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Abstract. Operator algebras form a very active area of mathematics which,
since its inception in the 1940s, has always been driven by interactions with
other fields of mathematics and physics. The scope of these interactions is
very wide, ranging over dynamical systems, (non-commutative) geometry,
functional analysis, (geometric) group theory, topology, random matrices,
harmonic analysis and quantum information theory.

The goals of this workshop were to stimulate new collaborations across
these fields of mathematics, to disseminate recent progress by giving partic-
ipants a global view on the subject and to specially focus on two important
developments: the solution of the Connes embedding problem by methods
from quantum information theory and the progress on noncommutative dy-
namical systems, especially in the topological C∗-algebra context.

Mathematics Subject Classification (2020): 46LXX.

Introduction by the Organizers

During the 2022 C∗-algebras workshop at Oberwolfach, some of the most impor-
tant recent results in Operator Algebras were presented and discussed. A distinct
feature in most of the talks and discussion was the constant interaction between
the two main research directions within the field, namely C∗-algebras and von
Neumann algebras, and with other parts of mathematics including quantum in-
formation theory and free probability theory.

The first main theme of the workshop was the classification theory of “suf-
ficiently small” C∗-algebras and their symmetry groups. The classification by
K-theoretic invariants of all simple nuclear C∗-algebras satisfying the appropriate
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regularity assumption has been completed recently, after several decades of work
by numerous researchers. James Gabe presented the key elements of a new and
more direct proof of this classification theorem, which deduces isomorphism of
the C∗-algebras in an abstract way from an isomorphism between the invariants,
without having to classify by hand numerous building block C∗-algebras.

Since all amenable, minimal actions of discrete groups on compact Hausdorff
spaces give rise to a nuclear C∗-algebra by the crossed product construction, it is
a key question to decide when these crossed products are classifiable. Two very
general classifiability results were presented at the workshop, in a talk by David
Kerr on actions of elementary amenable groups and in a talk by Shirly Geffen on
amenable actions of a broad class of nonamenable groups.

The next step in the C∗-algebra classification program is to fully classify actions
of amenable groups on simple nuclear C∗-algebras, again satisfying the appropriate
regularity assumptions. Gábor Szabó presented a recent breakthrough in this
direction, providing such a classification theorem in the purely infinite case, for
actions of amenable groups on Kirchberg algebras.

Another important aspect of classification theory of C∗-algebra consists of build-
ing good models for classifiable C∗-algebras and, in particular, groupoid models.
Progress in this direction was presented in several talks on groupoid C∗-algebras
by Astrid an Huef, Aidan Sims, Anna Duwenig and Becky Armstrong.

The second main focus of the workshop was the recent solution of the Connes
Embedding Problem. While Connes’ question is phrased in terms of von Neumann
algebras, asking whether every II1 factor with separable predual embeds into an
ultrapower of the hyperfinite II1 factor, the solution is entirely quantum informa-
tion theoretic in nature. The operator algebra community still has a long way to
go in order to fully understand this “MIP∗=RE paper”. The hopes are that such
an operator algebraic understanding will lead to concrete examples of nonembed-
dable II1 factors and possibly even to discrete groups that are not hyperlinear, in
particular not sofic. Talks by William Slofstra and Chris Schafhauser, who both
also animated informal evening sessions, led to a significantly better understand-
ing of the quantum complexity theory aspects of the proof and triggered numerous
vibrant discussions.

A third theme of the workshop was rigidity theory. Rufus Willett presented
the recent solution of the rigidity problem for uniform Roe algebras: for arbitrary
uniformly locally finite metric spaces, the uniform Roe algebras are Morita equiv-
alent if and only if the underlying metric spaces are coarsely equivalent. Connes’
rigidity conjecture for group von Neumann algebras predicts that group II1 factors
L(Γ) and L(Λ) of discrete groups with Kazhdan’s property (T) are isomorphic if
and only if the underlying groups are isomorphic. Until recently, no examples and
no counterexamples to this conjecture were known. Adrian Ioana presented the
first positive results confirming Connes’ rigidity conjecture for wreath-like product
groups with property (T).

Most of the rigidity theorems for II1 factors obtained in the past decades focus
on the isomorphism problem for concrete families of von Neumann algebras. Sorin
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Popa presented in his talk an overview of how his deformation/rigidity theory can
be used to prove results about the embedding problem: when can a given II1 factor
be embedded into another given II1 factor?

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Z-stability and actions of elementary amenable groups

David Kerr

(joint work with Petr Naryshkin)

It has been a longstanding program, tracing back to the work of Putnam on Can-
tor minimal systems [12] and of Elliott and Evans on irrational rotations [5], to
understand the structure of C∗-crossed products associated to groups actions on
compact metrizable spaces and to determine criteria for the classifiability of such
crossed products within the context of the Elliott program. While amenability of
the action (which occurs for example if the group itself is amenable) is a precondi-
tion for classifiability, advances over the last several years, leading to and revolving
around the final form of the classification theorem itself, have pinpointed finite
nuclear dimension and Z-stability as two equivalent expressions of the regularity
hypothesis on which classifiability hinges in the setting of simple separable unital
nuclear C∗-algebras satisfying the UCT [7, 6, 13, 1].

These developments in C∗-algebra theory have inspired an effort to identify
dynamical analogues of finite nuclear dimension and Z-stability with the goal of
shifting the verification of classifiability as much as possible onto the dynamics
itself. To this end the dynamical concept of almost finiteness was introduced as
an analogue of the conjunction of Z-stability and nuclearity [11, 8]. In the case
of free minimal actions on compact metrizable spaces it implies Z-stability and
hence classifiability of the crossed product [2, 8].

Almost finiteness has been verified for free actions on finite-dimensional spaces
of many amenable groups, including groups of subexponential growth [4], poly-
cyclic groups [3], and the lamplighter group [3] (each time relying on the passage
from zero-dimensional to finite-dimensional spaces from [10]). We have shown that
this list can be expanded to include all elementary amenable groups [9]. The key
technical step is to demonstrate that if H ⋊ Z y X is a free action on a compact
metrizable space such that the restriction H y X is almost finite then the action
H ⋊Z y X is itself almost finite. While there is no dimension assumption in this
extension result, the fact that actions of the trivial group are almost finite only
when the space is zero-dimensional means that we must restrict to such spaces
when bootstrapping our way up to all elementary amenable groups. The usual
appeal to [10] then yields the conclusion for finite-dimensional spaces.
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Realizing quantum flag manifolds as graph C*-algebras

Karen Strung

(joint work with Tomasz Brzeziński, Ulrich Krähmer, Réamonn Ó Buachalla)

Graph C∗-algebras are a particularly tractable class of C∗-algebras, thanks to
the presence of useful combinatorial tools coming from the underlying directed
graph. If a C∗-algebra A has a graph C∗-algebraic model, many of its structural
properties are determined directly from the graph, such as whether A is unital, its
ideal structure, whether it is stably finite or purely infinite, and its K-theory.

Many well-known C∗-algebras can be realized as graph C∗-algebras, including
the Cuntz algebras, C(T), Mn, K, and the Toeplitz algebra T . In [2], many
interesting examples of graph C∗-algebras were constructed from quantum spaces,
including quantum spheres and quantum projective spaces.

The meaning of quantum space refers to a q-deformation of the algebra of func-
tions on a classical space which can be described by generators and relations. Given
q ∈ (0, 1], one replaces certain commutation relations with relations involving gen-
erators and functions in q. When q = 1, we recover the algebra of functions on the
space. A canonical example is the q-deformation of SU2

∼= S3. The C∗-algebra
Cq(SU2) ∼= Cq(S

3) is generated by two elements, α, γ, subject to the relations
(
α −qγ∗

γ α∗

)
is a unitary matrix .

For compact connected simply connected Lie groups and their homogeneous
spaces—for example the odd dimensional quantum spheres and quantum complex
projective spaces—one can do this is in a precise way that allows one to keep much
of the Lie theoretic structure. A particular class homogeneous spaces are quantum
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flag manifolds, which include quantum complex projective spaces. We show the
following:

Theorem 1. Let q ∈ (0, 1) and let Cq(G/LS) be the C∗-algebra of a quantum flag
manifold. Then there exists a directed graph E such that C∗(E) ∼= Cq(G/LS).

In the classical setting, a flag manifold arises as a quotient of a simply connected
compact semisimple Lie group. These Lie groups admit a particularly satisfying
q-deformation: Given a complex semisimple Lie algebra g and q ∈ (0, 1) the en-
veloping algebra U(g) has a q-deformation, Uq(g), which admits a Hopf algebra
structure and has the same finite-dimensional representation theory as U(g). If g is
a Lie algebra of rank r, then Uq(g) is generated by elements Ej , Fj ,Kj , 1 ≤ j ≤ r
subject to certain relations, which can essentially be read off the relevant Dynkin
diagram. The Dynkin diagram determines the Weyl group W of g, which has one
generator per node with relations

s2i = 1 for every 1 ≤ i ≤ r
sisj = sjsi if there is no edge between node i and node j
(sisj)

3+δ2k+3δ3k = 1 if node i is connected to node j by k edges, 1 ≤ k ≤ 3.

Table 1. Dynkin diagrams

An E7

Bn E6

Cn E8

Dn F4 G2

Dual to Uq(g) is the Hopf ∗-algebra Oq(G), which admits a C∗-completion,
Cq(G). When q = 1, we get C(G), the continuous functions on G for G the simply
connected compact semisimple Lie group with Lie algebra g. While Cq(G) is not a
Hopf algebra, the coproduct extends to ∆ : Cq(G) → Cq(G) ⊗min Cq(G), giving a
compact quantum group in the sense of Woronowicz. A quantum flag manifold of
G is a C∗-subalgebra of Cq(G) constructed in a canonical way from a subalgebra
lS ⊂ g given by a subset S of nodes on the relevant Dynkin diagram. Its C∗-algebra
is denoted Cq(G/LS). For example, quantum projective space Cq(CP

n) and the
full quantum flag manifold Cq(SU3/T

2) correspond to the diagrams in Figure 1.

Figure 1. Dynkin diagrams of Cq(CP
n) (left) and Cq(SU3/T

2)
(right).
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For every 1 ≤ i ≤ rank(g), there is a map from Uq(sl2) → Uq(g) defined by
K 7→ Ki, E 7→ Ei and F 7→ Fi. This induces a map σi : Cq(G) → Cq(SU2). The
elementary ∗-representation πsi , for si a generator of W , is given by

πsi := ρ ◦ σi : Cq(G) → B(L2(Z+)),

where ρ : Cq(SU2) → B(L2(Z+) is the
∗-representation constructed by Woronow-

icz, given on the generators α, γ of Cq(SU2) by

ρ(α)(en) = (1− q2n)1/2en−1, ρ(γ)(en) = −qnen.

For Cq(G/LS), let WS ⊂ W be the subgroup generated by {si | i ∈ S}, and
let WS be the set of W/WS coset representatives of minimal length. For w =
si1 · · · sik ∈WS , define πw := πsi1 ⊗· · ·⊗πsik ◦∆

k−1. In [3], it was shown that these
representations are irreducible, do not depend on the choice of reduced word, and
give a complete set of irreducible ∗-representations. Thus |Prim(Cq(G/LS))| <∞,
allowing us to apply results in [1]:

Theorem 2 (Eilers, Sørensen, Ruiz). Let A be a C∗-algebra with Prim(A) finite.
Suppose that for each x ∈ Prim(A), the subquotient A[x] is stably isomorphic to
K, and if A[x] is unital, then A[x] ∼= C. Then there exists an amplified graph E
such that A ∼= C∗(E). Moreover, if E is an amplified graph with finitely many
vertices, then A ∼= C∗(E) if and only if Primτ (A) ∼= Primτ (C∗(E)).

Here, A[x] is defined as follows. For an open subset U ⊂ Prim(A), set A[U ] :=⋂
p∈Prim(A)\U p. Let U, V be open sets with V ⊂ U and {x} = U \ V . Set

A[x] := A[U ]/A[V ].
The length ℓ(w) of w ∈ W is the number of generators appearing in any reduced

form of w. If u, v ∈ W , ℓ(u) ≥ 1, satisfy v = uw is in reduced form, write w < v.

Proposition 3. Let m be the length of the longest element in WS. For w ∈
WS with length ℓ(w) < m, for Uw := {πv ∈ Prim(Cq(G/LS)) | v > w} and
Vw := {πv ∈ Prim(Cq(G/LS)) | v < w}, we have {πw} = Uw \ Vw, and A[πw] =
A[Uw]/A[Vw ] ∼= K.

This gives us Theorem 1. We can also construct a graph ES with the cor-
rect ideal structure so that Cq(G/LS) ∼= C∗(ES). The vertices of ES are given
by elements in WS , and there are infinitely many arrows from v ∈ E0

S to w ∈
E0
S , whenever w = siv and ℓ(w) > ℓ(v) for some generator si. Consider two

examples based on the diagrams in Figure 1. For Cq(CP
n) we have WS =

{e, s1, s2s1, s3s2s1, . . . , snsn−1 · · · s1}, and the resulting graph is

e
∞ // s1

∞ // s2s1
∞ // ∞ // sn · · · s2s1 .

For the full quantum flag manifold of SU3, Cq(SU3/T
2) we have WS = S3 =

{e, s1, s2, s1s2, s2s1, s1s2s1}, giving
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s1
∞ // s2s1 ∞

**❯❯❯
❯❯❯

e

∞ 55❦❦❦❦❦❦
∞

))❙❙❙
❙❙❙

s1s2s1.

s2
∞ // s1s2

∞ 44✐✐✐✐✐✐

From the graph picture, we have Cq1(G/Ls)
∼= Cq2(G/LS) for any q1, q2 ∈ (0, 1).

We also find previously unknown isomorphisms. For example, label the nodes of
Bn and Cn (left to right) as 1, . . . , n. Let S ⊂ {1, . . . , n}. The Weyl groups of Bn
and Cn are the same, so Cq(SO2n+1/LS) ∼= Cq(Sp2n/LS).
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Groupoids as coordinate systems for algebras and operator algebras

Aidan Sims

(joint work with many authors — see below)

The idea of coordinatising operator algebras using groupoids goes back to Feldman-
Moore in the 1970’s [8, 9, 10]. A groupoid is like a group, except that the
multiplication is only partially defined. For example, any equivalence relation
R ⊆ X×X , admits an associative partially-defined multiplication where the prod-
uct (w, x)(y, z) is defined if and only if x = y, in which case it is equal to (w, z).
Given such an equivalence relation endowed with a compatible Borel structure
and a circle-valued Borel 2-cocycle, the space of measureable functions on R is
a von Neumann algebra under a twisted convolution formula, and contains the
measurable functions on X as a maximal abelian subalgebra. Feldman and Moore
established a converse: they identified key properties of the abelian subalgebra
that arises this way and proved that given any von Neumann algebra and any
abelian subalgebra with these properties, there exist a Borel equivalence relation
and Borel 2-cocycle so that the original von Neumann algebra and subalgebra are
identical to those arising from the equivalence relation and cocycle. They called
such subalgebras Cartan subalgebras. So, to paraphrase their theorem, Cartan
subalgebras coordinatise von Neumann algebras.

In the C∗-algebraic setting some adjustments are needed, but the general idea
still goes through. The Borel equivalence relation is replaced by an étale Hausdorff
groupoid that is effective in the sense that it may have some nontrivial isotropy
(elements that can be composed with themselves), but the interior of the isotropy
must consist only of units. And the Borel 2-cocycle is replaced by a Fell line
bundle over that groupoid. But once again, work of Renault [15, 16] and Kumjian
[12] identified the correct notion of a Cartan subalgebra of a C∗-algebra so that
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the convolution-algebra construction for Fell line bundles over appropriate étale
Hausdorff groupoids becomes a bijection between isomorphism classes of Fell line
bundles and isomorphism classes of Cartan inclusions of C∗-algebras.

A spectacular application of this theory came through the work of Matsumoto
and Matui [13]. The Cuntz–Kriger algebras [7] are C∗-algebras that encode irre-
ducible shifts of finite type, which are classified up to flow equivalence by their
Bowen–Franks invariant [3]. In their seminal paper [7] Cuntz and Krieger showed
that the K-theory of a Cuntz–Krieger algebra recovers the Bowen–Franks group
of the shift space that it encodes, but this is not the whole invariant, and it was
an open question whether isomorphism of Cuntz–Krieger algebras is equivalent to
flow equivalence of their shifts of finite type until Rørdam answered the question in
the negative by proving that O2 and O2,− are isomorphic. Matsumoto and Matui’s
insight in [13] was that the Cartan subalgebra in a Cuntz–Krieger algebra is the
key additional data required to recover the whole Bowen–Franks invariant. That
is, two shift spaces are flow equivalent if and only if there is a Cartan-preserving
isomorphism of the associated Cuntz–Krieger algebras.

