A) > 0. Then, according to Equation (5),
we have

P(B|UeA)-P(UeA)=P{U € A} N B),
where we exchange {U € A} and B. Hence, we have

P(B|UcA)-PUcA) PH{UcANB)
(5] - 26 —P(U € A|B).

Let us now assume that P(U € A) = 0. Then, we have
P{U € A} nB) <P({U € A}) =0,

by the monotonicity of probabilities. According to Equation (5), we thus have
P(U € A| B) = 0. Hence,

P(B|U€cA)-0 PB|UcAPU < A)
P(B) - P(B) ’

PUEA|B) =0=

which again proves our claim. O

We can now use the result of Theorem 1 to compute the conditional proba-
bilities in Example 3 with the playing cards in a different way.

Example 4 (Example 3 revisited). We now aim to compute the conditional
probabilities in Equation (7) and Equation (8) using the result from Theorem 1.
To this end, we need the conditional probabilities P(U € {{, 0} | U = &)
and P(U € {#, &} | U = &). We can easily deduce what these conditional
probabilities are. If we know already that U = &, then U & {{, 0} with
probability 1, and U € {#, &} with probability 1. Therefore,

PUe {0, 0| U=&)=0 PU€ {Md&}|U=&) =1
Now, we apply Theorem 1. We obtain

PU {0, 9} |U=%) PU=&) _0:025 _

PU=&[Ue{0,0h) = P(U € {0,0)) 05 Y
and
U _aUcaa))_ PUSOS U=8) PU=8 1035

P(U € {4, &}) 0.5

as in Example 3.



2.4 Bayesian inference

Let A = {u} C Z. Now, conditional probabilities of the type
PB|U€A) =PB|U=u)

frequently appear in statistics. In these expressions, an event B is observed and
based on this observation some true parameter ¢ shall be identified. A function
like u — P(B | U = u) is called the (data) likelihood. It shows the likelihood of
observing the data (that is B), given that the unknown true parameter is equal
to u.

Given the likelihood, there are multiple ways to obtain a parameter estimate.
A popular method is the “maximum likelihood” method. Here, one just max-
imises u — P(B | U = u). Hence, the parameter is estimated by the value for
which the event B is particularly likely.

Example 5. We are again given a deck of a total of 52 playing cards. We aim
to find out how many of these playing cards are &. To this end, we draw 10
cards in the following fashion: we draw a card, note down whether it shows &
or not, put it back, shuffle the deck and then continue. Four of the ten cards
show &. Hence, we observe the event

B = {4&}.

Let U be the number of & in the deck. Then, for each u=0,...,52,

P10 == ()’ (1 5)"

and P(B|U =u) =0, ifu <0 oru>52. The function P(B | U = u) attains
its maximum at uw = 21. Hence, 21 is the maximum likelihood estimate for the
number of & in the deck. We plot the likelihood and the mazimum likelihood in
Figure 2.

The Bayesian paradigm is an alternative to the maximum likelihood frame-
work. We consider u to be uncertain and model it by the random variable U.
The probability distribution of U models our knowledge concerning u prior to
observing B. Therefore, P(U € -) is called the prior probability distribution.
Now we observe the data and learn by conditioning. Having observed the
data, our state of knowledge is given by the posterior probability distribution
P(U €| B).
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Figure 2: Plot of the likelihood and maximum likelihood in Example 5. The
maximum likelihood marks the point at which the likelihood function
is maximised.

Given the prior and the likelihood, we can obtain the posterior using Theo-
rem 1. Indeed, the posterior probability of U = u for any u € Z is given by

likelihood prior
P(B|U=u)P(U = u)
=Uu =Uu
P(U = B) =
PU=ulB) P(B)
posterior SN~

evidence

The evidence P(B) can, for instance, be computed by summing over the prior
and the likelihood:

P(B)= )Y PB|U=u)P{U=1).
u' €L
We now go back to our playing card example, this time with a Bayesian approach.
Example 6 (Example 5 revisited). We want to apply a Bayesian approach to

identify the number of & cards in our deck. To this end, we need to model our
prior assumptions. We consider the following three examples:

(i) We do not have any information about the number of & cards in the deck,
other than that this number lies between 0 and 52. Hence, according to the
prior measure, all values within these bounds are equally likely:

Therefore, we have P(U = u) = 1/53, if u=10,1,...,52, and P(U = u) =0,
otherwise. This prior is called uniform or uninformative.



