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Root Cycles in Coxeter Groups

Sarah Hart, Veronica Kelsey and Peter Rowley

Abstract

For an element w of a Coxeter group W there are two important attributes,
namely its length, and its expression as a product of disjoint cycles in its action on
Φ, the root system of W . This paper investigates the interaction between these two
features of w, introducing the notion of the crossing number of w, κ(w). Writing
w = c1 · · · cr as a product of disjoint cycles we associate to each cycle ci a ‘crossing
number’ κ(ci), which is the number of positive roots α in ci for which w · α is
negative. Let Seqκ(w) be the sequence of κ(ci) written in increasing order, and let
κ(w) = max Seqκ(w). The length of w can be retrieved from this sequence, but
Seqκ(w) provides much more information.

For a conjugacy class X of W let κmin(X) = min{κ(w) | w ∈ X} and let κ(W )
be the maximum value of κmin across all conjugacy classes of W . We call κ(w)
and κ(W ), respectively, the crossing numbers of w and W . Here we determine the
crossing numbers of all finite Coxeter groups and of all universal Coxeter groups.
We also show, among other things, that for finite irreducible Coxeter groups if u
and v are two elements of minimal length in the same conjugacy class X, then
Seqκ(u) = Seqκ(v) and κmin(X) = κ(u) = κ(v).

Keywords: Coxeter group, root system, root cycles, length function

1 Introduction

The symbiotic relationship between a Coxeter group W and its root system Φ is most
evident in the interplay between the length of an element w of W and the action of w on
Φ. The set N(w) = {α ∈ Φ+ | w · α ∈ Φ−}, where Φ+ is the set of positive roots and Φ−

is the set of negative roots, is central here. Recall that the length `(w) of w is equal to
|N(w)|. When w is viewed as a permutation of Φ, the orbit structure of the cyclic group
〈w〉 on Φ is an important attribute: Φ is partitioned into a number of 〈w〉-orbits, some
of which will be contained entirely in Φ+ or Φ−, and some of which will contain both
positive and negative roots. The length `(w) cannot be recovered purely by counting the
number of orbits that cross the boundary from positive to negative roots, because within
a given orbit, the boundary may be crossed several times. We need, rather, to consider
the number of crossings from positive to negative roots that occur. This means that we
need to consider not orbits, but cycles, of roots. The sum of these ‘crossing numbers’
across all the root cycles of w will be `(w). But the sequence of crossing numbers gives
finer detail. This paper focuses on this interaction between the cycles of w on Φ, referred
to as root cycles, and the set N(w).

For a recap of basic terminology concerning Coxeter groups and root systems see
Section 2. Here, we define crossing numbers and state our main results.
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Definition 1.1. Let W be a Coxeter group with root system Φ and let w ∈ W . Then,
viewing W as a permutation group of Φ, the element w may be expressed as a product
of disjoint cycles of roots called root cycles. For a given root cycle c of w, the crossing
number of c is

κ(c) = |{α ∈ supp(c) | α ∈ Φ+, w · α ∈ Φ−}| = |supp(c) ∩N(w)|.

The sequence of crossing numbers of the distinct cycles of w, arranged in increasing order,
is called the crossing number sequence of w and denoted by Seqκ(w). Finally, the crossing
number κ(w) of w is defined to be max(Seqκ(w)); that is, the largest crossing number of
a root cycle of w.

Note that supp(c) denotes the support of c and `(w) =
∑

k∈Seqκ(w) k.

Example 1.2. Let W be the Coxeter group A6, which we view as Sym(7). Setting
V = R7, with orthonormal basis {e1, . . . , e7}, we can define the root system for W as
Φ+ = {ei − ej | 1 ≤ i < j ≤ 7}, Φ− = −Φ+, and Φ = Φ+ ∪ Φ−. Then the action
of W on Φ can be seen as Sym(7) permuting the subscripts of the basis vectors. Let
u = (1, 2, 3, 4, 5, 6), v = (1, 2, 3, 4, 5, 7), w = (1, 3, 2, 4, 5, 6) ∈ W . Then, for example, the
following cycle c is a root cycle of u.

c = (e1 − e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6,−e1 + e6).

Just looking at the signs of the roots (positive or negative), this is (+,+,+,+,+,−), and
so κ(c) = 1. It can be shown that all root cycles of u have crossing number 0 or 1, and
in fact Seqκ(u) = [0, 0, 1, 1, 1, 1, 1], with `(u) = 5. On the other hand, the cycle

c′ = (e1 − e3,−e2 + e3, e2 − e4, e4 − e5, e5 − e6,−e1 + e6)

of w has sign pattern (+,−,+,+,+,−), so that κ(c′) = 2. It is not hard to calculate that
v and w, which both have length 7 and are conjugate to u, have different crossing num-
ber sequences. Specifically, Seqκ(v) = [1, 1, 1, 1, 1, 1, 1] and Seqκ(w) = [0, 0, 1, 1, 1, 2, 2].
Hence, κ(u) = κ(v) = 1, whereas κ(w) = 2.

Many different crossing numbers of elements are possible. However, as we will show
for Sym(n) (the Coxeter group An−1), every non-identity element w is conjugate to some
w′ such that κ(w′) = 1. This does not hold in all Coxeter groups. With this in mind, we
make a further definition.

Definition 1.3. Let W be a Coxeter group and X a conjugacy class of W . The minimum
crossing number of X, denoted κmin(X), is

κmin(X) := min{κ(w) | w ∈ X}.

The crossing number of W , denoted κ(W ), is defined to be

κ(W ) := max{κmin(X) | X a conjugacy class of W},

with κ(W ) =∞ if this maximum value does not exist.

