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Abstract. This workshop was gathering applied mathematicians and com-
puter scientists interested in image and geometry processing. These topics
have developed tremendously in the past few years with the rise of artificial in-
telligence, parallel hardware and strong needs for real-world applications (3D
scene reconstruction, architecture, medical imaging and data analysis, etc).
These research fields are at the intersection of many mathematical disciplines,
from geometry, calculus of variations and optimization to the analysis and
numerical analysis of PDEs. The almost 50 participants to this workshop,
including many young researchers, had many fruitful exchanges, interested
in common issues and speaking a common language, yet often coming from
different backgrounds and with different knowledge.

This volume collects the abstracts for all the presentations covering this
wide spectrum of tools and application domains.

Mathematics Subject Classification (2020): 65Dxx, 68Uxx.

Introduction by the Organizers

The workshop Mathematical Imaging and Surface Processing, coming after a pre-
vious event organized in January 2016 (workshop # 1604), gathered nearly 50
participants, applied mathematicians, experts in discrete geometry, computer sci-
entists, all interested in problems related to image processing (shape and infor-
mation retrieval, inverse problems) and geometry processing (modeling, discrete
surfaces and their analysis, computational issues...) The midsummer atmosphere
was relaxing and encouraged fruitful discussions between researchers embracing
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different aspects of the problems presented during the talks, and a strong par-
ticipation of young researchers (advanced PhD students, post-docs) was noticed,
which fostered many exchanges of great interest to all participants.

The talks addressed many issues related to shape and image processing, includ-
ing mathematical and numerical analysis, computational issues, learning tech-
niques. During the first day, we could for instance hear a seminar on a represen-
tation of the Willmore energy on triangular meshes (embedded in R3, consistent
in the sense of Γ-convergence), as well as a nice companion talk, more computer
science oriented, on discrete “distortion” energies for comparing shapes and their
symmetric counterparts. In particular, the ARAP criterion (“as rigid as possible”),
which is a sort of local distance to rotations, was introduced and this proved very
useful for many subsequent talks relying on this family of energies and address-
ing similar problems. We also had the same day two talks on geometric learning
and one impressive simplification of the deep learning (usually adversarial) based
methods for image generation, based on score-matching. All in all, it appeared
quickly that neural network based methods and similar learning techniques, not
much discussed in 2016, have become important for the applications addressed in
this conference, whether it be as a main tool, a subject of study, or more often as
being of great help to improve part of the processes. They appeared in some talks
as auto-encoders to reduce the dimension and learn low-dimensional manifolds
from images of rotating/moving figures, as a tool for encoding implicit surfaces, or
appropriately tweaked so as to represent and approximate one-Lipschitz functions
(the latter being possibly an interesting approach for the former)...

A few very computational talks impressed the audience with movies of self-
avoiding deformed shells (well introduced first theoretically), or efficient learning
methods for shape matching, also, various convex representation to compute min-
imal surfaces or similar problems were presented.

PDEs, numerical analysis and variational calculus were also a strong common
language for many participants. In addition to some already mentioned issues, a
few talks were addressing polygonal meshes, from the point of view of designing fi-
nite elements on arbitrary shapes, meshing surfaces with hexagons or other shapes,
or numerical criteria for building developpable surfaces, notably for applications
to architecture and design. PDEs oriented talks were also a few, most manifold-
oriented, whether it be the study of geodesic on shape manifolds, the optimality
conditions for Fréchet means, or of the W2-Wasserstein flow as a Riemannian flow
for image quantization. The Wasserstein optimal transport problems appeared in
two talks as a very interesting tool for multi-dimensional sorting, whether it be
for quantile regression and learning or from a computational point of view.

It appears that this workshop was quite a success, as the apparent variety of the
participants was nicely balanced by a common language and culture and shared
interests, and all the talks were appreciated by most, as was obvious from the
discussions afterwards and during the coffee breaks. The afternoon dedicated to
young researchers (on the Tuesday) allowed them to feel more quickly part of the
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group and be included in the exchanges, this interaction was very valuable for all
participants.

It is hoped that a next similar conference will be organized in the future on
these topics, with hopefully as many discussions and exchanges, fruitful for all,
and to start with many young researchers.
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Abstracts

GLASS: Geometric Latent Augmentation for Learned Shape Spaces

Niloy J. Mitra

(joint work with Sanjeev Muralikrishnan and Luca Morreale)

Figure 1. Starting from just very few shapes, GLASS iteratively
augments the collection by alternating between training a VAE,
and exploring random perturbations in its low-dimensional latent
space guided by a purely geometric deformation energy. Despite
facial expressions not being perfectly locally rigid, we show above
that GLASS generates plausible novel expressions on the COMA
dataset from just three landmarks.

