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Abstract. The lectures in the workshop covered various topics in modern
topology, including algebraic and geometric topology, homotopy theory, geo-
metric group theory, and manifold topology, as well as connections to neigh-
boring areas, most prominently symplectic topology/geometry. The following
current research topics received more attention during the workshop: mani-
folds and K-theory, symplectic topology and Floer homology, generalizations
of hyperbolic techniques in geometric group theory, and equivariant and mo-
tivic homotopy theory. The aim of the various topics was to foster commu-
nication and provide chances for participants to see and experience driving
questions and important methods in nearby fields within the realm of topol-
ogy.
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Introduction by the Organizers

In the final program we had 5 lectures on Monday and Tuesday, 3 on Wednesday
and 4 on Friday (due to the traditional hike on Wednesday and some early depar-
tures on Friday). On Thursday we had 3 hour talks in the morning and 4 shorter
talks in the afternoon. The format seemed to work very well. The workshop fea-
tured three lectures by Mohammed Abouzaid (Columbia University). Professor
Abouzaid explained how novel techniques allowed him (and his collaborators) to
develop a method of building spaces (more precisely, spectra) which recover Floer
homologies through their usual homologies. These spaces have been already used
in particular situations (eg in Khovanov homology) to find invariants beyond the
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known ones in knot theory. To put this advance in perspective, we need to step
back and recall some of the ideas of symplectic topology and geometry.

Just as a smooth structure on a manifold allows us to use methods and tech-
niques of calculus in topology, the existence of symplectic and contact structures
(through compatible almost-complex structures) provides a possibility to apply
complex analysis in solving topological questions. In addition, these structures
(having their roots in physics) also provide the framework for connections to theo-
retical physics, mirror symmetry being the most well-known and most fundamen-
tal.

Since their introduction by Gromov 35 years ago, pseudo-holomorphic curves
have been an essential tool for studying symplectic and contact manifolds. The
main questions revolve around how to organize the information one gets from the
spaces of these holomorphic maps. Important developments include the works of
Floer, Fukaya, and many others, leading to Floer homology of Lagrangians, the
Fukaya category of a symplectic manifold, and contact and symplectic (co)homolo-
gy. These ideas and methods have now widespread applications, and led to solu-
tions of purely topological questions.

Purely topological results also follow from symplectic/contact theories; for ex-
ample, it has been shown that the symplectomorphism type of the cotangent bun-
dles of lens spaces are complete diffeomorphism invariants, and (a specific version
of) the contact homology of the unit conormal bundle of a knot provides a com-
plete knot invariant. A further example of this relationship is given by Abouzaid’s
result about exotic spheres and Lagrangian embeddings.

In addition to the lecture series of Professor Abouzaid, there were several lec-
tures in low dimensional topology. The talk of Jen Hom centered on a version of
knot Floer homology (a variant of the general symplectic Floer homology pack-
age, which turned out to be of utmost importance in contemporary 3-manifold
topology and knot theory), with an application for the algebraic structure of the
homology cobordism group of integral homology 3-spheres. The talk of Lisa Piccir-
illo provided a state-of-the-art overview regarding the construction of interesting
smooth four-manifolds, at the same time discussing the situation with topological
four-manifolds with fixed fundamental groups. Maggie Miller’s short presentation
verified a new phenomenon for Seifert surfaces of knots: they can stay distinct
even when we allow isotopies through the fourth dimension. Marco Marengon
showed a natural link between the smooth topology of four-manifolds and knot
theory, and outlined some intriguing conjectures regarding knot Floer homology
and Khovanov homology groups of knots which bound smooth embedded disks
in the standard four-space. Andy Putman’s talk focused on the moduli space of
curves with level structures and its stable cohomology.

In the area of homotopy theory, we heard reports of many interesting new devel-
opments. Jeremy Hahn discussed a revolutionary new approach (based on complex
cobordism) he has developed with his collaborators to compute prismatic coho-
mology of rings which generalizes to define and compute prismatic cohomology of
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ring spectra. This gives a new streamlined approach to algebraic K-theory com-
putations. This line of research was augmented by the talk of Thomas Nikolaus,
who described how prisms can be used to understand the algebraic K-theory of the
rings Z/pk. Tomer Schlank gave a new spectrum-level generalization of the clas-
sical Nullstellensatz to chromatic homotopy theory, and used this to deduce new
enhanced red-shift results in algebraic K-theory. Lennart Meier reported on his
joint work with Gepner to produce and compute integral genuine equivariant ellip-
tic cohomology. Another advance in equivariant homotopy theory was discussed
by Mike Hill, who detailed an approach to the computation of the equivariant dual
Steenrod algebra for the cyclic groups C2k .

Several talks featured current work in geometric group theory. Geometric group
theory has developed a large body of techniques for studying groups that act geo-
metrically on spaces with negative or non-positive curvature, known as hyperbolic
and CAT(0) spaces. The talks in this workshop focused on extending the theory of
hyperbolic and CAT(0) groups to broader classes of groups. Two talks, by Indira
Chatterji and Elia Fioravanti concerned groups acting on coarse versions of median
spaces, which serve as natural generalizations of hyperbolic spaces. A third talk,
by Davide Spriano, discussed new ideas for generalizing techniques from CAT(0)
cube complexes to broader classes of CAT(0) spaces by introducing an analogue
of hyperplanes and curve graphs for these spaces.

We also had several talks relating to high dimensional manifolds, with some
overlap with both homotopy theory and symplectic topology. Alexander Kupers
spoke about his joint work with Randal-Williams about Torelli Lie algebras, in
which they resolved a conjecture of Hain from 1997 using high dimensional mani-
folds among other tools. Nathalie Wahl gave an enlightening survey of invariance
and non-invariance results in string topology, and presented compelling evidence
for a non-invariance conjecture. Thomas Kragh talked about spaces of Legen-
drian knots, and Oscar Randal-Williams talked about algebraic independence of
the topological Pontryagin classes.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Towards quantum Morava K-theory

Ivan Smith

(joint work with Mohammed Abouzaid, Mark McLean)

This talk discussed a new interaction between symplectic topology and chromatic
homotopy theory, in the vein of Abouzaid and Blumberg’s [1].

Symplectic manifolds admit no local invariants: if (X,ω) is connected then the
group of Hamiltonian symplectomorphisms Ham(X) acts transitively. One is
therefore led to ask global ‘topological’ questions. Any symplectic manifold (X,ω)
admits a contractible space of ‘taming’ almost complex structures J , ones for which
ω(v, Jv) > 0 whenever v 6= 0. Ever since the seminal works of Gromov and Floer,
arguably the key tool in studying the global topology of symplectic manifolds has
been the package of enumerative invariants defined by counting J-holomorphic
curves for some chosen taming J (the taming condition ensures compactness of
the moduli spaces).

The moduli spaces M(J, β) of J-curves in some fixed class β ∈ H2(X ;Z) are
often highly singular, and have usually been studied via local Kuranishi charts :
this writes a neighbourhood of a point of the moduli space as the zero-set of a
section of an orbibundle over an orbifold. Such local charts are difficult to patch
together since the dimension of the base and the fibre vary, only their difference is
well-defined. Recently [2], Abouzaid, McLean and the author proved that moduli
spaces of genus zero curves admit global Kuranishi charts. A global chart for a
Hausdorff topological space M is a quintet (G, T , E, s, φ) where G is a compact
Lie group, T is a G-manifold for which the action has finite stabilisers, E → T is
a G-bundle, and s is a G-equivariant section for which there is a homeomorphism

φ : s−1(0)/G
≃
−→ M. Then we show:

Theorem. (Abouzaid-McLean-S.) If (X,ω) is closed, J tames ω and β ∈ H2(X ;Z),
the space of stable genus zero curves with n marked points M0,n(X, J, β) admits
a global chart.

One can assume that T is smooth, and that TT − g and E admit stable almost
complex structures. The chart is unique up to a reasonable set of ‘moves’, which
preserve the ‘virtual dimension’ dim(T )− dim(G)− rk(E). (Work in preparation
gives the same result for spaces of closed higher genus stable maps.)

The Morava K-theories are generalised cohomology theories Kp(n) indexed by a
prime p and integer n > 0, with coefficients Fp[v, v

−1] for a variable v of degree
|v| = 2(pn − 1). When the ‘height’ n = 1 the theory is basically a summand
of mod p complex K-theory, but for larger height the theories are constructed
algebraically. They are the ‘primes’ in the stable homotopy category, and intrinsic
to it; just as one studies rings one prime at a time in classical commutative algebra,
so in chromatic homotopy theory one studies spectra one Kp(n) at a time.
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Greenlees and Sadofsky [4] showed that the Morava K-theories satisfy a Poincaré
duality theorem for classifying spaces of finite groups. The connection between
symplectic topology and chromatic homotopy theory comes from a striking gener-
alisation of this result due to Cheng [3]:

Theorem (Cheng) If X is a smooth manifold admitting an action of G with finite

stabilisers, then there is an isomorphism H̃−∗(X−TX⊕g;K) ∼= H∗(X ;K) whenever
K is a Morava K-theory.

This leads to a definition of a Morava K-theoretic virtual fundamental class
for a space M of J-holomorphic rational curves. Fix a Morava-local theory K;
take a global chart (G, T , E, s) for M. Being stably almost complex, the virtual
bundles TT − g and E are K-oriented. Start with the equivariant Euler class

eG(E) ∈ H
rk(E)
G,c (T ;K), which lives in compactly supported cohomology since M

is compact, and then consider its image under the maps

H∗
G,c(T ;K) −→ H

∗−dim(T )+dim(G)
G,c (T −TT ⊕g;K) −→ HG

dim(T )−dim(G)−∗(T ;K)

given by Thom isomorphism and Cheng’s duality. Although the class is supported
on T , it serves as well as the usual virtual class, since for instance evaluation
and stabilisation maps to X or the moduli space M0,n of stable domains are
well-defined on the total space T of the global chart.

As an application of these ideas, we discussed the proof of the following, from [2].
A map γ : S1 → Ham(X) defines by clutching a fibration Pγ → S2. The fact
that γ lands in the Hamiltonian group ensures that Pγ admits a symplectic struc-
ture extending the obvious fibrewise symplectic structure. Lalonde, McDuff and
Polterovich [6], building on work of Seidel, proved that the rational cohomology
of Pγ splits additively.

Theorem (Abouzaid-McLean-S.) If γ : S1 → Ham(X) is a Hamiltonian loop,
then H∗(Pγ ;Z) ∼= H∗(X ;Z)⊗H∗(S2;Z) additively.

The additive splitting holds for any complex-oriented theory, for instance for
complexK-theory, but simple examples show it doesn’t hold forKO-theory. Work-
ing over Q, [6] studied moduli spaces of J-holomorphic sections of Pγ → S2; the
integral splitting uses the existence of Morava virtual classes for such spaces of
sections. The proof in fact shows that a certain stable sweepout map

S1 ∧X+ → X+

becomes null after smashing with complex cobordismMU . That vanishing is lifted
from the vanishing of the corresponding sweepout over all Kp(n)-local theories,
using a deep result of Hovey [5] from chromatic homotopy theory, namely that the
map from the p-completion of BP to the product of its localisations at all Kp(n)’s
actually splits. The circuitous route via the Morava theories is because the virtual
class construction (and Cheng’s theorem) does not directly apply over MU .

Quantum cohomology QH∗(X) is an associative deformation of the usual coho-
mology ring H∗(X) built out of moduli spaces M0,3(X, J, β) of genus zero curves
with three marked points. Work in progress uses the new virtual classes to build
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quantum ordinary K-theory and quantum Morava K-theory for a general closed
symplectic manifold. As for the quantum K-theory of smooth algebraic varieties,
the treatment of associativity is more involved, and the formal group of the un-
derlying cohomology theory makes an appearance.
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Algebraic independence of topological Pontrjagin classes

Oscar Randal-Williams

(joint work with Søren Galatius)

The spaces BO(d) classifying d-dimensional vector bundles carry two well-known
kinds of rational characteristic classes. For d = 2n there is the Euler class
e ∈ H2n(BO(2n);Qw1), in cohomology with twisted coefficients corresponding
to the determinant line: its square yields an untwisted cohomology class e2 ∈
H4n(BO(2n);Q). On the other hand, for all d there are the Pontrjagin classes
pi ∈ H4i(BO(d);Q). By their construction these satisfy some elementary rela-
tions:

pi = 0 for 2i > d,

pn = e2 for d = 2n.
(†)

Furthermore, the Euler and Pontrjagin classes give a complete description of the
cohomology of BO(d), and these relations are the only ones satisfied: we have

H∗(BO(d);Q) =

{
Q[p1, p2, . . . , pn] d = 2n+ 1

Q[p1, p2, . . . , pn, e
2]/(pn − e2) d = 2n.

There are analogous spaces BTop(d) classifying fibre bundles with fibre the
euclidean space Rd, and structure group Top(d), the group of homeomorphisms of
Rd fixing the origin. Neglecting the fibrewise linear structure of a vector bundle
gives maps BO(d) → BTop(d), and it follows from work of Sullivan and Kirby–
Siebenmann that the map of stabilisations BO → BTop is a rational homotopy
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equivalence. We therefore have

H∗(BTop;Q)
∼
−→ H∗(BO;Q) = Q[p1, p2, p3, . . .].

This means that there are uniquely defined rational cohomology classes on BTop
which restrict to the usual Pontrjagin classes on BO: these are the topological
Pontrjagin classes. These can be pulled back to BTop(d) for any d, and it is also
easy to construct the (squared) Euler class on BTop(2n).

As their construction is rather indirect it is by no means clear whether the
relations (†) should be expected to hold on BTop(d). Reis and Weiss [1, 2, 3]
developed a refined strategy to show that these relations do hold, but in break-
through recent work Weiss [4] has shown that in fact they do not! For example,
his results imply that pn+i 6= 0 ∈ H4(n+i)(BTop(2n);Q) for fixed i and all large
enough n.

In my talk I presented the following result.

Theorem A. For all 2n ≥ 6 the map

Q[e2, p1, p2, p3, . . .] −→ H∗(BTop(2n);Q)

is injective.

It is easy to deduce an analogous statement for BTop(2n+1). What this means
is that not only do the relations (†) not hold, but no universal relations hold among
the Euler and Pontrjagin classes for euclidean bundles of dimension d ≥ 6.