(i) We have a certain tendency to believe there are 26 &, but we are still pretty
unsure. Therefore, we use a symmetric “binomial 2 prior centred around 26:

P(U =u) = <52> 0.5%2.

u

Here, P(U = u) is the probability of obtaining head u times when tossing a
fair coin 52 times.

(iti) We are very certain that the number of & cards is close to 13. Indeed, we
assume that

U=14)=02,
U =15) = 0.15,

1
and P(U =u)=0 in any other case.
Hence, we exclude the possibility that u > 15 or u < 11.

We plot the priors P(U = u) and the posteriors P(U = u | B) in the three
examples in Figure 3. Like in Example 5, the event B is that four out of the
ten cards that were drawn show &. Given the uninformative prior in (i), the
posterior measure is a scaled version of the likelihood in Example 5 and Figure 2.
In (ii), with a distribution centered on 26, the prior and posterior are very
similar. The prior is already very informative, focusing around a value of 26.
The data corrects the prior a bit by moving it a bit to the left. In (iii), we first
observe that the posterior probabilities are 0, whenever the prior probabilities
are 0. Hence, we cannot overturn the prior if it is 0. Other than that, the
posterior does not change the prior probability at u = 13. However, it increases
the probability for u > 13 and lowers it for u < 13. Hence, as in (ii), we see a
drag towards the maximum likelihood.

3 Bayesian inverse problems

Having introduced the paradigm of Bayesian statistics, we now aim to use it to
solve inverse problems. We now model the unknown parameter v in the inverse
problem setting as a random variable U. This random variable follows a prior
distribution P(U € -). Using what we have learnt about inverse problems, we
can define an observation B from a dataset d:

B ={f(U)=d},

A binomial distribution is a probability distribution corresponding to an experiment with
exactly two possible outcomes, for example, a coin toss. A good place to develop an intuition
for some commonly occurring probability distributions, including binomial distribution, is [9].

10
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Figure 3: Plots of the priors and posteriors in Example 6. In (i), the prior
is uniform (uninformative), and the posterior is identical to the
likelihood. In (ii), the prior favours a value close to 26, while the
posterior only barely corrects this prior knowledge. In (iii), the prior
only allows for a very small number of values, and the posterior
is strongly influenced by this prior choice and only suggests higher
probabilities for the values {14, 15}.

if the observations are noise-free, and
B={f(U)+N =d},

if the observations are noisy. In the noisy case, the noise is now also given by a
random variable N. In either of these cases, we aim to compute the posterior
distribution of U given B, that is,

PUe-|fU)=d), or PUe-|fU)+N=d).

This posterior distribution is considered the solution of the Bayesian inverse
problem. Hence, we have a unique solution in terms of a probability distribution.
Note that it can typically also be shown that the posterior depends continuously
on the data, and therefore, Bayesian inverse problems are well-posed [11]. To
compute the posterior distributions, we need to know the associated likelihoods.
We will derive these in the following section.

11



3.1 Likelihoods in inverse problems

We start with the noise-free case. We will derive the likelihood of observing the
dataset d given that the true data is u, for some u € Z,

P(f(U)=d| U = u).

Note that we fix the random variable U = u. Therefore, the event {f(U) = d}
is fully deterministic — we can say for sure whether it occurs or not. It can only
occur if u € Z is chosen such that f(u) = d. Therefore, we obtain

1, if f(u) =d,
0, otherwise,

P(f(U)=dU=u)={

as the likelihood.
In the noisy case, we first need to define the probability distribution of the
noise N. We denote the probability of the event {N = n}, for n € Z, by

as the likelihood. Hence, if we know the noise model Py, we can immediately
deduce the likelihood for the inverse problem.

3.2 Revisiting the quadratic examples

We now revisit Example 1 and compute Bayesian solutions to these inverse
problems. We start with the noise-free case.

Example 7 (Example 1 revisited). We consider the inverse problem f(u) = u?,

with three cases: d = —1,d =0, and d = 1. As a prior for U, we choose two
examples:

(i) A uniform prior on {—3,-2,...,3}, that is,

17, if —3<u<3,

. (u € Z).
0, otherwise

P(U:u):{

12
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Figure 4: Plots of the priors and posteriors in Example 7. In the top row, the
prior is uniform, while in the bottom row the prior is binomial. In
this problem with noise-free, highly informative data, the prior has
no influence.