Building a parameterized shape space (e.g., for humans) is desirable for many
downstream tasks. Simplistically, the problem requires the handling of three sub-
problems: establishing correspondence across the observed shapes, building an
underlying deformation model (or energy), and discovering a lower-dimensional
parameterization of the templatized shapes. Although the problem has been in-
vestigated by many hundreds of papers over multiple decades, the subproblems
have largely been handled separately. We revisit the problem with deep learning
tools to simultaneously solve all three tasks. In this talk, we report our current
findings and show initial results that indicate that one may be able to tackle this
problem in an unsupervised setup. Technically, we analyze the Hessian of the
as-rigid-as-possible (ARAP) energy to adaptively sample from and project to the
underlying (local) shape space and use the augmented dataset to train a varia-
tional autoencoder (VAE). We iterate the process of building latent spaces of VAE
and augmenting the associated dataset to progressively reveal a richer and more
expressive generative space for creating geometrically and semantically valid sam-
ples. We demonstrate applications in surface map extraction, data augmentation,
and model building.

References

[1] S. Muralikrishnan, S. Chaudhuri, N. Aigerman, V. Kim, M. Fisher, N. Mitra, GLASS:
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Consistent discrete approximations of the Willmore energy

Peter Gladbach

(joint work with Heiner Olbermann)

We consider two discretizations of the Willmore energy for C2 compact surfaces
M ⊂ R3, which can be written as

(1) W (M) :=

∫

M

|Dn(x)|2 dA,

where n : M → S2 is the (locally oriented) unit normal field and its derivative
Dn(x) ∈ Lin(TxM ;TxM) is the shape operator.

The discrete approximations of W act on triangular surfaces instead of C2

surfaces, where the true Willmore energy is typically infinite. A triangular surface
is a finite collection of triangles T := {K1, . . . ,KN}, Ki = conv(xi, yi, zi) ⊂ R3,
with each triangle sharing precisely one edge with each of its three neighbors.

The first discrete approximation we consider is the discrete bending energy from
[1]

(2) E(T ) :=
1

2

∑

K∈T

∑

L∼K

lKL

dKL

|n(K)− n(L)|2.

Here lKL; = Len(K ∩ L) is the length of the common edge of two neigbhoring
triangles, and dKL := |qK − qL| is the euclidean distance of the circumcenters,
whereas n(K), n(L) ∈ S2 are the like-oriented normals of K and L respectively.

In [3] we show the following theorem:

Theorem 1.

(i) Whenever M is a W 2,2 ∩W 1,∞ graph and whenever Tk is a sequence of
triangular surfaces that are (a) uniformly Lipschitz graphs (b) Delaunay
(c) uniformly inner regular (d) maxK∈Tk

diam(K) → 0 (e) converge in
Hausdorff distance to M , then

W (M) ≤ lim inf
k→∞

E(Tk).

(ii) Whenever M is a W 2,2∩W 1,∞ graph, there is a sequence Tk of triangular
surfaces satisfying (a),(b),(c),(d),(e) such that

W (M) = lim
k→∞

E(Tk).

If M is C3, we may choose all vertices on M .

We note here that condition (a) is a technical assumption that guarantees con-
vergence of the measures in normal, whereas condition (b) is necessary to guarantee
the lower bound (i). The construction in (ii) is very delicate, since the only tri-
angular surfaces guaranteeing convergence in energy have edges almost parallel to
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curvature nets, i.e. almost right angles. However, right triangles barely satisfy the
Delaunay condition and their circumcenters lie on the hypotenuse, where dKL = 0.

In an upcoming article, we show that a different discrete energy, first seen in
[2], has better convergence properties. The energy uses so called edge directors,
which are vector fields n : E(T ) → S2 defined on the edges of a triangular surface
T and satisfying n(K ∩ L) · τ(K ∩ L) = 0, where τ(K ∩ L) ∈ R

3 is the tangent
vector. Given a triangular surface and an edge director, we define the energy

(3) F (T , n) :=
∑

K∈T
Area(K)|DnK |2,

where nK : K → R3 is the affine interpolation of the edge director field sampled
at the edge midpoints. We show the following theorem:

Theorem 2.

(i) M is a W 2,2 ∩W 1,∞ graph and whenever Tk is a sequence of triangular
surfaces satisfying (a), (c), (d), (e), nk a sequence of edge directors for
Tk, then

W (M) ≤ lim inf
k→∞

F (Tk, nk).

(ii) Whenever M is a W 2,2∩W 1,∞ graph, there is a sequence Tk of triangular
surfaces satisfying (a),(b),(c),(d),(e) and a sequence of edge directors nk

for Tk such that

W (M) = lim
k→∞

F (Tk, nk).

If M is C3, any triangular surface T with vertices in M satisfying
(c),(d) has an edge director n such that

|W (M)− F (T , n)| ≤ C max
K∈T

diam|K|.