In the form I have presented it this result relies on the theorem of Kupers [5]
that BTop(2n) has finitely-generated cohomology groups for n ≥ 6 (which in turn
relies on the ideas of Weiss’ [4]). However, if one is happy to work with rationalised
integral cohomology, rather than rational cohomology, then this ingredient can be
avoided, and in fact the argument then goes through equally well in dimension
2n = 4, giving:

Theorem B. The map

Q[e2, p1, p2, p3, . . .] −→ H∗(BTop(4);Z)⊗Q

is injective.

I spent most of the talk outlining the proof of these results. The general idea
is as follows, in the case 2n ≥ 6. If the maps in question were not injective then
there would be non-zero rational polynomial Ξ in the Euler and Pontrjagin classes
(or better, Hirzebruch L-classes) which vanishes. Such a counterexample would
already exist over Z[ 1S ] for some large S, because Ξ has finitely-many rational
coefficients and each Hirzebruch L-class is defined after inverting finitely-many
primes. One can then try to obtain a contradiction by constructing non-linear
representations φ : Z/p → Top(2n) for infinitely-many primes p > S satisfying
φ∗Ξ 6= 0 ∈ H4i(BZ/p;Z[ 1S ]) = Z/p. This what we do. We produce such φ’s
by constructing fake (2n − 1)-dimensional lens spaces using Wall realisation and
the calculation of the surgery obstruction groups Ls

2n(Z[Z/p]), then taking the
non-linear Z/p-representations given by the open cone on their universal covers.
The crucial step is then to determine the Hirzebruch L-classes of these non-linear
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representations, which makes use of localisation in equivariant cohomology, as well
as the Family Signature Theorem [6].
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On δ-median spaces and groups

Indira Chatterji

(joint work with Cornelia Drutu)

To say something meaningful about groups, we often restrict ourselves to a class
of groups. Here we will focus on groups acting geometrically (that is, properly
discontinuously, by isometries and co-compactly) on a metric space with nice geo-
metric properties. Our focus today are δ-median spaces, a class of spaces that
includes δ-hyperbolic groups, as well as CAT(0) cubical complexes.

Intervals and hyperbolicity. A metric space (X, d) is called geodesic if for any
x, y ∈ X there is an isometry c : [0, d] → X with c(0) = x and c(d) = y, called
geodesic. On any metric space, for δ ≥ 0 and two points x, y, we define the
δ-interval by

Iδ(x, y) = {t ∈ X | d(x, t) + d(t, y) ≤ d(x, y) + δ}

Notice that, for δ = 0, this is the set of points on a geodesic between x and y.

Definition 1. A space is called hyperbolic (also, Gromov hyperbolic, or δ-hyperbolic)
if there is δ ≥ 0 such that, for any x, y, z ∈ X

I(x, y) ⊆ Iδ(x, z) ∪ Iδ(z, y).

Equivalently a metric space is hyperbolic if, for any δ > 0, there is K ≥ 0 such
that

dH(Iδ(x, y), [0, d(x, y)]) < K.

Here [0, d] denotes the interval of length d in R and dH the Hausdorff distance.
Trees, classical hyperbolic spaces, rank-one Lie groups, Cayley graphs of funda-
mental groups of surfaces of genus greater than 2 are instances of hyperbolic metric
spaces. We say that a group is hyperbolic if it admits a geometric action of a hy-
perbolic metric space. Equivalently, any of its Cayley graphs will be a hyperbolic
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metric space. Having a Z2 as a subgroup is an obstruction to hyperbolicity, and
hyperbolicity is not preserved under taking direct products.

Knowing that a group is hyperbolic gives several useful properties, like finite
presentation, many free subgroups, a nice boundary, a contractible Rips complex,
so a finiteK(G, 1), and the Baum-Connes conjecture, a conjectural way to compute
the K-theory of the reduced C*-algebra of a group. However, we still don’t know if
any hyperbolic group is residually finite or acts geometrically on a CAT(0) space,
namely a space with a metric notion of non-positive curvature.

Medians. We now turn to another condition on triples of points, that turns out
quite different from hyperbolicity. Here again, intervals play an important role.

Definition 2. A metric space (X, d) is called median if, for any x, y, z ∈ X then

I(x, y) ∩ I(y, z) ∩ I(z, x) = {m}.

Namely, given any 3 points, there is a single point lying simultaneously on
3 geodesics between those 3 points. Examples include real and simplicial trees,
the plane with the L1-metric, products of trees with the sum of the tree metrics
and CAT(0) cubical complexes where cubes are endowed with the L1-metric. In
fact median graphs are graphs whose vertex set is a median space and according
to Chepoi [4], those are exactly 1-skeletas of CAT(0) cubical complexes. In fact
median spaces are to CAT(0) cubical complex what R-trees are to simplicial trees.

Sageev’s construction of CAT(0) cubical complexes were instrumental in the
2012 solution of the virtually Haken conjecture by Agol. An important piece
was Bergeron-Wise cocompact action of the fundamental group of a hyperbolic
3-manifold on a finite dimensional CAT(0) cubical complex.

We showed in 2007 with Drutu and Haglund [2] that actions (or lack of) on a
median space allows to characterize property (T) and the Haagerup property, a
property that implies the Baum-Connes conjecture.

Approximate medians. In a recent paper with Cornelia Drutu [1], we look at
a minimal notion including both hyperbolicity, and median spaces. According to
a recent result of Petyt [7], this class of groups include mapping class groups of
closed surfaces.

Definition 3. A metric space (X, d) is called δ-median if there is δ ≥ 0 such that
for any x, y, z ∈ X

Iδ(x, y) ∪ Iδ(y, z) ∪ Iδ(z, x) ∼d {m}

where by ∼d we mean ”non empty and at uniformly bounded distance to”. A
group is called δ-median if it acts geometrically on a δ-median space.

Groups that are δ-median include cocompact lattices in products of rank one

Lie groups, as well as non-cocompact lattices in SO(n, 1), and lattices in ˜SL(2,R).
This notion is close to Bowditch’s notion of coarse median. According to Niblo,
Wright and Zhang [6], δ-median spaces are in particular coarse median, but it is
not clear if any coarse median space admits a δ-median metric. Notice that just
requiring non-empty for the triple intersection of those coarse intervals is very
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different from δ-median, and is a notion called δ-tripodal. For δ = 0, one can show
that the building associated to Sp(4,Qp) admits a 0-tripodal metric, but definitely
not median since it has property (T).

Walls. We are trying to understand how far are δ-median spaces and groups from
being median. For instance, a uniform lattice in Sp(n, 1) is δ-hyperbolic, hence
δ-median, but because it has property (T), any action on a median space has a
bounded orbit. Median spaces all come from and have a structure of spaces with
walls, that we now explain.

Definition 4. A space with walls is a set X , with a set of partitions, described
by H ⊂ P(X) closed under taking complements and endowed with a measure µ
satisfying that

µ{w(x|y)} = µ{h ∈ H|x ∈ h, y ∈ hc} < ∞

The pseudo-distance defined by pd(x, y) = µ{w(x|y)} induces a distance called
wall-metric.

Wall metrics on graphs are called cut metrics by computer scientists and their
embeddings in L1-spaces allows certain fast computations on those graphs. In
the 2007 joint work with Drutu and Haglund [2] we showed that any wall space
isometrically embeds in a median space, and in a recent joint work [1] with Drutu,
we show the following.

Theorem A. Let X be a wall space. If the wall metric is δ-median, then the image
of the embedding of X in a median space M(X) is at finite Hausdorff distance
from M(X). Moreover, for X = IH the real hyperbolic n-space, M(IH) is locally
compact.

This result is interesting because according to Caprace’s appendix to a joint
work with Iozzi and Fernos [3], uniform lattices cannot act on a finite dimensional
CAT(0) cubical complex without a fix point, and this result has been extended by
Fioravanti [5] to actions on finite dimensional median spaces. Hence, the class of
cocompact median groups is different from the one of CAT(0) cubical groups but
it is still unknown if the class of finite dimensional median groups is different from
the one of finite dimensional CAT(0) cubical groups.

Open questions. The interest of δ-median spaces resides in trying to use both
hyperbolicity and cubical techniques at the same time. Many questions for δ-
median spaces and groups remain open, and we list here a few of interest.

(1) Does any action on a uniformly locally finite δ-median space translate into
a proper action on an Lp-space?

(2) Does any uniformly locally finite δ-median space admit a strongly bolic
metric?

(3) Are hierarchically hyperbolic spaces δ-median?
(4) Are δ-median spaces hierarchically hyperbolic?
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Floer Homotopy Theory

Mohammed Abouzaid

I explain joint work with I. Smith and M. Mclean on the construction of Kuranishi
bordism groups, as well as joint work with A. Blumberg on a model for spectra
built from flow categories.

Curve Graphs and Surface Homeomorphisms

Jonathan Bowden

(joint work with Sebastian Hensel, Richard Webb)

Curve Graphs. In the mid 70’s Harvey [9] introduced the curve complex as a
combinatorial model for Teichmüller space of a closed, oriented, connected surface
that we denote by S. This complex has 0-simplices given by isotopy classes of
essential, simple closed curves on S so that a collection of distinct vertices span a
simplex if they have (simultaneously) disjoint representatives. This complex has a
natural simplicial action by the mapping class group MCG(S) of isotopy classes
of orientation preserving diffeomorphisms of the surface.

The curve complex has taken on prominence in many parts of low dimensional
topology as well as in the algebraic study of mapping class groups. For example
the proof of Homological stability for mapping class groups of surfaces due to
Harer [5]. The curve complex, or more specifically its 1-skeleton - the curve graph
C(S) - took on a new significance sue to the following fundamental result, which
endowed it with a geometry of negative curvature (in the coarse sense):

Theorem A (Masur-Minsky [6]). The curve graph C(S) is δ-hyperbolic for all
hyperbolic surfaces S.
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Furthermore, the action of the mapping class group on this graph is isometric.
This action then has many important applications to the dynamics of surface
homeomorphisms as well as to the geometry of the mapping class groups. One
such example of this is the following

Theorem B (Bestvina-Fujiwara [1]). The space of unbounded quasimorphisms1 on
the mapping class group MCG(S) of a hyperbolic surface is infinite dimensional.

This result is often phrased as a conference of the fact that the action of the
mapping class group on the curve graph satisfies a weak from of properness called
WPD.

Geometry of Diffeomorphism Groups. It is a classical result of Thurston
that for any smooth, closed manifold M the identity component of the group of
self-diffeomorphisms Diff0(M) is simple. This group has several natural conjugate
invariant norms in the sense of Burago-Ivanov-Polterovich [4]. These a defined by
considering the word norm of any conjugate-invariant, symmetric generating set
S. Namely set

‖g‖S = min{N |g = s1 · · · sN , si ∈ S}.

Important examples are Scom the set of commutators and Sfrag the set of dif-
feomorphism supported on embedded (open) balls. This is then gives a natural
way of endowing the group with a (metric) geometry. A fundamental question is
then whether these norms contain large scale information, that is whether they
are bounded or not. Somewhat surprisingly, it was shown by Burago-Ivanov-
Polterovich [4] for dim(M) = 3 and by Tsuboi [7], [8] for dim(M) ≥ 5 that these
norms are always bounded (this also holds for S1, which is an exercise). However,
in the case of surfaces the situation is very different

Theorem C (B-Hensel-Webb [2]). The commutator norm and the fragmentation
norms are unbounded on Diff0(S) if and only if S 6= S2.

In order to prove the above theorem it suffices to construct unbounded quasi-
morphisms which can be done using the philosophy of Bestvina-Fujiwara.

A new curve graph. In order to construct quasi-morphisms we consider a “rigid-
ified” or “discretized” version of the classical curve graph – the fine curve graph
C†(S). The vertices of this graph are actual essential, simple, closed curves in S,
as opposed to isotopy classes, and edges are given by disjoint pairs. The diffeo-
morphism group then acts isometrically on this graph and most importantly we
have:

Theorem D (B-Hensel-Webb [2]). The fine curve graph C†(S) is δ-hyperbolic for
all hyperbolic surfaces S.

1Recall that a quasi-morphism on a group G is a map ϕ : G → R so that

sup
g,h∈G

|ϕ(gh)− (ϕ(g) + ϕ(h))| < ∞.
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A similar result also holds for the torus T 2 and various surfaces with boundary.
The key point now is that the identity component of the diffeomorphism group now
acts on C†(S) and one can then use the methods of Bestina-Fujiwara to construct
unbounded quasimorphisms.

Dynamics of Surface Homemorphisms. The fine curve graph provides a new
tool to study the dynamics of surface homemorphisms as on the one hand the
diffeomorphism group acts naturally on the underlying surface, but it also acts on
the fine curve graph. It is important to understand the dictionary between these
actions (in analogy to that for Mapping Class Groups) and as a first step we have
the following result the characterises when elements act loxodromically in the case
of the torus.

Theorem E (B-Hensel-Mann-Militon-Webb [3]). Let f ∈ Diff0(T ). The following
are equivalent

(1) f acts loxodromically on C(T ),
(2) The rotations set rot(f) has non-empty interior, and
(3) there is a finite, f -invariant set P ⊂ T such that the restriction of f to

T − P represents a pseudo-Anosov mapping class.
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Homology cobordism and Heegaard Floer homology

Jennifer Hom

(joint work with Irving Dai, Kristen Hendricks, Matthew Stoffregen,
Linh Truong, and Ian Zemke)

Two closed, oriented 3-manifolds Y0, Y1 are homology cobordant if there exists
a smooth, compact, oriented 4-manifold W such that ∂W = −Y0 ⊔ Y1 and the
inclusions ι : Yi → W induce isomorphisms

ι∗ : H∗(Yi;Z) → H∗(W ;Z)

for i = 0, 1. The key point is that, on the level of homology,W looks like a product.
The 3-dimensional homology cobordism group Θ3

Z consists of integer homology 3-
spheres modulo homology cobordism, under the operation induced by connected
sum.

Fintushel-Stern used gauge theory to show that Θ3
Z is infinite, and Furuta and

Fintushel-Stern improved this result to show that Θ3
Z contains a subgroup iso-

morphic to Z∞. Frøyshov used Yang-Mills theory to define a surjective homo-
morphism Θ3

Z → Z, showing that Θ3
Z has a direct summand isomorphic to Z.

(This is stronger than having a Z subgroup, since, for example, Z is a subgroup of
Q but not a summand.) In joint work with Dai, Stoffregen, and Truong, we use
Hendricks-Manolescu’s involutive Heegaard Floer homology to prove the following:

Theorem A. The homology cobordism group Θ3
Z contains a direct summand iso-

morphic to Z∞.