(ii) A symmetric binomial prior on the same set, centered at 0, that is,

P(U=u)= (ui?)) 055 (uez).

To compute the posterior measure, we use Bayes’ formula,

likelihood prior
———
P(fU)=d|U=u)P(U =u)
P(f(U) =d)
———

evidence

PU=ul|f(U)=d) =

posterior

First, consider the case where d = —1. The posterior measure, as computed
with Bayes’ formula, does not exist since the evidence is everywhere equal to 0.

We plot priors and posteriors for d = 0 and d = 1 in Figure 4. For each
dataset, the posterior measure does not depend on the prior. In the case d = 0,

13



we obtain

PU=0|fU)=d) =1, and
PU=u|f(U)y=d)=0  (u#0).

Hence, we know for sure that the true value of ¢ is 1. In the case where d = 1,
we obtain

P(U=0] f(U) = 1) =1/2,
PU=0]| f(U) = 1)_1/2 and
PW=ulf@)=d)=0 (u#-1,1).

Hence, we still do not know whether t = —1 or ¢t = 1, but we can exclude all
other possibilities. We are still uncertain concerning ¢t. However, as opposed to
multiple solutions in Example 1, the posterior distribution is a unique solution
to the Bayesian inverse problem. The posterior distribution quantifies precisely
our remaining uncertainty concerning ¢.

Next, we consider the noisy case. We use the same priors as in Example 7
and two different noise models.

Example 8. We consider the inverse problem f(u) = u? +n for three cases:
d=-1,d=0, and d = 1. As a prior for U, we consider both the uniform
prior (i) and the symmetric binomial prior (ii) from Ezample 7. Moreover, we
consider the following noise models, that is, probability distributions of N:

(a) A symmetric binomial noise on {—4,-3,...,4}, that is,

8

Py(n) = P(N =n) = <n+4

) 0.5°  (nez).

(b) A symmetric binomial noise on {—1,0,1}, that is,

n) = (n_?H) 052 (nez).

We plot the noise distributions in Figure 5. There we see that in (a) the noise
is spread more widely than in (b). That means, we expect a larger observational
noise in (a) and more accurate data in (b).

We show the posterior distributions from Example 8 in Figure 6. First note
that in this case, we give a positive posterior probability to a much bigger range
of potential parameter values. Since we are uncertain about the observational
noise, this is what we should expect. Also, we can nicely observe the influence of
the noise distribution. The larger observational noise (a) gives flatter posterior

14
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Figure 5: Plots of the noise distributions in Example 8. Noise in (a) is spread
more widely than in (b), which means that we expect the data to be
more inaccurate in (a) than in (b).

distributions, as opposed to the smaller observational noise (b) which gives
more peaks in the posterior distributions. With a flatter posterior distribution,
we anticipate a higher variation in the parameter, that is, the parameter still
contains a lot of uncertainty. This is consistent with the data being very
noisy. When there are more peaks in the posterior distribution, we anticipate
hardly any variation in the parameter, that is, we are pretty certain about the
parameter. This is consistent with the data being not very noisy. In contrast
to the noise-free example, we observe an influence of the prior probability
distribution.
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Figure 6: Plots of the priors and posteriors in Example 8. The more accurate
data/smaller noise in (b) leads to a posterior that is more concentrated
around the true values. In (a), the posterior is flatter. In both cases,
the data is fairly accurate. Thus, the influence of the prior is small.

Consider, for instance, the case where d = 1, and where the noise distribution
is given by (a). With the uniform prior, we give the highest posterior probability
to {U = —1} and {U = 1}, while with the centered binomial prior, we give
the highest posterior probability to {U = 0}. This is due to having the prior
knowledge that {U = 0} is very likely.

15



4 Further reading

A comprehensive introduction to inverse problems and the regularisational
approach is given by Engl, Hanke, and Neubauer [4]. A classic book on
probability theory including the perspective of subjective probability is Jaynes [7].
In Whittle [14], the approach of defining probability via expectations is presented
in detail. For the Bayesian approach to inverse problems, we refer to the now
standard works by Kaipio and Sommersalo [8] and by Stuart [11]. Further
reading on Bayesian analysis and statistics is provided by, for example, Berger [3]
and Ghosh, Delampady, and Samanta [5]. Finally, some introductory tutorials
on applying the Bayesian approach to inverse problems are, for instance, [1]
and [13].
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