References
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Score based diffusion models for conditional image generation

Carola-Bibiane Schönlieb

(joint work with Georgios Batzolis, Jan Stanczuk, Christian Etmann)

Score-based diffusion models have emerged as one of the most promising frame-
works for deep generative modelling. In [1] we conduct a systematic comparison
and theoretical analysis of different approaches to learning conditional probabil-
ity distributions with score-based diffusion models. In particular, we prove results
which provide a theoretical justification for one of the most successful estimators of
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the conditional score. Moreover, we introduce a multi-speed diffusion framework,
which leads to a new estimator for the conditional score, performing on par with
previous state-of-the-art approaches. Our theoretical and experimental findings
are accompanied by an open source library MSDiff which allows for application
and further research of multi-speed diffusion models.

Original image x Observation y Sample from pθ(x|y)

Figure 1. Results from our conditional multi-speed diffusive es-
timator.

Generative models based on score based diffusion modelling. In a recent work [2]
score-based [3, 4] and diffusion-based [5, 6] generative models have been unified into
a single continuous-time score-based framework with diffusion driven by stochastic
differential equations. This continuous-time score-based diffusion technique relies
on Anderson’s Theorem [7], which states that (under certain assumptions on µ :
Rnx × R −→ Rnx and σ : R −→ R) a forward diffusion process

dx = µ(x, t)dt+ σ(t)dw(1)

has a reverse diffusion process governed by the following SDE:

dx = [µ(x, t) − σ(t)2∇xln pXt
(x)]dt+ σ(t)dw̄,(2)

where w̄ is a standard Wiener process in reverse time.
The forward diffusion process transforms the target distribution p(x0) to a dif-

fused distribution p(xT ). By appropriately selecting the drift and the diffusion
coefficients of the forward SDE, we can make sure that after sufficiently long time
T , the diffused distribution p(xT ) approximates a simple distribution, such as
N (0, I). We refer to this simple distribution as the prior distribution, denoted by
π.

If we have access to the score of the marginal distribution, ∇xt
ln p(xt), for all

t, we can derive the reverse diffusion process and simulate it to map pT to p0.
In practice, we approximate the score of the time-dependent distribution by a
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neural network sθ(xt, t) ≈ ∇xt
ln p(xt) and map the prior distribution π ≈ p(xT )

to pθ(x) ≈ p(x0) by solving the reverse-time SDE from time T to time 0. One
can integrate the reverse SDE using standard numerical SDE solvers such Euler-
Maruyama or other discretisation strategies. The authors propose to couple the
standard integration step with a fixed number of LangevinMCMC steps to leverage
the knowledge of the score of the distribution at each intermediate timestep. The
MCMC correction step improves sampling; the combined algorithm is known as a
predictor-corrector scheme.

In order to fit a neural network model sθ(xt, t) to approximate the score
∇xt

ln p(xt), we minimize the weighted Fisher’s divergence

LSM (θ) :=
1

2
Et∼U(0,T )
xt∼p(xt)

[λ(t) ‖∇xt
ln p(xt)− sθ(xt, t)‖22](3)

where λ : [0, T ] −→ R+ is a positive weighting function. We refer to [2] for details.
Conditional score based generation. The continuous score-matching framework can
be extended to conditional generation, as shown in [2]. Suppose we are interested
in p(x|y), where x is a target image and y is a condition image. Again, we use the
forward diffusion process (Equation 1) to obtain a family of diffused distributions
p(xt|y) and apply Anderson’s Theorem to derive the conditional reverse-time SDE

(4) dx = [µ(x, t) − σ(t)2∇x ln pXt
(x|y)]dt+ σ(t)dw̃.

Now we need to learn the score ∇xt
ln p(xt|y) in order to be able to sample from

p(x|y) using reverse-time diffusion.

In [1] we propose a new approach to estimate the conditional score, called multi-
speed diffusive estimator. Here, xt and yt diffuse according to SDEs with the same
drift but different diffusion rates,

dx = µ(x, t)dt + σx(t)dw

dy = µ(y, t)dt+ σy(t)dw.

In order to learn p(xt|yt), observe that

∇xt
ln p(xt|yt) = ∇xt

ln p(xt, yt) = ∇zt ln p(zt)[: nx],

where zt := (xt, yt) and nx is the dimensionality of x. Therefore we can learn the
(unconditional) score of the joint distribution p(xt, yt) using the denoising score
matching objective just like as in the unconditional case but with a positive definite
weighting matrix Λ(t) : R −→ R(nx+ny)×(nx+ny). Hence, the new training objective
becomes

1

2
Et∼U(0,T )
z0∼p0(z0)
zt∼p(zt|z0)

[vTΛ(t)v],
(5)

where v = ∇zt ln p(zt|z0) − sθ(zt, t), zt = (xt, yt). We can then extract our ap-
proximation for the conditional score ∇xt

ln p(xt|yt) by simply taking the first nx

components of sθ(xt, yt, t). Moreover, we can prove the following result which
provides a guidance on how to choose Λ which ensures that the objective of the
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score-based model upper-bounds the negative log-likelihood of the data, thus en-
abling approximate maximum likelihood training of score-based diffusion models.