Fundamental questions about the structure of Θ3
Z remain open:

Question. Does Θ3
Z contain any torsion? Modulo torsion, is Θ3

Z free abelian?

In a different direction, it is natural to ask which types of manifolds can repre-
sent a given class [Y ] ∈ Θ3

Z. The first answers to this question were in the positive.
Livingston showed that every class in Θ3

Z can be represented by an irreducible
integer homology sphere and Myers improved this to show that every class has a
hyperbolic representative.

In the negative direction, Frøyshov, F. Lin, and Stoffregen independently showed
that there are classes in Θ3

Z that do not admit Seifert fibered representatives.
Nozaki-Sato-Taniguchi improved this result to show that there are classes that do
not admit a Seifert fibered representative nor a representative that is surgery on a
knot in S3. However, none of these results were sufficient to obstruct Θ3

Z from be-
ing generated by Seifert fibered spaces. In joint work with Hendricks, Stoffregen,
and Zemke, we prove the following:

Theorem B. The homology cobordism group Θ3
Z is not generated by Seifert fibered

spaces. More specifically, let ΘSF denote the subgroup generated by Seifert fibered
spaces. The quotient Θ3

Z/ΘSF is infinitely generated.

The proofs of both of these theorems rely on involutive Heegaard Floer homol-
ogy, which associates an algebraic object called an iota-complex to a homology
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sphere Y ; the chain homotopy type of the iota-complex is an invariant of the dif-
feomorphism type of Y . There exists a weaker notion of equivalence, called local
equivalence, and the local equivalence type of an iota-complex is in fact invariant
under homology cobordism. We characterize such complexes up to (almost) local
equivalence, and use this characterization to

(1) define an infinite family of surjective linearly independent integer-valued
homology cobordism invariants, proving Theorem A, and

(2) show that (the almost local equivalence type of) an iota-complex of any
element in ΘSF has a particular form, and there exist homology spheres
whose iota-complexes are not of this form, proving Theorem B.
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Coarse-median preserving automorphisms

Elia Fioravanti

Let G be a finitely generated group. A fundamental problem in the study of
automorphisms of G is the structure of their fixed subgroups.

In complete generality, it is not uncommon for these subgroups to be completely
wild: they might be distorted in G, lack a finite classifying space, or not even be
finitely generated.

Remarkably, in many important cases related to low-dimensional topology, the
structure of Fix(ϕ) turns out to be much better-behaved.

Example.
(1) Let G = π1(S) for a closed, orientable surface S of genus g ≥ 2. For

every ϕ ∈ Aut(G), the subgroup Fix(ϕ) is either trivial, a maximal cyclic
subgroup of G, or the fundamental group of an embedded subsurface of
S. This can be easily deduced from the Nielsen–Thurston classification of
homeomorphisms of S.

(2) Consider G = Fn, a free group of rank n ≥ 2. For every ϕ ∈ Aut(G), the
subgroup Fix(ϕ) is isomorphic to Fm for m ≤ n. This was known as the
P. Scott Conjecture in the 70s and 80s, before being solved by Bestvina
and Handel in [2].

(3) More generally, let G be a negatively-curved group (a.k.a. a Gromov-hy-
perbolic group). W.Neumann showed that, for every ϕ ∈ Aut(G), the
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subgroup Fix(ϕ) is finitely generated and undistorted in G (i.e. quasi-
isometrically embedded) [5]. In particular, Fix(ϕ) is itself negatively-
curved and admits a finite (rational) classifying space.

It should not be too surprising that, in the above cases, fixed subgroups are
tame. Automorphisms of negatively-curved groups fit in a rich and complicated
theory that originated from major breakthroughs of Rips and Sela (e.g. [6]) and
now forms one of the most important branches of Geometric Group Theory. Un-
fortunately, the above results all rely — in one way or the other — on some form
of Nielsen–Thurston theory, so they are not susceptible to generalisations.

In fact, already when G belongs to the important class of non-positively curved
groups, almost nothing is known on the automorphisms of G in full generality.

Disappointingly, fixed subgroups can actually be completely wild in this context.
This is evident already when G is a harmless-looking right-angled Artin group:
there can be automorphisms ϕ ∈ Aut(G) for which Fix(ϕ) is one of the pathological
groups constructed by Bestvina and Brady [1].

There is a way, however, of recovering some structure in automorphisms of non-
positively curved groups, if we fix a coarse median structure on the group. This
is a coarse notion of barycentre recently introduced by Bowditch [3].

For this we restrict to the case when G is cocompactly cubulated, i.e. acts prop-
erly and cocompactly on a simply connected, non-positively curved cube complex.
Note that these groups include all known non-positively curved groups with inter-
esting automorphisms, in particular all right-angled Artin/Coxeter groups.

Theorem ([4]). Let G be a cocompactly cubulated group and let ϕ ∈ Aut(G)
be a coarse-median preserving automorphism. Then Fix(ϕ) is finitely generated,
undistorted in G, and itself cocompactly cubulated. In particular, Fix(ϕ) admits
a rational classifying space with finitely many cells.

A similar argument can be used to re-prove Neumann’s result mentioned above.
Indeed, all automorphisms of hyperbolic groups are coarse-median preserving.

Also all automorphisms of right-angled Coxeter groups are coarse-median pre-
serving. Instead, for right-angled Artin groups, automorphisms turn out to be
coarse-median preserving exactly when they lie in the well-known class of “un-
twisted” automorphisms.

Corollary ([4]). Consider one of the following two settings:

(1) G is a right-angled Coxeter group and ϕ ∈ Aut(G);
(2) G is a right-angled Artin group and ϕ ∈ Aut(G) is untwisted.

Then, for some n ≥ 1, the subgroup Fix(ϕn) is quasi-convex in the standard word
metric on G. In particular, it is separable (closed in the profinite topology on G).

References

[1] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent. Math.,
129(3):445–470, 1997.

[2] M. Bestvina and M. Handel, Train tracks and automorphisms of free groups, Ann. of
Math. (2), 135(1):1–51, 1992.



1946 Oberwolfach Report 34/2022

[3] B. H. Bowditch, Coarse median spaces and groups, Pacific J. Math., 261(1):53–93, 2013.
[4] E. Fioravanti, Coarse-median preserving automorphisms, arXiv:2101.04415, 2021.
[5] W. D. Neumann, The fixed group of an automorphism of a word hyperbolic group is rational,

Invent. Math. 110 (1992), no. 1, 147–150.
[6] E. Rips and Z. Sela, Structure and rigidity in hyperbolic groups. I., Geom. Funct. Anal. 4

(1994), no. 3, 337–371.

Prismatic cohomology of ring spectra

Jeremy Hahn

(joint work with Arpon Raksit, Dylan Wilson)

In homotopy theory, one is interested in a variety of multiplicative cohomology
theories, such as

• Ordinary cohomology with coefficients in a commutative ring,
• Complex K-theory ku,
• Real K-theory ko,
• Complex bordism MU, and
• Framed bordism S.

All of the above examples enjoy a great deal of functoriality–they are E∞-ring
spectra.

Definition 1. A multiplicative cohomology theory is said to be even if the coho-
mology of a point is concentrated in even degrees.

Of the above examples, ordinary cohomology, complex K-theory, and complex
bordism are all even E∞-ring spectra. On the other hand, real K-theory ko and
framed bordism S are not even.

In this talk, following [1], we discussed a universal method of approximating
E∞-rings via even E∞-rings.

Definition 2 (The even filtration). If R is an E∞-ring and n is an integer, we define

filnev(R)

to be the limit, over all E∞-ring maps R → B with B even, of τ≥2nB. As n varies,
the filnev(R) assemble to form a filtered E∞-ring fil⋆ev(R).

If R is even, then fil⋆ev(R) is the double-speed Postnikov tower τ≥2⋆R. In more
complicated examples, the even filtration is computable by the following pair of
definition and theorem:

Definition 3. A map A → B of E∞-ring spectra is said to be evenly free if, for all
E∞-ring maps A → C with C even, the natural map

C → C ⊗A B

presents π∗(C⊗AB) as a non-zero, free π∗C-module concentrated in even degrees.
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Theorem A. If A → B is an evenly free map of E∞-ring spectra, then

fil⋆ev(A) = lim∆fil
⋆
ev(B

⊗A•+1),

where the limit is taken over a cosimplicial diagram in filtered E∞-ring spectra.

Example 1. The unit map S → MU is evenly free. To see this, note that if C is
any even E∞-ring then

π∗(C ⊗S MU) ∼= C∗(BU) ∼= π∗(C)[b1, b2, · · · ],

by the Thom isomorphism and Atiyah–Hirzebruch spectral sequence. It follows
that

fil⋆ev(S) = lim∆

(
τ≥2∗(MU⊗S•+1)

)
,

which is the Adams–Novikov filtration of the sphere spectrum.

A similar argument shows that, if R is any E∞-ring with π∗(MU ⊗S R) con-
centrated in even degrees, then the even filtration on R is the Adams–Novikov
filtration on R. To give additional examples, we recall the definition of topological
Hochschild homology:

Definition 4. If A is an E∞-ring, then

THH(A) = A⊗A⊗SA A.

Example 2. THH(MU) has homotopy groups Λπ∗(MU)(σb1, σb2, · · · ), where the
degree of σbi is 2i+ 1. As it turns out, the augmentation map

THH(MU) → MU

is evenly free. Indeed, if THH(MU) → C is an E∞-ring map then one can calculate
π∗(C ⊗THH(MU) MU) by means of a Tor spectral sequence with E2-page given by

TorΛπ∗(MU)(σb1,σb2,··· )(π∗C, π∗MU).

If C is even, then the σbi must act by zero on π∗C, for degree reasons. It follows
that the Tor spectral sequence collapses to give a free π∗(C)-module on generators
in even degrees.

The techniques illustrated by the above example can be used to compute the
even filtration on THH quite generally. For example, we are able to prove the
following result:

Theorem B. Let R be a discrete commutative ring with bounded p-power torsion
for all primes p. If the algebraic cotangent complex of R is concentrated in Tor
amplitude [0, 1], then

fil⋆evTHH(R) ≃ fil⋆motTHH(R),

where fil⋆motTHH(R) is the global motivic filtration of Morin and Bhatt–Lurie,
building on the local motivic filtration of Bhatt–Morrow–Scholze.
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In contrast to the Morin [2], Bhatt–Lurie [3], and Bhatt–Morrow–Scholze [4]
definitions of motivic filtrations, the even filtration makes no reference to perfectoid
or qrsp rings.

The key to proving Theorem B is the construction of an evenly free map
THH(R) → B such that B is even. We are able to make such a construction
in the following more general set-up:

Definition 5. A connective E∞-ring R is said to be chromatically quasisyntomic
if MU∗R is concentrated in even degrees, has bounded p-power torsion for all
primes p, and (when considered as an ungraded commutative ring) has algebraic
cotangent complex with Tor amplitude in [0, 1].

Theorem C. If R is chromatically quasisyntomic, then there exists an evenly free
map THH(R) → B such that B is even. Furthermore, it is possible to make this
map compatible with all of the cyclotomic structure present on THH(R) (e.g., one
can choose B to have a circle action and the map to be an S1-equivariant E∞-ring
map).

In the situation of the above theorem, we define the (Nygaard-completed,
Breuil–Kisin twisted) absolute prismatic cohomology of R to be the associated
graded of the filtered E∞-ring

lim∆

(
τ≥2∗

((
B⊗THH(A)•+1

)tS1))
.

This agrees with previous definitions when R is discrete, and is independent of the
choice of B and the choice of S1-equivariant E∞-ring map THH(R) → B.
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Nearby Legendrians and K-theory

Thomas Kragh

(joint work with Yasha Eliashberg)

Let Q be a smooth compact manifold possibly with boundary of dimension d.
Let π : T ∗Q → Q denote the cotangent bundle. On T ∗Q (considered as a 2d
dimensional smooth manifold) we have a canonical 1-form called the Liouville
form

λz(v) = z(π∗(v)).

It has the property that for any 1-form β ∈ Ω1(Q) corresponding to a section
Q → T ∗Q we have β∗λ = β. Thus closed (resp. exact) 1-forms corresponds to
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graphical submanifolds on which the restriction of λ is closed (resp. exact). A
Lagrangian in T ∗Q is any d-dimensional submanifolds on which λ is closed. An
exact Lagrangian is one which has λ exact.

The Jet-1-bundle J1Q is defined as the product T ∗Q×R of the cotangent bundle
with R. A section of this corresponds to both a 1 form and a function. It also has
a canonical one form defined by

α = λ− dz

where z is the coordinate in R. Given a section (β, f) the pull back is identically
0 iff df = β. Hence, such sections are exact Lagrangians with a choice of primitive
for the restriction of λ. A Legendrian is a d dimensional submanifold in J1Q such
α restricted to it vanishes.

The front of a Legendrian Λ is the image of Λ in the projection to N × R.
One may reconstruct the Legendrian from its front projection. This is essentially
because the “1-form” part is given by d of the function part.

The zero section in J1(Q) is of course a Legendrian, and we define Leg(Q) as
the space of Legendrians that equals the zero-section outside a compact set in the
interior of Q. For the purpose of simplifying notation we restrict to the connected
component of the zero section. So we assume that Leg(Q) is connected.

The goal of the talk: To sketch how to define and detect “exotic” homotopy
groups of the space Leg(Q) using algebraic K-theory of spaces.

The word exotic here indicates that if one forgets the Legendrian condition and
consider these as smooth embedded submanifolds the homotopy groups become
trivial, and if one forgets the embedded condition and considers these as immersed
Legendrians they also become trivial.

For a function F : Q× R2k → R the fiber-wise gradient ∇fF : Q× R2k → R2k

is defined by taking the usual gradient of Fq : R2n → R2n for each q ∈ Q. We
say that F is generic if the equation {∇fF = 0} is regular - hence the subspace
of fiber-wise critical points, denoted ΣF ⊂ Q× R2k, is a manifold of dimension d.
For a generic function we get an immersion

ι : ΣF → J1Q(1)

given by taking the horizontal derivative of F (derivative w.r. to Q directions) and
the function value of F (as the R component). By construction the 1-form factor
is the derivative of the function part - hence this is a Legendrian immersion. We
say that this Legendrian is generated by F , and F is called a generating function
for the Legendrian. Locally such always exists, and hence one could use this as
the local definition of a Legendrian.