This raises two very natural questions. Firstly the irreducible shifts of finite
type appearing in Matui and Matsumoto’s theorem are a very special class of dy-
namics, but the theory of Cartan subalgebras treats much more general dynamics,
and results like the work of Giordano–Putnam–Skau on Cantor minimal systems
[11], and the Boyle–Tomiyama theorem [4] both suggest that characterisations of
continuous orbit equivalence of dynamical systems in terms of isomorphisms of
C∗-algebras preserving suitable abelian subalgebras is feasible in significant gen-
erality. Secondly, the parallel theories of graph C∗-algebras [14] and Leavitt path
algebras [1] first studied in the early 2000’s demonstrated very interesting parallels
between abstract algebras and C∗-algebras that seem to be best explained by the
availability of a common groupoid model [5]. These parallels can be extended far
beyond the classes of algebras in which they were first observed, and the natural
question is to understand the limits of these parallels.

To answer each of these questions, one first needs to extend elements of Re-
nault’s theory to groupoids that are not effective, and also to develop a notion of
Kumjian–Renault theory that applies to abstract algebras.

In this talk I will outline the construtions of Feldman–Moore [8] and of Kumjian–
Renault [12, 15]. I will then outline recent results that partially extend Renault’s
theory to C∗-algebras of non-essential groupoids and that extend the full force of
their theory to abstract algebras over very general totally disconnected groupoids:

Theorem 1. (Carlsen, Ruiz, S., Tomforde [6]) Let G be a second-countable locally
compact Hausdorff étale groupoid in which the interior of the isotropy consists of
torsion-free abelian groups. Then G can be reconstructed from (C∗(G), C0(G

(0));
in particular, two such groupoids are isomorphic if and only if there is an isomor-
phism of their C∗-algebras that preserves the canonical abelian subalgebras.

Theorem 2. (Armstrong, de Castro, Clark, Courtney, Lin, McCormick, Ram-
agge, S., Steinberg [2]) Let R be a commutative ring (with identity) whose only
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idempotent elements are 0, 1. The twisted convolution algebra construction gives
a bijection between the following:

• pairs (B,G) where G is a totally disconnected locally compact Hausdorff
étale groupoid, and B is a discrete R-twist over G such that for a dense
set of units x of G, the twisted group ring of the reduction of B to a fibre
of the interior of the isotropy over x has no nontrivial units; and

• quasi-Cartan pairs of R-algebras: R-algebras A with commutative subal-
gebras B generated by their idempotents such that te = 0 =⇒ t = 0
whenever t ∈ R and e ∈ B is a nonzero idempotent, such that A is gen-
erated by normalisers of B and there is a faithful conditional expectation
from A onto B that is generated by projections.

I will also discuss applications, such as a generalisation of the Boyle–Tomiyama
theorem to arbitrary actions: two integer actions on compact Hausdorff spaces
decompose into conjugate and flip-conjugate components if and only if there is a
diagonal-preserving isomorphism of the associated crossed-product C∗-algebras.

Some interesting open questions emerge:

• What C∗-algebraic properties characterise the pairs of C∗-algebras that
appear in Theorem 1?

• Is is possible to obtain a version of Theorem 1 for twisted C∗-algebras over
the same class of groupoids? Is there then a complete generalisation of
Kumjian–Renault theory to this setting.

• Theorem 1 uses that for torsion-free abelian groups, the quotient of the
unitary group of the group C∗-algebra by the connected component of
the identity is isomorphic to the original group. But, more generally, as
Stefaan Vaes pointed out during the workshop, no two non-isomorphic
torsion-free groups are known to have isomorphic C∗-algebras. Is it possi-
ble to use this to weaken the hypothesis on the isotropy groups appearing
in Theorem 1?
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Wreath-like product groups and rigidity of their
von Neumann algebras

Adrian Ioana

(joint work with Ionut Chifan, Denis Osin, Bin Sun)

The von Neumann algebra L(G) of a countable discrete group G is defined as
the weak operator closure of the complex group algebra CG acting on ℓ2G by left
convolution. This algebra is a II1 factor exactly when G is ICC, i.e., the conjugacy
class of every nontrivial element of G is infinite.

It is a central problem in operator algebras to classify group II1 factors L(G)
in terms of the group G. The problem goes back to the seminal work of Murray
and von Neumann [MvN43] who proved that there is a unique hyperfinite II1
factor, R, and deduced that L(G) ∼= R, for every ICC locally finite group G. On
the other hand, they showed that L(F2) 6∼= R. In the 1970s, Connes remarkably
proved that L(G) ∼= R, for every ICC amenable group G [Con76]. The case of
nonamenable groups, however, is significantly more challenging and was largely
intractable for a long time. This has changed dramatically in the last 15 years
following Popa’s discovery of deformation/rigidity theory. Popa’s theory has led
to strong classification results for large families of nonamenable group II1 factors,
see [Pop07a, Vae10, Ioa18]. For instance, [Pop06] showed that if G,H are ICC
groups with Kazhdan’s property (T), then L(Z≀G) ∼= L(Z≀H) implies that G ∼= H .

Despite this impressive progress, a far-reaching rigidity conjecture posed by
Connes in 1980 [Con82] remained wide open. This conjecture predicts that for
ICC groups G,H with property (T), L(G) ∼= L(H) implies that G ∼= H . Positive
evidence is provided by a result of Cowling and Haagerup showing that if m 6= n,
then any ICC lattices G < Sp(1,m), H < Sp(1, n) (which have property (T))
give rise to nonisomorphic II1 factors [CH89]. By the main result of [CJ85], if
L(G) ∼= L(H) and G has property (T), then H also has property (T). Connes’
rigidity conjecture is therefore equivalent to asking whether every ICC property (T)
group G is W∗-superrigid, in the sense that any group H with L(G) ∼= L(H) must
be isomorphic to G. The first W∗-superrigid groups were found in 2010 by Ioana,
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Popa and Vaes [IPV13]. This paper gave a large class of generalized wreath product
groups of the form G = Z/2Z ≀I Γ which are W∗-superrigid. Subsequently, several
additional families of W∗-superrigid groups were found, including in [BV14, CI18].
However, none of these groups have property (T), leaving open the problem of
finding even a single example of a property (T) group which is W∗-superrigid.

In recent joint work with Chifan, Osin and Sun [CIOS21], we solved this problem
by providing a natural family of W∗-superrigid groups with property (T):

Theorem 1. LetH be a torsion-free hyperbolic property (T) group and h ∈ H\{e}.
Then for every k ∈ N sufficiently large, denoting N =<< hk >>, the quotient

group G := H/[N,N ] is ICC, W∗-superrigid and has property (T). Here, [N,N ]

denotes the commutator subgroup of the normal subgroup N ⊳ H generated by
hk.

The proof of Theorem 1 relies on the fact that G has a wreath-like product
structure in the following sense:

Definition. We say that a group G is a wreath-like product of groups A and
B corresponding to an action of B on a set I if it is an extension of the form

{e} −→
⊕

i∈I Ai −→ G
ε

−→ B −→ {e}, where Ai ∼= A and the conjugation action

of G on
⊕

i∈I Ai satisfies gAig
−1 = Aε(g)·i for all g ∈ G and i ∈ I.

The notion of a wreath-like product generalizes the ordinary (restricted) wreath
product of groups. Conversely, if G is a wreath-like product of A and B, then
G ∼= A ≀ B whenever the extension provided by the above definition splits. The

following theorem combines works of Dahmani, Guirardel and Osin [DGO17] and
Sun [Sun20]: Theorem 2. Let H be a torsion-free hyperbolic group and h ∈

H \ {e}.
Then for any sufficiently large k ∈ N, denoting N =<< hk >>, the group

H/N is hyperbolic ICC, and the group G := H/[N,N ] is a wreath-like product
of Z with H/N corresponding to a transitive action of H/N with finite cyclic
stabilizers. Theorem 1 now follows from Theorem 2 and the following main result

of [CIOS21]:

Theorem 3. Let A be a nontrivial abelian group, B a nontrivial ICC subgroup of
a hyperbolic group, and assume that B acts on a set I with amenable stabilizers.
Let G be a wreath-like product of A and B corresponding to the action of B on I.

If G has property (T), then it is W∗-superrigid. The proof of Theorem 3 is

based on a deformation/rigidity strategy which plays property (T) against two
properties ((i) and (ii) below) of wreath-like product groups that relate them to
wreath product groups. Denote M = L(G) and let H be any other group such
that M = L(H). Let (ug)g∈G and (vh)h∈H be the canonical unitaries generating
M. For simplicity, assume that G is a regular regular wreath-like product of A
and B. Denoting P = L(A(B)), we have:
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(i) The action σ = (Ad(ug))g∈G of G on P is a generalized Bernoulli action.
(ii) P ⊂ M is a Cartan subalgebra and R(P ⊂ M) is the orbit equivalence

relation of the Bernoulli action of B on ÂB, where Â is the dual of A.

Part (ii) implies the following “transfer principle”. Let N = L(A ≀ B). If

P ⊂ D ⊂ M is a subalgebra, then there is subalgebra P ⊂ D̃ ⊂ N such that the

inclusions P ⊂ D and P ⊂ D̃ have isomorphic equivalence relations. In particular,

D̃ is amenable iff D is amenable. This principle, which is a main novelty of our
work, allows to go back and forth between (subalgebras of) M and N .

Define the ∗-homomorphism ∆ : M → M⊗M by letting ∆(vh) = vh ⊗ vh,
h ∈ H [PV10]. The proof of Theorem 3 splits into three main parts.

In the first part of the proof, following [Ioa11, IPV13], we analyze ∆ and show
that D := ∆(P)′∩M⊗M is essentially unitarily conjugated to P⊗P . Since ∆(P)
is amenable and has large normalizer, Popa and Vaes’ structure theorem [PV14]
allows us to essentially show that ∆(P) ⊂ P⊗P , after unitary conjugacy. Next,
as in [BV14], we use solidity results for generalized Bernoulli crossed products.
Thus, applying our transfer principle to D and extending the solidity theorem of
[CI10], we derive that D is amenable. Another application of [PV14] implies that
D is essentially unitarily conjugated to P⊗P .

The second part of the proof is a “discretization argument”. By the first part,
after unitary conjugacy, we may assume that ∆(P)′ ∩M⊗M = P⊗P . Hence, the
group ∆(G) = (∆(ug))g∈G normalizes P⊗P . Moreover, the conjugation action of
∆(G) on P⊗P descends to a free action of ∆(B). A second application of our

transfer principle gives a free action of ∆(B) ∼= B on ÂB × ÂB whose OE relation

is contained in that of the product action of B×B on ÂB×ÂB. As B has property
(T), generalizing a theorem from [Pop06] enables us to assume that ∆(B) ⊂ B×B,

as groups of automorphisms of ÂB × ÂB. This implies ∆(G) “discretizes” modulo
U(P⊗P): there are maps δ1, δ2 : G→ G and ω : G→ U(P⊗P) such that

∆(ug) = ωg(uδ1(g) ⊗ uδ2(g)), for every g ∈ G.

In the last part of the proof, we use the symmetry and associativity properties
of ∆ to show that we may take δ1 = δ2 = IdG. In other words,

∆(ug) = ωg(ug ⊗ ug), for every g ∈ G.

Up to this point, we have only used that B, but not G, has property (T). Another
main novelty of our work is the way we use property (T) for G. We start by
noticing that as G has property (T) and σ is a generalized Bernoulli action (i),
Popa’s cocycle superrgidity theorem [Pop07b] implies that any 1-cocycle for σ⊗σ
is cohomologous to a character of G. Since (ωg)g∈G is a 1-cocycle for σ ⊗ σ,
we can thus find a unitary w ∈ P⊗P and a character ρ : G → T such that
w∆(ug)w

∗ = ρ(g)(ug ⊗ ug), for every g ∈ G. But then a general result from
[IPV13] implies that G ∼= H , and the conclusion of Theorem 3 follows.
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Tracial amenability and purely infinite C∗-algebras

Shirly Geffen

(joint work with Eusebio Gardella, Julian Kranz, Petr Naryshkin,
Andrea Vaccaro)

One of the most remarkable achievements in C∗-algebra theory in the last decade
is the completion of the classification program (see [8] for a survey). The main
theorem identifies the optimal subclass of unital, simple, separable, nuclear C∗-
algebras which can be classified, up to an isomorphism, by their K-theoretical and
tracial data: those C∗-algebras which satisfy the Universal Coefficient Theorem
(UCT) and are stable under tensoring with the Jiang-Su algebra Z.

The question motivating this talk is the preservation of classifiability under
formation of crossed products by nonamenable groups. More concretely, we ask
the following question.

Question. Let G be a nonamenable countable discrete group acting on a classi-
fiable C∗-algebra A. When is A⋊G again classifiable?

For unital commutative C∗-algebras of the form C(X), for some compact Haus-
dorff space X , this question was recently considered in [2], where it is shown that
for a large class of nonamenable groups, any minimal, amenable, topologically free
action G y X gives rise to a classifiable crossed product C∗-algebra C(X) ⋊ G.
Using similar methods, we obtain an analogous result for classifiable C∗-algebras:

Theorem. Let G be a nonamenable countable discrete group containing the free
group F2, let A be a classifiable C∗-algebra, and let Gy A be an amenable outer
action. Then, modulo the UCT, A⋊G is classifiable.

The requirement that the action is amenable (see for example [1]) is necessary
in order to obtain nuclearity of A ⋊ G. Moreover, outerness of the action is the
canonical condition to put in order to guarantee simplicity of A ⋊ G (see [3]).
Therefore, what remained for us to prove was Z-stability of A⋊G. In fact, under
the above conditions on the system (A,G), we prove that the crossed product
C∗-algebra must be purely infinite (thus, Z-stable), and therefore classifiable by
its K-theory, using the Kirchberg-Phillips theorem from the 1990s [5].

We believe that the above theorem should hold in general for nonamenable
groups, and not only for those containing a nonabelian free group. However, our
methods use the paradoxical structure of F2 (which is stronger than the paradoxical
structure of general nonamenable groups obtained by Tarski).

Finally, we turn to examples of systems (A,G) which satisfy the conditions
mentioned in the theorem. Many examples were obtained by Ozawa-Suzuki in [4],
when the underlying C∗-algebra A is purely infinite (but, in this case, our theorem
already followed using [3]). It turns out that when A is stably finite, there are
currently no examples. Let us state it as an open problem.

Problem. Are there any amenable actions of nonamenable groups on unital,
simple, stably finite C∗-algebras?
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This question has a positive answer when one relaxes the conditions on A. When
asking the center of A to be trivial, instead of simplicity, examples were provided
in [6]. Moreover, non-unital examples were constructed in [7].

We define a broader notion of amenability, called tracial amenability, which
allows us to obtain analogous results, and provide an abundance of examples.
When the boundary of extreme traces ∂eT (A) is compact, tracial amenability of
an actions G y A is equivalent to amenability of the induced topological action
Gy ∂eT (A). Considering this concept, we obtain the following theorem.

Theorem. Let G be a nonamenable countable discrete group containing the free
group F2, let A be a classifiable C∗-algebra, and let Gy A be a tracially amenable
outer action. Then, A⋊G is a unital, simple, purely infinite C∗-algebra.

Note however that we get farther from classifiability (tracially amenable actions
which are not amenable, give rise to non nuclear crossed products).
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A substitute for Kazhdan’s property (T) for universal non-lattices

Narutaka Ozawa

Kazhdan’s property (T) for groups (which are discrete and finitely generated in
this talk) is an important notion with a wide range of applications. A group
Γ has property (T) if in any unitary representation of Γ, any almost invariant
vector is close to an invariant vector. This generalizes the rigidity aspect of being
finite. The other important generalization of finiteness is amenability. These two
notions generalize finiteness to perpendicular directions and only groups that have
property (T) and amenability are finite groups. The most prominent examples
of property (T) groups are the higher rank lattices, SL(n,Z), n ≥ 3 [Kazhdan
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1967]. This is generalized to the “universal lattice” EL(n,R), n ≥ 3, for finitely
generated ring R [Shalom + Vaserstein, Ershov–Jaikin-Zapirain 2006–08]. Here

EL(n,R) = 〈eij(r) : i 6= j, r ∈ R〉

is the group generated by elementary matrices; eij(r) is the matrix with 1’s on the
diagonal, r on the (i, j)-th position, and zeros everywhere else. Another notable
example of a property (T) group is Aut(Fn), n ≥ 4 [Kaluba–Nowak–Ozawa (n =
5), Kaluba–Kielak–Nowak (n ≥ 6), Nitsche (n = 4) 2017–20]. The proof heavily
relied on computer calculations.

Let Γ be a finitely generated group and S be a finite generating subset. The
corresponding Laplacian is ∆S :=

∑
s∈S(1−s)

∗(1−s) in the full group C∗-algebra
C∗[Γ]. The group Γ has property (T) iff ∆S has spectral gap, i.e., there is ǫ > 0
such that Spec(∆S) ⊂ {0} ∪ [ǫ,∞). The latter is true iff ∆2

S − ǫ∆S ≥ 0 in C∗[Γ].
Let’s write the property (T) constant of (Γ, S) by λ1(∆S) := inf(Spec(∆S)−{0}).
It is natural to ask: For which Γ, are the property (T) constants uniform over
generating subset (of cardinality d), namely

inf{λ1(∆S) : S finite generating (with |S| ≤ d)} > 0 ?