Theorem 1. Let L(θ) be the CMDE training objective (Equation 5) with the
following weighting:

ΛMLE

i,j (t) =











σx(t)2, if i = j, i ≤ nx

σy(t)2, if i = j, nx < i ≤ ny

0, otherwise

Then the joint negative log-likelihood is upper bounded (up to a constant in θ)
by the training objective of CMDE

−E(x,y)∼p(x,y)[ln pθ(x, y)] ≤ L(θ) + C.

For more details on these results and a wider discussion on theoretical guaran-
tees for conditional score based diffusion models in the literature, as well as more
results from numerical experiments see our preprint [1].
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DeltaConv: Anisotropic Convolutions for Learning from Point Clouds

Klaus Hildebrandt

(joint work with Ruben Wiersma, Ahmad Nasikun, and Elmar Eisemann)

Due to advances in 3D acquisition and modeling, geometric 3D-data and 3D-data
collections are becoming more and more commonplace and are used in a number
of application areas. This has resulted in a need for computational methods to
make use of these data. In image processing and analysis, learning from image
collections using convolutional neural networks has proven to be very successful
and has led to many breakthroughs. This motivates the generalization of these
methods to geometric data such as point clouds or triangle meshes.
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The main differences between images and discrete surfaces are that images
are represented by a regular grid in a flat Euclidean domain whereas discrete
surface representations are irregularly sampled from curved domains. To build
convolutional neural networks for geometric data, the main operation that needs
to be generalized are the convolutions. Various generalized convolutions for point
clouds and other surface representations have been proposed [1]. One difficulty
in generalizing the convolutions is that, unlike in the Euclidean plane, there is no
global coordinate system on surfaces. This makes the construction of convolution
layers for surfaces that consistently extract and process directional information a
challenge.

Figure 1. Schematic overview of a DeltaConv block.

We present DeltaConv, a novel convolutional layer for learning from point
clouds. DeltaConv builds convolutions as compositions and linear combinations
of a selected set of geometric differential operators and pointwise nonlinearities.
The parameters of these combinations are optimized during training. To facilitate
the extraction and processing of directional information, the input and output of
a DeltaConv layer consist of scalar-valued and (tangential) vector-valued features.
Within a DeltaConv block, scalar-valued features are aggregated locally using the
Laplace–Beltrami operator or maximum aggregation and vector-valued features
are aggregated using the Hodge–Laplace operator. In addition, the gradient and
co-gradient are used to map from scalar-valued features to vector-valued features,
and divergence, curl, and the vector norm are used to map vector-valued features
to scalar-valued features. A schematic overview of a DeltaConv block is shown in
Figure 1.

By design, DeltaConv layers can construct anisotropic differential operators and
explicitly represent directional information in the vector features. Furthermore,
DeltaConv layers benefit from the properties of the geometric differential opera-
tors. For example, DeltaConv layers are invariant under isometric deformations of
a surface and robust to different samplings of the same surface.

For an extended description of DeltaConv, a discussion of its properties, and
experimental results, we refer to [2].
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Grid-Free Monte Carlo Methods for Partial Differential Equations

Keenan Crane

Partial differential equations (PDEs) provide fundamental models for phenomena
throughout science and engineering. Yet even after decades of research, traditional
methods for solving PDEs such as finite element methods (FEM) still struggle to
capture the immense complexity encountered in nature. Directly simulating the
inner workings of a human cell, or accurately predicting energy usage from a de-
tailed building model (including insulation, ventilation, plumbing, etc.), is still in
the realm of science fiction. A perennial challenge is the need to spatially discretize
the domain, i.e., dice up space into a grid or mesh that can be used to approxi-
mate the solution in a finite basis. This process is expensive, error prone, and is
often the weakest link in terms of building reliable systems on top of PDEs. A
major revolution in computer graphics was to replace FEM with stochastic Monte
Carlo methods-enabling photorealistic image generation for scenes of real-world
complexity. This talk likewise explores a radical departure from traditional PDE
solvers, by connecting deep insights from photorealistic Monte Carlo rendering to
a broad class of PDEs fundamental in scientific computing.

Walk on Spheres (WoS). The basic principle is to solve PDEs by simulating
a large collection of random walks. For instance, Kakutani’s principle asserts
that the steady-state distribution of heat in a domain Ω is equal to the expected
boundary value “seen” by a Brownian random walk. But how do you simulate
random walks? Rather than dice up space and take random walks on a discrete
graph, Muller [1] had a brilliant idea: since a walk starting at x ∈ Ω has equal
probability of exiting through any point on a sphere around x, just uniformly
sample a point on the largest empty sphere S(x) ⊂ Ω around x, and repeat until
you reach the boundary. This walk on spheres (WoS) algorithm avoids all the
major headaches of traditional PDE solvers: no mesh needs to be generated, there
is no spatial discretization error, and random walks are trivial to distribute in
parallel. However, Muller’s approach has received almost no attention over the
past 60 years, lagging far behind the capabilities of modern methods like FEM in
terms of the class of PDEs it can handle.