One may stabilize a generating function F as above to a function

s(F ) : Q× R2k+2 → R

by s(F )(q, z, x, y) = F (q, z) + x2 − y2. As the fiber-wise critical points and values
are unchanged we have identifications ΣF

∼= Σs(F ) compatible with the map to

J1Q.
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We define a space Gen(Q) of stable (repeatedly using s above) generating func-
tions quadratic at infinity that generates a Legendrian in Leg(Q). We will not
spell out the quadratic condition, but it is equivalent to being equal to a fixed
quadratic form at infinity. We will need the following result (see [Fer97] for a
survey and references)

Theorem(Chekanov, Chaperon/Théret): Gen(Q) → Leg(Q) is a Serre fibration.

We define the h-cobordism space H(Dd−1) to be the space of functions

f : Dd−1 × [−1, 1] → [−1, 1]

such that

• f is the obvious projection outside a compact set in the interior,
• 0 is a regular value and
• the set f−1([−1, 0]) deformation retracts onto Dd−1 × {−1}.

The set in the last point is an actual h-cobordism rel Sd−2.
Now pick a path from the zero section in Leg(Q) to a Legendrian Λ such that Λ

has a fold (always possible). We get by the theorem above that Λ has a generating
function in Gen(Q). Let F : Q×R2k → R be a choice of such. We may parametrize
a piece of the fold by Dd−1 (see figure 1 part a). In fact we may choose a map

Dd−1 × [−1, 1] → Q

together with a lift Dd−1 × [−1, 1] × D2k → Q × R2k such that in this local

a)

Dd−1

b)

Figure 1. Front projection of a fold and the modified fold.

parametrization we have

F (d, t, z) = z31 − tz1 + q(z2, . . . , z2k)

where q is a non-degenerate quadratic form. This is a standard birth-death sin-
gularity at t = 0 stabilized by a quadratic form. We may now define a map
H(Dd−1) → Gen(Q) by implanting a function f ∈ H(Dd−1) into this and change
it in the local parametrization to be

F f (d, t, x) = z31 − f(d, t)z1 + q(z2, . . . , z2k)

As the birth-death is now at f = 0 (the outgoing boundary of the associated
h-cobordism) this has the effect of moving the fold as illustrated in Figure 1 b).

For each G ∈ Gen(Q) we define DG : Q× R2k × R2k → R by

DG(q, z1, z2) = G(q, z1)−G(q, z2).
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The cobordism (DG)−1([ǫ, ǫ−1]) is in fact an h-cobordism for small ǫ > 0, and by
using so-called stabilizing and extensions (for h-cobordisms) we construct a map

Gen(Q) → H∞(∗)

where the target is the stable h-cobordism space of a point essentially defined
by stabilizing with quadratic forms like we did for generating functions. The
composition

H(Dd−1) → Gen(Q) → H∞(∗)

can be computed to be such a stabilization. Hence non-trivial in a stable range
using results from algebraic K-theory of spaces in [Igu88], [Wal82] and [WJR13].

It is also relatively easy to check that the composition

F → Gen(Q) → H∞(pt),

where F is the fiber of the Serre fibration in the theorem above, is null homotopic.
Hence the map H(Dd−1) → Leg(G) is injective on homotopy groups.
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Non-triviality and non-invariance in string topology

Nathalie Wahl

This talk is based on joint work with Nancy Hingston and Florian Naef, as well
extended conversations with Kai Cieliebak and Alexandru Oancea.

Let M be a closed oriented manifold, on which we have chosen a Riemannian
metric, and let LM = Maps(S1,M) denote its free loop space. Morse theory on
the energy functional tells us that the homology of the free loop space is build
out of geodesics in M . Yet, as a graded vector space, it only depends on the
homotopy type of M . This leads to the following question: is there a collection of
operations on H∗(LM) that would make H∗(LM) equipped with these operations
a finer invariant?

An answer proposed by Chas and Sullivan 20 years ago in [1, 8] is string topology.
We will here consider in particular the following two operations: the string product

∧ : Hp(LM)⊗Hq(LM) −→ Hp+q−n(LM)
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that “intersects the chains of basepoints in M and concatenates the loops” and
the string coproduct

∨ : Hp(LM,M) −→ Hp+1−n(LM × LM,M × LM ∪ LM ×M)

in homology relative to the constant loops, that “looks for a self-intersection of
the form γ(0) = γ(t) and cuts”. (We can consider the coproduct as a non-relative
operation by extending it to be zero on the constant loops, see [3].) These op-
erations live in a large chain complex of operations known to act non-trivially at
least on rational homology of LM for simply-connected manifolds via a Hochschild
complex model, e.g. by combining [4, 7, 9, 10].

The string product was shown by Cohen-Klein-Sullivan to be a homotopy in-
variant:

Theorem A. [2] A homotopy equivalence f : M1 → M2 induces an isomorphim
Lf∗ : H∗(LM1) → H∗(LM2) of algebras over the string product.

Even though the string coproduct is a priori a very similar operation, it was
shown more recently by Naef that the coproduct in fact is not homotopy invariant:

Theorem B. [5] Consider the homotopy equivalent lens spaces L1,7 ≃ L2,7. The
induced isomorphism H∗(LL1,7) ∼= H∗(LL1,7) does not respect the coalgebra struc-
ture defined by the string coproduct.

This result was extended in [6, Thm 2.11] to show that for any degree 1 homo-
topy equivalence f : Lp,q1 → Lp,q2 between 3-dimensional lens spaces, the map f is
homotopic to a homeomorphism if and only if the map Lf∗ respects the coproduct

of degree 3 classes H3(LLp,qi)
∨
−→ H1(LLp,qi × LLp,qi).

In this talk, we explain how the failure of homotopy invariance of the coproduct
can be understood from considering the string coproduct as a relative version of
the so-called trivial coproduct (see [3, Thm 2.13] or [6, Sec 2.6]), giving an explicit
description of the (non-relative!) homotopy invariance of the trivial product. This
leads to a formula for the failure of invariance, essentially of the form conjectured
by Naef in [5]: Let f : M1 → M2 be a degree 1 homotopy equivalence between
closed manifolds, and let ∨1 and ∨2 denote the string coproduct of H∗(LM1) and
H∗(LM2) and ∧2 the string product of H∗(LM2). Suppose that α ∈ H∗(LM1) is
a homology class. Then

(f ◦ ∨1 − ∨2 ◦ f)α = E′
f ⊗ E′′

f ∧2 f∗α+ f∗α ∧2 E
′
f ⊗ E′′

f

for E′
f ⊗E′′

f = ∨0(H [∆1]) ∈ H1(LM2×LM2) with ∨0 the trivial string coproduct,

H the above mentioned homotopy witnessing the invariance of ∨0, and [∆1] the
diagonal in M1 considered as a class in constant loops.
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The stable cohomology of the moduli space of curves with
level structures

Andrew Putman

Let Mg,p be the moduli space of smooth genus g algebraic curves over C equipped
with p distinct ordered marked points. The (orbifold) fundamental group of Mg,p

is the mapping class group Modg,p of an oriented genus g surface Σg,p with p punc-
tures, i.e., the group of isotopy classes of orientation-preserving diffeomorphisms
of Σg,p that fix each puncture. In fact, Mg,p is an (orbifold) classifying space for
Modg,p, so

H∗(Mg,p;Q) ∼= H∗(Modg,p;Q).

There is a rich interplay between the topology of Modg,p and the algebraic ge-
ometry of Mg,p. In this talk, we study the cohomology of certain finite covers of
Mg,p, or equivalently finite-index subgroups of Modg,p.

1.1. Analogy. More generally, let Σb
g,p be an oriented genus g surface with p

punctures and b boundary components1 and let Modbg,p be its mapping class group,

i.e., the group of isotopy classes of orientation-preserving diffeomorphisms of Σb
g,p

that fix each puncture and boundary component pointwise. We will omit p or b
if it vanishes. There is a fruitful analogy between Modbg,p and arithmetic groups
like SLn(Z). The following table lists some parallel structures and results:

1There are various ways to define Mb
g,p when b ≥ 1, e.g., by identifying smooth algebraic

curves over C with hyperbolic metrics on the associated surfaces and letting Mb
g,p be the moduli

space of complete hyperbolic metrics on Σb
g,p with geodesic boundary. However, these moduli

spaces are not varieties.
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SLn(Z) Modb
g,p

natural action vector in Zn curve on Σb
g,p

associated space locally symmetric space Mg,p

normal form Jordan normal form Thurston normal form (see [9])
Bieri–Eckmann duality Borel–Serre [3] Harer [14]
homological stability Charney [6], Maazen [18] Harer [13]
calculation of stable H∗ Borel [2] Madsen–Weiss [19]

See [5] for more details.

1.2. Stable cohomology. Our main theorem provides another entry in this table.
To motivate it, we first discuss homological stability and introduce the stable
cohomology of the mapping class group, focusing for simplicity on surfaces without
punctures. If Σb

g →֒ Σb′

g′ is an embedding, then there is an induced map Modbg →

Modb
′

g′ that extends mapping classes by the identity. Harer [13] proved that the
resulting map

Hk(Modb
′

g′) → Hk(Modbg)

is an isomorphism if g ≫ k. The cohomology in this regime is known as the stable
cohomology of the mapping class group. At least rationally, it was calculated by
Madsen–Weiss [19], who showed that it is a polynomial algebra in classes κn ∈ H2n

called the Miller–Morita–Mumford classes. See [11, 15, 28] for expository accounts
of this circle of ideas.2

1.3. Borel stability. Borel’s stability theorem [2] concerns another kind of stabil-
ity where instead of embedding the group into a larger one, we pass to a finite-index
subgroup. Roughly speaking, it says that in a stable range, the rational cohomol-
ogy of a lattice Γ in a semisimple Lie group is independent of the lattice Γ. In
particular, it is unchanged when you replace Γ by a subgroup of finite index. For
instance, for ℓ ≥ 2 define SLn(Z, ℓ) be the level-ℓ subgroup of SLn(Z), i.e., the
kernel of the action of SLn(Z) on (Z/ℓ)n. We thus have a short exact sequence

(1) 1 −→ SLn(Z, ℓ) −→ SLn(Z) −→ SLn(Z/ℓ) −→ 1.

By the congruence subgroup property [1, 20], for n ≥ 3 every finite-index sub-
group of SLn(Z) contains SLn(Z, ℓ) for some ℓ ≥ 2. Borel’s theorem implies that
the inclusion SLn(Z, ℓ) →֒ SLn(Z) induces an isomorphism3 Hk(SLn(Z, ℓ);Q) ∼=
Hk(SLn(Z);Q) for n ≫ k. See [7] for a direct proof of this fact.4

2Adding punctures does change the cohomology, but in a controlled way. See [17, Proposition
2.1].

3We have switched to homology since that is more natural for our subsequent work.
4The paper [7] does not state its main result in this way, but the above is implicit in it. See

[26, Theorem C] for a explicit proof along the same lines of a more general result allowing twisted
coefficients.
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1.4. Level-ℓ subgroup. For ℓ ≥ 2, the level-ℓ subgroup of Modbg,p, denoted

Modbg,p(ℓ), is the kernel of the action of Modbg,p on H1(Σ
b
g,p;Z/ℓ). This action

preserves the algebraic intersection form, which is a symplectic form if p+ b ≤ 1.
In that case, we have a short exact sequence

1 −→ Modbg,p(ℓ) −→ Modbg,p −→ Sp2g(Z/ℓ) −→ 1

that is analogous to (1). For p+ b ≥ 2, we get a similar exact sequence, but with
a more complicated cokernel. For b = 0 and p ≤ 1, the associated finite cover of
Mg,p is the moduli space Mg,p(ℓ) of smooth genus-g curves over C with p marked
points equipped with a full level-ℓ structure, i.e., a basis for the ℓ-torsion in their
Jacobian.5

1.5. Main theorem. The following is our analogue for Modbg,p of the Borel sta-
bility theorem.

Theorem 1. Let g, p, b ≥ 0 and ℓ ≥ 2. Then the map Hk(Modb
g,p(ℓ);Q) →

Hk(Modbg,p;Q) induced by the inclusion Modbg,p(ℓ) → Modbg,p is an isomorphism if
g ≫ k.

1.6. Prior work. Two special cases of Theorem 1 were already known. The case
k = 1 was proved by Hain [12] using work of Johnson [16] on H1 of the Torelli
subgroup of Mod(Σg). Little is known about the higher homology groups of the
Torelli group, so this approach does not generalize. The case k = 2 was proved6

by the author in [23].

1.7. Necessity of hypotheses. The hypotheses in Theorem 1 are necessary:

• No result like Theorem 1 can hold for integral cohomology. Indeed, Per-
ron [22], Sato [27], and Putman [24] identified exotic torsion elements of

H1(Modbg,p(ℓ);Z) that do not come from H1(Modb
g,p;Z). Presumably sim-

ilar torsion phenomena also occur for higher integral homology groups.
• Theorem 1’s conclusion is false outside a stable range. Indeed, Church–
Farb–Putman [8] and Morita–Sakasai–Suzuki [21] independently proved
that H4g−5(Mod(Σg);Q) = 0, but Fullarton–Putman [10] proved that

H4g−5(Mod(Σg, ℓ);Q) is enormous.7 The significance of 4g − 5 here is
that it is the rational cohomological dimension of Mod(Σg); see [14].

5For p ≥ 2, the cover of Mg,p associated to Modg,p(ℓ) covers Mg,p(ℓ). The subgroup
corresponding to Mg,p(ℓ) is the kernel Modg,p[ℓ] of the action of Modg,p not on H1(Σg,p;Z/ℓ)
but on H1(Σg;Z/ℓ), which Modg,p acts on via the map Modg,p → Modg that fills in the p

punctures. Our main theorem does imply a corresponding theorem for Mg,p(ℓ).
6Actually, this paper only deals with the kernel Modbg,p[ℓ] of the action of Modb

g,p on

H1(Σg ;Z/ℓ) coming from the map Modbg,p → Modg that fills in the punctures, glues discs to the
boundary components, and extends mapping classes over these discs by the identity. Thus even
for k = 2 our theorem is stronger than the one in the literature. A similar thing is true for the
case k = 1 proved by Hain [12], though his proof can be generalized to this more general setting
using the generalization of Johnson’s work in [25].