Usually this value is 0 [Gelander–Żuk, Osin 2002], but sometimes> 0 [Osin–Sonkin
2007]. It is not known for Γ = SL(n,Z) and, say, even for Sp,q = {eij(p), eij(q) :
i 6= j} where (p, q) varies over coprime pairs. The “parent” of (SL(n,Z), Sp,q)p,q
is ELn(Z〈x, y〉), where Z〈x, y〉 is the “rng” (a ring but without the identity) of
polynomials with zero constant terms. Had ELn(Z〈x, y〉) had property (T), it
would follow that the property (T) constants for (SL(n,Z), Sp,q)p,q are uniformly
away from zero. However for the finitely generated rng R = Z〈x, y〉 the group
ELn(R) fails property (T) as it has infinite nilpotent (and hence amenable) quo-
tients ELn(R/Rk). Thus we need to bridge between property (T) and nilpotency.
Actually, both properties have many in common: Shalom’s property HT general-
izes (T) and nilpotency; nilpotent groups tend to admit rather precise description
of almost invariant vectors.

Theorem ([1]). For every d, if n is large enough, there is ǫ > 0 such that
ELn(Z〈t1, . . . , td〉) satisfies the following. For

∆ :=
∑

r

∑

i6=j

(1− eij(tr))
∗(1− eij(tr))

and

∆(2) :=
∑

r,s

∑

i6=j

(1− eij(trts))
∗(1− eij(trts))

one has

∆2 ≥ ǫ∆(2)

in C∗[ELn(Z〈t1, . . . , td〉)].

This means that for any finitely generated rngR and any unitary representation
of ELn(R), any δ-almost invariant vector is close to a vector that is Cδ2-almost
invariant for ELn(R2). By iterating this, one obtains the following corollary.
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Corollary. For n large enough, the group ELn(Z〈t1, . . . , td〉) has property (T)
w.r.t. the quotients of the form ELn(S), where S is a finite ring (i.e., unital)
quotient of Z〈t1, . . . , td〉.

Corollary implies that the property (T) constants for (SLn(Z/mZ), Sp,q)m,p,q
or (SLn(Z/qZ), {eij(p) : i 6= j})p,q are uniformly away from zero, that is to say,
they form an expander family.

In the talk, I explained three things: (1) How the computer based proof [Kaluba–
Kielak–Nowak] of property (T) for Aut(Fn) lead to a hypothetical inequality
(which is so ad hoc and no human would have come up with without the com-
puter’s assistance) in the full group C∗-algebra that proves Theorem. (2) The
inequality necessarily involves the full group C∗-algebra C∗[Γ], as opposed to the
real (or complex) group algebra R[Γ] that is enough for the property (T), and hence
Theorem cannot be proved by computer calculation (by the known methods). (3)
The detailed analysis on the (irrational) rotation C∗-algebras Aθ [Boca–Zaharescu
2005] can be used to prove various inequalities in the full group C∗-algebra C∗[H]
of the integral Heisenberg group H which can be assembled to a desired inequality
in C∗[ELn(Z〈t1, . . . , td〉)].

I suggested a stronger version of Theorem should hold true: (1) n should not
depend on d. (2) In fact, n = 3 should suffice. (3) Noncommutative rngs instead
of the commutative rng ELn(Z〈t1, . . . , td〉).

See the paper [1] for details.
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MIP*=RE: what it is and further directions for operator algebraists

William Slofstra

Connes’ embedding problem (CEP) asks whether every separable finite von Neu-
mann algebra embeds in RΩ. By well-known work of Kirchberg, it’s also equivalent
to the question of whether C∗Fn⊗max C∗Fn = C∗Fn⊗min C∗Fn, where Fn is the
free group on n generators, and ⊗max and ⊗min are the max and min C∗-tensor
products respectively. In this equivalence, the group Fn can be replaced with
other groups, such as Z∗n

m , the n-fold free product of Zm. The relatively recent
MIP∗ = RE result of Ji, Natarajan, Vidick, Wright, and Yuen in quantum compu-
tational complexity theory resolves this problem (in the negative). In this abstract,
we explain what the result is and the current status (including further directions)
for operator algebraists.

To explain what the result is, it’s helpful to know some terminology from com-
puter science. An alphabet is a finite set Σ, and a language is a finite subset of Σ∗,
the set of finite strings over Σ. Often we take Σ = {0, 1}, so languages are subsets
of binary strings. A class is a set of languages. An example is the set of decid-
able languages, which are the languages Z for which there is a Turing machine M
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such that for any α ∈ Σ∗, if α ∈ Z, then M(α) (the Turing machine on input α)
accepts, and if α 6∈ Z then M(α) rejects. The class P is defined exactly the same
as the class of decidable languages, but now M(α) must halt in polynomial time
in |α|, the length of α.

For proof systems, we change these definitions a little bit. RE is defined to
be the set of languages Z for which there is a Turing machine M such that (1)
if α ∈ Z, then there is β ∈ Σ∗ such that M(α, β) accepts, and (2) if α 6∈ Z,
then M(α, β) rejects for all β. The Turing machine M is called a verifier for Z.
The idea is that a language is in RE if there is a way to convince the verifier to
accept it. The language HALT of Turing machines which halt on empty input
is a prototypical example of a language is RE which is not decidable. The class
NP is defined similarly to RE, but M(α, β) must halt in polynomial time in α.
The class PCP is defined similarly to NP, but now M can be a probabilistic
Turing machine (in other words, a Turing machine which can flip a fair coin and
branch on the outcome). Conditions (1) and (2) are also changed for this class: in
condition (1), M(α, β) is required to accept with probability 1, and in condition
(2), the probability that M(α, β) accepts should be bounded by 1/2 (see also the
closely related class MA of Merlin-Arthur proof systems). The PCP theorem of
Arora, Lund, Motwani, Sudan, and Szedegy states that NP = PCP(log |α|, O(1)),
meaning that every language in NP has a probabilistic verifier which tosses no
more than log |α| coins, and reads only a constant number of bits of the proof.

We are now closing in the definition of MIP∗. An interactive proof system is
defined exactly the same as a PCP, but instead of reading bits of a proof, the veri-
fier has to ask a prover, who has knowledge of the earlier questions, for the ith bit.
The class MIP is defined to be the set of languages with a (polynomial-time) multi-
prover interactive proof system, meaning we allow the verifier to ask questions of
multiple provers who are unable to communicate with each other. Allowing the
provers to have adapt their answers to the verifier’s questions interactively seems
to change the power of these proof systems quite a bit: the class IP of interactive
proofs is equal to PSPACE by a result of Shamir, and MIP = NEXP, the class
of languages with an exponential size proof, by a result of Babai, Fortnow, and
Lund.

In this last result, the verifier only needs to communicate with two provers, and
only requires one round of communication. In such a protocol, the verifier sends
questions x and y (drawn according to some distribution πα on Xα ×Xα, where
Xα is the finite set of possible questions), and receives answers a and b respectively
drawn from some finite set of possible answers. The verifier then decides whether
to accept or reject. The verifier’s actions during this protocol are described by the
tuple Gα = (Xα, πα, Aα, Vα), where Vα is a function V : Aα × Aα ×Xα ×Xα →
{0, 1}, such that V (a, b, x, y) = 1 if and only if the verifier accepts (a, b, x, y). The
tuple Gα is called a nonlocal game. For the verifier to be polynomial time, it
must be possible to sample from πα in time polynomial in |α|, and Vα must be
computable in polynomial time.
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The provers’ actions in such a protocol can be described by the probability
p(a, b|x, y) that the provers output a and b on inputs x and y. The collection
p = {p(a, b|x, y) : a, b, x, y ∈ Aα × Aα × Xα × Xα} is called a correlation. The
probability that the verifier accepts on correlation p is

ω(Gα, p) =
∑

a,b,x,y

πα(x, y)V (a, b|x, y)p(a, b|x, y).

For a language Z to have a two-prover MIP protocol, there must be a mapping
from strings α to games Gα (with a poly-time verifier) such that (1) if α ∈ Z, there
is a correlation p such that ω(Gα, p) = 1, and (2) if α 6∈ Z, then ω(Gα, p) ≤ 1/2
for all correlations p.

The set of possible correlations is constrained by the fact that the provers cannot
communicate. What exactly this means depends on our physical axioms. For the
class MIP, we interpret this according to the rules of classical mechanics. The
class MIP∗ is defined exactly the same as MIP, except that we use the axioms
of quantum mechanics, in which the provers can share entanglement even if they
can’t communicate. Specifically, let n = |Xα| and m = |Aα|, and consider the
algebra CZ∗n

m × Z∗n
m . This algebra is generated by self-adjoint projections pxa and

qyb , 1 ≤ x, y ≤ n, 1 ≤ a, b ≤ m, such that pxaq
y
b = qyb p

x
a for all a, b, x, y, and

∑
a p

x
a =∑

b q
y
b = 1 for all x, y. A correlation p is quantum (resp. commuting operator)

if there is a state f on C∗Z∗n
m ⊗min C∗Z∗n

m (resp. C∗Z∗n
m ⊗max C∗Z∗n

m ) such that
p(a, b, x, y) = f(pxaq

y
b ) for all x, y, a, b. (This framework for correlations was worked

out by Junge, Navascues, Palazuelos, Perez-Garcia, Scholz, andWerner, and Fritz.)
Then MIP∗ is the class of languages with two-prover MIP protocols as defined
above, where the provers have access to quantum correlations. There is another
class, MIPco, where the provers have access to commuting operator correlations.

We’ve explained the content of the result MIP∗ = RE. To see how this re-
solves the CEP, observe that if C∗Z∗n

m ⊗max C∗Z∗n
m = C∗Z∗n

m ⊗min C∗Z∗n
m , then

MIPco = MIP∗. However, it is not hard to see that MIPco ⊆ coRE, the class of
languages Z such that Σ∗ \ Z ∈ RE. Since coRE does not contain RE, it is not
possible for MIPco = MIP∗. It is worth noting that this can be made more con-
crete. The quantum value of a game G is the supremum of ω(G, p) over quantum
correlations p, and the commuting operator value of a game is defined similarly. It
follows immediately from the above framework that the quantum value of a game
is ‖ΦG‖min, where ΦG =

∑
a,b,x,y π(x, y)V (a, b|x, y)pxaq

y
b , and the commuting op-

erator value is the max tensor norm ‖ΦG‖max. The proof of [?] explicitly gives a
game G such that ‖ΦG‖max > ‖ΦG‖min. This can be developed further to give an
explicit ∗-algebra which has a tracial state, but no ∗-homomorphisms to RΩ.

The MIP∗ = RE result has raised a lot of questions. Stated broadly, the ones
that seem to come up the most are:

(1) Can we make the current proof more algebraic?
(2) Can we make an explicit counterexample to the CEP?
(3) Are there similar types of results we should look for?
(4) Can we make a non-hyperlinear group?
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Work is underway on (1), and it is worth looking at [3] and [7] in particular.
As described above, the MIP∗ = RE result already gives a partial answer to (2).
However, while it’s possible to give an explicit ∗-algebra which is a counterexample
to the Connes embedding problem, it is not yet possible to describe the tracial
state on this ∗-algebra. For (3), the prospects seem quite good. In particular,
a natural conjecture is that MIPco = coRE, and proving this seems to require
adapting some of the ideas from [5] coming out of computer science to the setting
of von Neumann algebras. Unfortunately, efforts on (4) do not seem to be making
much progress at the moment; hopefully that will change.
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Obstructions to matrix stability and C∗-stability of discrete groups

Marius Dadarlat

The realization that there are K-theory obstructions to perturbing approximate
finite dimensional representations of C∗-algebras to genuine representations has
emerged through work of Voiculescu [7], Connes, Gromov and Moscovici [1] and
Connes and Higson [2]. In the realm of groups, it is natural to ask when an ap-
proximate representation is close to a genuine representation. We discuss primary
topological obstructions for perturbing approximate representations of discrete
groups to genuine representations with respect to the operator norm. Three forms
of stability are considered for discrete countable groups Γ: (1) Γ is matricially

stable if for any sequence {ρn : Γ → U(n)}n of unital maps, such that

lim
n→∞

‖ρn(st)− ρn(s)ρn(t)‖ = 0, ∀ s, t ∈ Γ

there exist genuine representations {πn : Γ → U(n)}n satisfying

lim
n→∞

‖ρn(s)− πn(s)‖ = 0, ∀ s ∈ Γ.



C*-Algebras 2083

(2) Γ is C∗-stable if for any sequence {ρn : Γ → U(Bn)}n of unital maps, where
Bn are unital C∗-algebras, such that

lim
n→∞

‖ρn(st)− ρn(s)ρn(t)‖ = 0, ∀ s, t ∈ Γ

there exist homomorphisms {πn : Γ → U(Bn)}n satisfying

lim
n→∞

‖ρn(s)− πn(s)‖ = 0, ∀ s ∈ Γ.

If in the definition (2) we consider only C∗-algebras Bn in a class B, we say that
the group Γ is C∗-stable with respect to B. (3) Γ is uniform-to-local stable if for

any sequence {ρn : Γ → U(n)}n of unital maps, such that

lim
n→∞

sup
s,t∈Γ

‖ρn(st)− ρn(s)ρn(t)‖ = 0,

there exist genuine representations {πn : Γ → U(n)}n s.t.

lim
n→∞

‖ρn(s)− πn(s)‖ = 0, ∀ s ∈ Γ.

Voiculescu has shown in [7] that Z2 is not matricially stable. A systematic study
of matricial stability was undertaken by Eilers, Shulman and Sørensen in [5] where
classes of matricially stable and matricially unstable groups were exhibited.

We showed in [4] that the nonvanishing of even dimensional rational cohomology
in positive dimensions is a first obstruction to matricial stability for large classes
of discrete groups.

A group Γ is MF if it embeds in the unitary group U
(∏

n
Mn(C)⊕

n
Mn(C)

)
. The maxi-

mally almost periodic, the linear groups, the residually amenable groups, or more
generally the groups that are locally embedable in amenable groups are MF by the
theorem of Tikuisis, White and Winter. The class of groups which are uniformly
embeddable in a Hilbert space includes the groups with the Haagerup property,
the linear groups and the hyperbolic groups, among others.

Theorem 1. Let Γ be a countable discrete MF-group that admits a γ-element
(e.g. Γ is uniformly embeddable in a Hilbert space). If H2k(Γ,Q) 6= 0 for some
k ≥ 1, then Γ is not matricially stable.

The proof use ideas of Connes-Gromov-Moscovici, Kasparov, Yu, Tu and Kub-
ota that emerged in work on the Novikov and the Baum-Connes conjectures and
a technique based on the notion of quasidiagonal K-homology classes introduced
in [3].

In response to a question of Dimitri Shlyakhtenko concerning the role of the
odd dimensional cohomology groups, we obtained the following result.

Theorem 2. Let Γ be a countable discrete MF-group that admits a γ-element. If
Hk(Γ,Q) 6= 0 for some k ≥ 1, then Γ is not C∗-stable.

In fact, under the assumptions of Theorem 2, the group Γ is not C∗-stable with
respect the class B consisting of C∗-algebras of the form Mn(C(T)), n ≥ 1.
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Kazhdan [6] has shown that the surface groups of genus ≥ 2 are not uniform-
to-local stable. We exhibit other classes of groups which are not uniform-to-local
stable.

Theorem 3. Let M be a closed connected Riemannian manifold with strictly
negative sectional curvature such that at least one Betti number β2i(M) 6= 0. If the
fundamental group Γ = π1(M) is residually finite, then Γ is not is not uniform-
to-local stable.

Let us note that if M = M2n is a closed connected oriented Riemannian man-
ifold with sectional curvature K(M) ≤ −κ < 0 and residually finite fundamental
group, then π1(M) is not uniform-to-local stable since β2n = 1 by orientability. In
particular, if Γ is a torsion free cocompact discrete subgroup of the Lorentz group
SO0(2n, 1), then Γ is not uniform-to-local stable.
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[2] A. Connes and N. Higson. Déformations, morphismes asymptotiques et K-théorie bivari-
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Twisted groupoid C∗-algebras and nuclear dimension

Astrid an Huef

(joint work with Kristin Courtney, Anna Duwenig, Magda Georgescu,
Maria Grazia Viola)

Nuclear dimension was introduced by Winter and Zacharias in [13]: it is a non-
commutative analogue of topological covering dimension in the sense that if X is
second-countable, locally compact and Hausdorff space, then the nuclear dimen-
sion of C0(X) is the topological covering dimension dim(X) of X . Finite nuclear
dimension is a key concept in the dividing line between C∗-algebras that can be
classified by K-theoretic data and those that cannot be [12, 11]. The classifica-
tion programme for separable, unital, simple and infinite-dimensional C∗-algebras
with finite nuclear dimension which satisfy the UCT was recently completed in
[11]. The UCT problem, which asks if every separable and nuclear C∗-algebras
satisfies the UCT, remains open. By [1] separable and nuclear C∗-algebras with a
Cartan subalgebra belong to the UCT class [1]; since these are twisted groupoid
C∗-algebras by [10] there is renewed interest in twists and their C∗-algebras.
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Here we consider a twist over an étale and principal groupoid G. Our main the-
orem, Theorem 3 below, says that the nuclear dimension of the twisted groupoid
C∗-algebra is bounded by a number depending on the dynamic asymptotic dimen-
sion of the groupoid and the topological covering dimension of its unit space. This
generalizes a similar theorem by Guentner, Willett and Yu for the C∗-algebra of G
[4, Theorem 8.6]. Here we describe the three main ideas of the proof of Theorem 3
and discuss an application to groupoids with potentially large abelian stability
subgroups.