We may now state our main results. As Example 1.2 shows, crossing number sequences
for elements of the same length in a given conjugacy class can be different. Our first result
for finite irreducible Coxeter groups is that the crossing number sequences of all minimal
length elements in a given conjugacy class are the same, and that their crossing numbers
equal the minimal crossing number of the class. For a conjugacy class X of W , we denote
the set of elements of minimal length in X by Xmin.
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Theorem 1.4. Let W be a finite irreducible Coxeter group, X a conjugacy class of W ,
and u be any element of Xmin. Then κmin(X) = κ(u). Moreover, for all v ∈ Xmin we
have Seqκ(v) = Seqκ(u).

Theorem 1.4 enables us to find κ(W ) for all finite irreducible Coxeter groups W .

Theorem 1.5. Let W be a finite irreducible Coxeter group.

(i) κ(W ) = 1 if and only if W is one of An(n ≥ 1), B2,B3,B4,D4,F4, or G2.

(ii) If W is Bn with n ≥ 3, or Dn with n ≥ 4, then κ(W ) = bn−1
2
c.

(iii) κ(E6) = 2; κ(E7) = 3; κ(E8) = 3; κ(H3) = 3; κ(H4) = 7.

(iv) If W is I2(n) (so W ∼= Dih(2n)) and n ≥ 3, then

κ(W ) =

{
n
2
− 2 if n ≡ 2 mod 4;

bn−1
2
c otherwise.

Our next theorem is at the opposite end of the spectrum from finite Coxeter groups.

Theorem 1.6. Let W be a finite rank universal Coxeter group. Then κ(W ) = 1.

The proof of Theorem 1.4 relies on results that hold only for finite irreducible Coxeter
groups. However, for arbitrary Coxeter groups W we can obtain lower bounds for κ(W )
by looking at its standard parabolic subgroups, using the following result.

Theorem 1.7. Let W be an arbitrary Coxeter group, and WI a standard parabolic sub-
group of W . Then κ(W ) ≥ κ(WI).

Corollary 1.8. Let n be a positive integer.

(i) There exists a finite irreducible Coxeter group W with κ(W ) = n. If n is even and
greater than two, there are exactly five such groups. If n is odd and greater than
seven, there are exactly seven such groups. However there are infinitely many finite
reducible Coxeter groups W with κ(W ) = n.

(ii) There exists an infinite irreducible Coxeter group W such that κ(W ) ≥ n.

In Section 2 we begin with some standard notation and background material, and then
prove some preliminary lemmas. In Section 3 we prove Theorem 1.4, and in Section 4
we prove Theorem 1.5. Then, in Section 5, we prove Theorem 1.6, and in Section 6 we
establish Theorem 1.7 and Corollary 1.8.

2 Notation and Background

Let W be a finite rank Coxeter group with its set of fundamental (or simple) reflections
being R. Then the length function ` on W is defined by `(1) = 0 and for w ∈ W \ {1}

`(w) = min{` ∈ N | w = r1r2 · · · r` where ri ∈ R}.
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Let V be a vector space over R with basis Π = {αr | r ∈ R}. Let r, s ∈ R with
corresponding αr, αs ∈ Π and denote the order of rs by mrs. Then we define the following
inner product on V

〈αr, αs〉 =

{
−cos(π/mrs) if mrs <∞,
−1 if mrs =∞.

We can now define a faithful action of W on V which preserves the inner product. For
r ∈ R and v ∈ V let

r · v = v − 2〈v, αr〉αr.
The root system of W is Φ = {w · αr | w ∈ W, r ∈ R}, The set of positive roots is
Φ+ = {

∑
r∈R λrαr | λr ≥ 0 for all r ∈ R}, and the negative roots are Φ− = −Φ+. It can

be shown that Φ = Φ+∪̇Φ−. We define one further function: for w ∈ W let

N(w) = {α ∈ Φ+ | w · α ∈ Φ−},

and so N(w) is the number of positive roots taken negative by w. It is well known that
`(w) = |N(w)|, see for example [8, §5.6 Proposition(b)]. In the proofs of a number of our
results we will need to consider how a given element g of W act on the cycles of w. For a
root cycle c = (α1, α2 . . . , αm) of w and an element g of W , we define g · c in the natural
way: g · c = (g · α1, g · α2, . . . , g · αm). For J ⊆ R we define the corresponding standard
parabolic subgroup to be WJ = 〈J〉. Then WJ is a Coxeter group with root system

ΦJ = {w · αr | r ∈ J, w ∈ WJ}.

Let W be a Coxeter group and g, h ∈ W . Then

N(gh) =
[
N(h) \

(
−h−1 ·N(g)

) ]
∪̇ h−1 ·

(
N(g) \N(h−1)

)
. (1)

(This is well-known, but for a proof see, for example [7, Lemma 2.2].) Hence,

`(gh) = `(g) + `(h)− 2|N(g) ∩N(h−1)|. (2)

Lemma 2.1. Let w ∈ W , let r ∈ R, and suppose that rwr 6= w. Then `(rwr) = `(w) if
and only if αr is contained in exactly one of N(w) and N(w−1), while `(rwr) < `(w) if
and only if αr ∈ N(w) ∩N(w−1).

Proof. Setting g = rw and h = r in Equation (2) gives

`(rwr) = `(rw) + `(r)− 2|N(rw) ∩N(r)|. (3)

Since N(r) = {αr}, now setting g = r and h = w in Equation (1) gives

N(rw) =

{
N(w) ∪ {w−1 · αr} if αr /∈ N(w−1),

N(w) \ {−w−1 · αr} if αr ∈ N(w−1).

Hence, `(rw) = `(w) + 1 − 2|N(w−1) ∩ {αr}|. Since we are assuming that rwr 6= w, we
have that w−1 · αr 6= ±αr. Thus, αr ∈ N(rw) if and only if αr ∈ N(w). Equation (3)
now becomes

`(rwr) = `(w) + 2− 2|N(w−1) ∩ {αr}| − 2|N(w) ∩ {αr}|.

The result follows immediately.

4



Finally, we note the following well-known observations.