7Brendle–Broaddus–Putman [4] generalized [10] to Modbg,p; however, it is still unknown

whether the cohomology of Modbg,p vanishes in its virtual cohomological dimension in general.
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Topological and smooth 4-manifolds and knots with fundamental
group 1 or Z

Lisa Piccirillo

One of the major areas of study in 4-manifold topology is the distinction between
the topological and smooth categories. In this abstract I will survey what is known
about the classification of 4-manifolds and the classification of surfaces inside them
under the drastic hypothesis that the manifold or surface complement has π1 ∈
{1,Z}1. In the topological category, classifications are known. In the smooth
category, for closed manifolds or surfaces, the problem of determining whether
the topological classification fails in all settings is the domain of two very difficult
conjectures; the Poincare conjecture and the unknotting conjecture. However, for
smooth manifolds with boundary, we know the topological classifications always
fail. I will discuss briefly what is known in each of these categories for 4-manifolds
and then for surfaces embedded in them.

I will begin with a discussion of 4-manifolds. In the topological category there
are known classification theorems for 4-manifolds with π1 = 1 or Z both with and
without boundary [12, 11, 18, 4, 6]. I will not attempt to state these classification
here, but I will comment on some of the invariants which show up in the classifi-
cation. The richest algebraic information comes from the equivariant intersection
form. For a 4-manifold X this is defined to be the intersection form on the integer
homology of the universal cover. Notice that if X is simply connected this is just
the intersection form on the second homology of X . In the setting where the man-
ifold has boundary, the homeomorphism type of the boundary is an invariant of
X , and there are two additional invariants coming from the relationship between
the algebraic topology of X and the algebraic topology of ∂X .

In the setting of closed smooth 4-manifolds, classification theorems are well
out of reach. We say that a smooth 4-manifold X is exotic if there exists another
smooth 4-manifoldX ′ which is homeomorphic but not diffeomorphic toX . Notice,

1There is some literature for other groups; in the topological category some classifications
are known for finite cyclic groups [13] and solvable Baumslag-Solitar groups [14], see also [5]. In
the smooth category, there are some exotica results for arbitrary fundamental group, eg. [17]. I
restrict attention to 1 and Z because these are the groups with the most complete understanding
across categories.
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in particular, that if a 4-manifold is exotic then the invariants involved in the
topological classification fail to determine the smooth structure. It is reasonable
to conjecture that all smooth 4-manifolds are exotic; there are already many exotic
smooth 4-manifolds known, the simplest of which is CP 2#2CP 2 [2, 3]. The smooth
4-dimensional Poincare conjecture posits that S4 is not exotic; this remains open,
and it is also unknown whether, for example, S1 × S3 is exotic, or whether there
are exotic definite 4-manifolds.

In the setting of smooth 4-manifolds with boundary, much more is known. For
example, it is known that there are exotic contractible 4-manifolds and exotic
4-manifolds homotopy equivalent to S1 [1]. In fact, for any fixed equivariant
intersection form it is known that there are exotic 4-manifolds with boundary with
that intersection form [6]. Future study of exotica for 4-manifolds with boundary
should attempt to fix the boundary 3-manifold2, or to fix multiple invariants from
the topological classification and demonstrate exotica with those invariants. Notice
that, if one can give exotica with boundary S3 and a given equivariant intersection
form, one obtains closed exotica with that form.

Moving now to the study of surfaces in 4-manifolds, the literature takes a par-
allel structure. For this exposition, we will assume that all surfaces are properly
embedded in a simply connected ambient 4-manifold X with boundary S3, and
that the surface complement has π1 = 1 or Z. Abusively, we will say the surface
has π1 = 1 or Z. Notice that this mimics the setting of classical knot theory, where
knots live in S3 (which is simply connected) and the interesting knot invariant is
π1 of the complement. We will say that surfaces Σ and Σ′ are equivalent if there
exists a homeomorphism or diffeomorphism F of pairs (X,Σ) ∼= (X,Σ′) such that
F induces the trivial isometry on the intersection form of X .

In the topological category, the ambient manifold is topological and the surface
is assumed to be locally flat. Here, classifications are known for closed surfaces
with π1 = 1 or Z [4, 6] and for surfaces with boundary and π1 = Z [6]. There is
no classification in the literature for surfaces with boundary and π1 = 1, but this
should follow readily using the techniques of [4, 6]. Again I will not state these
classifications explicitly; invariants include the equivariant intersection form of the
surface complement, and the genus of the surface, and in the case that the surface
has boundary, the boundary knot in S3. One particularly striking consequence of
the machinery which goes into these theorems is that in S4, for g not equal to 1
or 2, there is a unique locally flat surface with genus g and π1 = Z [7, 10, 7].

Much less is known for smooth closed surfaces. Here the governing conjecture is
the unknotting conjecture which posits that for any g ∈ N there is a unique smooth
surface in S4 with genus g and π1 = Z. We will say that a smooth surface Σ is
exotic if there exists a smooth surface Σ′ which is topologically but not smoothly
equivalent to Σ. It is known that there exist 4-manifolds X which contain exotic
closed surfaces [9] and that these surfaces can be taken to be nullhomologous [16]
spheres [19]. It is open to find exotic nullhomologous surfaces with π1 = 1 or Z in
particularly simple X , such as CP 2 or S4.

2This study was begun in [8].
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For surfaces with boundary, the geography of exotic surfaces is better known.
For example, it is known that there are exotic disks in B4 with π1 = Z and exotic
disks in CP 2#B4 with π1 = Z [15]. In fact, for any 2-handlebody X with S3

boundary, and any equivariant intersection form λ there is an exotic disk in X
with π1 = Z and such that the equivariant intersection form of the complement is
isometric to λ [6]. Future study of exotic surfaces should focus on controlling the
boundary knot, as well as the other invariants from the topological classifications.
Notice that an exotic surface with unknot boundary can be capped to give an
exotic closed surface.

A parallel story can be told for the study of mapping class groups of topological
and smooth 4-manifolds with π1 = 1 or Z, although less is known. I will not tell it
here, but I will mention that the story diverges from that of manifolds or surfaces
in that presently there doesn’t seem to be additional leverage on the study of
exotic diffeomorphisms by examining 4-manifolds with boundary.

Future work in this area will undoubtedly focus on the problems about exotica
with boundary mentioned here, as well as showing that closed manifolds such as
S1 × S3 and CP 2#CP 2 and closed surfaces in S4 with π1 = Z. I mention these
closed problems in particular because the gauge theoretic invariants which have
already been used to produce (more complicated) exotica could also detect exotica
in each of these settings. Thus, work that will push this field forward must be, in
large part, constructive.

To conclude, I will remark that while these problems about detecting closed ex-
otica in the simplest settings seem difficult, these are in fact just the first problems
in a fledgling theory. For one, the study of these questions for more complicated
fundamental groups should be systematized and explored. But even with the fun-
damental group restriction, we should be working towards classification theorems
for smooth manifolds; demonstrating that the topological classifications fail is just
the 0th step towards this goal.
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On the Torelli Lie algebra

Alexander Kupers

(joint work with Oscar Randal-Williams)

We let Σg,1 be a surface of genus g with one boundary component and define
its mapping class group Γg,1 = π0 Diff∂(Σg,1) as the group of isotopy classes of
diffeomorphisms of Σg,1 fixing the boundary pointwise. This group acts on the first
homology group H1(Σg,1;Z) ∼= Z2g of Σg,1 preserving the intersection form, and
hence yields a homomorphism Γg,1 → Sp2g(Z) whose kernel is the Torelli group
Tg,1. Taking the limit of the Lie algebras of the Mal’cev completions of its lower
central series quotients, we obtain the Torelli Lie algebra tg,1, a pro-unipotent Lie
algebra over Q with Sp2g(Z)-action.

By construction tg,1 comes with a filtration, whose associated graded Gr• tg,1 is
a Lie algebra with additional grading, which we refer to as weight. Its Lie algebra
homology groups—for example computed by the Chevalley–Eilenberg complex—
are consequently bigraded; we denote homological degree p and weight w by
HLie

p (Gr• tg,1)w. If these groups were to vanish when p 6= w, we would say Gr• tg,1
is Koszul, but this is not true. However, a slightly weaker statement is true: if we
say that Gr• tg,1 is Koszul in weights ≤ W if HLie

p (Gr• tg,1)w vanishes when p 6= w
and w ≤ W , then the first main result of [1] is as follows.

Theorem A (Kupers–Randal-Williams). The Lie algebra Gr• tg,1 is Koszul in
weights ≤ g

3 .

https://arxiv.org/abs/2003.13681
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Remark. We prove the same result for several variants of tg,1, and for the variant
ug this result was independently obtained by Felder–Naef–Willwacher [2].

Theorem A, or rather its proof, also sheds light on the geometric Johnson ho-
momorphism. This is the map of Lie algebras with additional grading

τg,1 : Gr• tg,1 −→ Der(Lie(H1(Σg,1;Q)))

induced by the action of the Torelli group on the fundamental group of the surface
Σg,1; here Der(−) denotes the Lie algebra with additional grading of (not nec-
essarily degree-preserving) derivations, and Lie(−) denotes the free Lie algebra.
The group Sp2g(Z) acts on the domain and target of τg,1, and with respect to
these actions, the map τg,1 is Sp2g(Z)-equivariant. The second main result of [1]
concerns its kernel.

Theorem B (Kupers–Randal-Williams). In weights ≤ g
3 , the kernel of τg,1 is

given by trivial Sp2g(Z)-representations that lie in the centre of Gr• tg,1.

Remark. It is known that the kernel contains at least one copy of Q, and this may
in fact be the entire kernel.

The proof of both theorems makes use of results on moduli spaces of high-
dimensional manifolds obtained in [3]. The proof of Theorem A may be sum-
marised as follows. The Lie algebra Gr• tg,1 is quadratically presented for g ≥ 4
by work of Hain, so we may instead prove that its quadratic dual commutative
algebra is Koszul in the same range of weights. This commutative algebra may be
described as the algebra of twisted Miller–Morita–Mumford classes on the mod-
uli space of Σg,1-bundles with trivial homological monodromy, and may—up to
scaling its grading by odd n ≥ 3—be replicated in high dimensions on the moduli
space of Wg,1 = D2n#(Sn × Sn)#g-bundles with trivial homological monodromy
and a “Euler” tangential structure. An unstable rational Adams spectral sequence
relates the homotopy groups of the latter moduli space to the commutative algebra
homology groups—for example computed by the Harrison complex—of the algebra
of twisted Miller–Morita–Mumford classes. These homotopy groups were studied
independently through Goodwillie–Klein–Weiss embedding calculus in [3], and the
results in that paper are strong enough to yield the desired vanishing except for
trivial Sp2g(Z)-representations. However, by translating the entire problem to the
setting of graph complexes via Schur–Weyl duality, and using a transfer argument
in that setting, the desired vanishing for trivial Sp2g(Z)-representations may be
deduced from that for the non-trivial Sp2g(Z)-representations. Theorem B is ob-
tained by similar methods, upon identifying the high-dimensional analogue of the
geometric Johnson homomorphism τg,1.

Remark. As the above summary may suggest, Theorems A and B have applications
to the study of high-dimensional manifolds and graph complexes. These can be
found in [1].
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The Chromatic Nullstellensatz

Tomer Schlank

(joint work with Robert Burklund and Allen Yuan)

Stable homotopy theory has greatly benefited from insights offered by three fun-
damental perspectives. First, spectra should be considered as ∞-categorical ana-
logues of abelian groups. Second, it is fruitful to generalize notions from algebra
and algebraic geometry to the world of spectra. Third, these generalizations should
avoid element-based formulae and be given in terms of categorical properties. In
this way, for example, the Zariski spectrum of a ring is replaced by the notion
of the Balmer spectrum, which presents chromatic homotopy theory as the ana-
log for spectra of the primary decomposition for abelian groups. Some aspects of
homotopy theory thus became akin to a game of Taboo, where classical notions
from algebra are redefined without using the words, element, equation or subset.
In this talk I present a joint work with R. Burklund and A. Yuan where we sug-
gest a redefinition for algebraically closed fields. The idea is that algebraically
closed fields are precisely those commutative rings that satisfy a form of Hilbert’s
Nullstellensatz.

Definition 1. Let C be a presentable ∞-category. We say that C is Nullstellen-
satzian if every compact and non-terminal object in C admits a map to the initial
object of C. Similarly, we say that an object A ∈ C is Nullstellensatzian if A is
non-terminal and CA/− is Nullstellensatzian. ⊳

Hilbert’s Nullstellensatz is essentially the statement that an object in the cat-
egory of commutative rings satisfies the Nullstellensatz if and only if it is an
algebraically closed field.

Our first result is the classification of Nullstellensatzian E∞-algebras in the
monochromatic world. Through the connection between being Nullstellensatzian
and being algebraically closed (in the sense of Galois theory) work of Baker and
Richter [BR08] on Galois extensions suggests that the natural candidates for Null-
stellensatzian T (n)-local E∞-algebras are the Lubin-Tate theories attached to al-
gebraically closed fields. Indeed, we show that these are exactly the Nullstellen-
satzian T (n)-local E∞-algebras.
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Theorem A (Chromatic Nullstellensatz). A T (n)-local E∞-algebra R is Nullstel-
lensatzian in CAlg(SpT (n)) if and only if R ∼= E(L), where E(L) is the Lubin-Tate

spectrum attached to an algebraically closed field L.1

1.1. The constructible spectrum.
Given an arbitrary T (n)-local E∞-algebra R, Theorem A supports the idea of
considering E∞ maps R → E(L) out to Lubin–Tate theories of algebraically closed
fields as “geometric points of Spec(R)”. In classical algebra, the geometric points
of A are usually organized into a topological space—the Zariski spectrum of A.
The utility of the spectrum comes from the fact that often algebraic questions
over a base ring A can be studied locally or even point-wise over Spec(A). Our
understanding of the algebraically closed fields in CAlg(SpT (n)) allows us to make
an analogous construction in the chromatic setting.

Definition 2. Let R ∈ CAlg(SpT (n)). A geometric point of R is an equivalence

class of maps f : R → E(L) for L algebraically closed, under the equivalence
relation identifying two maps f1 : R → E(L1) and f2 : R → E(L2) whenever
E(L1)⊗R E(L2) 6= 0.2 ⊳

The set3 of geometric points can be endowed with the so-called constructible
topology, which gives it the structure of a compact Hausdorff topological space.

Theorem B. There is a functor

SpecconsT (n) : CAlg(SpT (n))
op → CHaus

which sends R ∈ CAlg(SpT (n)) to the set of geometric points endowed with the

topology in which a subset U ⊂ SpecconsT (n)(R) is closed if and only if it is the image

a map SpecconsT (n)(S) → SpecconsT (n)(R) induced by some map of algebras R → S.