Throughout G is a second-countable, locally compact, Hausdorff groupoid with
unit space G(0). A groupoid is etale if the range map from G to G(0) is a local
homeomorphism. We start by recalling the notion of twist.

Definition 1. Regard G(0) ×T as a trivial group bundle with fibres T. A twist
over G is a triple (E, ι, π) or a sequence

G(0) ×T
ι

−→ E
π

−→ G

where E is a locally compact and Hausdorff groupoid, and ι : G(0) ×T → E and
π : E → G are continuous groupoid homomorphism such that

(1) ι is injective and π is surjective, and both restrict to homeomorphisms of
unit spaces (thus we identify E(0) and G(0));

(2) every α ∈ G has a neighbourhood U which is a bisection and there exists
a continuous S : U → E such that π ◦ S = idU and the map (β, z) →
ι(r(β), z)S(β) is a homeomorphism of U ×T onto π−1(U);

(3) ι(G(0)×T) is central in the sense that ι(r(e), z)e = eι(s(e), z) for all e ∈ E
and z ∈ T;

(4) π−1(G(0)) = ι(G(0) ×T).

As a consequence of the definition of a twist, there is a continuous action of T
on E defined by z · e = ι(r(e), z)e and e · z = eι(s(e), z) for z ∈ T and e ∈ E. Also,
there is an induced Haar system σ on E. The reduced twisted groupoid C∗-algebra
C∗

r (E;G) is the closure of the ideal

Cc(E;G) := {f ∈ Cc(E) : f(z · e) = zf(e) for e ∈ E, z ∈ T}

in C∗
r (E, σ); it is in fact a direct summand of C∗(E, σ). Similarly, the full twisted

groupoid C∗-algebra C∗(E;G) is the closure of Cc(E;G) in C∗(E, σ).
The following is [4, Definition 5.1].

Definition 2. Let G be an étale groupoid. Then G has dynamic asymptotic
dimension d ∈ N if d is the smallest natural number with the property that for
every open and precompact subset V ⊂ G, there are open subsets U0, U1, . . . , Ud of
G(0) that cover s(V ) ∪ r(V ) such that for each i, the set {γ ∈ V : r(γ), s(γ) ∈ Ui}
generates a precompact subgroupoid of G. In this case, we write DAD(G) = d.

Theorem 3. Let G be a second-countable, locally compact, Hausdorff, principal
and étale groupoid, and let (E, ι, π) be a twist over G. Suppose that G(0) has
topological covering dimension N and that G has dynamic asymptotic dimension
d. Then the nuclear dimension of C∗

r (E;G) = C∗(E;G) is at most (N+1)(d+1)−1.
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By taking E to be the cartesian product T × G we recover [4, Theorem 8.6]
which gives a bound for the nuclear dimension of C∗

r (G). The first main idea of
our proof of Theorem 3 is a reduction to the case where 1 ∈ C∗

r (E;G), that is, to
the case where the unit space of G is compact.

Proposition 4. Let (E, ι, π) be a twist over an étale groupoid G and suppose that

the unit space of G is not compact. Then there exists an étale groupoid G̃ with

compact unit space such that DAD(G) = DAD(G̃) and dim(G(0)) = dim(G̃(0)).

Further, there is a twist (Ẽ, ι, π) over G̃ such that the minimal unitization of

C∗
r (E;G) is isomorphic to C∗

r (Ẽ; G̃). Similarly, the minimal unitization of C∗(E;G)

is isomorphic to C∗(Ẽ; G̃).

The groupoid G̃ has already appeared in the literature, for example, in [5].
The nuclear dimension of a non-unital C∗-algebra is equal to the nuclear di-

mension of its minimal unitization by [13]. Thus Proposition 4 and Theorem 3 for
groupoids G with compact unit space implies the theorem for groupoids G with
non-compact unit space.

The second main ingredient is to study the C∗-algebras of the subgroupoids
arising from applying the definition of finite asymptotic dimension: that they are
precompact groupoids translates to them having a finite open cover of bisections.

Proposition 5. Let H be a second-countable, locally compact, Hausdorff, prin-
cipal and étale groupoid, and let (F, ι, π) be a twist over H . Let M ∈ N and
suppose that H has a finite open cover of M bisections.

(1) Then H is amenable.
(2) The primitive ideal space of C∗(F ;H) is homeomorphic to the orbit space

H(0)/H and each irreducible representation of C∗(F ;H) has dimension at
most M .

(3) For m ∈ N, let Primm(C∗(F ;H)) denote the set of primitive ideals of
irreducible representations of dimension m and let

H(0)
m = {x ∈ H(0) : |r(s−1(x))| = m}.

Then H
(0)
m /H is locally compact and Hausdorff, and

dim(H(0)
m ) = dim(H(0)

m /H).

(4) We have dim(H(0)) = max1≤m≤M dim(H
(0)
m ).

(5) The decomposition rank of C∗(F ;H) is at most dim(H(0)).

For example, the first part of item (2) follows because C∗(F ;H) is liminal
with spectrum H(0)/H by [2]. The second part of item (2) follows from work on
irreducible representations in [8]. The proof of item (4) is much more complicated
than the analogous proof in [4] because our C∗(H) may not have continuous trace
(see the proof of [4, Theorem 8.13]).

In the language of [9, Theorem 2.16], Proposition 5 implies that C∗(F ;H) has
a recursive subhomogeneous decomposition with maximum matrix size at mostM
and topological dimension at most dim(H(0)).
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The third main ingredient in our proof of Theorem 3 is an abstraction of proof
ideas used in, for example, [4, Theorem 8.6] and [6, Theorem 6.2]: both pick up
on a colored version of local subhomogeneity [3, Definition 1.5]. The following
proposition makes this explicit.

Proposition 6. Let A be a unital C∗-algebra, let 1A ∈ A0 ⊂ A be a dense ∗-
subalgebra and let d,N ∈ N. Let F ⊂ A0 be a finite subset and let ε > 0. Suppose
that for 0 ≤ i ≤ d there exist C∗-subalgebras Bi ⊂ A with nuclear dimension at
most N and there exist bi ∈ A with ‖bi‖ ≤ 1 such that biFb∗i ⊂ Bi, and for all
a ∈ F we have

‖a−
d∑

i=0

biab
∗
i ‖ < ε‖a‖.

Then the nuclear dimension of A is at most (d+ 1)(N + 1)− 1.

In the proof of Theorem 3 we apply Proposition 6 to the C∗-algebras Bi (0 ≤
i ≤ d) of the groupoids Hi arising from the definition of DAD(G) = d together
with functions bi adapted from [4].

Our application is to non-principal groupoidsG, and is based on an isomorphism
of C∗(G) with a twisted groupoid C∗-algebra [7, 2].

Corollary 7. Let G be a second-countable, locally compact, Hausdorff and étale
groupoid. Assume that the orbits of G are closed in G(0) and that the stability

subgroups of G are abelian. Let A be the isotropy groupoid and let Â be the spec-
trum of the commutative C∗-algebra C∗(A). Suppose that the quotient groupoid

R of G by the isotropy groupoid A is étale, that the topological dimension of Â is
at most N and that R has finite dynamic asymptotic dimension at most d. Then
the nuclear dimension of C∗

r (G) = C∗(G) is at most (N + 1)(d+ 1)− 1.
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A conjugate system for q-Gaussian operators for all q

Roland Speicher

(joint work with Akihiro Miyagawa)

Fix a real number −1 ≤ q ≤ 1. The q-Gaussian distribution is the noncommutative
distribution of a collection {X(f) | f ∈ Hreal} of selfadjoint operatorsX(f), which
are indexed by a real Hilbert space Hreal and whose moments, with respect to a
trace τ , are given by the following q-deformed version of the Wick (or Isserlis)
formula:

τ [X(f1) · · ·X(fn)] =
∑

π∈P2(n)

( ∏

(l,r)∈π

〈fl, fr〉
)
· qcr(π),

where P2(n) denotes the set of pairings (or matchings) of the set {1, . . . , n} and
where cr(π) is the number of crossings of the pairs of π.

For q = 1 this is the classical Wick/Isserlis formula for a Gaussian family of
classical random variables, whereas for q = 0 the factor qcr(π) suppresses effectively
all crossings and one gets the formula over non-crossing pairings for a semicircular
family.

By the GNS construction with respect to τ one can realize those q-Gaussian
operators in the form X(f) = a(f)+ a∗(f), where a(f) and a∗(f) are annihilation
and creation operators, respectively, given on a q-deformed Fock space as follows.
Let H be the complexification of Hreal and

Fq(H) =
⊕

n≥0

H⊗n
〈·,·〉q

the completion of the algebraic Fock space with respect to the inner product

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉q := δmn
∑

σ∈Sn

n∏

i=1

〈fi, gσ(i)〉q
inv(σ),

where inv(σ) denotes the number of inversions of the permutation σ.
The creation operator a∗(f) is defined by

a∗(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn
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and the annihilation operator a(f), which is the adjoint of a∗(f) with respect to
the q-inner product, is given by

a(f)Ω = 0

a(f)f1 ⊗ · · · ⊗ fn =
n∑

r=1

qr−1 · 〈f, fr〉 · f1 ⊗ · · · ⊗ fr−1 ⊗ fr+1 ⊗ · · · ⊗ fn

H⊗0 = CΩ is here a one-dimensional Hilbert space with a distinguished vector Ω
of norm 1, called vacuum. The trace τ is then the vector state corresponding to
Ω, i.e., τ(b) = 〈Ω, bΩ〉.

Consider now d := dimH <∞ and let e1, . . . , ed be an orthonormal basis of H .
We put then Xi := X(ei) = ai + a∗i . The operators ai satisfy the q-commutation
relations aia

∗
j−qa

∗
jai = δij1. Thus our construction interpolates between the CAR

(for q = −1) and the CCR (for q = +1).
We are mainly interested in the Xi and their generated von Neumann algebra

Γq(R
d) := W ∗(X1, . . . , Xd). The big questions are about regularity properties

of the q-distributions, i.e., the noncommutative distribution of (X1, . . . , Xd), and
how the von Neumann algebra Γq(R

d) depends on q. The central case q = 0 is
generated by free semicircular elements and free probability tools give then easily
that Γ0(R

d) is isomorphic to the free group factor L(Fd). So the main question is
whether the q-Gaussian algebras Γq(R

d) are, for −1 < q < 1, isomorphic to the
free group factor.

Over the years it has been shown that these algebras share many properties
with the free group factors. For instance, for all −1 < q < 1 the q-Gaussian
algebras are II1-factors, non-injective, prime, and have strong solidity. Here is an
incomplete list of papers proving these properties [4], [14], [13], [11], [12], [1].

A partial answer to the isomorphism problem was achieved by Guionnet and
Shlyakhtenko [8], who proved that the q-Gaussian algebras are isomorphic to the
free group factors for small |q| (where the size of the interval depends on d and
goes to zero for d → ∞). However, it is still open whether this is true for all
−1 < q < 1.

In our paper [10] we are looking at noncommutative derivatives with respect to
the Xi and corresponding conjugate systems.

Definition. ξ1, . . . , ξd ∈ L2(X1, . . . , Xd) = Fq(Rd) is a conjugate system if

τ [ξiQ(X1, . . . , Xd)] = τ ⊗ τ [(∂iQ)(X1, . . . , Xd)],

where ∂i is the noncommutative derivative, given by

∂iXi1 · · ·Xim =

m∑

r=1

δi,irXi1 · · ·Xir−1
⊗Xir+1

· · ·Xim

In terms of inner products this means

〈Q(X1, . . . , Xd)Ω, ξ〉 = 〈(∂iQ)(X1, . . . , Xd)Ω,Ω⊗ Ω〉, or ξi = ∂∗i Ω⊗ Ω.

In [10] we can now prove the following statements.
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Proposition. For η1, η2 ∈ H⊗m we have

〈∂iη1 ⊗ ej ⊗ η2,Ω⊗ Ω〉q = δij(−1)mqm(m+2)/2〈η1, η2〉q.

This allows us to derive the following formula for the conjugate variables in the
q-case.

Theorem. The conjugate variables for the q-Gaussians are given by

ξi =

∞∑

m=0

d∑

i1,...,im=1

(−1)mqm(m+2)/2 · r∗ii1...imei1 ⊗ · · · ⊗ eim ,

where r∗ is the adjoint of the undeformed right annihilation operator. The sum
above converges, for all −1 < q < 1, in operator norm. Furthermore (ξ1, . . . , ξd)
is Lipschitz conjugate, i.e., all ∂jξi exist and are actually bounded operators

One should note that we do not have a concrete combinatorial description for the
operator r∗, still results of Bozejko allow to estimate its norm. Hence the above
formula for ξi is a mixture of concrete combinatorial factors and more abstract
ones. A crucial point is that the combinatorial factor qm(m+2)/2 is responsible for
the uniform estimates on the sum in the whole interval (−1, 1) for q.

Having the existence of conjugate systems for all q with −1 < q < 1 has then,
by general results, many consequences for all such q; like, for any −1 < q < 1,
non-Γ of q-Gaussian algebras, by [6], or that any non-constant selfadjoint rational
function over q-Gaussians has no atom in its distribution, by [9]. In Lemma 37 of
[5], algebraic freeness of noncommutative power series over q-Gaussians is proved.

There are also quite some applications of the fact that our conjugate system
is Lipschitz conjugate. By [5], the existence of a Lipschitz conjugate system and
Connes embeddability (which is given for our q-Gaussians, for all q) imply the
maximality of the micro-states free entropy dimension. As a consequence of this
or a direct application of Theorem 1.3 in [7], we can recover the fact that Γq(R

d)
has no Cartan subalgebra for any −1 < q < 1, which has been already shown
by Avsec [1] by other methods. Furthermore, the paper by Banna and Mai [2]
gives us Hölder continuity of cumulative distribution functions of noncommutative
polynomials in the q-Gaussians.

In the following corollary we collect the most important consequences of our
result.

Theorem. For all −1 < q < 1 we have the following properties for the q-Gaussian
operators (X1, . . . , Xd).

• The division closure of the q-Gaussians in the unbounded operators affili-
ated to W ∗(X1, . . . , Xd) is isomorphic to the free field. This implies that
any noncommutative rational function r in d noncommuting variables can
be applied to the q-Gaussians, yielding a (possibly unbounded) operator
r(X1, . . . , Xd). If r is not the zero rational function, then this operator has
trivial kernel; i.e., for any selfadjoint r which is different from a constant
the corresponding distribution has no atoms.
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• There is no non-zero noncommutative power series
∑

w∈[d]∗ αwA
w of radius

of convergence R > ‖Xi‖ such that
∑
w∈[d]∗ αwX

w = 0.

• For any selfadjoint noncommutative polynomial Y = p(X1, . . . , Xd), its
cumulative distribution function FY is Hölder continuous with exponent
1/(2degY − 1) where degY is the degree of p.

• The q-Gaussian operators have finite non-microstates free Fisher informa-
tion and maximal microstates free entropy dimension,

Φ∗(X1, . . . , Xd) <∞, and δ0(X1, . . . , Xd) = d.

• Γq(R
d) does not have property Γ and it does not have a Cartan subalgebra.

• A free Gibbs potential (in the sense of [8]) exists for the q-Gaussians.

Unfortunately, we are not able to use our result for adding anything to the
isomorphism problem. However, the fact that the free entropy dimension is max-
imal for all q in the whole interval is another indication that they might all be
isomorphic to the free group factor.

References

[1] S. Avsec, Strong Solidity of the q-Gaussian Algebras for all −1 < q < 1, arXiv: 1110.4918,
2011.
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Nuclear C∗-algebras as inductive limits of finite dimensional
C∗-algebras

Kristin Courtney

(joint work with Wilhelm Winter)

Inductive limits are a natural vehicle for “bootstrapping” nice properties from
well-understood classes of objects to slightly less tangible ones. For operator al-
gebraists, inductive limits of finite-dimensional algebras (so-called AFD von Neu-
mann algebras and AF C∗-algebras) are particularly tractable, and give rise to
famous classification results, such as the uniqueness of the AFD II1 factor [3] or
the classification of AF C∗-algebras [4]. Dual to these classification results are
structural results, which aim to describe more operator algebras as inductive lim-
its of well-understood classes of algebras. The most influential of these is due
to Alain Connes [1] who showed that a separable von Neumann algebra is AFD
iff it is semi-discrete, meaning its identity map approximately factorizes though
finite-dimensional von Neumann algebras. Just as AF is the C∗-analogue to AFD,
semi-discreteness has a C∗-analogue called nuclearity, which has been the sub-
ject of intensive research over the past several decades. Since many C∗-algebras,
such as the Cuntz algebras are not AF (e.g., Cuntz algebras), there is no direct
C∗-analogue to Connes’ hyperfiniteness theorem. This is neither surprising nor de-
terring: one must often adapt von Neumann properties, results, and techniques to
find viable C∗-analogues. Likewise, we shall adjust our notion of inductive limits.