Lemma 2.2. Let (W,R) be a Coxeter system, with w ∈ W , and suppose w = r1r2 · · · r`,
with ri ∈ R and ` = `(w), is a reduced expression for w. Write αri for the fundamental
root corresponding to ri. Then

N(w) = {αr` , r` · αr`−1
, . . . , (r` · · · r`−1) · αr1}.

For I ⊆ R, let W I = {w ∈ W | `(rw) > `(w) for all r ∈ I}. Then the following holds,
see [8, §1.10-Proposition(c)] for example.

Theorem 2.3. Let W be a Coxeter group with WI a standard parabolic subgroup of W .
Then W = WIW

I . Moreover, every element w of W has a unique expression w = wIw
I

such that wI ∈ WI , w
I ∈ W I , and `(w) = `(wI) + `(wI).

3 Finite Irreducible Coxeter Groups

In this section we prove Theorem 1.4. Throughout, W will denote a finite irreducible
Coxeter group. We begin with notation to be found in Definitions 3.2.3 and 3.2.4 of [4].

Definition 3.1. Let u, v ∈ W .

(a) We write u→ v if there exist r1, . . . rm ∈ R and distinct w0, w1, . . . , wm ∈ W , such
that w0 = u, wm = v, with wi = riwi−1ri and `(wi) ≤ `(wi−1) for 1 ≤ i ≤ m.

(b) We say that u and v are elementarily strongly conjugate if `(u) = `(v) and there
exists w in W such that either uw = wv and `(uw) = `(u) + `(w), or wu = vw and
`(wu) = `(u) + `(w).

The following result of Geck and Pfeiffer is crucial here, as it allows us to choose
conjugating elements that give us considerable control over the behaviour of the crossing
number.

Theorem 3.2 ([4, Theorem 3.2.9]). Let X be a conjugacy class of W .

(a) For each u in X there exists an element v of Xmin such that u→ v.

(b) Let u, v ∈ Xmin. Then there exists w in Xmin with u → w such that w and v are
elementarily strongly conjugate.

Theorem 3.2(a) tells us that we may conjugate any element of a conjugacy class to
an element of minimal length in the class, by a series of conjugations with fundamental
reflections where at each stage the length either stays the same or decreases.

In the following lemma we consider how conjugation by a fundamental reflection
affects the crossing number based on the change in length.

Lemma 3.3. Let w ∈ W and r ∈ R. If `(rwr) = `(w), then Seqκ(rwr) = Seqκ(w), and
hence κ(rwr) = κ(w). If `(rwr) < `(w), then κ(rwr) ≤ κ(w).
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Proof. If rwr = w, the result is obvious. So we may assume that rwr 6= w. Then
w ·αr /∈ {±αr}, and w−1 ·αr /∈ {±αr}. The root cycles of rwr are of the form r · c, where
c is a root cycle of w. Since N(r) = {αr}, the only roots whose sign changes under the
action of r are αr and −αr. Thus, whenever a root cycle c does not contain ±αr, the
pattern of positive and negative signs of roots in r · c is equal to that in c, meaning that
κ(c) = κ(r · c).

Now consider the root cycle c containing αr, and suppose first that `(rwr) = `(w).
By Lemma 2.1, exactly one of w · α ∈ Φ− and w−1 · α ∈ Φ− holds. That is, we have
(. . . , w−1 · αr, αr, w · αr, . . .), with the corresponding sign pattern (. . . ,−,+,+, . . .) or
(. . . ,+,+,−, . . .). Thus, the corresponding part of r ·c has sign pattern (. . . ,−,−,+, . . .)
or (. . . ,+,−,−, . . .). Either way, κ(r · c) = κ(c). A similar observation holds for −c, the
cycle containing −αr. We have shown that the crossing number of each root cycle c is
unchanged by the action of r. Hence Seqκ(rwr) = Seqκ(w).

The remaining case to consider is where `(rwr) < `(w). Again, we only need to look
at the root cycle containing ±αr. If c is the root cycle containing αr, then by Lemma 2.1
again c contains (. . . , w−1 · αr, αr, w · αr, . . .), with sign pattern (. . . ,−,+,−, . . .). The
corresponding part of r · c has sign pattern (. . . ,−,−,−, . . .). The part of the cycle
−c containing −αr has sign pattern (. . . ,+,−,+, . . .), which becomes (. . . ,+,+,+, . . .)
in r · (−c). The net effect is that κ(r · c) < κ(c) and κ(r · (−c)) < κ(−c). Hence,
κ(rwr) ≤ κ(w).

Remark 3.4. Note that even if `(rwr) < `(w), we cannot conclude that κ(rwr) < κ(w).
The crossing number of the cycle c containing αr decreases, as does the crossing number of
−c, but this will not affect κ(rwr) unless κ(c) = κ(w), and ±c are the only cycles with this
crossing number. Should this happen, then κ(rwr) ≤ κ(w)− 1. However, if c = −c, then
κ(r · c) = κ(c)− 2. All we can say in the general case is that κ(w)− 2 ≤ κ(rwr) ≤ κ(w).

Lemma 3.5. Let X be a conjugacy class of W , and suppose u, v ∈ Xmin. Then Seqκ(u) =
Seqκ(v).

Proof. By Theorem 3.2(b), there exists u′ in Xmin with u → u′ such that u′ and v are
elementarily strongly conjugate. By definition, there exist r1, . . . rm ∈ R and distinct
w0, w1, . . . , wm ∈ W , such that w0 = u, wm = u′, and, for all i, wi = riwi−1ri and
`(wi) ≤ `(wi−1). The fact that u has minimal length in its conjugacy class forces `(wi) =
`(wi−1) for all i. Therefore, by Lemma 3.3, we have Seqκ(wi) = Seqκ(wi−1). Hence,
Seqκ(u

′) = Seqκ(u). Thus, it suffices to prove the lemma in the case where u and v are
elementarily strongly conjugate. So, suppose u and v are elementarily strongly conjugate.
Then there exists x in W such that either ux = xv and `(ux) = `(u) + `(x), or xu = vx
and `(xu) = `(u)+`(x). Replacing u, v, x with their inverses, if necessary, we may assume
without loss of generality that ux = xv and `(ux) = `(u) + `(x). That is, v = x−1ux. By
Equation (2),

`(ux) = `(u) + `(x)− 2|N(u) ∩N(x−1)|.
Thus,

N(u) ∩N(x−1) = ∅. (4)

Also, again by Equation (2),

`(x−1ux) = `(x) + `(ux)− 2|N(x−1) ∩N((ux)−1)|.