In the classical case, a not-often-mentioned property is that is that one can
check whether an element a ∈ A is nilpotent by checking whether it is nilpotent at
every geometric point of A. In fact, it is this property which guarantees that the
Zariski spectrum of A has enough points. The analogous result in the T (n)-local
setting is the following theorem:

Definition 3. Let R ∈ CAlg(SpT (n)) and let g : M → N be a map of compact

T (n)-local R-modules. We say that g is nilpotent if there exists some k ≫ 0
such that g⊗k : M⊗k → N⊗k is null. A map f : R → S in CAlg(SpT (n)) detects

nilpotence if a map M → N of compact T (n)-local R-modules is nilpotent if and
only if the induced map M ⊗R S → N ⊗R S is nilpotent in ModS(SpT (n))

ω . ⊳

1Here and throughout the paper, by “E(L) for an algebraically closed field L” we mean
for height n > 0 that charL = p and E(L) is as in [GH04, Lur18], and for height n = 0
that charL = 0 and E(L) := L[u±1] where the generator u is placed in degree 2, that is,
E(L) ∼= L⊗KU .

2Note that for a discrete ring A, taking equivalence classes of maps A → L to algebraically
closed fields under the analogous equivalence relation gives rise to the set of points of Spec(A).

3Although it is not immediate, the collection of geometric points of R turns out to be a set.
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Theorem C. Let f : R → S be a map in CAlg(SpT (n)). Then f detects nilpotence

if and only if the induced map SpecconsT (n)(S) → SpecconsT (n)(R) is surjective.

Theorem C tells us that, in this theory, we have “enough points”. In particular,
since the map R → 0 detects nilpotence only if R = 0, we deduce that any nonzero
R has at least one geometric point. In other words:

Theorem D. Let R be a non-zero T (n)-local E∞-algebra. Then there exists some
algebraically closed field L and a map of E∞-algebras R → E(L).

1.2. Applications.
Theorem D hascan be applied to the study of T (n)-local E∞-algebras. As an
immediate consequence we obtain an alternative proof for Hahn’s celebrated result
on the chromatic support of E∞-algebras.

Theorem E (Hahn [Hah16]). Let R ∈ CAlg(Sp). Then for every n ≥ 0, we have
that R⊗ T (n) = 0 implies R⊗ T (n+ 1) = 0.

Indeed, since algebras over the zero algebra are zero, Theorem D allows us to
reduce the statement to the case of E(L), where it is a straightforward computa-
tion.

In view of Theorem E, it is natural to define the height of a nonzero E∞-algebra
R ∈ CAlg(Sp) by

height(R) := max{n ≥ −1|T (n)⊗R 6= 0}.4

Based on computations at small heights, Ausoni and Rognes suggested a far-
reaching conjectural organizing principle for the interaction between algebraic K-
theory and chromatic height. This phenomena, known as redshift, can be sum-
marized by the slogan “algebraic K-theory raises the chromatic height by one.”
Theorem D allows us to prove this conjecture for arbitrary E∞-algebras. Note
that if R is an E∞-algebra, then K(R) also admits the natural structure of an
E∞-algebra. We get:

Theorem F (Redshift for E∞-algebras). Let 0 6= R ∈ CAlg(Sp) be such that
height(R) ≥ 0. Then

height(K(R)) = height(R) + 1.

The inequality height(K(R)) ≤ height(R) + 1 has been recently proved in the
groundbreaking papers [LMMT20, CMNN20], so we are reduced to proving that
the height always increases. Once again, Theorem D allows us to reduce the claim
to the case of E(L), where it was proven by the third author in [Yua21].

Many of the best studied E∞-algebras, including cobordism rings, occur as
Thom spectra. As a consequence of Theorem D we find that E∞-algebra maps from
Thom spectra to algebraically closed Lubin–Tate theories, known as orientations,
are particularly well-behaved.

4Here we set T (−1) = S.
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Theorem G. Let L be an algebraically closed field and let

f : X → pic(ModE(L)(SpT (n)))

be a map in Sp≥0 with T (n)-local Thom spectrum Mf . Then the following are
equivalent:

(1) Mf 6= 0.
(2) There is map Mf → E(L) in CAlgE(L)(SpT (n)).

(3) f is null-homotopic.
(4) Mf ∼= E(L)[X ] ∈ CAlgE(L)(SpT (n)).

For a map g : X → pic(Sp) in Sp≥0, it follows from Theorem G that there exists

an E∞-algebra map Mg → E(Fp) if and only if K(n)⊗Mg 6= 0.

Theorem H. Taking g to be the complex J-homomorphism ku → pic(Sp), we
obtain an equivalence of spaces

MapCAlg(Sp)(MUP, E(Fp)) ∼= MapSp≥0
(ku, gl1(E(Fp))).

In particular, there exists an E∞-algebra map

MU → E(Fp).

The question of whether such E∞ complex orientations of Lubin–Tate theories
exist has a long history. In [And95], Ando gave a “norm-coherence” condition
based on power operations for when a Lubin–Tate theory admits an H∞ map from
MU. Building on work by Ando in the case of the Honda formal group, Zhu [Zhu20]
checked this condition for all Lubin–Tate theories. A general obstruction theory for
constructing E∞ complex orientations was described by Hopkins–Lawson [HL18],
which recovered previous results of Walker and Möllers [Wal08, Möl10] at height
1. The more general case of MUP-orientations was demonstrated in a height 1
example by [HY20], and then proven for all Lubin–Tate theories of height n ≤ 2
by Balderrama [Bal21].
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Hyperbolic models for CAT(0) spaces

Davide Spriano

(joint work with Harry Petyt and Abdul Zalloum)

This talk is based on joint work with Harry Petyt and Abdul Zalloum developed
in [7]

Two of the most well-studied topics in geometric group theory are CAT(0)
cube complexes and mapping class groups. This is in part because they both
admit powerful combinatorial-like structures that encode interesting aspects of
their geometry: hyperplanes for the former and curve graphs for the latter. In
recent years, analogies between the two theories have become more and more
apparent. In this talk, we bring CAT(0) spaces into the picture by developing
versions of hyperplanes and curve graphs for them.

The main new notion introduced is that of curtains, which are CAT(0) analogues
of hyperplanes.

Definition: Let X be a CAT(0) space. A curtain is π−1
α (P ), where α is a geo-

desic, πα the closest-point projection, and P a subinterval of α of length one not
containing the endpoints.

Given an arbitrary CAT(0) space X , we use curtains to define a new family of
metrics dL on X and write XL = (X, dL). This construction is inspired by work
of Genevois and Hagen on CAT(0) cube complexes [4, 3]. It will be seen from the
results described below that these spaces share many fundamental properties with
curve graphs. In the first place, we prove the following.

Theorem A: For any natural number L there is a constant δL such that for
every CAT(0) space X , the space XL is δL–hyperbolic, and IsomX ≤ IsomXL.
Furthermore, geodesics of X descend to unparametrised quasigeodesics of XL.

Both surfaces and CAT(0) spaces have automorphisms that can naturally be con-
sidered hyperbolic-like, namely pseudo-Anosov homeomorphisms and rank-one
isometries. Pseudo-Anosovs are precisely those mapping classes that act loxo-
dromically on the curve graph [6], and, in the cubical setting, rank-one isometries
are those that skewer a pair of separated hyperplanes [1, 2]. For CAT(0) spaces
we have the following.

http://www.math.ias.edu/~lurie/
https://arxiv.org/abs/2111.10837
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Theorem B: Let g be a semisimple isometry of a proper CAT(0) space X . The
following are equivalent.

• g is rank-one.
• g skewers a pair of separated curtains.
• g acts loxodromically on some XL.

As a consequence, if G acts properly coboundedly on X and some XL is un-
bounded, then Gromov’s classification of actions on hyperbolic spaces yields a
loxodromic isometry of XL, which is rank-one by the above theorem.

Aside from hyperbolicity, one of the most important results about the curve
graph is Ivanov’s theorem [5], which states that every automorphism of the curve
graph is induced by some mapping class. Recall that a CAT(0) space has the
geodesic extension property if every geodesic segment appears in some biinfinite
geodesic.

Theorem C: Let X be a proper CAT(0) space with the geodesic extension
property. If any one of the following holds, then IsomX = IsomXL for all L.

• X admits a proper cocompact action by a group that is not virtually free,
or

• X is a tree that does not embed in R, or
• X is one-ended.

Right now, most of the geometric result relied on rank-one elements or unbound-
edness of the spaces XL. It is therefore natural to ask whether it is possible to
draw some conclusions for the case where the XL are all bounded. We obtain the
following dichotomy.

Theorem D: Let G be a group acting properly cocompactly on a CAT(0) space
X . Exactly one of the following holds.

• Every XL has diameter at most two, in which case G is wide.
• Some XL is unbounded, in which case G has a rank-one element, and if G
is not virtually cyclic then it is acylindrically hyperbolic.
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Non-isotopic Seifert surfaces

Maggie Miller

(joint work with Kyle Hayden, Seungwon Kim, JungHwan Park, and
Isaac Sundberg)

Livingston [2] previously showed that any two connected, same-genus Seifert sur-
faces for an unlink become isotopic rel. boundary in B4 once their interiors are
pushed slightly into B4. This is a common phenomenon; many Seifert surfaces
(i.e. essentially all examples from the literature except for those of [3], which I
explain in the talk) become isotopic once their interiors are pushed into B4.

In the figure below, I illustrate two Seifert surfaces Σ0,Σ1 for a knot K. These
surfaces come from recent joint work with Hayden, Kim, Park and Sundberg [1] and
are adaptations of a construction of Lyon [3]. In this talk, I will show that Σ0 and
Σ1 are not even topologically isotopic in B4 by proving that the 2-fold branched
covers of B4 branched along Σ0 or Σ1 (respectively) are not homeomorphic (they
are distinguished by intersection form on H2( – ;Z)).

While I will not prove it in this talk, I will also discuss our further work showing
that Whitehead doubles of Σ0 and Σ1 (defined in the talk as certain genus-2
Seifert surfaces) are topologically but not smoothly isotopic rel. boundary in B4.
The surfaces are distinguished smoothly by showing they induce distinct maps on
Khovanov homology.

Σ0 Σ1

Figure 1. Two genus-1 Seifert surfaces Σ0 (left) and Σ1 (right)
for the same knot K that are not isotopic even when their

interiors are pushed into B4. Image from [1].
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Locally flat embedded surfaces in 4-manifolds

Anthony Conway

(joint work with Lisa Piccirillo and Mark Powell)

In what follows, manifolds are assumed to be compact, connected and oriented.
We work in the topological category: a 4-manifold will always refer to a topological
4-manifold and embeddings are assumed to be locally flat.

1. Brief history

The history of locally flat surfaces in 4-manifolds took off with the work of Freed-
man [Fre82]. Indeed, in his 1982 paper on the classification of closed simply-
connected 4-manifolds, Freedman proved the following two striking results:

• If an embedded 2-sphere Σ ⊂ S4 has π1(S
4 \Σ) = Z, then it is unknotted.

• A knotK with Alexander polynomial 1 bounds a discD ⊂ D4 with π1(D
4\

D) = Z.

Here a surface Σ ⊂ S4 is unknotted if it bounds a solid handlebody in S4 or,
equivalently, if it is isotopic to the standard embedding of the genus g surface in
S4. Returning to the history of locally flat surfaces, here is a (non-exhaustive) list
of noteworthy results:

• Boyer classified surfaces in simply-connected 4-manifolds whose comple-
ments are simply-connected [Boy93].

• Lee and Wilczynski obtained partial results towards the classification of
surfaces whose complements have abelian fundamental group[LW90, LW93,
LW97, LW00].

• Friedl and Teichner gave conditions on a knot K ⊂ S3 for it to bound
a disc D ⊂ D4 whose complement has fundamental group BS(1, 2) =
〈a, b | aba−1 = b2〉 [FT05].

Many authors have obtained criteria for pairs of surfaces in a 4-manifold to be
topologically isotopic. We will not attempt a survey of the vast litterature on
this topic but instead point the reader to [Sun15, FL19, FMN+21, KPRT22] for a
couple of recent interesting results on locally flat surfaces in 4-manifolds.

2. Results

In order to state our results, it is convenient to introduce some terminology. A
locally flat surface Σ in a 4-manifold X is called a Z-surface if π1(X \ Σ) = Z.
Using this language, Freedman proved that Z-spheres in S4 are unknotted. Our
first result, obtained in joint work with Mark Powell, is the higher genus analogue
of Freedman’s unknotting theorem.

Theorem A ([CP20]). If Σ ⊂ S4 is a Z-surface of genus g > 2, then it is
unknotted.

Combining Freedman’s result with Theorem A, genus g Z-surfaces in S4 are
known to be unknotted for all g 6= 1, 2. The statement is still open for g = 1, 2
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although, as we will see in Section 3, the question has now been reduced to an
algebraic problem.

In fact, the methods from [CP21] apply in more general ambient 4-manifolds
than S4. The price to pay is the appearance of an additional invariant: given a
Z-surface Σ ⊂ X in a simply-connected 4-manifold, the equivariant intersection
form of the exterior XΣ := X \ νΣ refers to the non-degenerate Hermitian form

λΣ : H2(X
∞
Σ )×H2(X

∞
Σ ) → Z[t±1]

(x, y) 7→
∑

k

(x · tky)t−k.

HereX∞
Σ denotes the universal cover ofXΣ with deck transformation group Z = 〈t〉

and x · tky refers to the algebraic intersection of x with tky. The equivariant
intersection form admits a more algebraic description in terms of Poincaré duality
but we will not pursue it here.

The classification of Z-surfaces in simply-connnected 4-manifolds, obtained in
collaboration with Lisa Piccirillo and Mark Powell, now reads as follows.

Theorem B ([CP20, CPP22]). Let X be a closed simply-connected 4-manifold.

(1) For Z-surfaces Σ0,Σ1 ⊂ X, there is an equivalence (X,Σ0) ∼= (X,Σ1) if
and only if there is an isometry λΣ0

∼= λΣ1 .
(2) There are necessary and sufficient conditions for a non-degenerate Her-

mitian form λ : Z[t±1]n × Z[t±1]n → Z[t±1] to arise as the equivariant
intersection form λΣ of the exterior of a Z-surface Σ ⊂ X.

We record a couple of remarks concerning this theorem and adjacent results.

• The first statement of Theorem B can be upgraded from equivalence to
isotopy using an additional algebraic condition on the isometry λΣ0

∼= λΣ1 .
• We focused on closed surfaces in closed 4-manifolds but the articles [CP20,
CPP22] also contain results for properly embedded surfaces in simply-
connected 4-manifolds with S3 boundary. For example, for every g 6= 1, 2,
an Alexander polynomial one knot bounds a unique Z-surface of genus g
in D4 up to isotopy rel. boundary [CP20].