In [2], the authors consider inductive systems of C∗-algebras where the connect-
ing ∗-homomorphisms are replaced by certain positivity preserving maps called cpc
maps. They show that any separable C∗-algebra is nuclear and quasidiagonal iff
it arises as the limit of a system of finite-dimensional C∗-algebras with asymptoti-
cally multiplicative cpc connecting maps. However, there exist non-quasidiagonal
nuclear C∗-algebras, including Cuntz algebras. By generalizing asymptotic mul-
tiplicativity to asymptotic orthogonality preservation, we are able describe all
nuclear C∗-algebras as inductive limits of finite dimensional C∗-algebras.

Theorem 1 (C.-Winter). A separable C∗-algebra is nuclear if and only if it arises
as the inductive limit of a system of finite dimensional C∗-algebras with asymptot-
ically orthogonality preserving cpc maps.
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Groupoids, topological full groups, algebraic K-theory spectra, and
infinite loop spaces

Xin Li

Topological full groups have recently attracted attention because they led to solu-
tions of several outstanding open problems in group theory (see [7], [8] and [15]).

Topological groupoids and their topological full groups arise in a variety of set-
tings, for instance from Cantor minimal systems, from shifts of finite type, or more
generally, from graphs (see for instance [11]), from self-similar groups or actions
and from higher rank graphs (see for instance [12, 14]). In this context, there
is an interesting connection to C*-algebra theory because topological groupoids
serve as models for C*-algebras (see [17]) such as Cuntz algebras, Cuntz-Krieger
algebras, graph C*-algebras or higher rank graph C*-algebras, many of which play
important roles in the classification programme for C*-algebras. There is also an
interesting link to group theory because Thompson’s group V (see [4]) and many
of its generalizations and variations [6, 20, 1] can be described as topological full
groups of corresponding topological groupoids. In the case of V this observation
goes back to [13].

While general structural properties [10, 11, 12, 16, 9] and rigidity results have
been developed [18, 11], and several deep results have been established for par-
ticular examples of topological full groups [7, 8, 15, 19, 21], it would be desirable
to create a dictionary between dynamical properties and invariants of topological
groupoids on the one hand and group-theoretic properties and invariants of topo-
logical full groups on the other hand. This would allow us to study topological
full groups – which are very interesting but in many aspects still remain myste-
rious – through the underlying topological groupoids which are often much more
accessible. In my talk, I described recent work which develops this programme
in the context of homological invariants by establishing a link between groupoid
homology and group homology of topological full groups.

For the particular example class of Thompson’s group V and its generalizations,
the study of homological invariants and properties has a long history [3, 2]. It was
shown in [2] that V is rationally acyclic. Only recently it was established in [21]
that V is even integrally acyclic. The new approach in [21] also allows for many
more homology computations for Higman-Thompson groups. However, for other
classes of topological full groups, very little is known about homological invariants.

Inspired by [21], we have developed an approach to homological invariants of
topological full groups. Let us now formulate our main results. Let G be a topolog-
ical groupoid, i.e., a topological space which is at the same time a small category
with invertible morphisms, such that all operations (range, source, multiplication
and inversion maps) are continuous. We always assume the unit space G(0) consist-
ing of the objects of G to be locally compact and Hausdorff. In addition, suppose
that G is ample, in the sense that it has a basis for its topology given by compact
open bisections. If G(0) is compact, then the topological full group F (G) is de-
fined as the group of global compact open bisections. In the general case, F (G) is
the inductive limit of topological full groups of restrictions of G to compact open
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subspaces of G(0). Given an ample groupoid G as above, we construct a small
permutative category BG of compact open bisections of G . Let K(BG) be the
algebraic K-theory spectrum of BG and Ω∞K(BG) the associated infinite loop
space.

Our first main result identifies reduced homology of K(BG) with groupoid ho-
mology of G as introduced in [5] and studied in [10].

Theorem 1. Let G be an ample groupoid with locally compact Hausdorff unit
space G(0). Then we have

H̃∗(K(BG)) ∼= H∗(G).

For the second main result, we need the assumption that G is minimal, i.e.,
every G-orbit is dense in G(0). We also require G to have comparison, which
roughly means that G-invariant measures on G(0) control when one compact open
subspace of G(0) can be transported into another by compact open bisections of G.
In this setting, we can identify group homology of the topological full group F (G)
with the homology of Ω∞

0 K(BG), the connected component of the base point in
Ω∞K(BG).

Theorem 2. Let G be an ample groupoid, with locally compact Hausdorff unit
space G(0) without isolated points. Assume that G is minimal and has comparison.
Then we have

H∗(F (G)) ∼= H∗(Ω
∞
0 K(BG)).

Among other things, our results lead to

• a complete description of rational group homology for large classes of topo-
logical full groups,

• general vanishing and acyclicity results, explaining and generalizing the
result that V is acyclic in [21].

References

[1] M.B. Brin, Higher dimensional Thompson groups, Geom. Dedicata 108 (2004), 163–192.
[2] K.S. Brown, The geometry of finitely presented infinite simple groups, Algorithms and

classification in combinatorial group theory (Berkeley, CA, 1989), 121–136, Math. Sci. Res.
Inst. Publ., 23, Springer, New York, 1992.

[3] K.S. Brown and R. Geoghegan, An infinite-dimensional torsion-free FP∞ group, Invent.
Math. 77 (1984), no. 2, 367–381.

[4] J.W. Cannon, W.J. Floyd and W.R. Parry, Introductory notes on Richard Thompson’s
groups, Enseign. Math. (2) 42 (1996), no. 3-4, 215–256.

[5] M. Crainic and I. Moerdijk, A homology theory for étale groupoids, J. Reine Angew. Math.
521 (2000), 25–46.

[6] G. Higman, Finitely presented infinite simple groups, Notes on Pure Mathematics, No. 8,
Department of Pure Mathematics, Department of Mathematics, I.A.S. Australian National
University, Canberra, 1974.

[7] K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable
groups, Ann. of Math. (2) 178 (2013), no. 2, 775–787.

[8] K. Juschenko, V. Nekrashevych and M. de la Salle, Extensions of amenable groups by
recurrent groupoids, Invent. Math. 206 (2016), no. 3, 837–867.



C*-Algebras 2095

[9] N. Matte Bon, Rigidity properties of full groups of pseudogroups over the Cantor set,
preprint, arXiv:1801.10133.

[10] H. Matui, Homology and topological full groups of étale groupoids on totally disconnected

spaces, Proc. Lond. Math. Soc. 104 (2012), 27–56.
[11] H. Matui, Topological full groups of one-sided shifts of finite type, J. Reine Angew. Math.

705 (2015), 35–84.

[12] H. Matui, Étale groupoids arising from products of shifts of finite type, Adv. Math. 303
(2016), 502–548.

[13] V. Nekrashevych, Cuntz-Pimsner algebras of group actions, J. Operator Theory 52 (2004),
no. 2, 223–249.

[14] V. Nekrashevych, Finitely presented groups associated with expanding maps, Geometric
and cohomological group theory, 115–171, London Math. Soc. Lecture Note Ser., 444, Cam-

bridge Univ. Press, Cambridge, 2018.
[15] V. Nekrashevych, Palindromic subshifts and simple periodic groups of intermediate

growth, Ann. of Math. (2) 187 (2018), no. 3, 667–719.
[16] V. Nekrashevych, Simple groups of dynamical origin, Ergodic Theory Dynam. Systems

39 (2019), no. 3, 707–732.
[17] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math., 793, Springer,

Berlin, 1980.
[18] M.Rubin, On the reconstruction of topological spaces from their groups of homeomorphisms,

Trans. Amer. Math. Soc. 312 (1989), no. 2, 487–538.
[19] R. Skipper, S. Witzel and M.C.B. Zaremsky, Simple groups separated by finiteness prop-

erties, Invent. Math. 215 (2019), no. 2, 713–740.
[20] M. Stein, Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc. 332 (1992),

no. 2, 477–514.
[21] M. Szymik and N. Wahl, The homology of the Higman-Thompson groups, Invent. Math.

216 (2019), no. 2, 445–518.

From quantum information theory to type III von Neumann algebras

Marius Junge

(joint work with Haojian Li, Li Gao, Nick LaRacuente, Yidong Chen)

We consider an array of particles, with an interaction of energy states of a particle
of some probability p. The energy released by these transitions can be measured
as photon transmission. Taking the mathematical model leads to a semigroup of
completely positive maps and a generator satisfying the 0-detailed balance condi-
tion. For infinitely many particles, we find a type III factor where the modular
group is used to obtain the correct Laplacian. We prove uniform spectral gap and
entropy decay for the tracial case. This however fails in the type IIIλ situation. A
slight change in the form of the Laplacian is stable and admits uniform decay to
equilibrium.
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Rigidity of Roe algebras

Rufus Willett

(joint work with Florent Baudier, Bruno de Mendonça Braga, Ilijas Farah,
Ana Khukhro, Alessandro Vignati)

Uniform Roe algebras are C∗-algebras associated to metric spaces; they see only
the large-scale (or ‘coarse’) geometry of the underlying space. It is natural to
ask how ‘rigid’ the Roe algebra construction is, or in other words, how much of
the underlying coarse geometry it remembers. Somewhat surprisingly, the answer
turns out to be essentially ‘all of it’; it was the goal of my talk to explain this.

We now give formal definitions. The metric spaces we are interested in are those
with bounded geometry (also called uniformly locally finite metric spaces): for
every r > 0, the number of points in an r-ball is uniformly bounded. Important
examples include finitely generated discrete groups equipped with word metrics,
and discretizations of Riemannian manifolds. A map f : X → Y between two
(bounded geometry) metric spaces it coarse if for any r > 0 there is s > 0 such
that dX(x1, x2) ≤ r implies dY (f(x1), f(x2)) ≤ s. Metric spaces X and Y are
coarsely equivalent if there are coarse maps f : X → Y and g : Y → X such that
supx∈X dX(g(f(x)), x) and supy∈Y dY (f(g(y)), y) are both finite. One thinks of
coarsely equivalent spaces as having ‘the same large scale geometry’.

We now associate a C∗-algebra to a bounded geometry space X . Let Cu[X ] be
the ∗-algebra of X-by-X indexed matrices a = (axy)x,y∈X with uniformly bounded
entries, and so that the propagation defined by

prop(a) := sup{d(x, y) | axy 6= 0}

is finite. The bounded geometry condition implies that there is a well-defined
action of Cu[X ] on ℓ2(X) by bounded operators. The uniform Roe algebra of
X , denoted C∗

u(X), is the completion of Cu[X ] in this representation. If X = Γ
is a finitely generated discrete group, then C∗

u(X) is canonically isomorphic to
ℓ∞(Γ)⋊r Γ.

Going back to a suggestion of Gromov [10, pages 262-3], if X and Y are coarsely
equivalent, then C∗

u(X) and C∗
u(Y ) are Morita equivalent: this was established by

Brodzki, Niblo, and Wright in [9, Theorem 4]. It then becomes natural to ask how
“rigid” the uniform Roe algebra construction is: precisely, is the converse to the
result of Brodzki-Niblo-Wright true?

This question has been worked on by several authors over the last ten years,
starting with [12] by Špakula and the author, who established a rigidity result
under the geometric assumption that the spaces involved satisfy Yu’s property
A. A conceptual step forward was taken by Braga and Farah in [4], where those
authors isolated some of the key conditions needed to prove rigidity, and weakened
the geometric conditions needed on the spaces involved. Further weakenings of
the geometric conditions needed to imply rigidity were achieved subsequently by
Braga, Chyuan, and Li [3], and by Li, Špakula, and Zhang [11]. However, the
methods used in all these papers face fundamental obstructions coming from the
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existence of expander graph type phenomena in exotic metric spaces; getting over
these obstructions needed a new idea. (I should also mention that at the same
time there was other work developing these techniques, and employing new ones,
to attack variants of the rigidity problem and otherwise elucidate the structure
of Roe algebras: see for example [5] on coronas, [13] on Cartan subalgebras, [6]
on embeddings, [8] on automorphisms, [2] on Banach algebras, and [7] on the
non-metrizable case).

In my talk, I explained the recent unconditional solution to the rigidity problem
[1]:

Theorem 1 (Baudier, Braga, Farah, Khukhro, Vignati, Willett). If C∗
u(X) and

C∗
u(Y ) are Morita equivalent, then X and Y are coarsely equivalent.

A purely group-theoretic variant of this shows that if Γ and Λ are finitely
generated groups, then ℓ∞(Γ) ⋊r Γ is isomorphic to ℓ∞(Λ) ⋊r Λ if and only if Γ
and Λ are bi-Lipschitz equivalent. Several other variants cover the case of coronas,
and of Roe-type algebras of operators on more general Banach spaces.

The key new idea needed for the proof of the theorem above is a quantitative
version of Lyapunov’s theorem on the convexity of the range of a finite-dimensional
vector measure, which in turn is based on the Shapley-Folkman theorem from
economics. This can be combined with earlier uniform approximability results
and some basic observations about projections to deduce uniform estimates on the
size of certain matrix entries; these estimates are exactly what one needs to apply
the machinery established in [12] and [4] and deduce the result.

I should finish by commenting that there are some interesting variants of the
rigidity problem that are still open. One of these is the question of whether
isomorphism of C∗

u(X) and C∗
u(Y ) is equivalent to bijective coarse equivalence of

the underlying spaces; this is known for groups [1] and in the property A case
[13], but not in general. Another asks whether rigidity holds for the Roe algebras
C∗(X): these are C∗-algebras built analogously to C∗

u(X) but with the matrix
entries being compact operators rather than complex numbers; the state of the art
is due to Li, Špakula, and Zhang [11]. Finally, the rigidity problem is also open
in the non-metrizable case; here the best known results are due to Braga, Farah,
and Vignati [7].
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Cartan subalgebras for non-effective twisted groupoid C∗-algebras

Anna Duwenig

(joint work with E. Gillaspy, R. Norton, S. Reznikoff, D. P. Williams, S. Wright,
J. Zimmerman)

A maximal abelian subalgebra B of a C∗-algebra A is Cartan if there exists a
faithful conditional expectation A→ B and if B is regular, i.e., A is generated by
n ∈ A for which nBn∗, n∗Bn ⊆ B ([7], [11], [10]). The existence of a Cartan has
important implications ([1], [2], [3], [8], [9]). An easy example is the C∗-subalgebra
of either of the universal unitaries that generate the irrational rotation algebra Aθ.

Of particular interest is the example due to J. Renault: Given a second count-
able, locally compact Hausdorff étale groupoid G with twist Σ, C0(G

(0)) embeds
as a regular commutative subalgebra into C∗

r(G; Σ) with conditional expectation.
This subalgebra is maximal abelian (and hence Cartan) if the groupoid is effective,
i.e., Iso(G)◦ = G(0), because an element a of C∗

r(G; Σ) commutes with C0(G
(0))

iff its open support is contained in Iso(G)◦, while a is in C0(G
(0)) iff its open

support is contained in G(0). Miraculously, any separable C∗-algebra with Cartan
subalgebra arises in this fashion [11].

Now think of Aθ as C∗
r(Z, cθ) with 2-cocycle cθ((m,n), (k, l)) = e2πiθnk. Since

non-trivial groups are never effective, the above argument does not apply. It is not
hard to see, however, that for θ /∈ Q the two Cartan subalgebras mentioned above
correspond to the subgroups Z × {0} and {0} × Z. It is thus a natural question
to ask, under which conditions the C∗-algebra of a subgroupoid S of a twisted
(not necessarily effective) groupoid G is a Cartan subalgebra. Renault’s proof
that C0(G

(0)) is a regular subalgebra with a conditional expectation goes through
for C∗

r(S; Σ|S), as long as S is clopen and normal. And if the twist restricted
to S is abelian, then the algebra is abelian. Therefore, the crux in answering the
question lies in finding conditions on S that force maximality.

Clearly, one needs S to be maximal among certain subgroupoids. In particular,
one must have G(0) ⊂ S ⊂ Iso(G), and so in the case of an effective groupoid G,
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the only open such S would be G(0) = Iso(G)(0), as in Renault’s result. But in
general, this maximality assumption alone is not enough: It is easy to construct
a group G with a maximal subgroup S and elements ν, µ /∈ S for which {ν, µ} =
{ανα−1 : α ∈ S}. Consequently, the sum δµ + δν /∈ C∗

r(S, c) of point masses is
a commutator of C∗

r(S, c) that lies outside of the subalgebra, showing that the
subalgebra is not maximal abelian. To avoid this issue, we require S to satisfy an
additional condition, which arises in many situations, e.g., when Iso(G)◦ is abelian
or when each isotropy group Suu has the unique roots property.