Now `(x−1ux) = `(v) = `(u), and so |N(x−1) ∩N((ux)−1)| = `(x). This forces

N(x−1) ⊆ N((ux)−1). (5)

6



Since `((ux)−1) = `(ux) = `(u) + `(x), we observe from Equation (1), with g = u−1 and
h = x−1, that there is only one way for |N((ux)−1)| to attain the required cardinality,
and that is for

N((ux)−1) = N(x−1u−1) = N(u−1) ∪̇ uN(x−1).

Note here that u · N(x−1) really is a set of positive roots, because N(x−1) ∩ N(u) = ∅.
Thus,

α ∈ N((ux)−1) if and only if either u−1 · α ∈ Φ− or u−1 · α ∈ N(x−1). (6)

Note that c is a root cycle of u if and only if x−1 ·c is a root cycle of v. Therefore, to show
that Seqκ(v) = Seqκ(u), it is sufficient to prove that κ(x−1 · c) = κ(c) for all root cycles c
of u. Let c be a root cycle of u. If supp(c) does not intersect ±N(x−1), then x−1 · α has
the same sign as α, for each α in supp(c). Hence c and x−1 · c have the same sign pattern,
and κ(c) = κ(x−1 · c). At the other extreme, if supp(c) ⊆ (N(x−1) ∪−N(x−1)), then the
action of x−1 will change the sign of every root in c, and so (because supp(c) is finite),
κ(x−1 · c) = κ(−c) = κ(c). The remaining case to consider is root cycles c of u whose
support intersects, but is not contained entirely within, N(x−1)∪−N(x−1). Let c be such
a cycle. Replacing c with −c if necessary, we can assume without loss of generality that
c contains some α ∈ N(x−1), and some other root β /∈ N(x−1) ∪ −N(x−1). Let i be the
least positive integer such that ui · α /∈ N(x−1). Then α, u · α, . . ., ui−1 · α are elements
of N(x−1), so in particular they are positive roots and, by (4), they are not contained in
N(u). Thus, ui · α = u · (ui−1α) ∈ Φ+. That is, the root cycle c contains

(. . . , α, u · α, . . . , ui−1 · α, ui · α, . . .)

with sign pattern
(. . . ,+,+, . . . ,+︸ ︷︷ ︸

in N(x−1)

, +︸︷︷︸
/∈N(x−1)

, . . .).

Now we consider the roots preceding α in c. Let j be the least positive integer such
that u−j · α /∈ N(x−1). Then α, u−1 · α, . . ., u−(j−1) · α are all positive roots contained in
N(x−1). By (5) we have that u−(j−1) ·α ∈ N((ux)−1). Since u−1(u−j−1 ·α) /∈ N(x−1), we
see from (6) that u−j · α ∈ Φ−. Moreover, u−j · α is not contained in −N(x−1), because
u−j · α ∈ −N(u), and N(u) ∩N(x−1) = ∅. That is, the root cycle c contains

(. . . , u−j · α, u−(j−1) · α, . . . , u−1 · α, α, . . .)

with sign pattern
(. . . , −︸︷︷︸

/∈−N(x−1)

,+,+, . . . ,+︸ ︷︷ ︸
in N(x−1)

, . . .).

Combining these observations we see that for every place where supp(c) intersects N(x−1),
the corresponding sign pattern is of the form

(. . . , −︸︷︷︸
/∈−N(x−1)

,+,+, . . . ,+︸ ︷︷ ︸
in N(x−1)

, +︸︷︷︸
/∈N(x−1)

, . . .).

This means that the corresponding part of x−1 · c will contain (. . . ,−,−, . . . ,−,+, . . .).
This clearly does not affect the crossing number. Similarly, each place where supp(c)
intersects −N(x−1) will consist of a sequence

(. . . , +︸︷︷︸
/∈N(x−1)

,−,−, . . . ,−︸ ︷︷ ︸
in −N(x−1)

, −︸︷︷︸
/∈−N(x−1)

, . . .).
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In x−1 · c, this will become (. . . ,+,+, . . . ,+,−, . . .). Again, the crossing number is unaf-
fected. Therefore, κ(x−1 · c) = κ(c).

We have shown that each root cycle c of u has the same crossing number as the
corresponding root cycle x−1 · c of v. Therefore, Seqκ(v) = Seqκ(u).

Proof of Theorem 1.4. Let W be a finite irreducible Coxeter group and X a conjugacy
class of W . Let w ∈ X. Then by Theorem 3.2(a) there exists w′ ∈ Xmin such that
w → w′. It follows by repeated application of Lemma 3.3 that κ(w′) ≤ κ(w). Hence,

κmin(X) = min{κ(v) | v ∈ Xmin}.

Let u ∈ Xmin. By Lemma 3.5, for all v ∈ Xmin, Seqκ(v) = Seqκ(u). In particular,
κ(v) = κ(u). Hence, κmin(X) = κ(u), thus completing the proof of Theorem 1.4.

4 Proof of Theorem 1.5

LetW be a finite irreducible Coxeter group with root system Φ. For w ∈ W and α ∈ Φ, let
Φw(α) be the root cycle of w which contains α. That is, Φw(α) = (. . . , w−1 ·α, α, w·α, . . .).