• Concerning other groups, [CP21] builds on the work of Friedl-Teichner
[FT05] to give a full classification of BS(1, 2)-ribbon discs in D4. The
reason for the focus on the groups Z and BS(1, 2) is that these are currently
the only known groups that are both good (in the sense of Freedman)
and arise as fundamental groups of ribbon disc complements in the 4-
ball. In theory all ribbon groups could be good and [Con22] describes the
resulting classification of G-ribbon discs in the 4-ball under this optimistic
hypothesis.

3. Proof sketches

We sketch how Theorem B implies Theorem A and then outline the proof of the
existence statement of Theorem B. A word of warning: these sketches are scarce
on details.
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Proof sketch of Theorem A assuming item (1) of Theorem B.. Use Ug ⊂ S4 to de-
note the unknotted surface of genus g. It is not difficult to verify that π1(S

4\Ug) =
Z. Given a Z-surface Σ ⊂ S4, there are three main steps to prove that Σ is ambi-
ently isotopic to Ug.

(1) Show that the unknot Ug ⊂ S4 satisfies λUg
∼= H⊕g

2 , where H2 =
(

0 t−1
t−1−1 0

)
.

This is an explicit calculation that can be performed using a handle decom-
position for the surface exterior XUg

= S4 \ Ug.
(2) Apply a result of Baykur and Sunukjian [BS16] to prove that Σ and Ug be-

come isotopic after adding a large enough number n > 0 of tubes to each sur-
face. Prove that adding a tube to an embedded surface adds an H2-connected
summand to the equivariant intersection form and deduce that λΣ ⊕ H⊕n

2
∼=

λUg
⊕H⊕n

2 .

(3) Use a cancellation result of Bass [Bas73] to “cancel off” the H⊕n
2 -summands

leading to λΣ
∼= λUg

. Some work is needed to pass from our setting to one
where Bass’s result applies. This step is the most technical one and requires
the hypothesis that g ≥ 3.

Since we have now proved that λΣ
∼= λUg

, we can now apply item (1) of The-

orem B to obtain an equivalence (S4,Σ) ∼= (S4,Ug). The conclusion that Σ
and Ug are ambiently isotopic follows from the fact that orientation-preserving
self-homeomorphisms of S4 are isotopic to the identity [Qui86]. �

Proof sketch of item (2) of Theorem B. Fix a simply-connected 4-manifoldX and
a non-degenerate Hermitian form λ : Z[t±1]n×Z[t±1]n → Z[t±1] that satisfies some
additional algebraic conditions. We wish to build a Z-surface Σ ⊂ X with λΣ

∼= λ.
The first step of the proof is to build a 4-manifoldM with the algebraic topology

of a Z-surface exterior. We achieve this in three substeps.

(1) Add 2-handles to (Σg ×S1)× [0, 1] to obtain a cobordism (W,Σg ×S1, Y )
between Σg×S1 and a 3-manifold Y withH1(Y

∞) = 0. Roughly speaking,
this step is carried out by attaching the 2-handles according to the framing
and linking data specified by the Hermitian form λ.

(2) Use surgery theory to prove that Y bounds a 4-manifold B that is homo-
topy equivalent to a circle. This should be thought of as a π1 = Z ana-
logue of Freedman’s theorem that every integer homology 3-sphere bounds
a contractible 4-manifold.

(3) The required 4-manifold M is now defined as M := W ∪Y B. One veri-
fies that M has the appropriate algebraic topology, namely fundamental
group π1(M) = Z, equivariant intersection form λM

∼= λ and bound-
ary ∂M = Σg × S1.

The second step of the proof is to show that M is a Z-surface exterior. A
calculation shows that X ′ := M ∪∂ (Σg × D2) is a closed simply-connected 4-
manifold with Z-intersection form QX′ ∼= QX (here we use one of the conditions
on the form λ). Freedman’s classification of closed simply-connected 4-manifolds
then implies thatX ′ is homeomorphic toX . We have now obtained the required Z-
surface in X , namely Σg × {0} →֒ X ′ ∼= X . �
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[LW93] Ronnie Lee and Dariusz M. Wilczyński. Representing homology classes by locally flat
2-spheres. K-Theory, 7(4):333–367, 1993.
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Integral equivariant elliptic cohomology

Lennart Meier

(joint work with David Gepner)

1. Motivation

The most classical equivariant cohomology theory is Borel equivariant cohomology,
sending a space X with a G-action to H∗(EG×G X ;Z). For us, G will always be
a compact Lie group. For X = pt, we obtain H∗(BG;Z). As shown by Swan [6],
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H∗(BG;Z) is nonzero in infinitely many degrees for every non-trivial G and thus
H∗(BG;Z) will never be finitely generated as an abelian group.

Equivariant K-theory enjoys better finiteness properties. Assuming from now on
X to be a finite G-CW-complex (e.g. any smooth compact G-manifold), K0

G(X) is
defined as the Grothendieck group of G-equivariant complex vector bundles on X .
Thus, K0

G(pt) is the representation ring R(G) of G, which coincides as an abelian
group with the free abelian group on the set of irreducible complex representations
of G. Thus, K0

G(pt) is finitely generated for every finite G. But for G = S1, we
obtain K0

S1(pt) ∼= Z[t±1], being of infinite rank.

Question. What are examples of equivariant cohomology theories having good
finiteness properties for all compact Lie groups?

Our answer will be equivariant elliptic cohomology. To motivate it, let us first
reinterpret equivariant K-theory in algebro-geometric terms. For every G, we can
consider the scheme SpecR(G). The R(G)-algebra structure on K0

G(X) corre-
sponds to considering K0

G(X) as a sheaf of quasi-coherent algebras on SpecR(G).
For G = S1, we obtain SpecR(S1) ∼= SpecZ[t±1] = Gm, the multiplicative group
– this represents the functor sending a commutative ring to its group of units.
The group structure is actually induced by the multiplication map S1 ×S1 → S1.
We could also paint a similar picture for Borel equivariant cohomology, where we
see SpecH∗(BS1) ∼= SpecZ[x] ∼= Ga, the additive group. The lack of finiteness in
these examples corresponds to the fact that Ga and Gm are not proper. But there
is a third family of one-dimensional proper group schemes, namely elliptic curves.

2. Equivariant Elliptic Cohomology

The aim of equivariant elliptic cohomology is repeat the above story for equi-
variant K-theory, replacing Gm by a fixed elliptic curve E. In particular, the
S1-equivariant theory takes values in quasi-coherent sheaves on E. The original
motivations for constructions such theories came both from the theory of elliptic
genera (Miller, Rosu) and from geometric representation theory. Motivated by the
latter, Grojnowksi gave in [3] the first construction of equivariant elliptic coho-
mology for elliptic curves over the complex numbers and for connected compact
Lie groups of equivariance. Much more recently, Berwick-Evans and Tripathy [1]
developed a coherent theory for all compact Lie groups, but still over the complex
numbers. In [4], Lurie gave a sketch how to obtain a theory without restricting
to complex coefficients. Our work follows the same outline Lurie gives and is also
heavily based on Lurie’s foundational work on spectral algebraic geometry.

We will present the general form of our theory in a way that is inspired by
the axiomatics from Ginzburg–Kapranov–Vasserot [2]. As they already mention,
there are many advantages to work in the derived context, which means here in the
context of spectral algebraic geometry. A spectral scheme is a topological space
X together with a sheaf OX of E∞-ring spectra such that (X, π0OX) is a usual
scheme, plus two more technical conditions. Like in usual algebraic geometry, we
can talk about quasi-coherent sheaves on a spectral scheme. We refer to [5] for
further details.
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Using this language, let us explain the outline of our theory. Let S be a spectral
base scheme such that OS is even-periodic and let E be a spectral elliptic curve
over S, plus a futher piece of datum, called an orientation. Our construction gives
us:

(1) for every G, a spectral S-scheme XG;
(2) for every G, a functor EllG : finite G-CW complexesop → QCoh(XG),

sending G-homotopy equivalences to equivalences;
(3) for each group homomorphism ϕ : G → H an affine morphism

Xφ : XG → Xh

such that (Xϕ)∗EllG(Z) ≃ EllH(G×H Z).

In the case of K-theory, XG corresponds to SpecKG(pt) and the functor EllG
corresponds to viewing KG(X) as a KG(pt)-module and hence a quasi-coherent
sheaf on SpecKG(pt).

In our case, the spectral schemes XG are in general hard to describe explicitely.

For G abelian, however, we have XG ≃ Hom(Ĝ, E), where Ĝ is the Pontryagin
dual. As the Pontryagin dual of S1 is Z, this gives us in particular XS1 ≃ E. In
the case G = Un one can identify XG with the Hilbert scheme of length n divisors
on E. In general, we have the structural result that XG is always proper over S,
which gives strong finiteness results.

Theorem A (Gepner–M.). Assume that S = SpecR is affine. Then for every
finite G-CW-complex X, the global sections Γ(EllG(X)) are a finite R-module.

The relevance of these global sections is that the composite functor

finite G-CW complexesop
EllG−−−→ QCoh(X)

Γ
−→ ModR

π−n
−−−→ AbelianGroups

is an equivariant cohomology theory in the classical sense, having the finiteness
properties we asked for.

By results of Lurie, the most canonical spectral elliptic curve with an orientation
is a spectral refinement of the universal elliptic curve. While the base is not an
(affine) spectral scheme, the results above apply, mutatis mutandis. In particular,
this yields a genuine equivariant refinement of the spectrum TMF of topological
modular forms such that all of its G-fixed points are finite TMF -modules.
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New results and conjectures on slice knots

Marco Marengon

(joint work with Thomas Hockenhull and Michael Willis, and partly also with
Nathan M. Dunfield and Sherry Gong)

A knot is a closed, connected, 1-submanifold of S3 up to isotopy. If we view S3 as
the boundary of the 4-ball B4, we say that a knot K ⊂ S3 is called smoothly (resp.
topologically) slice if it bounds a smooth (resp. locally flat) properly embedded disc
D ⊂ B4. Note that smoothly slice implies topologically slice.

By a classical result of Fox-Milnor [1], if K is a topologically slice knot, then
its Alexander polynomial ∆K(t) ∈ Z[t, t−1] admits a factorisation as

∆K(t) = f(t) · f(t−1)

for some f(t) ∈ Z[t, t−1]. This in particular implies that the unsigned determinant
| detK| := |∆K(−1)| is an (odd) square. (| detK| is an odd number for any knot
K.)

Knot Floer homology (ĤFK) is a bigraded vector space over F2, and its graded
Euler chacteristic recovers the Alexander polynomial [4, 6]. The naive categorifi-

cation of Fox-Milnor that if K is (smoothly) slice then ĤFK(K) = V ⊗V ∗ for some
(bigraded) vector space V is known to be false. In fact, even the weaker statement

that rk ĤFK(K) should be an odd square if K is slice is false, a counterexample

being the Kinoshita-Terasaka knot KKT , for which rk ĤFK(KKT ) = 33.
Nonetheless, in collaboration with Hockenhull and Willis, we prove that for a

certain family of slice knots F the rank is an odd square.

Theorem A (Hockenhull-M.-Willis). If K ∈ F , then rk ĤFK(K) and rk K̃hF2(K)
are square integers.

Here K̃hF2(K) denotes reduced Khovanov homology with F2 coefficients, another

homology theory for knots that shares some formal properties with ĤFK [3].
The proof of Theorem A is based upon the existence of certain long exact

sequence in ĤFK and K̃hF2 , and on the fact that the above homologies can be
given a structure of modules over F2[X ]/(X2).

ĤFK has an analogue for 3-dimensional oriented closed manifolds called Hee-

gaard Floer homology, and denoted ĤF. The same technique used to prove Theo-
rem A can be adapted to prove the following result.

Theorem B (Hockenhull-M.-Willis). Let K be an essential knot in S1 × S2, and
let Y (K, f) denote the result of surgery on K with a longitudinal framing f .

Then rk ĤF(Y (K, f)) is independent of f . In particular, if Y (K, f) is an L-
space for some f , then it is an L-space for all choices of longitudinal framing
f .

Recall that an L-space is a 3-manifold with Heegaard Floer homology as simple
as possible, and that conjecturally Y not being an L-space should be equivalent to
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π1(Y ) being left-orderable and also to the existence of a co-oriented taut foliation
on Y .

Going back to slice knots, and keeping in mind that there is a slice knot (namely

KKT ) with rk ĤFK = 33, we asked whether there is a statement weaker than

rk ĤFK being an odd square that holds for all slice knots. In joint work in progress
with Dunfield, Gong, Hockenhull, and Willis, we formulate the following conjec-
ture.

Conjecture 1 (Dunfield-Gong-Hockenhull-M.-Willis). Let R be Fp or Z. Given a
knot K ⊂ S3, the following numbers are concordance invariants of K:

(1) rk ĤFK(K) (mod 8);

(2) rk K̃hR(K) (mod 8).

Thus, there are homomorphisms from the concordance group

ρ
ĤFK

: C → (Z/8Z)∗ ρ
K̃hR

: C → (Z/8Z)∗

K 7→ [rk ĤFK(K)]8 K 7→ [rk K̃hR(K)]8

Conjecture 1 is equivalent to the following, seemingly weaker, conjecture.

Conjecture 2 (Dunfield-Gong-Hockenhull-M.-Willis). Let R be Fp or Z. Given a
ribbon knot R ⊂ S3, we have:

(1) rk ĤFK(R) ≡ 1 (mod 8);

(2) rk K̃hR(R) ≡ 1 (mod 8).

Recall that a knot R is ribbon if it is obtained from the (n + 1)-component
unlink by performing n band surgeries. The minimum such n is called the fusion
number of R.

Potential applications of these conjectures are detection of topologically slice
but not smoothly slice knots, for example certain Whitehead doubles. Very in-
terestingly, if the Khovanov side of the conjecture were true, this would give a
new proof that the Piccirillo knot (hence the Conway knot) is not slice. The only
known proof so far is via Rasmussen’s s-invariant [5].

Building on an argument of Hom-Kang-Park [2], we prove Conjecture 2.(1) for
ribbon knots with fusion number 1. Moreover, we tested that Conjecture 2.(1)
holds on a list of 400000 ribbon knots compiled by Dunfield-Gong.