Next Generation WoS Methods. This talk explores strategies for expand-
ing the scope of problems that can be solved via grid-free Monte Carlo meth-
ods. A major part of this effort has been “modernizing” WoS by connecting
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it to tools developed for Monte Carlo rendering [2]—including both mathemati-
cal techniques (e.g., variance reduction strategies), as well as system engineering
(e.g., high-performance geometric queries). A more fundamental question is how
to construct Monte Carlo estimators for larger classes of PDEs. For instance, by
making connections to volume rendering, we have expanded this set to include
all linear-elliptic PDEs that fall under the umbrella of the Feynman-Kac formula,
including those with spatially-varying coefficients [3]. These more general PDEs
are essential for modeling complex heterogeneous behavior found in real systems
(such as spatially-varying material density or conductivity). More recently, we
have established a procedure for simulating reflecting Brownian motion on arbi-
trary, non-convex domains, which extends WoS to derivative (Neumann) boundary
conditions critical for most scientific problems. Note that these components rep-
resent only the most basic elements of a PDE solver: just as FEM has taken over
80 years to reach its current level of maturity, WoS offers rich new questions (and
opportunities) for many years to come.
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Optical Flow On Manifolds and For Elastography

Otmar Scherzer

(joint work with Clemens Kirisits, Ekaterina Sherina)

The motivating example is the embryogenesis of a zebrafish, which is observed via
volumetric microscopy images. Shortly after fertilization cells move on the yolk
and then they start to split and merge forming different organs, and eventually
the whole fish; see Figure 1.

We consider three topics:

(1) We generalize the concept of optical flow to a dynamic non-Euclidean
setting in order to analyze the image data (for instance, the cell movement)
on the manifold (the yolk), thereby assuming that the cells move on the
surface of the yolk, which may itself change its shape during time. The
motion of the cells and the yolk can only be separated if biological and
physical priors are taken into account, which is therefore advocated.
Let us assume that the yolk can be segmented, then the estimation of the
yolk’s movement can be reduced to a shape registration problem (see [1]).

(2) Our method of choice for solving shape registration problems is min-
imizing elastic thin shell energies, where the shapes are represented as
zero-level-sets [2, 3]. The outcome of the algorithm is depicted in Fig-
ure 2.
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Figure 1. Images from [1]: Sequence of embryonic zebrafish im-
ages. The curved mesh represents a section of the yolk’s surface
and the blue dots are marked cells. Original microscopic data by
Robin Kimmel and Dirk Meyer from the University of Innsbruck,
Austria.

Figure 2. Images from [3]: From left to right: Textured hand
shape M1, resulting deformed shape, comparison of target and
obtained shapes.

(3) Computational Elastography requires extraction of mechanical param-
eters from tomographic imaging data during compression of a probe or
body. Typically, the extraction process splits into two steps, consisting of
the strain reconstruction first and then subsequently estimating the me-
chanical properties, like the Young’s modulus. The main observation is
that strain rate estimated via standard Computer Vision tools, like the
optical flow, is too inaccurate, and therefore needs to be adapted to the
elastographic experiments. In other words, we require again prior infor-
mation on physical quantities (like a background material) to extract
accurate strain estimates. In particular, novel computational methods
have to be developed, which combine tracking and flow estimation (see
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[4, 5]). The subsequent estimation of mechanical properties is for instance
discussed in [6].

Figure 3. Images from [7]: Schematic depiction of an elasto-
graphic experiment. Typical strain images reconstructed from
imaging data.
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Designing Symmetric Distortion Energies

Justin Solomon

(joint work with S. Mazdak Abulnaga, Oded Stein, Polina Golland)

Many algorithms in geometry processing aim to find a low-distortion map from
one shape onto another, often by optimizing an energy measuring how well the
map preserves local geometry. In applications where there is no clear “source”
and “target” shape, we might reasonably expect a mapping algorithm to be sym-
metric, i.e., to have the property that the algorithm outputs the same map (up
to inversion) whether we map from domain M1 to domain M2 or from M2 to M1.
Motivated by some recent research in our group at MIT, my talk explores the
counterintuitive consequences the symmetry assumption has on the behavior and
design of distortion energies, opening new questions for numerical shape analysis.

In more detail, supposeM1,M2 ⊆ R3 are compact volumes bounded by smooth
surfaces. For applications like texture/annotation transfer and deformation, many
algorithms in geometry processing attempt to compute a (nearly) bijective map
φ : M1 → M2 satisfying various desirable properties, like smoothness and feature
preservation. A commonly-used optimization objective evaluates the distortion of
a candidate map φ via the energy

(1) Ef [φ] :=

∫

M1

f(Jφ(x)) dV (x).

Here, f (sometimes called a constitutive model) is some function of the signed sin-
gular values of the Jacobian Jφ(x) ∈ R3×3. For example, the choice fDirichlet(J) =
‖J‖2Fro corresponds to the Dirichlet energy of φ, while fARAP(J) = minR∈SO(3) ‖J−
R‖2Fro gives the popular as-rigid-as-possible deformation energy.