4.1 W of type A

We begin by describing representative elements of minimal length in the conjugacy classes
of An−1

∼= Sym(n), for n ≥ 2.
Let W = An−1

∼= Sym(n) with positive roots Φ+ = {ei − ej | 1 ≤ i < j ≤ n},
and negative roots Φ− = −Φ+. The conjugacy classes of Sym(n) are parameterised by
compositions of n; that is, integer tuples λ = (b1, b2, . . . , bp) where 1 ≤ bp ≤ · · · ≤ b1 ≤ n,
1 ≤ p ≤ n, and

∑p
i=1 bi = n. Let Λ be the set of all such λ. For a given λ ∈ Λ, let

{βi | 0 ≤ i ≤ p} be the set of partial sums of the bi. That is, β0 = 0 and βj =
∑j

i=1 bi
for 1 ≤ j ≤ p. Then we can associate to each bi an element ui of Sym(n), given by
ui = (βi−1 + 1, . . . βi). Define

wλ = u1u2 · · ·up = (1, . . . , β1)(β1 + 1, . . . , β2) · · · (βp−1 + 1, . . . , βp). (7)

The following is a well known result for symmetric groups.

Theorem 4.1. The set {wλ}λ∈Λ is a complete set of representatives of minimal length
of the conjugacy classes of W .

We now prove Theorem 1.5(i) in the case of An.

Lemma 4.2. Let n ≥ 1 and W = An. Then κ(W ) = 1.

Proof. It is more convenient to work with Sym(n), so we will actually prove the equivalent
result that if n ≥ 2 and W = An−1

∼= Sym(n), then κ(W ) = 1. Let w = u1 · · ·up ∈
{wλ}λ∈Λ and α = ei − ej ∈ Φ+ with i ∈ supp(um) and j ∈ supp(uk) for some m, k ∈
{1, . . . , p}. Then it is immediate that i < j and so m ≤ k.

First, suppose that m < k. For all r ∈ supp(um) and s ∈ supp(uk) it follows from (7)
that r < s and so er − es ∈ Φ+. Thus supp(Φw(α)) ⊆ Φ+ and so κ(Φw(α)) = 0.

Now suppose that m = k. Then

Φw(α) = (e1 − ej−i+1, . . . , ei − ej, . . . , ei+(βm−j) − eβm︸ ︷︷ ︸
+

ei+1+(βm−j) − e1, . . . , eβm − ej−i︸ ︷︷ ︸
−

)
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and so κ(Φw(α)) = 1.
Recall that κ(W ) = max{κ(wλ) | λ ∈ Λ} by Theorem 1.4, and so we have shown that

κ(An) = 1 for all n ≥ 1.

4.2 W of type B or D

We begin by introducing some notation and preliminary results. We use the notation of
signed cycles as in [5], and so

Bn = 〈(
−
1), (

+

1,
+

2), . . . , (
+

n− 1,
+
n)〉 and Dn = 〈(

−
1,
−
2), (

+

1,
+

2), . . . , (
+

n− 1,
+
n)〉.

Recall that with this scenario Dn has the following sets of positive and negative roots:

Φ+ = {±ei + ej | 1 ≤ i < j ≤ n} and Φ− = {±ei − ej | 1 ≤ i < j ≤ n}.

The roots of Bn are given by the union of those of Dn with positive roots {ei |1 ≤ i ≤ n},
and negative roots {−ei |1 ≤ i ≤ n}. Then, for example, w = (

−
1,

+

2,
−
3,

+

4)(
−
6) ∈ B6

represents the element (1,−2,−3, 4)(−1, 2, 3,−4)(6,−6) and

Φw(e1 − e2) = (e1 − e2,−e2 − e3,−e3 + e4, e4 + e1)

We now describe representative elements of minimal length of each conjugacy class
using [4] (in fact we give the inverse of the elements in [4] as they write their elements
on the right of the roots, and use the following change of notation (α, β) 7→ (b, c)). For
integers m, p with 0 ≤ m ≤ n and 0 ≤ p ≤ n, let λ = (c1, . . . cm; b1, . . . , bp) ∈ Zm+p be
such that 1 ≤ c1 ≤ c2 ≤ · · · ≤ cm and 1 ≤ bp ≤ · · · ≤ b2 ≤ b1 with

∑m
i=1 ci +

∑p
i=1 bi = n.

Let Λ be the set of all such sequences. We now define elements of Bn associated to these
sequences.

Set γ0 = 0, for 1 ≤ j ≤ m let γj =
∑j

i=1 ci and u−j = (
−

γj−1 + 1,
+

γj−1 + 2, . . . ,
+
γj), and

for 1 ≤ j ≤ p let βj = γm +
∑j

i=1 bi and u+
j = (

+

βj−1 + 1, . . . ,
+

βj). We then associate to
λ ∈ Λ the following element of Bn.

wλ = u−1 · · ·u−mu+
1 · · ·u+

p (8)

We may view Dn as the subgroup of index 2 in Bn consisting of elements whose signed
cycles contain an even number of minus signs. Conjugacy classes of these elements in
Dn are the same as in Bn, except where every signed cycle has even length and an even
number of minus signs. In that case, there are two conjugacy classes. In order to describe
minimal length conjugacy class representatives in Dn, we thus need to define two subsets
of Λ. Let ∆ ⊆ Λ be the set of sequences (c1, . . . cm; b1, . . . , bp) with m even. Let Γ ⊆ ∆
be the set of sequences (∅; b1, . . . , bp) such that bi is even for 1 ≤ i ≤ p.

Lemma 4.3. [4, Proposition 3.4.7 and 3.4.12]

(i) If W = Bn, thenM(Bn) := {wλ}λ∈Λ is a complete set of representatives of minimal
length of the conjugacy classes of W .