Definition 1. A subgroupoid S is immediately centralizing if, for any ν ∈ Iso(G)◦,

|{ανα−1 : α ∈ S}| > 1 =⇒ |{ανα−1 : α ∈ S}| = ∞.

These sets have already been considered in the study of Cartans (cf. [4, p. 360]).

Theorem 1. Let G be a second countable, locally compact Hausdorff, étale groupoid
with twist Σ. Suppose that S E G is clopen and maximal among the subgroupoids
of Iso(G)◦ whose restricted twist is abelian. If S is immediately centralizing, then
C∗
r(S; Σ|S) is a Cartan subalgebra of C∗

r(G; Σ).

For 2-cocycle twists, the above is one of two main results in [6]; for general
twists, it is part of on-going work with D. P. Williams and J. Zimmerman. Note
that, if G is untwisted, then S can only be maximal and immediately centralizing
if every isotropy group Guu is icc relative to the subgroup Suu in the sense of Rørdam.

Example 1. For (Z2, cθ) with θ /∈ Q, one can choose S as Z × {0} or {0} × Z,
and these give rise to the Cartan subalgebras in Aθ described above; no other
subgroups fall into the scope of Theorem 1. If θ = p/q ∈ Q with p, q relatively
prime, then S can be chosen to be any mZ× nZ with mn = q.

In other examples, Theorem 1 picks up on multiple non-isomorphic Cartan
subalgebras within the same groupoid C∗-algebra.

If S E G and Σ are such that C∗
r(S; Σ|S) is Cartan in C∗

r(G; Σ) (for example,
as in Theorem 1), then the other direction of Renault’s result yields the so-called
Weyl groupoid with twist: an effective groupoid W whose twisted C∗-algebra is
isomorphic to C∗

r(G; Σ) such that the canonical Cartan C0(W
(0)) is mapped to

C∗
r(S; Σ|S). For Σ coming from a 2-cocycle c, the main results in [5] then describe

the relationship between S,G, c and W .

Theorem 2. There exists an action of the quotient groupoid G/S on the spectrum
of C∗

r(S, c), and the corresponding transformation groupoid is isomorphic to W .
If the quotient map G → G/S has a continuous section, then the twist on W is
given by a 2-cocycle.

For Σ more general than a 2-cocycle, such a description is work in progress.
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Wasserstein distance and ultraproducts

David Jekel

(joint work with Wilfrid Gangbo, Kyeongsik Nam, Dimitri Shlyakhtenko)

Motivated by works on transport of measure in free probability [5, 3, 6, 7], the
authors studied the properties of optimal couplings in the setting of tracial non-
commutative probability [4]. While the analogy with classical Monge-Kantorovich
duality can be pushed quite far, the space of laws with the non-commutative
Wasserstein distance is at the same time very different than the classical case.

Non-commutative laws describe the distribution of d-tuples of self-adjoint oper-
ators in tracial W∗-algebras. Σd,R will denote the space of traces on the uni-
versal free product C[−R,R]∗d. Given µ ∈ Σd,R, a self-adjoint d-tuple from
M = (M, τM ), we say that X ∼ µ if µ(p) = τ(p(X)) for all non-commutative
polynomials p. Biane and Voiculescu [2] defined the non-commutative analog of
the Wasserstein distance between µ, ν ∈ Σd,R, namely dW (µ, ν) is the infimum of
‖X − Y ‖L2(M) over all tracial W∗-algebras M and all self-adjoint d-tuples X,Y
in M with X ∼ µ and Y ∼ ν.

Although in classical probability theory, the Wasserstein distance metrizes the
weak-∗ topology on the space of laws, this is far from being true in the non-
commutative case. First, one can show using similar techniques to Ozawa [8] that
Σd,R is not separable with respect to dW . Hence the topology generated by dW is
very different than the weak-∗ topology, since Σd,R is weak-∗ compact. We further
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investigated why and how these two topologies are different by expressing them in
operator-algebraic terms.

While weak-∗ convergence of the law of Xn in Mn to the law of X fits naturally
with the study of embeddings of M = W∗(X) into the ultraproduct

∏
n→U Mn,

we found that Wasserstein convergence relates to embeddings into ultraproducts
which lift to complete positive maps Φn : M → Mn such that Φn is factorizable
in the sense of Anantharaman-Delaroche [1], meaning that it factors as a trace-
preserving inclusion into M → Nn followed by a trace-preserving conditional
expectation Nn → Mn. As a consequence, we have the following result:

Proposition 1 ([4]). Let M be a tracial W∗-algebra generated by X = (X1, ..., Xd),
and let µ be the non-commutative law of X. The following are equivalent:

(1) The weak-∗ and Wasserstein topologies agree at the point µ (meaning every
neighborhood in the one topology contains a neighborhood in the other).

(2) Every embedding of M into an ultraproduct
∏
n→U Mn of tracial W∗-

algebras lifts to a sequence of factorizable completely positive maps Φn :
M → Mn.

Assuming that M is Connes embeddable, then the following two conditions are
also equivalent to (1) and (2) above:

(3) µ is in the Wasserstein closure of the set of laws Σd,R,fin that are realized
in finite-dimensional tracial W∗-algebras.

(4) M is semi-discrete / amenable.

Of course, (4) relies on Connes’ characterizations of amenability. It is an open
question whether there exist non-Connes-embeddable tracial W∗-algebras that sat-
isfy (1) and (2).
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W∗-rigidity paradigms for embeddings of II1 factors

Sorin Popa

(joint work with Stefaan Vaes)

In this talk I present some recent work with Stefaan Vaes, in which we undertake a
systematic study of W∗-rigidity paradigms for the embeddability relation between
separable II1 factors and its stable, weaker version, involving amplifications of
factors. We notably obtain a series of concrete families of non-stably isomorphic II1
factors that are mutually embeddable (many to one paradigm) and large families
of II1 factors that are mutually non-stably embeddable (disjointness paradigm).
I will comment on the proofs, which employ some “hard” deformation-rigidity
arguments.

Miscellaneous about commutants mod

Dan-Virgil Voiculescu

If τ is a n-tuple of bounded operators on an∞-dimensional separable Hilbert space
and (J , | · |J ) is a normed ideal of compact operators , the commutant of τ modulo
J is a Banach algebra E(τ ;J ). The quasicentral modulus kJ (τ) is the liminf of
|[τ, A]|J when the A’s are the finite rank positive contractions converging to I.
The number kJ (τ) plays a key role in questions about perturbations of operators,
like the invariance of absolutely continuous parts and also in the structure of the
E(τ ;J ) . Such commutants modJ can be associated with a smooth compact
manifold using n-tuples of multiplication operators arising from nice embeddings
in Rn . We discussed certain results about the K-theory and structure of these
algebras. Returning to kJ (τ), there is a noncommutative analogy with condenser
capacity in nonlinear potential theory and a noncommutative variational problem
associated with the condenser. For background material on commutants mod and
quasicentral modulus see [1]. About commutants mod associated with compact
smooth manifolds see [2]. The heuristics of the analogy with condenser capacity
in nonlinear potential theory are in [3], while the technical development of this
idea and generalizations of some of the results to a semifinite factors context (i.e
beyond the typeI case of B(H) are in [4] . It is natural to wonder how far the
noncommutative analogy with capacity in nonlinear potential theory may go.
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Elements of classifying C∗-algebras

James Gabe

(joint work with José Carrión, Chris Schafhauser, Aaron Tikuisis,
and Stuart White)

The Elliott programme of classifying nuclear C∗-algebras has been a hugely suc-
cessful endeavour over the last 30 years. After the work of many hands (a very
incomplete list includes Kirchberg [10], Phillips [11], Elliott, Gong, Lin, Niu [7], [9],
Tikuisis, White, and Winter [14]) the classification of simple nuclear C∗-algebras
is complete (modulo settling the UCT problem) with the following capstone result.

Theorem 1 (Many hands). Let A and B be separable nuclear simple unital Z-
stable C∗-algebras satisfying the UCT. Then A ∼= B if and only if they have the
same K-theory and traces.

Z-stability in the theorem is a regularity property resembling the McDuff prop-
erty for II1-factors, meaning that A ∼= A⊗Z where Z is the Jiang–Su algebra. As
predicted by the Toms–Winter conjecture, Z-stability has several striking equiva-
lent formulations (for separable nuclear simple C∗-algebras) such as having finite
nuclear dimension [4], or having strict comparison and Uniform Property Γ [3].

In collaboration with Carrión, Schafhauser, Tikuisis and White [1], we have
come up with a completely new approach to proving this theorem. The purpose
of this talk is to give an idea of some elements of this new proof (while sweeping
some of the crucial technicalities under the rug).

We will cheat a bit and restrict to the case where the C∗-algebras have a
unique trace. This eliminates some of the difficulties which were overcome in
[4] and [2]. Recall that a trace τA on a C∗-algebra A induces a homomorphism
(τA)∗ : K0(A) → R.

We assume from now on that A and B are as in Theorem 1, have a unique

trace, say τA and τB, and that there is a given isomorphism α∗ : K∗(A)
∼=
−→ K∗(B)

such that α0([1A]) = [1B] and (τB)∗ ◦α0 = (τA)∗. The goal is to show (or at least
give a rough idea) that A ∼= B. Let ω ∈ βN \ N and define

Bω =
{(bk)k ∈

∏
N
B : supk ‖bk‖ <∞}

{(bk)k : limk→ω ‖bk‖ = 0}
, Bω =

{(bk)k ∈
∏

N
B : supk ‖bk‖ <∞}

{(bk)k : limk→ω τB(b∗kbk) = 0}
.

As both the induced tracial von Neumann algebras πτA(A)
′′ and πτB (B)′′ are

isomorphic to the hyperfinite II1-factor R by Connes’ classification theorem [5], it
follows that Bω ∼= Rω and that there is a unique unital ∗-homomorphism θ : A→
Bω up to unitary equivalence.

Let qB : Bω → Bω denote the obvious surjection. The next step in the proof
is to lift θ to a unital ∗-homomorphism φ : A → Bω, i.e. so that θ = qB ◦ φ. For
this we will use the following result which was essentially proved by Schafhauser
in [12] and [13] (using a Weyl–von Neumann type absorption theorem by Elliott–
Kucerovsky [8]). It shows that it suffices to lift θ in KK-theory.
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Theorem 2 (Schafhauser). Suppose there is an element κ ∈ KK(A,Bω) such
that (qB)∗(κ) = [θ]KK ∈ KK(A,Bω) and κ0([1A]) = [1Bω

]. Then there exists a
unital ∗-homomorphism φ : A→ Bω such that qB ◦ φ = θ and [φ]KK = κ.

An element κ ∈ KK(A,Bω) with the given property will be produced by using
the UCT (twice!). Recall that A satisfying the UCT means (by definition) that
for any C∗-algebra D there is a short exact sequence

0 → Ext(K∗(A),K1−∗(D)) → KK(A,D) → Hom(K∗(A),K∗(D)) → 0.

It remains a major open problem (the UCT problem) whether every separable
nuclear C∗-algebra satisfies the UCT. Let ι : B → Bω be the canonical embedding.
We first apply the UCT with D = Bω to lift ι∗ ◦α∗ ∈ Hom(K∗(A),K∗(Bω)) to an
element κ ∈ KK(A,Bω). As α0([1A]) = [1B] it follows that κ0([1A]) = [1Bω

].
Secondly, we use the UCT with D = Bω ∼= Rω. As this is a II1-factor we

have K0(B
ω) = R and K1(B

ω) = 0. As R is divisible this implies that the
Ext-group vanishes in the UCT short exact sequence, and thus KK(A,Bω) ∼=
Hom(K0(A),R). The element [θ]KK is canonically identified with (τA)∗ via this
isomorphism, and similarly (qB ◦ ιB)0 = (τB)∗ : K0(B) → R. Hence (with obvious
abuse of notation)

[θ]KK ∼= (τA)∗ = (τB)∗ ◦ α0 = (qB)0 ◦ (ι0 ◦ α0) ∼= (qB)∗(κ).

By Schafhauser’s theorem from above, there is a ∗-homomorphism φ : A → Bω
lifting θ such that [φ]KK = κ. In particular, φ∗ = ι∗ ◦ α∗.

Suppose now that ψ : A→ Bω is a unital ∗-homomorphism such that [ψ]KK =
κ = [φ]KK and qB ◦ ψ = θ = qB ◦ φ. By the Cuntz pair picture of KK-theory, we
obtain an element [φ, ψ]KK ∈ KK(A, JB) where JB = ker qB . The proof of the
following uses Z-stability and a theorem of Dadarlat and Eilers [6].

Theorem 3 (Z-stable KK-uniqueness). If [φ, ψ]KK = 0 then φ and ψ are uni-
tarily equivalent. More generally:

Let C,D and E be separable C∗-algebras such that E contains D as a two-sided
closed ideal, and let Φ,Ψ: C → E be ∗-homomorphisms agreeing modulo D (so
they induce [Φ,Ψ]KK ∈ KK(C,D)). Assume that Φ and Ψ are absorbing relative
to D and that E is Z-stable. Then [Φ,Ψ]KK = 0 if and only if Φ and Ψ are

asymptotically unitarily equivalent via a path of unitaries in D̃.

Question 1. Is Z-stability necessary in the above theorem?

This theorem can (after making some adjustments to φ and applying the UCT
again) be used to show that φ is unitarily equivalent to all possible reindexations
of itself (again up to some cheating). This implies that there is a ∗-homomorphism
ρ : A → B such that φ and ιB ◦ ρ are unitarily equivalent, and hence ρ∗ = α∗.
After sweeping some more details under the rug, we use an intertwining argument
to show that ρ is approximately unitarily equivalent to an isomorphism A ∼= B, as
desired.
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The dynamical Kirchberg–Phillips theorem

Gábor Szabó

(joint work with James Gabe)

In this talk I reported on the main outcomes of the recent works [6, 7] about a
dynamical version of the celebrated Kirchberg–Phillips theorem. The basic moti-
vation for this line of research is to try to come up with a satisfactory dynamical
counterpart to the Elliott program. The latter, which aims to explore the fine
structure of simple nuclear C∗-algebras, is now nearly completed due to the (fre-
quently labeled) “many hands theorem” classifying all simple nuclear Jiang–Su
stable C∗-algebras by K-theory and traces. One of the big early milestones in the
Elliott program was the traceless subcase of this classification program, namely
the classification of separable simple nuclear purely infinite C∗-algebras (known as
Kirchberg algebras) due to Kirchberg and Phillips [12, 15]. We recall:
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Theorem (Kirchberg–Phillips). Let A and B be two stable Kirchberg C∗-algebras.
Then:

(1) Every invertible element x ∈ KK(A,B)−1 lifts to an isomorphism A ∼= B.
(2) If A and B both satisfy the UCT, then A ∼= B if and only if K∗(A) ∼=

K∗(B) as pairs of countable abelian groups.

Stated this way, one can split the work towards the full conclusion of this
theorem into two independent parts. The first part about the isomorphism theorem
via KK-theory can be labeled the analytic part of the work, which involves all the
heavy lifting related to analytic techniques in C∗-algebra theory, culminating in the
abstract construction of the desired isomorphisms. The second part, which here is
the prior work of Rosenberg–Schochet in disguise [17], can be labeled the algebraic
part of the work, which involves techniques from algebraic topology to understand
KK-theory via the (much easier to compute) ordinary K-theory groups.

Our work aims to give a satisfactory generalization of the analytic aspect above
for group actions on Kirchberg algebras. For the rest of the abstract we fix a
second-countable, locally compact group G. We shall introduce the two important
dynamical properties that we impose on the actions we classify.

Definition. Given an action α : G y A on a C∗-algebra, we form the action
ᾱ : G y Cc(G,A) via ᾱg(f)(h) = αg(f(g

−1h)). We equip Cc(G,A) with the
obvious A-bimodule structure and the standard A-valued inner product 〈· | ·〉
inducing the norm ‖ · ‖2. We say that α is amenable, if there exists a net of unit
vectors ζi ∈ Cc(G,A) satisfying

〈ζi | ζi〉a → a, ‖aζi − ζia‖2 → 0, max
g∈K

‖ζi − ᾱg(ζi)‖2 → 0

for all a ∈ A and every compact set K ⊆ G.

In this generality, the above notion of amenability for actions on C∗-algebras
has only recently been studied and shown to be equivalent to various other notions
of amenability [3, 2, 13], which goes back to earlier such notions for actions on von
Neumann algebras [1]. Clearly every action of an amenable group is amenable on
any C∗-algebra, but for general G, this is a genuine property to be studied for its
own sake.