Many applications have no clear choice of “source” and “target” shape for the
computed map, i.e., the labeling ofM1 vs.M2 is irrelevant to the mapping problem.
This situation occurs, for example, when mapping between anatomical scans of two
subjects in a medical study. In this case, to avoid bias we might reasonably expect
that our algorithm produces the same map—up to inversion—regardless of the
labeling of M1 and M2. This concept of symmetry leads us to consider energy
densities f(·) leading to the property that Ef [φ] = Ef [φ

−1] for invertible maps φ.
We can transform any constitutive model f(·) into a symmetric energy fSym(·)

by summing Ef [φ] +Ef [φ
−1], equivalent after integral change of variables to sub-

stituting the following constitutive model into (1):

(2) fSym(J) := f(J) + | detJ |f(J−1).

While intuitively one might predict that fSym(·) would promote bijectivity or
even elasticity of φ, we find that symmetrizing many common distortion ener-
gies does not have that effect. For example, the symmetrized counterpart of the
Dirichlet energy fDirichlet(J) is still minimized at J = 0, preferring maps that col-
lapse rather than bijective maps. After considering a number of alternatives, we
find that symmetrizing fARAP(J) leads to a distortion energy with many desirable
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properties for the volume correspondence problem. For example, the symmetrized
counterpart is minimized when maps are isometric and blows up for singular maps.

Beyond exploring the mathematical consequences of designing symmetric dis-
tortion energies, we show that our calculations have direct bearing on performance
of algorithms for volumetric correspondence. We refer readers to [1] for details and
experiments.
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A multi-metric perspective on non-rigid surfaces with learning and
spectra twists

Ron Kimmel

(joint work with David BenSaid, Amit Bracha)

In the talk I have shown how utilizing the spectra and corresponding eigen-spaces
extracted from various LBOs (w.r.t. different metrics) provide better ways to
treat non-rigid surface matching, reconstruction, identification, and processing.
The focus of my lecture was our recent efforts in this domain jointly with David
BenSaid and Amit Bracha. We started with identifying scale invariant arc length
of planar curves by modulating the Euclidean arc length by the magnitude of the
Euclidean curvature. This pseudo-metric gives rise to a corresponding second order
differential operator, which eigenfunctions are the Fourier functions w.r.t. that
measure. At the other end, the regular Fourier w.r.t. the second derivative w.r.t.
the regular arc length can also be computed. Based on O. Halimi’s self-functional-
maps result, we argued that the inner product of these two spaces provides an
algebraic descriptor of planar curves.

In a similar way, we extend the discussion to surfaces, with corresponding reg-
ular and scale invariant laplacians. Then, we used these measures as natural
inputs to Litani’s functional-map-network and Halimi’s unsupervised version of
that, ending up with Bracha’s version which optimizes for the unitary relation
between the scale invariant Eigen-spaces of two different surfaces we would like
to compare. Finally, we also argued that the corresponding spectra w.r.t. the
two laplacians could serve as measures for comparing partial shapes to the whole
following Rampini et al. efforts. That last result was lead by David BenSaid.



2216 Oberwolfach Report 38/2022

Wasserstein Steepest Descent Flows of Discrepancies with
Distance Kernels

Gabriele Steidl

(joint work with Robert Beinert, Manuel Gräf, Johannes Hertich)

Let
(

P2(R
d),W2

)

denote the separable, complete metric space of all Borel prob-
ability measures with finite second moment with the Wasserstein distance W2 :
P2(R

d)× P2(R
d) → [0,∞) defined by

W 2
2 (µ, ν) := min

π∈Γ(µ,ν)

∫

Rd×Rd

‖x− y‖22 dπ(x, y), µ, ν ∈ P2(R
d),

where Γ(µ, ν) denotes the probability measures on Rd×Rd with marginals µ and ν.
A curve γ : I → P2(R

d) on the open interval I ⊂ R is called absolutely continuous
if there exists a function m ∈ L1(I) such that

W2(γ(s), γ(t)) ≤
∫ t

s

m(s) ds, s, t ∈ I.

Absolutely continuous curves are closely related to the continuity equation [1,
Thm 8.3.1]. More precisely, for an absolutely continuous curve γ : I → P2(R

d)
with metric derivative |γ′| ∈ L1(I) there exists a Borel velocity field v : (t, x) 7→
vt(x) such that vt ∈ L2(γ(t),R

d) and

‖vt‖L2(γ(t),Rd) = |γ′|(t) a.e. t ∈ I

and the continuity equation

∂tγ(t) +∇x · (γ(t)vt) = 0 in I × R
d

holds in the distributional sense and conversely. We are interested in forward
schemes for the computation of Wasserstein gradient flows.

For a given a function F : P2(R
d) → (−∞,+∞], an absolutely continuous curve

γ : (0,+∞) → P2(R
d) is called the Wasserstein gradient flow if its Borel velocity

field vt ∈ Tγ(t)P2(R
d) belongs to the Fréchet subdifferential of F at γ(t) for a.e.

t > 0. In other words, γ : (0,+∞) → P2(R
d) fulfills

(Id, vt)#γ(t) ∈ −∂−F(γ(t)) a.e. t > 0,

∂tγ(t) +∇x · (γ(t)vt) = 0 in I × R
d

in the distributional sense, see [1, Def. 11.1.1]. Here Tγ(t)P2(R
d) denotes the

regular tangent space of P2(R
d) at γ(t).