(ii) If W = Dn, then the following is a complete set of representatives of minimal length
of the conjugacy classes of W

M(Dn) := {wδ}δ∈∆ ∪ {(
−
b1)wγ(

−
b1)}γ∈Γ.
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Note that for γ ∈ Γ, we have (
−
b1)wγ(

−
b1) = (

−
1,

+

2, . . . ,
+

b1 − 1,
−
b1)u+

2 · · ·u+
p . We are now

able to prove Theorem 1.5(ii).

Lemma 4.4. Let W = Bn (n ≥ 3) or Dn (n ≥ 4). Then κ(W ) = bn−1
2
c.

Proof. We begin by considering W = Bn. Let w = u−1 · · ·u−mu+
1 · · ·u+

p ∈ {wλ}λ∈Λ. For
each α ∈ Φ+ we consider the possibilities for Φw(α).

First let α = ei. If i ∈ supp(u+
k ), then supp(Φw(ei)) ⊆ Φ+, and if i ∈ supp(u−k ), then

Φw(ei) = (ei, ei+1, . . . , eγk , eγk−1+1︸ ︷︷ ︸
+

,−eγk−1+2, . . . ,−eγk ,−eγk−1+1︸ ︷︷ ︸
−

, eγk−1+2, . . . , ei−1︸ ︷︷ ︸
+

). Hence

κ(Φw(α)) is 0 or 1.
Now let i < j and consider α = ±ei + ej. If i, j ∈ supp(u+

k ), then Φw(ei + ej) ⊆ Φ+,
and Φw(−ei + ej) is

(−ei + ej, . . . ,−ei−j+βk + eβk︸ ︷︷ ︸
+

,−ei−j+βk+1 + e1, . . . ,−eβk + ej−i︸ ︷︷ ︸
−

,−e1 + ej−i+1, . . . ,−ei−1 + ej−1︸ ︷︷ ︸
+

).

Hence κ(Φw(α)) = 0 or 1.
On the other hand, if i, j ∈ supp(u−k ), then Φw(ei + ej) is

(ei + ej, . . . , ei+γk−j + eγk , ei+γk−j+1 + eγk−1+1, ei+γk−j+2 − eγk−1+2, . . . , eγk − eγk−1+j−i︸ ︷︷ ︸
+

,

eγk−1+1 − eγk−1+j−i+1,−eγk−1+2 − eγk−1+j−i+2, . . . ,−ei+γk−j − eγk︸ ︷︷ ︸
−

,

−ei+γk−j+1 − eγk−1+1,−ei+γk−j+2 + eγk−1+2, . . . ,−eγk + eγk−1+j−i︸ ︷︷ ︸
−

,

−eγk−1+1 + eγk−1+j−i+1, eγk−1+2 + eγk−1+j−i+2 . . . , ei−1 + ej−1︸ ︷︷ ︸
+

),

and Φw(−ei + ej) is

(−ei + ej, . . . ,−ei+γk−j + eγk︸ ︷︷ ︸
+

−ei+γk−j+1 + eγk−1+1,−ei+γk−j+2 − eγk−1+2, . . . ,−eγk − eγk−1+j−i︸ ︷︷ ︸
−

,

−eγk−1+1 − eγk−1+j−i+1, eγk−1+2 − eγk−1+j−i+2, . . . , ei+γk−j − eγk︸ ︷︷ ︸
−

,

ei+γk−j+1 − eγk−1+1, ei+γk−j+2 + eγk−1+2, . . . , eγk + eγk−1+j−i︸ ︷︷ ︸
+

,

eγk−1+1 + eγk−1+j−i+1,−eγk−1+2 + eγk−1+j−i+2 . . . ,−ei−1 + ej−1︸ ︷︷ ︸
+

),

Hence κ(Φw(α)) = 1.
If i ∈ supp(u±k ) and j ∈ supp(u+

m), then all elements in supp(Φw(α)) look like ±er+es
for some r ∈ supp(u±k ) and s ∈ supp(u+

m). Since r < s, it follows that supp(Φw(α)) ⊆ Φ+,
and so κ(Φw(α)) = 0.
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Finally suppose that i ∈ supp(u±k ) and j ∈ supp(u−m). Then in fact, since k < m we
must have i ∈ supp(u−k ). Similarly to the previous case, all elements in supp(Φw(α)) look
like ±er ± es for some r ∈ supp(u−k ) and s ∈ supp(u−m), with sign equal to the sign of
±es. The order of Φw(α) is lcm(|u−k |, |u−m|) and the sign will change after each string of
|u−m|

2
elements (note that |u−m| = 2(γm−γm−1)). Exactly half of these changes will be from

positive to negative. Hence

κ(Φw(±ei + ej)) =
lcm(|u−k |, |u−m|)

|u−m|
=

|u−k |
gcd(|u−k |, |u−m|)

.

By Lemma 1.4, κ(Bn) = max{κ(w) | w ∈ M(Bn)}. Therefore the conjugacy class

with the largest κmin value will be the one which maximises
lcm(|u−k |,|u

−
m|)

|u−m|
(and note

that because k < m we have |u−k | ≤ |u−m|). The conjugacy class parametrised by
λ = (c1, c2; b1) = (bn−1

2
c, bn+1

2
c; 1) if n is even, and by λ′ = (c′1, c

′
2;∅) = (bn−1

2
c, bn+1

2
c;∅)

if n is odd will achieve this maximum. Hence the result follows for Bn.
Now we consider Dn, for n ≥ 4. Observe that for w ∈ Dn, every root cycle of w

is also a root cycle of w when viewed as an element of Bn. Therefore, κ(Dn) ≤ κ(Bn).
Moreover, the elements λ and λ′ which achieve the maximum values for κ(Bn) satisfy (in
the notation of Equation (8)) m = 2, so are contained in ∆, and hence wλ and wλ′ are
elements of Dn. Thus κ(Dn) = κ(Bn).

4.3 W of type I2

We now move onto I2(n), the dihedral group Dih(2n).