Definition. Let α : G y A be an action on a separable C∗-algebra. We equip
the Hilbert space L2(G) with the unitary G-action given by the left-regular rep-
resentation of G. We say α is isometrically shift-absorbing, if there exists a linear
equivariant map

s : L2(G) → F∞(A) = (A∞ ∩ A′)/(A∞ ∩ A⊥)

satisfying the equation s(ξ)∗s(η) = 〈ξ | η〉 · 1 for all ξ, η ∈ L2(G). (Note that
F∞(A) carries the algebraic G-action coming from applying α componentwise to
representing sequences in A.)

This property acts as a dynamical non-triviality property that also encompasses
pure infiniteness in a certain way. For instance, it is easy to see under the assump-
tion of the above property for G 6= {1} that A must tensorially absorb the Cuntz
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algebra O∞, since the images of two orthogonal unit vectors under s yields two
isometries in F∞(A) with orthogonal range projections. Although isometric shift-
absorption is (at least a priori) a rather technical property in full generality, there
are some important subcases where it restricts to something familiar:

Proposition ([9]). Suppose G is discrete and α : Gy A is an action on a Kirch-
berg algebra. Then α is isometrically shift-absorbing if and only if α is (pointwise)
outer.

As a culmination of various sources in the literature [14, 16, 13, 7], it is possible
to come to the conclusion that there are many G-actions on Kirchberg algebras
that are both amenable and isometrically shift-absorbing:

Theorem. Let α : G y A be an amenable action on a separable nuclear C∗-
algebra. Then there exists a stable Kirchberg algebra B and an amenable, iso-
metrically shift-absorbing action β : G y B such that (A,α) ∼KKG (B, β). If
G satisfies the Haagerup property, then the conclusion is true even without the
assumption that α is amenable.

With this in mind, our main result is the classification of such actions via
equivariant Kasparov theory:

Theorem. Let α : Gy A and β : Gy B be actions on stable Kirchberg algebras.
Suppose that α and β are amenable and isometrically shift-absorbing. Then every
invertible element x ∈ KKG(α, β)−1 lifts to a cocycle conjugacy between (A,α)
and (B, β).

In my talk I supplied a few more conceptual comments on aspects of the method-
ology, which involves the idea of existence and uniqueness theorems for so-called
proper cocycle embeddings between such actions. This relies on the categorical
framework for C∗-dynamics developed in [18]. In order to access equivariant Kas-
parov theory for this purpose, we rely crucially on Thomsen’s dynamical version of
the Cuntz picture from [19]. A key ingredient towards our main result is a stable
uniqueness theorem [6] in the spirit of Lin and Dadarlat–Eilers [4, 5].

At the end of my talk, I explained a few consequences of our main result. For
example, the recent work of Meyer [16] shows that it recovers and generalizes the
recent work of Izumi–Matui [10, 11] for outer actions of poly-Z groups, and in fact
proves Izumi’s conjecture formulated in [8] for all torsion-free amenable groups.

Regarding future work, there remain a few challenges and open problems. The
most obvious one is to complete the algebraic part of the classification problem,
i.e., to find reasonably computable K-theory invariants that uniquely determine
the KKG-class of an action under the assumption that an action belongs to the
equivariant bootstrap class; see [16]. Another open problem would be to determine
whether isometric shift-absorption is actually a more familiar property in disguise.
I am tempted to ask the following naive question: Suppose α : G y A is an
amenable action on a Kirchberg algebra such that for every closed subgroup H ⊆
G, the crossed product A ⋊ H is a Kirchberg algebra. Does it follow that α is
isometrically shift-absorbing?
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Quantum graphs and colorings

Priyanga Ganesan

(joint work with Michael Brannan and Samuel Harris)

Quantum information theory has attracted a lot of attention from mathemati-
cians in recent years due to its intriguing connections to operator algebras. In
particular, techniques from quantum information theory have been used to show a
refutation of the long standing Connes embedding problem in operator algebra [1]
recently. Non-local games (a cooperative game played by two spatially separated
non-communicating players) and their quantum and classical strategies are closely
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related to the negative solution of the Connes embedding problem. An operator al-
gebra friendly proof of the Connes embedding problem may be obtained by finding
examples of nonlocal games that exhibit a gap between qa− and qc− correlation
sets. With this motivation, it is useful to study the non-local graph coloring game
and investigate its possible generalizations with the hope of finding graphs that
exhibit a separation between qc−chromatic number and qa− chromatic number.

The non-local graph coloring game is played by two separated players who co-
operatively try to convince an interrogator with certainty that they have a coloring
for the given graph. During each round of the game, the interrogator randomly
selects two (possibly same) vertices from the graph and sends one to each of the
players. The players then individually respond with a color assignment for their
vertex. They win the round if their responses jointly satisfy certain conditions
(implying a coloring for the given graph). The players cannot communicate with
each other directly during the round, but can share an entangled state and use
different strategies (loc, q, qa, qs, qc) to correlate their answers. The least number
of colors that the players use to win the game is called the t-chromatic number (χt)
of that graph (t ∈ {loc, q, qa, qs, qc}). There are known examples of graphs [2, 3]
whose quantum chromatic number is strictly smaller than its classical chromatic
number, thus exhibiting the power of quantum entanglement. In [4], we extended
this idea of quantum coloring to the setting of quantum graphs.

Quantum graphs are an operator space generalization of classical graphs that
have emerged in different disguises in operator algebras, non-commutative topol-
ogy and quantum information theory. Mathematically, quantum graphs can be de-
scribed as operator spaces satisfying a certain bimodule property [5]. Alternately,
they may be viewed as a finite dimensional C*-algebra equipped with additional
structure induced by a quantum adjacency operator [6, 7] that mimics the struc-
ture of a classical adjacency matrix. Quantum graphs also serve as a quantum
analogue of the confusability graph of classical channels [9], and hence play an im-
portant role in zero-error quantum communication. Motivated by non-local games
and coloring problems, we introduce a non-local coloring game with quantum in-
puts and classical outputs that generalizes the classical graph coloring game [2]
and develop a double quantization of the chromatic number, namely the quantum
chromatic number of a quantum graph. We prove that the quantum chromatic
number of a quantum graph is always finite, while its classical chromatic number
may not be. We also obtain a combinatorial characterization of quantum coloring
using the winning strategies of the nonlocal quantum-to-classical graph coloring
game.

A natural question to ask is how can we estimate the quantum chromatic num-
bers? In general, computing the chromatic number of a graph is an NP-hard prob-
lem. So, inequalities involving the eigenvalues of the adjacency matrix are often
used in estimating the chromatic number. In [7], Elphick & Wocjan prove many
spectral lower bounds on the quantum chromatic number of a classical graph. We
extend their results to quantum graphs in [10] using the eigenvalues of a “quan-
tum adjacency operator” and obtain five lower bounds for the quantum chromatic
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number of quantum graphs. In particular, we prove a quantum analogue of the
Hoffman’s bound and demonstrate the tightness of the bound in the case of com-
plete quantum graphs.

A larger goal is to find a counterexample to the Connes-Kirchberg conjecture by
showing a separation between χqc and χqa chromatic numbers. We hope to find
examples of quantum graphs with the analogous property. Alternately, finding
spectral bounds that separate χqc and χqa would also be very interesting. It
might be easier to do this with quantum graphs than classical graphs since the
former provides a larger class of examples and allows the use of operator algebraic
techniques.
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Connes’s Embedding Problem and Tsirelson’s Conjecture

Chris Schafhauser

The recent result of Ji, Natarajan, Vidick, Wright, and Yuen that MIP∗=RE
implies a negative solution to Tsirelson’s conjecture, and hence to the Connes
Embedding Problem. In fact, the proof of MIP∗=RE provides a strong failure
of Tsirelson’s conjecture giving a synchronous correlation realized in the quantum
commuting model but not in the quantum model. This allows for a simplified proof
that Connes Embedding Problem is false which avoids Kirchberg’s tensor product
conjecture. The proof is based on ideas of Dykema-Paulsen and Kim-Paulsen-S.
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The Williams problem through the lens of Cuntz-Krieger algebras

Søren Eilers

(joint work with Toke M. Carlsen and Adam Dor-On)

By steady progress spanning more than four decades, it is now known that Cuntz-
Krieger algebras OA [7] capture essential notions of sameness for the associated
two-sided shifts of finite types XA, encompassing Williams’ notions of (strong) shift
equivalence [18] as well as flow equivalence (formally defined in [2] but traceable to
[14]). For this purpose, as realized in early work by Bratteli and Kishimoto [3] on
the one hand, and by Rørdam [17] on the other, it is necessary to consider these
C∗-algebras along with further structure, involving the canonical gauge action
γ : T → Aut(OA) and the canonical diagonal subalgebra DA ⊆ OA. We introduce
the following convenient notation:

Definition 1. For y, z ∈ {0, 1} we say that two essential matrices A and B
are equivalent up to yz-equivalence, and write (A,B) ∈ yz, when there is a ∗-
isomorphism

ϕ : OA ⊗K → OB ⊗K

which additionally satisfies

ϕ ◦ (γz ⊗ id) = (γz ⊗ id)⊗ ϕ

for all z ∈ T when y = 1, and

ϕ(DA ⊗ c0) = OB ⊗ c0

when z = 1.

We will consider our relations as subsets of M×M with M denoting all essen-
tial1 square matrices with nonnegative integer entries, sometimes specializing to
P × P with P denoting those matrices that are primitive in the sense that some
power of it has only positive entries.

Using SSE,SE,FE to denote the relations induced by the above-mentioned no-
tions in symbolic dynamics of the shift spaces given by such matrices, the state of
the art is as indicated in Figure 1, where solid arrows indicate containments known
for all SFTs (i.e., in M ×M) and dashed ones indicate relations only known to
hold in the case where the shift spaces and Cuntz-Krieger algebras are given by
primitive2 matrices, rendering the dynamics mixing and the C∗-algebras (gauge)
simple. We know of no counterexamples for the dashed arrows to hold in general,
but it is known, notably due to [12], that no further arrows may be reversed.

The results summarized above show that Williams’ problem concerning the very
elusive difference between SSE and SE can be recast as a C∗-algebraic problem in
the primitive case, and it is a pressing question to decide if that is possible in
general. The talk discussed recent attempts, thus far unsuccessful, to extend the
remaining relations to general shift spaces, and to relate the two open problems.
It should be noted that primitivity enters into the proof of the two inclusions

1No zero rows or columns.
2In fact, one may show that irreducibility suffices.
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Figure 1. Rigidity results of [3, 5, 6, 13]

not known in general in very different ways. For SE ∩ (P × P) ⊆ 01, Bratteli and
Kishimoto argue via the Rokhlin property on a certain AF -algebra which is simple
and has a unique trace up to scaling only in this case, and for 10 ∩ (P × P) ⊆ 01

one needs to involve the Bowen-Franks invariant which is only complete (by a
result of Franks [9]) there.

Whereas we have little to say about how the relation 10 ⊆ 01 might be seen to
hold in general, or even how to show it in the primitive case without a detour into
symbolic dynamics, the recent paper [4] addresses SE ⊆ 01. A very promising ap-
proach, initiated in [15] and further developed in [10], involves the Cuntz-Pimnser
construction [16] which allows OA to be defined as the C∗-algebra associated to

a certain C∗-correspondence X(A). To show that SE ⊆ 00 in general, Kakariadis
and Katsoulis consider

X(A)
SE
∼ X(B)

(∗)
=⇒ X(A)∞

SE
∼ X(B)∞ =⇒ X(A)∞

Morita
∼ X(B)∞

where “
SE
∼ ” indicates a natural extension of Williams’ notion to C∗-corresponden-

ces, and X(−)∞ is the Pimsner dilation, a Hilbert C∗-bimodule which defines the
same C∗-algebra as X(−). In joint work with Carlsen and Dor-On we were able
to show that in fact (∗) implies even the desired containment SE ⊆ 10, but in the
process of proving our results, we uncovered a very subtle error in [10]. The claim
has now been retracted, cf. [11].

In [4], we show that (∗) would follow if one assumes that the given shift equiv-
alence is represented on a Hilbert space in a precise sense we denote representable
shift equivalence (RSE). It is easy to see that this follows from another, purely
combinatorial and seemingly very modest, strengthening of shift equivalence that
we call compatible shift equivalence (CSE), but to our surprise we could show the
third inclusion in

SSE ⊆ CSE ⊆ RSE ⊆ 11 ⊆ SSE,

which entails that all these notions coincide, and offer alternative descriptions of
Williams’ most restrictive notion of strong shift equivalence.
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The realization that CSE = SSE appears to be new, and we are currently
studying it as a way to attack well known concrete open problems in symbolic
dynamics, but the result implies that such an approach to establishing (∗) is not
possible. Until this important open problem has been resolved, one can at least
see that SE ⊆ 00 by combining [8] with [1].
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Consequences of the recent resolution of the
Peterson-Thom conjecture

Ben Hayes

(joint work with David Jekel and Srivatsav Kunnawalkam Elayavalli)

Given a finite von Neumann algebra M , we say that M has unique maximal
amenable extensions if for every diffuse, amenable subalgebra Q ≤ M there is
a unique maximal amenable P ≤ M with Q ⊆ P . In [14], Peterson-Thom con-
jectured that any diffuse, amenable subalgebra of a free group factor has unique
maximal amenable extensions, a conjecture that came to be known the Peterson-
Thom conjecture. This conjecture was motivated by Peterson-Thom work results
on L2-Betti numbers as well as prior work of previous work of Ozawa-Popa, Pe-
terson, and Jung [11, 13, 10].

This formulation in terms of unique maximal amenable extensions does not
lend itself well to testing examples, but another formulation in terms of absorp-
tion of amenable subalgebras does. We say that a diffuse P ≤M has the absorb-
ing amenability property if whenever Q ≤ M is amenable, and P ∩ Q is diffuse,
then Q ≤ P . The Peterson-Thom conjecture is then equivalent to the statement
that every maximal amenable subalgebra of a free group factor has the absorbing
amenability property. This reformulation inspired many papers establishing the
absorbing amenability property (and other absorption properties such as Gamma
stability) in many examples (see [7, 22, 2, 12, 6]).

In [5], the first-named author formulated a conjecture on random matrices which
he showed to imply the Peterson-Thom conjecture. Several works in randommatri-
ces made progress towards this random matrix conjecture. A recent breakthrough
of Belinschi and Capitaine [1] proves this random matrix conjecture, thus resolving
the Peterson-Thom conjecture in the positive. The aim of this talk was to talk
about applications of this resolution to general structure of free group factors.

The reduction of the Peterson-Thom conjecture to a random matrix prob-
lem uses Voiculescu’s microstates free entropy dimension theory, namely the 1-
bounded entropy implicitly defined by Jung [10] and explicitly by the author in [4].
Voiculescu’s microstates free entropy dimension was a crucial tool in Voiculescu’s
breakthrough result on absence of Cartan subalgebras [21]. This was itself gener-
alized for algebras much more general than free group factors by Ozawa-Popa [11]
using Popa’s deformation/rigidity theory. For our first application, we use several
weakenings of the normalizer. We recall some of these weakenings here. The first
is the 1-sided quasi-normalizer defined in [9, 15, 17] (building off of ideas in [16]),

q1NM (N) =



x ∈M : there exists x1, · · · , xn ∈M so that xN ⊆

n∑

j=1

Nxj



 ,

we also consider the wq-normalizer, defined in [18, 19, 8, 3],

Nwq
M (N) = {u ∈ U(M) : uNu∗ ∩N is diffuse}
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and its cousin the very weak quasi-normalizer

N vwq
M (N) = {u ∈ U(M) : there exists v ∈ U(M) so that uNv ∩N is diffuse.}.

Since uNv ∩ N is not an algebra, the phrase “uNv ∩ N is diffuse” should be
interpreted as saying that there is a sequence of unitaries vn ∈ uNv ∩ N which
tend to zero weakly. We also consider the weak interwining space wIM (Q,Q) due
to Popa [20]. As shown in [4, Proposition 3.2], all of these are contained in the
anti-coarse subspace,

Hanti−c(N ≤M) =
⋂

T∈HomN−N (L2(M),L2(N)⊗L2(N))

ker(T ).

Here HomN−N (L2(M), L2(N) ⊗ L2(N) is the space of bounded, linear, N -N bi-
modular maps T : L2(M) → L2(N)⊗ L2(N).

Theorem 1. Let t > 1 and let Q ≤ L(Ft) be a diffuse, amenable subalgebra. Then
W ∗(Hanti−c(Q ≤ L(Ft))) remains amenable. In particular, for any

X ⊆ q1NL(Ft)(Q) ∪ Nwq
L(Ft)

(Q) ∪ wIL(Ft)(Q,Q) ∪ N vwq
M (Q)

we have that W ∗(X) is amenable.

We can list a generalization of this in the ultraproduct setting.