Regarding the Khovanov side of the conjecture, in the list of Dunfield-Gong
there are two counterexamples (with Z coefficients) to Conjecture 2.(2). They both

satisfy the weaker condition that rk K̃hZ ≡ 1 (mod 4). Thus, we propose to weaken
Conjectures 2.(2) and 1.(2) from (mod 8) to (mod 4). The weaker conjectures
would still suffice for the potential applications we mentioned above.
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Equivariant dual Steenrod algebras

Michael A. Hill

(joint work with Michael J. Hopkins)

We describe an approach to computing the Steenrod algebra that is applicable
to computing equivariant versions for cyclic 2-groups. We begin with a non-
equivariant story, then indicate how it changes with the additional data of a group
action.

The basic approach is simple: we have a pushout square of commutative ring
spectra

HF2 ∧MU HF2 ∧HF2

HF2 HF2 ∧
MU

HF2.

We have great computational control over three of these pieces, and we can use
this to describe the fourth. The bottom left corner gives just the homology of a
point, which non-equivariantly is easy to understand and equivariantly we may
just black-box as a given. The upper left corner can be computed via the Thom
isomorphism, since HF2 is complex oriented:

HF2 ∧MU ≃ HF2 ∧BU+,

and the homotopy is polynomial on classes in even degrees.
The story becomes less classical at the bottom right. Here, we can use the

presentation of HZ as an MU -module given by the (non-equivariant form of the)
Reduction Theorem of [5]. Choosing algebra generators of π∗MU , the Lazard ring,
we write down a map of associative algebras

A :=

∞∧

i=1

S0[S2i] → MU,

where here the associative ring spectrum S0[S2i] is the free associative ring spec-
trum on the space S2i. The Reduction theorem says that we have an equivalence
(of MU -module spectra)

HZ ≃ MU ∧
A
S0,
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where we give S0 an A-module structure via the augmentation map A → S0. This
gives an identification as spectra

HF2 ∧
MU

HZ ≃ HF2 ∧

(
∞∏

i=1

S2i+1

)

+

.

Alternatively, the relative Thom isomorphism as in work of Beardsley [2] using
work of Basu–Sagave–Schlichtkrull [1] gives an equivalence

HF2 ∧
MU

HZ ≃ HF2 ∧BBU+ ≃ HF2 ∧ SU+.

The final piece is a Greenlees–Serre style spectral sequence for augmented al-
gebras [3]. Since everything is flat over the homology of a point here, the spectral
sequence has the form

E2 = π∗

(
HF2 ∧

MU
HF2

)
⊗
F2

π∗

(
HF2 ∧MU

)
⇒ π∗

(
HF2 ∧HF2

)
.

The differentials here are simply given by analyzing the Hurewicz image of elements
in the homotopy of MU , and extensions can be resolved by direct computations
in basic spaces.

Framed this way, the computation goes through quite similarly equivariantly!
Replacing MU with the Fujii–Landweber spectrum MUR of Real bordism gives

the C2-equivariant case, reproducing the computation of the C2-equivariant dual
Steenrod algebra originally due to Hu–Kriz [6]. As has become standard with these
computations, the even spheres S2i are replaced by regular representation sphere
Siρ2 , where ρ2 is the regular representation of C2, but otherwise, the additive story
goes through essentially without change. There is additionally an equivariant lift
of the Greenlees–Serre spectral sequence which works the same way as the non-
equivariant one.

Replacing MUR with the norm to a finite cyclic 2-group C2n then can be used
to study the C2n -equivariant case. Here, very little was known. If we assume
known the homology of a point, then the top left and bottom right corners can be
computed using essentially the same techniques. The interesting piece of data is
the more initial computation

HZ ∧
N

C2n
C2

MUR

HZ ≃ HZ ∧

(
∞∏

i=1

MapC2
(
G,Siρ2+1

)
)

+

,

where here MapC2(G,−) is the functor of coinduction. These computations are
still fairly straightforward, using the RO-graded algebra developed in [4]. Unfor-
tunately, the Greenlees–Serre spectral sequence is much more complicated, and
the computations to date suggest that the resulting algebra is not flat as a module
over the homology of point!
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K-theory of Z/pk and prismatic cohomology

Thomas Nikolaus

We will explain recent results about the computation of algebraicK-theory groups
of the ring Z/pk for k > 1 (and more generally OK/πk for K a p-adic number
field).

The basis for these results is the newly developed prismatic cohomology of
Bhatt–Scholze. The main part of the talk focuses on defining prisms and pris-
matic cohomology. A key insight is that prismatic cohomology can be defined
relative to arbitrary δ-rings and not just prisms. This in particular gives addi-
tional functoriality needed for our computations.

Finally we will also explain a new universal property of prismatic cohomology
which exhibits ∆R/H as an initial object and thereby gives a better way of thinking
about prismatic cohomology.

Stability of concordance embeddings

Manuel Krannich

(joint work with Thomas Goodwillie and Alexander Kupers)

Concordance embeddings and diffeomorphisms. Fix a smooth d-manifold
M and a compact submanifold P ⊂ M meeting ∂M transversely. Writing I :=
[0, 1], a concordance embedding of P into M is a smooth embedding

e : P × I −֒→ M × I

that satisfies e−1(M × {i}) = P × {i} for i = 0, 1 and agrees with the inclusion
P × I ⊂ M × I in a neighbourhood of P ×{0}∪ (P ∩ ∂M)× I. The space of such
embeddings, equipped with the smooth topology, is denoted CE(P,M). In the case
P = M , every concordance embedding is in fact a concordance diffeomorphism,
that is a diffeomorphism of M × I that is the identity on a neighbourhood of
M×{0}∪∂M×I. One writes C(M) for the space of concordance diffeomorphisms.
C(M) and CE(P,M) are closely related: a concordance diffeomorphism ofM yields
by restriction to P × I ⊂ M × I a concordance embedding of P into M , and on
the level of spaces, this observation leads to a fibre sequence of the form
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(1) C(M\ν(P )) −→ C(M) −→ CE(P,M)

where ν(P ) ⊂ M is an open tubular neighbourhood of P .

Stabilisation. Concordance embeddings can be stabilised: there is a map

σ : CE(P,M) −→ CE(P × J,M × J)

by taking products with J := [−1, 1] and bending the result appropriately to make
it satisfy the conditions for concordance embeddings, schematically like this:

·

·

M

I I

M × J

It was Igusa [6] who, building Hatcher’s work [5], showed that this stabilisation map
is at least about d/3-connected—one of the key ingredients in studying manifolds
and their diffeomorphism groups via surgery theory and pseudoisotopy theory. He
phrased his result for concordance diffeomorphisms (i.e. the case P = M), but the
version for general concordance embeddings follows from this, using (1).

The stability theorem. One consequence of the work with T.Goodwillie and
A.Kupers that the talk was about is that, under a certain assumption on P ⊂
M , the stabilisation map is significantly more connected than the known d/3-
bound. This “certain assumption” is a requirement on the handle dimension of
the inclusion P ⊂ M , which is the minimal number p so that P can be built from
a closed collar on P ∩ ∂M by attaching handles of index ≤ p.

Theorem A (Goodwillie–Krannich–Kupers). If the handle dimension p of P ∩
∂M ⊂ P satisfies p ≤ d− 3, then the stabilisation map

σ : CE(P,M) −→ CE(P × J,M × J)

is (2d− p− 5)-connected.

Remark. The case P = ∗ was previously known from work of G.Meng [8].

An application. One use case of Theorem A is the following: via the fibre sequence
(1) for various choices of submanifolds P ⊂ M , this result puts one in the position
to transfer information on the stabilisation map for concordance diffeomorphisms
of a specific manifold M (for example lower or upper connectivity bounds) to other
manifolds. For instance, together with O. Randal-Williams, I computed as part of
[7] the rationalised relative homotopy groups π∗(C(M × J),C(M)) ⊗ Q for high-
dimensional closed discs M = Dd in a range of degrees beyond that in which these
groups vanish, and Theorem A allows for an extension of this computation from
discs to any high-dimensional simply-connected spin manifold M [3, Corollary C].
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The multirelative stability theorem. Theorem A is a special case of our main
theorem, which is a more general “multirelative” version. Interestingly, the proof
of the more general version involves an induction that would fail if one tried to
only prove the special case stated as Theorem A. Said differently, the more general
version is not only more general, but also necessary (at least for our proof).

In addition to the submanifold P ⊂ M , the statement of the multirelative version
involves compact submanifolds Q1, . . . , Qr ⊂ M that are pairwise disjoint as well
as disjoint from P . Writing MS := M\∪i6∈SQi for subsets S ⊂ r of r := {1, . . . , r},
there are inclusions CE(P,MS) ⊂ CE(P,MS′) whenever S ⊂ S′. This enhances
the space CE(P,M) to an r-cube—a space-valued functor on the poset of subsets
of r. This functor r ⊃ S 7→ CE(P,MS) is denoted by CE(P,M•). Note that the
value at the empty set recovers CE(P,M). Defined suitably, the stabilisation map
extends to a map of r-cubes (meaning, a natural transformation)

σ : CE(P,M•) −→ CE(P × J, (M × J)•)

whose target is the r-cube involving the submanifolds Qi × J ⊂ M × J .

Our multirelative stability theorem (which specialises to Theorem A by setting
r = 0) is an estimate on the connectivity of this map of r-cubes in terms of the
handle dimensions p and qi of the inclusions ∂M ∩ P ⊂ P and ∂M ∩Qi ⊂ Qi.

Theorem B (Goodwillie–Krannich–Kupers). If the handle dimensions satisfy p ≤
d− 3 and qi ≤ d− 3 for all i, then the stabilisation map of r-cubes

σ : CE(P,M•) −→ CE(P × J, (M × J)•)

is (2d− p− 5 +
∑r

i=1(d− qi − 2))-connected.

Here are the relevant definitions: an r-cube X• is k-cartesian if the natural map
X∅ → holim∅6=S⊂rXS is k-connected in the usual sense, and a map of r-cubes
X• → Y• is k-connected if a certain (r+1)-cube is k-cartesian, namely the (r+1)-
cube that maps S ⊂ r + 1 to XS if S ⊂ r and to YS\{r+1} otherwise.

Analyticity and calculus. Theorem B is in line with previous multirelative
connectivity results in geometric topology. Let me mention the two that are the
closest to Theorem B (incidentally both used in our proof). The statement involves
the quantity Σ :=

∑r
i=1(d− qi−2) and the space E(P,M) of ordinary embeddings

P →֒ M that agree with the inclusion in a neighbourhood of P ∩ ∂M .

(a) If p, qi ≤ d− 3, then the r-cube CE(P,M•) is (d− p− 2+Σ)-cartesian, by [1].
(b) If p, qi ≤ d− 3, then the r-cube E(P,M•) is (1− p+Σ)-cartesian, by [2].

These two results as well as Theorem B may be viewed as analyticity results in the
sense of Goodwillie–Weiss’ manifold calculus [4, 9] for functors on a suitable poset
category of compact submanifolds of M , namely the functors sending P ⊂ M to
E(P,M), CE(P,M), or hofib(CE(P,M) → CE(P × I,M × I)) respectively. There
is also an intriguing connection to the approach to studying diffeomorphism groups
by means of Weiss’ orthogonal calculus [10], waiting to be explored.
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Université de Nantes
2 rue de la Houssinière
44322 Nantes Cedex 3
FRANCE

Dr. Jeremy Hahn

Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES

Dr. Jeremiah Heller

Department of Mathematics
University of Illinois at Urbana
Champaign
1409 West Green Street
Urbana, IL 61801
UNITED STATES

Prof. Dr. Michael Hill

Department of Mathematics
UCLA
520 Portola Plaza
Los Angeles, CA 90095-1555
UNITED STATES

Prof. Dr. Jennifer Hom

School of Mathematics
Georgia Institute of Technology
686 Cherry Street
Atlanta, GA 30332-0160
UNITED STATES

Dr. Thomas Kragh

Department of Mathematics
University of Uppsala
P.O. Box 480
75106 Uppsala
SWEDEN

Dr. Florian Kranhold

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY



Topologie 1985

Dr. Manuel Krannich

Karlsruher Institut f. Technologie (KIT)
Inst. f. Algebra & Geometrie
76131 Karlsruhe
GERMANY

Alexander Arnd Kubasch

Alfred Renyi Institute of Mathematics
Hungarian Academy of Sciences
P.O.Box 127
1364 Budapest
HUNGARY

Dr. Alexander Kupers

Computer & Mathematical Sciences
Dept.
University of Toronto Scarborough
1265 Military Trail
Toronto ON M1C 1A4
CANADA

Prof. Dr. Markus Land

Mathematisches Institut
Ludwig-Maximilians-Universität
München
Theresienstr. 39
80333 München
GERMANY

Dr. Tobias Lenz

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Marco Marengon

Alfred Renyi Institute of Mathematics
P.O. Box P.O.Box 127
1364 Budapest
HUNGARY

Dr. Alexandre Martin

Department of Mathematics
Heriot-Watt University
Edinburgh EH14 4AS
UNITED KINGDOM

Dr. Lennart Meier

Mathematisch Instituut
Universiteit Utrecht
Budapestlaan 6
P.O. Box 80.01
3508 TA Utrecht
NETHERLANDS

Dr. Maggie Miller

Department of Mathematics
Stanford University
450 Jane Stanford Way
Stanford CA 94305-2125
UNITED STATES

Dr. Sam Nariman

Purdue University
150 N. University Street
West Lafayette IN 47907-2067
UNITED STATES

Prof. Dr. Thomas Nikolaus

Mathematisches Institut
Universität Münster
Einsteinstraße 62
48149 Münster
GERMANY

Dr. Lisa M. Piccirillo

Department of Mathematics
Massachusetts Institute of
Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES



1986 Oberwolfach Report 34/2022

Prof. Dr. Andrew Putman

Department of Mathematics
University of Notre Dame
Notre Dame IN 46556-5683
UNITED STATES

Prof. Dr. Oscar Randal-Williams

Department of Pure Mathematics and
Mathematical Statistics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UNITED KINGDOM

Dr. Tomer Schlank

Institute of Mathematics
The Hebrew University
Givat-Ram
Jerusalem 91904
ISRAEL

Dr. Ivan Smith

Dept. of Pure Mathematics and
Mathematical Statistics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UNITED KINGDOM

Dr. Davide Spriano

Radcliffe Observatory, Andrew Wiles
Building
University of Oxford
Woodstock Rd
Oxford OX2 6GG
UNITED KINGDOM

Prof. Dr. András I. Stipsicz
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