Interesting functionals are

F(µ) :=

{ ∫

Rd V (x) dµ(x) +
∫

Rd f(ρ(x)) dx +
∫

Rd K(x, y) dµ(x)dµ(x) µ = ρλ
+∞ o/w

where the first and second summand lead to the Fokker-Planck equation (Langevin
dynamics) when considering

KL(µ, ν) =

∫

Rd

log ρ(x)ρ(x) dx −
∫

Rd

log q(x)ρ(x) dx, µ = ρλ, ν = qλ
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the first and third summand appear in the discrepancy

F(µ) = D2
K(ν, ν) :=

1

2

∫

Rd

∫

Rd

K(x, y) dσ(x)dσ(y), σ := µ− ν.

We are interested in the later one. Discrepancy gradient flows or its interaction
energy part (third summand EK) were recently considered e.g. in [2, 3] for various
kernels. We want to deal with the kernel K(x, y) = −‖x − y‖2 not contained in
the mentioned papers, for which F is not λ-convex along generalized geodesics.
Our motivation came from halftoning problems in image processing [4, 6]. To
analyze the flow we have to work in the geometric tangent spaces of TµP2(R

d) of
(

P2(R
d),W2

)

at µ. We define the set of directions of steepest descent at µ by

H−F(µ) :=
{

(

H−
v
F(µ)

)− · v : v ∈ argmin
w∈TµP2(Rd),

‖w‖µ=1

H−
w
F(µ)

}

with Hadamard derivative

H−
v
F(µ) = lim inf

tց0
ṽ→v

F(γṽ(t)) −F(µ)

t
.

Then we call an absolutely continuous curve γ : I → P2(R
d) aWasserstein steepest

descent flow with respect to F if the tangent vectors vt = γ̇(t) exist for all t ∈ I
and are directions of steepest descent, i.e.,

γ̇(t) ∈ H−F(γ(t)), t ∈ I.

For functions F which are λ-convex along generalized geodesics (or more general
regular) we establish several relations with the Wasserstein gradient flow which can
be characterized by a certain limit of the backward scheme of Jordan, Kinderlehrer
and Otto [5].

Unfortunately the discrepancy functional with distance kernel is not convex
along geodesics. For the interaction energy E−‖·‖2

part of our special discrepancy
function, we obtain the following result.

Proposition (Unique direction of steepest descent at δ0).
The direction of steepest descent of E−‖·‖2

at δ0 is given by

γ̇(0) = δ0 ⊗ µ∗

with

i) d = 1: µ∗ = 1
2λ[−1,1] ∈ P2(R)

ii) d = 2: µ∗ = ρRλBR(0) ∈ P2(R
2), R = π/(2

√
3) with

ρR(x) :=

{

1
2πR

(

R2 − ‖x‖22
)− 1

2 , ‖x‖22 < R2,

0, else

iii) d = 3: µ∗ := σS2 ∈ P2(R
3), R = 2

3

A numerical example for the discrepancy flow in 2D from δ(−1,0) to δ(1,0) is given
in Figure 1.
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Figure 1. 2D particle gradient flow with respect to the discrep-
ancy D−‖·‖2

(δ(1,0), ·) starting in a small square around the point
(−1, 0). The black circles depict the border of the support of the
measures of the geodesic γv(t) starting at γv(0) = δ(−1,0) in the
direction of steepest descent v. For small 0 < t < 0.25 we observe
good accordance with our theoretical findings.
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Computing with isometries and developable surfaces

Johannes Wallner

(joint work with Felix Dellinger, Caigui Jiang, Helmut Pottmann, Florian Rist,
Cheng Wang)

Developable C2 surfaces constitute a prominent class of surfaces, besides being
important for applications – they represent the shapes of thin sheet material as it
bends from a flat state into space without stretching or tearing. It is interesting
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that even now new results on developable surfaces can be achieved, and we would
like to point here to the proof of existence of surfaces isometric to an annulus
which has been folded along concentric circles; see figure below, left and [1].

Geometric modeling with developables is notoriously difficult, and there has
been a great number of individual contributions. Nearly all of the well-known
geometric properties of developables have been pressed into service for character-
izing developability for different kinds of surface representations. These include
global ones like the existence of an orthogonal network of geodesic curves [5], local
ones like vanishing Gauss curvature, or the special geometry of tangent planes and
rulings which developables are known to possess. Quite a few of these properties
have led to effective computational treatments of developables, often by means of
optimization.