Theorem 2. Let t ∈ (1,+∞) and let ω be a free ultrafilter on N. Suppose that
Q ≤ L(Ft)

ω is a diffuse, amenable subalgebra. Suppose we are given Neumann
subalgebras Qα defined for ordinals α satisfying the following:

• Q0 = Q,
• if α is a successor ordinal then Qα =W ∗(Xα) where

Xα ⊆ q1NL(Ft)ω (Qα−1) ∪Nwq
L(Ft)ω

(Qα−1) ∪wIL(Ft)ω (Qα−1, Qα−1) ∪ N vwq
M (Qα−1)

• if α is a limit ordinal, then Qα =
⋃
β<αQβ

SOT
.

Then for any ordinal α we have Qα ∩L(Ft) is amenable. In particular, L(Ft) has
the following Gamma stability property: if Q ≤ L(Ft)

ω is diffuse, and if Q′∩L(Ft)
ω

is diffuse, then Q ∩ L(Ft) is amenable.

This recovers the previous Gamma stability results from [7].
The case of the weak intertwining space itself leads to a dichotomy in terms

of Popa’s deformation/ridigity theory for maximal amenable subalgebras of free
group factors. Recall that if M is finite von Neumann algebra, and P,Q ≤M we
say that a corner of Q embeds into P inside of M and write Q � P if there are
nonzero projections f ∈ Q, e ∈ P , a unital ∗-homomorphism Θ: fQf → ePe and
a nonzero partial isometry v ∈M so that:

• xv = vΘ(x) for all x ∈ fQf ,
• vv∗ ∈ (fQf)′ ∩ fMf ,
• v∗v ∈ Θ(fqf)′ ∩ eMe.

This should be thought as Q,P being “unitarily conjugate up to cutting by a
corner”. This definition is due to Popa [18].
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Theorem 3. Fix t > 1, and let Q,P be maximal amenable subalgebras of L(Ft).
Then exactly one of the following occurs:

(1) either there are nonzero projections e ∈ Q, f ∈ P and a unitary u ∈ L(Ft)
so that u∗(ePe)u = fQf , or

(2) for any diffuse Q0 ≤ Q we have that no corner of Q0 embeds into Q inside
of L(Ft) (in the sense of Popa).

Our next application is a positive resolution of the coarseness conjecture in-
dependently due to the first-named author and Popa [4, Conjecture 1.12] and
[20, Conjecture 5.2]. If M is a von Neumann algebra, an M -M bimodule H is a
Hilbert space with normal left and right actions of M which commute. We use

MHM to mean that H is an M -M bimodule. If H,K are M -M bimodules, we
use MHM ≤M KM to mean that there is M -bimodular unitary map H → K. If
H1 ≤ H2 are Hilbert spaces, we use H2 ⊖H1 for H⊥

1 ∩H2.

Theorem 4. Let t > 1. For any maximal amenable subalgebra P ≤ L(Ft) we
have

P [L
2(L(Ft))⊖ L2(P )]P ≤ (L2(P )⊗ L2(P ))⊕∞.

In [20], this property is referred to as coarseness of the inclusion P ≤ L(Ft).
As explained in the introduction to [20], we may think of coarseness as the “most
random” position a subalgebra can be in. It is of interest to specialize theorem 4
to the case where P is abelian.

Suppose (M, τ) is a tracial von Neumann algebra, and A ≤ M is a maximal
abelian ∗-subalgebra. Write A = L∞(X,µ) for some compact Hausdorff space X
and some Borel probability measure µ on X . The representation

π : C(X)⊗ C(X) → B(L2(M)⊖ L2(A))

given by

π(f ⊗ g)ξ = fξg,

gives rise to a spectral measure E on X×X whose marginals are Radon-Nikodym
equivalent to µ. We say that ν ∈ Prob(X×X) is a left/right measure of A ≤M if
it is Radon-Nikodym equivalent to E. One often abuses terminology and refers to
the left/right measure to refer to any element of this equivalence class of measures.

Theorem 5. Let M = L(Ft) for t > 1. Suppose that A ≤ M is abelian and
a maximal amenable subalgebra of M . Write A = L∞(X,µ) for some compact
metrizable space X and some Borel probability measure on X. Then the left/right
measure of A ≤M is absolutely continuous with respect to µ⊗ µ.
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Conjugacy of local homeomorphisms via groupoids and C*-algebras

Becky Armstrong

(joint work with Kevin Aguyar Brix, Toke Meier Carlsen, and Søren Eilers)

A (rank-one) Deaconu–Renault system consists of a locally compact Hausdorff
space X and a partially defined local homeomorphism σX : dom(σX) → ran(σX)
between open subsets of X. Each such system gives rise to an associated amenable
locally compact Hausdorff étale groupoid GX (called a Deaconu–Renault groupoid)
that is graded by the integers, along with an associated groupoid C*-algebra
C∗(GX). Examples of such systems include homeomorphisms and covering maps
on locally compact Hausdorff spaces, one-sided shifts of finite type, and one-sided
shifts on the boundary-path spaces of directed graphs and topological graphs. The
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class of C*-algebras associated to Deaconu–Renault systems is quite large, and in-
cludes C*-crossed products by actions of the integers, graph C*-algebras, and all
Kirchberg algebras satisfying the universal coefficient theorem.

In 2008 Renault showed that every separable C*-algebra containing a Cartan
subalgebra can be realised as a reduced twisted groupoid C*-algebra C∗

r (G; E)
with Cartan subalgebra C0(G), and conversely, that given a twist E over a second-
countable locally compact Hausdorff étale groupoid G, C0(G) is a Cartan sub-
algebra of C∗

r (G; E) if and only if G is topologically principal (see [11, Theo-
rems 4.2(ii), 5.2, and 5.9]). Although this result is extremely useful for recovering
groupoid data from a large class of C*-algebras, it is not necessarily applicable
in our setting, because a Deaconu–Renault groupoid GX is topologically principal
if and only if the set of non-periodic points (with respect to σX) is dense in X,
which is not a condition that we insist on in our setting. A natural question to
ask instead in the setting of Deaconu–Renault groupoids is whether the Deaconu–
Renault system can be recovered from its associated groupoid or C*-algebra, at
least up to some type of equivalence.

With this goal in mind, in my talk I introduced the following notion of (topo-
logical) conjugacy of Deaconu–Renault systems. I then showed how the conjugacy
class of a Deaconu–Renault system may be recovered from its associated groupoid
or groupoid C*-algebra. (The details can be found in [1].)

Definition ([1, Definition 2.1]). Let (X, σX) and (Y, σY) be Deaconu–Renault
systems. We call a homeomorphism h : X → Y a conjugacy if h(σX(x)) = σY(h(x))
for all x ∈ dom(σX), and h−1(σY(y)) = σX(h

−1(y)) for all y ∈ dom(σY). We
say that the systems (X, σX) and (Y, σY) are conjugate if there exists a conjugacy
h : X → Y.

Suppose that (X, σX) is a Deaconu–Renault system and that Γ is a locally com-
pact abelian group. Fix f ∈ C(X,Γ). Let cf : GX → Γ be the continuous 1-cocycle
given by

cf (x,m− n, y) :=

m−1∑

i=0

f
(
σiX(x)

)
−
n−1∑

j=0

f
(
σj
X
(y)

)
,

for (x,m − n, y) ∈ GX satisfying σm
X
(x) = σn

X
(y). Let γX,f : Γ̂ y C∗(GX) be the

weighted action satisfying

γX,fχ (ξ)(x,m − n, y) := χ(cf (x,m− n, y)) ξ(x,m− n, y),

for χ ∈ Γ̂, ξ ∈ Cc(GX), and (x,m− n, y) ∈ GX satisfying σm
X
(x) = σn

X
(y).

In my talk I presented the following simplified version of the main theorem that
appears in our paper. (See [1, Theorem 3.1] for the complete statement of the
theorem.)
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Theorem. Let (X, σX) and (Y, σY) be second-countable Deaconu–Renault sys-
tems. Let Γ be any locally compact abelian group that is separating for X and Y,
in the sense of [1, Definition 3.5]1. The following statements are equivalent.

(1) The systems (X, σX) and (Y, σY) are conjugate.
(2) There exists a groupoid isomorphism ψ : GX → GY satisfying the following

three equivalent conditions:
(i) there is a conjugacy h : X → Y such that ψ(x, p, y) = (h(x), p, h(y)) for

all (x, p, y) ∈ GX;
(ii) cg ◦ ψ = cg ◦ψ|X for all g ∈ C(Y,Γ);
(iii) there is a homeomorphism h : X → Y that satisfies cg◦h = cg ◦ ψ for all

g ∈ C(Y,Γ).
(3) There is a ∗-isomorphism ϕ : C∗(GX) → C∗(GY) satisfying the following two

equivalent conditions:
(i) ϕ(C0(X)) = C0(Y), and there is a conjugacy h : X → Y such that ϕ(f) =

f ◦ h−1 for all f ∈ C0(X) and ϕ ◦ γX,g◦hχ = γY,gχ ◦ ϕ for all χ ∈ Γ̂ and
g ∈ C(Y,Γ);

(ii) there is a homeomorphism h : X → Y (which is not necessarily a conju-

gacy) such that ϕ ◦ γX,g◦hχ = γY,gχ ◦ ϕ for all χ ∈ Γ̂ and g ∈ C(Y,Γ).

The above theorem generalises much of the previous work on the subject, which
has mainly focused on specific examples of Deaconu–Renault systems arising from
directed graphs and irreducible {0, 1}-matrices (see, for instance, [5, 3, 7, 8, 9, 10]).
Applying our theorem in the setting of shifts of finite type provides a strengthening
of a recent theorem of Matsumoto; c.f. [10, Theorem 1]. The proof of our theorem
was inspired by Matsumoto’s methods and also complements and applies results
of Carlsen, Ruiz, Sims, and Tomforde [4].

In future work [2], we shall approach conjugacy of directed graphs from an
algorithmic and combinatorial point of view related to [6].
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Characterizing traces on crossed products of noncommutative
C*-algebras

Dan Ursu

Having a nice description of the traces on a C*-algebra is often of interest, for
example due to the fact that traces form part of the Elliott invariant in classifica-
tion theory. Given a unital C*-algebra A and a discrete group G acting on A by
*-automorphisms, we give complete descriptions of the tracial states on both the
universal and reduced crossed products A⋊G and A⋊λ G, respectively, in terms
of the G-invariant traces on A.

Theorem 1. Let τ ∈ TG(A) be a G-invariant trace on A, let πτ : A→ B(Hτ ) be
the GNS representation, and let M = πτ (A)

′′ be the enveloping von Neumann al-
gebra of A under this representation, with faithful normal trace τM . The following
are in canonical bijection:

(1) Traces σ ∈ T (A⋊G) satisfying σ|A = τ .
(2) Maps from G to M sending t ∈ G to xt ∈M such that:

(a) xe = 1
(b) xty = (t · y)xt for all y ∈M
(c) s · xt = xsts−1

(d) The matrix [xst−1 ]s,t∈G is positive, in the sense that it is positive on
finite submatrices.

Given coefficients {xt}t∈G, the corresponding trace σ ∈ T (A ⋊ G) is given by
σ(aut) = τM (πτ (a)xt).

For the reduced crossed product A⋊λG, it is a result of Bryder and Kennedy in
[3, Theorem 5.2] that traces on A⋊λG concentrate on A⋊λRa(G) = A⋊Ra(G),
where Ra(G) is the amenable radical of G. Hence, any result on the universal
crossed product automatically gives a similar corresponding result on the reduced
crossed product, and we will not repeat them here.

It is has been well-known for some time that if the action of G on the enveloping
von Neumann algebra πτ (A)

′′ is properly outer, then the trace τ ∈ TG(A) has
unique extension to the crossed product (the converse is true if A is commutative,
but not if it is noncommutative). See for example [1, Section 2]. It is easy to
read this off from condition 2b in Theorem 1, as proper outerness is equivalent
to the coefficients xt being zero for t 6= e. One can also interpret Theorem 1
to get an if and only if condition on when the trace has unique extension to
the crossed product. In addition, by taking polar decomposition xt = ut|xt|,
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we obtain corresponding conditions on unitaries on corners of the von Neumann
algebra πτ (A)

′′. Condition 2d, however, does not result in anything nice. One
might therefore ask if there are special cases where the conditions simplify, and
the case of FC groups is one of them.

Theorem 2. Assume G is an FC group, i.e. each conjugacy class of G is finite.
Let τ ∈ TG(A) be a G-invariant trace on A, let πτ : A → B(Hτ ) be the GNS
representation, and let M = πτ (A)

′′. Then τ has unique tracial extension to the
crossed product A⋊G if and only if the following scenario is impossible:

There is some t 6= e in G, some nonzero t-invariant central projection p ∈ M ,
and some unitary u ∈ U(Mp) such that t acts by Adu on Mp and s · u = u for
all s ∈ CG(t).

Observe that if the final condition of “s ·u = u for all s ∈ CG(t)” were omitted,
then the above statement would simply be that G acts on πτ (A)

′′ properly outer.
In the case of abelian groups G, old results of Bédos [2, Proposition 11] and Thom-
sen [4, Theorem 4.3] more or less claim results along the lines of this being the case,
i.e. unique extension of the trace is equivalent to proper outerness of the action.
Unfortunately, this is seen to be false with a finite-dimensional counterexample.

Example 1. Let Z2 × Z2 = 〈u〉 × 〈v〉 act on M2 by

u = Ad

[
1 0
0 −1

]
and v = Ad

[
0 1
1 0

]
.

Clearly, this action is not properly outer. However, the crossed product M2 ⋊

(Z2 × Z2) is isomorphic to M4 (a simple computation will show that the crossed
product has trivial center), and therefore has a unique trace.

Theorem 2 provides a fix to the aforementioned results of Bédos and Thomsen.
However, given that the specific case of G = Z is often the case of interest for
many people, it would be quite nice if their results still indeed hold in that case.
As it turns out, the answer is yes:

Theorem 3. Assume G = Z, and τ ∈ TZ(A) is an invariant trace on A. Let
πτ : A → B(Hτ ) be the GNS representation, and let M = πτ (A)

′′. Then τ has
unique extension to the crossed product A⋊Z if and only if the action of Z on M
is properly outer.

It would also be interesting to know if there is some cohomological reason why
this works for G = Z, and if there are any other groups for which this works.
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Inclusions of C∗-algebras

Mikael Rørdam

In analogy with irreducible inclusions of von Neumann algebra factors, an inclu-
sion A ⊆ B of unital simple C∗-algebras is said to be C∗-irreducible if all its
intermediate C∗-algebras are simple. This can be shown to be equivalent to each
non-zero positive element b in B being full relatively to A, i.e.,

∑n
j=1 x

∗
jbxj ≥ 1,

for some xj ∈ B. An inclusion of type II1 factors is C∗-irreducible if and only
if it is irreducible and has finite index (this largely follows from results of Popa).
An inclusion of unital simple C∗-algebras of finite index wrt some conditional ex-
pectation is C∗-irreducible if and only if it is irreducible (by a theorem of Izumi,
[3]).

Besides determining when an inclusion of simple C∗-algebras is C∗-irreducible,
it is an important and challenging problem to classify all intermediate C∗-algebras
of such inclusions. There are surprisingly many strong results in this direction,
in some cases providing Galois type correspondances between intermediate C∗-
algebras and other related substructures.

Many interesting examples of inclusions of C∗-algebras arise from groups and
dynamical systems. For example, if Γ is a discrete group acting on a unital C∗-
algebra A one obtains inclusions A ⊆ A ⋊r Γ and C∗

λ(Γ) ⊆ A ⋊r Γ, and more
generally A ⋊r Λ ⊆ A ⋊r Γ, whenever Λ is a subgroup of Γ. We have full un-
derstanding of when the former two types of inclusions are C∗-irreducible. It is
particularly interesting to decide when inclusions of the form C∗

λ(Λ) ⊆ C∗
λ(Γ) are

C∗-irreducible. One can think of this problem as a relative version of C∗-simplicty
of groups, and indeed, existence of a (topological) free actions of Γ on a compact
Hausdorff space, which is boundary relatively to the subgroup (in a suitable way)
can be shown to imply C∗-irreducibility of the inclusion. By results of Ursu and
Bedos–Omland, the reverse implication also holds in the case when the subgroup
is normal, see [1].

With Echterhoff, we proved in [2] when inclusions of the form AH ⊆ A ⋊r G,
the C∗-analog of inclusions of II1-factors considered by Bisch and Haagerup, are
C∗-irreducible, where A is a simple C∗-algebra and G and H are groups acting
(outerly) on A, with H finite.

There are several techniques available to study inclusions of C∗-algebras, such
as the relative Dixmier property, introduced by Popa in [4]. In [5], Popa intro-
duced an averaging property for automorphisms on C∗-algebras which provides a
powerful tool to study inclusions arising from crossed products. More specifically,
an automorphism α on a unital C∗-algebra A has Popa’s averaging property if 0
belongs to the closed convex hull of {ubα(u)∗ : u ∈ U(A)}, for all b ∈ A. (It is also
interesting to consider the weaker property that 0 belongs to the closed convex
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hull of {uα(u)∗ : u ∈ U(A)}.) We described which automorphisms possess these
properties, and mentioned several applications thereof.
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