Lemma 4.5. Let W = I2(n) for some n ≥ 3. Then

κ(W ) =

{
n
2
− 2 if n ≡ 2 mod 4,

bn−1
2
c otherwise.

.

Proof. Let R = {r, s}, so that mrs = n. Every element of W is either a reflection (con-
jugate to r or s or both) or an element of 〈rs〉. Note that if c is a root cycle, then

κ(c) ≤ b |c|
2
c. If w is a reflection, then all of its root cycles have length 1 or 2, and hence

κ(w) = 1. Therefore, in order to determine κ(W ) it suffices to consider w ∈ 〈rs〉. Now,
rs does not fix any root α, for, if it did, then rs would commute with the corresponding
reflection rα of W , and this does not happen as n ≥ 3. Hence, for all α ∈ Φ, the root
cycle Φrs(α) has length n, the order of rs. Thus, for w ∈ 〈rs〉, the root cycles of w have
length dividing n, with equality if and only if w = (rs)i for some i coprime to n. Hence,
κ(c) ≤ bn

2
c for each root cycle c of w, and so κ(w) ≤ bn

2
c. Therefore κ(W ) ≤ bn

2
c.

If n is odd, then we have κ(W ) ≤ bn
2
c = n−1

2
. Consider w = (rs)(n−1)/2. Since n−1

2
is

coprime to n, the root cycles of w all have length n. As there are 2n roots in total, w
therefore has exactly two root cycles, c1 and c2 say, each of length n, and for each ci we
have κ(ci) ≤ n−1

2
. Now, the longest element w0 of W is (rs)(n−1)/2r, and it has Coxeter

length n. Thus w, which equals w0r, has Coxeter ength n−1. Since `(w) = κ(c1)+κ(c2),
we must have κ(c1) = κ(c2) = n−1

2
and so κ(w) = n−1

2
. Hence, κ(W ) = n−1

2
= bn−1

2
c, as

required.

11



Now suppose n is even and consider w = (rs)i. Since (rs)n/2 = (sr)n/2, and (rs)i =
((rs)n−i)−1, we can replace w with w−1 if necessary, in order to assume that i < n

2
. We

have
N(w) = {(sr)jαs, (sr)js · αr | 0 ≤ j ≤ i}

and `(w) = 2i. Since n is even, the root system has two orbits under the action of W ,
meaning that elements of W · αr and W · αs can never lie in the same root cycle of
any w in W . Moreover, exactly half the elements of N(w) lie in W · αr, and half lie in
W · αs. If i is not coprime to n, then the root cycles of w have length at most n

2
, and

hence crossing number at most n
4
. Thus κ(w) ≤ n

4
. which, since n ≥ 4, certainly does

not exceed either n
2
− 2 or bn−1

2
c. But if i is coprime to n and w = (rs)i, then w has

exactly two root cycles, both of length n, and they are c1 = Φw(αr) and c2 = Φw(αs).
Moreover, |supp(ci) ∩ N(w)| = 1

2
`(w) = i. Thus κ(w) = i. Hence κ(W ) = max{i ∈

{1, . . . , n
2
} | gcd(i, n) = 1}. If n ≡ 2 mod 4, then κ(W ) = n

2
− 2, and if n ≡ 0 mod 4,

then κ(W ) = n
2
− 1 = bn−1

2
c. This completes the proof of Lemma 4.5.

4.4 The exceptional groups

The remaining finite irreducible Coxeter groups are the exceptional groups E6, E7, E8,
F4, H3, and H4, which we consider here using Magma [1]. In the following, for brevity,
we use exponent notation to indicate repetitions in the crossing sequences. For example
we understand [12, 33] to denote a sequence [1, 1, 3, 3, 3]. We begin with a remark.

Remark 4.6. If W is reducible, then κ(W ) is simply the maximum crossing number
amongst the irreducible components of W . Therefore, if κ(W ) = n, then κ(W×Am) = n,
for any m ≥ 1.

Lemma 4.7. Let W be a finite irreducible Coxeter group. Then

κ(W ) =


1 if W = F4,

2 if W = E6,

3 if W ∈ {E7,E8,H3},
7 if W = H4.

Proof. Recall from Theorem 1.4 that if X is a conjugacy class of W with u, v ∈ Xmin, then
Seqκ(u) = Seqκ(v) and κmin(X) = κ(u). Every conjugacy class of W either intersects
with a maximal parabolic subgroup of W or is a cuspidal class. For each W , it is therefore
sufficient to calculate the crossing number (or in some cases, for more detail, the crossing
sequence) of each maximal parabolic subgroup and of each cuspidal classes. We use
Remark 4.6 and Theorem 1.5 to calculate crossing numbers of the maximal parabolic
subgroups. For the labelling of the cuspidal classes we use [6, Tables 2-7] (see also [2], [3]
and [4]).

If W is F4 then all maximal parabolic subgroups have crossing number 1, as do all
cuspidal classes. Thus κ(F4) = 1.

Let W be E6. If w is an element of minimal length in the maximal parabolic subgroup
D5, then Seqκ(w) = [04, 13, 22]. For w an element of minimal length in a cuspidal class,
Seqκ(w) = [1`(w)]. Hence, κ(E6) = 2.

Let W be E7. Then the largest crossing number among the maximal parabolic sub-
groups is achieved by E6. Let w be a minimal element in a cuspidal class. If w ∈ E7(a3),
then Seqκ(w) = [14, 33], and otherwise [1`(w)]. Therefore, κ(E7) = 3.
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If W is E8, then E7 gives the largest crossing number of the maximal parabolic sub-
groups. There are two cuspidal classes whose crossing sequences are not [1`(w)]. These are
D8(a2) with sequence [111, 35], and D5(a1) + A3 with sequence [122, 212]. Thus, κ(E8) = 3.

If W is H3, then the largest crossing number arising from the maximal parabolic
subgroups is 2, corresponding to I2(5). If w is an element of minimal length in cuspidal
class 9, then Seqκ(w) = [33], and otherwise Seqκ(w) = [1`(w)]. Therefore, κ(H3) = 3.

Finally, let W be H4. Then H3 is the maximal parabolic subgroup with the highest
crossing number. The elements of minimal length in cuspidal classes 19, 22, 23, 27, 28,
30, 31, or 33 have respective crossing sequences [111, 31], [28], [36], [122, 22], [74], [312],
[15, 311] and [224]. All others have [1`(w)]. Hence, κ(H4) = 7.

We now prove Theorem 1.5.

Proof of Theorem 1.5. Parts (ii), (iii) and (iv) follow by Lemmas 4.4, 4.7 and 4.5 respec-
tively. Part (i) follows from Lemma 4.2, along with parts (ii) – (iv) and the observation
that G2 = I2(6) and B2 = I2(4).

5 Universal Coxeter groups

Let R be a set of size n, and let W = Wn = 〈R | r2 = 1 for all r ∈ R〉 be the universal
Coxeter group on n generators (for example W2 is the infinite dihedral group). It is
well known that any two reduced expressions for an element w of an arbitrary Coxeter
group can be transformed into each other by use only of braid relations (rs)mrs = 1,
where r, s ∈ R, r 6= s and mrs < ∞. Since no such relations exist in universal Coxeter
groups, every element has a unique reduced expression. Therefore, if r1 · · · rk is a reduced
expression for w in W , and if r is a fundamental reflection with r 6= rk, then `(wr) > `(w),
meaning that w · αr ∈ Φ+.

Lemma 5.1. Let W be the universal Coxeter group on n generators. Then κ(W ) = 1.

Proof. Let w ∈ W be an element of minimal length within its conjugacy class and let
r1r2 · · · rm be the unique reduced expression for w, so that `(w) = m. If r1 = rm, then we
must have m = 1, otherwise `(wr1) < `(w), contradicting the minimality of w. If m = 1,
then w is a fundamental reflection, and clearly κ(w) = 1 in this case. So we can assume
that r1 6= rm. By Lemma 2.2, we have

N(w) = {αrm , rm · αrm−1 , . . . , (rm · · · r2) · αr1}.

Let Q = w · N(w) = {−(r1 · · · rm−1) · αm,−(r1 · · · rm−2) · αm−1, . . . ,−α1} ⊆ Φ−. Since
r1 6= rm, it follows that for all positive integers k and all j with 1 ≤ j ≤ m, the unique
reduced expression for wkr1 · · · rj−1 does not end in rj. Consequently, (wkr1 · · · rj−1) ·rj ∈
Φ+ for all positive integers k and all j ∈ {1, . . . ,m}. Therefore, no element of Q is sent
positive by any power of w. Hence each root cycle contains at most one element of N(w).
Thus κ(w) = 1, and the result follows.

6 Parabolic Subgroups

In this section we look at the relationship between the crossing number of a Coxeter
group and the crossing numbers of its standard parabolic subgroups. Also in this section
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we exhibit infinitely many examples of infinite Coxeter groups W for which κ(W ) = 1.
We begin by proving Theorem 1.7, which stated that if W is an arbitrary Coxeter group,
and WI is any standard parabolic subgroup of W , then κ(W ) ≥ κ(WI).

Proof of Theorem 1.7. Let W be a Coxeter group, WI ≤ W a standard parabolic sub-
group, Y a conjugacy class of WI and y ∈ Y such that κ(y) = κmin(Y ) = κ(WI).

Set X = Y W and let x ∈ X. There exists g ∈ W such that x = yg, and by Theorem
2.3 we may write g = gIg

I for some gI ∈ WI and gI ∈ W I . Thus w := ygI ∈ Y and
x = wg

I
. Note that c is a root cycle of w if and only if (gI)−1 · c is a root cycle of

x. Let c be a root cycle of w for which κ(c) = κ(w). Observe that N(w) ⊆ Φ+
I and

N((gI)−1) ∩ ΦI = ∅. Hence for α ∈ supp(c) it follows that (gI)−1 · α ∈ Φ+ if and only if
α ∈ Φ+. Therefore, c and (gI)−1 · c have the same sign pattern and so

κ(x) ≥ κ((gI)−1 · c) = κ(c) = κ(w).

Since x ∈ X was chosen arbitrarily, and the crossing number of a group is the maximum
of the κmin over conjugacy classes, it follows that

κ(W ) ≥ κmin(X) ≥ κ(w). (9)

By choice of Y and y we have

κ(w) ≥ κ(y) = κmin(Y ) = κ(WI). (10)

Combining (9) and (10) gives the result.

Proof of Corollary 1.8. We first prove part (i). By Theorem 1.5 the only finite irreducible
Coxeter groups with crossing number even and greater than two, or odd and greater than
seven, are Bn,Dn, and I2(n) (for appropriate choices of n).

If n is odd and greater than seven and W ∈ {B2n+1 , D2n+1, B2n+2, D2n+2, I2(2n+ 1),
I2(2n+ 2), I2(2n+ 4)}, or if n is even and greater than two and W ∈ {B2n+1 , D2n+1,
B2n+2, D2n+2, I2(2n+ 1)}, then κ(W ) = n, and these constitute the only finite irreducible
Coxeter groups with that crossing number.

Combining the above with Remark 4.6 implies the existence of infinitely many finite
Coxeter groups with crossing number n.

We now prove part (ii). Let W be the Coxeter group corresponding to the following
diagram.

m+ 2

m+ 1

m
321

∞
(11)

Then W has A1 ×Dm as a parabolic subgroup. Hence

κ(W ) ≥ κ(A1 ×Dm) by Theorem 1.7,

= max
{
κ(A1), κ(Dm)

}
by Remark 4.6,

= max

{
1,
⌊m− 1

2

⌋}
by Theorem 1.5,

=
⌊m− 1

2

⌋
.

Taking m = 2n+ 1 gives the result.
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