This presentation reports on progress made in recent years. We have used both
splines and meshes to model developables with curved creases [2, 6]. We have
also been investigating so-called checkerboard patterns associated to general quad
meshes with regular combinatorics. This checkerboard pattern is constructed by
edge-midpoint subdivision and allows for a useful notion of developability. It is
based on the pattern of lines that emerge if discrete tangent planes associated with
faces are intersected with the respective tangent planes associated with neighbours.
On a general checkerboard pattern approximating a smooth parametric surface
these lines represent samples of two distinct sections of the tangent line bundle.
In the developable case however these two sections coalesce in the rulings which
cover the the surface. As it turns out, this property lends itself to optimization,
does not required a special layout of the edges of the mesh we are computing with,
and enables the computational design of developable surfaces.

Another way of modeling developables is via local isometry to planar domain
[3]. See the figure above, right, for a numerical experiment concerning a piecewise-
developable surface which is determined by its unfolding, and which is not covered
by the convex case treated by A. D. Alexandrov’s 1942 theorem and its contin-
uous analogues. Isometries are highly useful in their own right, e.g. for nonrigid
isometric paneling [4]. Work on the topics mentioned above is in fact ongoing.
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Repulsive Curves and Surfaces

Henrik Schumacher

(joint work with Caleb Brakensiek, Keenan Crane, Chris Yu, and Philipp Reiter)

Functionals that penalize bending or stretching of a surface play a key role in geo-
metric and scientific computing, but to date have ignored a very basic requirement:
in many situations, surfaces must not pass through themselves or each other. In
[1], [2], and [3] we develop a numerical framework for optimization of curve and
surface geometry while avoiding (self-)collision.

Figure 1. Minimization of the tangent-point energy of curves
(subject to constant curve length) can be used to simplify knots
and links.

Our starting point is the tangent-point energy, which effectively pushes apart
pairs of points that are close in space but distant along the curve/surface. We
develop a discretization of this energy for polygonal lines and triangle meshes. To
further the optimization process we employ a novel optimization scheme based
on a fractional Sobolev inner product developed in [1]. By using the gradient
with respect to this inner product as descent direction, we can significantly reduce
the number of gradient iterations to arrive at a local minimum (compared to
methods based on the frequently employed L2-gradient). In particular, the number
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of iterations is largely independent of the mesh resolution. However, there is an
extra cost in computing the Sobolev gradient: We have to solve a linear equation
involving the Gram matrix of the employed inner product. Due to the nonlocal
nature of this inner product, this matrix is dense. Hence direct linear solvers
would be prohibitively expensive. Fortunately, we can solve the linear equation
efficiently by employing a geometric multigrid method (cf. [3]) or by employing
a CG method preconditioned by two sparse Poisson solves interleaved with the
forward application of a further fractional differential operator (cf. [2]). We further
accelerate the computation of the nonlocal energy, its derivative, and the forward
action of the linear operators by hierarchical approximation techniques in spirit of
the Barnes-Hut and fast multipole methods. This allows us to solve optimization
problems with various constraints (e.g., area, volume) and in nearly linear time
with respect to the number of degrees of freedom.

Figure 2. The downward gradient flow of the tangent-point en-
ergy is an isotopy. Here, it reveals that the seemingly nontrivially
interlinked initial surface is actually isotopy-equivalent to the un-
knotted genus-2 handle body.

Finally, we explore how this machinery can be applied to problems in mathe-
matical visualization, geometric modeling, and geometry processing.

Acknowledgements. This work is supported by the DFG project 282535003:
Geometric curvature functionals: energy landscape and discrete methods, and by
a postdoctoral fellowship of the German Academic Exchange Service (DAAD).
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Figure 3. The conjectured minimizers of the tangent-point en-
ergy in various classes of unknotted handle bodies; some of them
seem to enjoy surprising symmetries.

Shape Correspondence by Aligning Scale-Invariant LBO
Eigenfunctions

Amit Bracha

(joint work with Oshri Halimi, Ron Kimmel)

When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami
Operator (LBO) eigenfunctions could potentially serve as intrinsic descriptors
which are invariant to isometric transformations. However, the computed eigen-
functions of two quasi-isometric surfaces could be substantially different. Such
discrepancies include sign ambiguities and possible rotations and reflections within
subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus,
without aligning the corresponding eigenspaces it is difficult to use the eigenfunc-
tions as descriptors. In this talk, I will present the possibility to model the relative
transformation between the eigenspaces of two quasi-isometric shapes using a band
orthogonal matrix, as well as present a framework that aims to estimate this ma-
trix. Estimating this transformation allows us to align the eigenfunctions of one
shape with those of the other, that could then be used as intrinsic, consistent, and
robust descriptors. To estimate the transformation, we propose an unsupervised
spectral-framework that uses descriptors given by the eigenfunctions of the scale-
invariant version of the LBO. Then, using a spectral training mechanism, we find
a band limited orthogonal matrix that aligns the two sets of eigenfunctions.

PH-CPF: Planar Hexagonal Meshing using Coordinate Power Fields

Michal Edelstein

(joint work with Kacper Pluta, Amir Vaxman, Mirela Ben-Chen)

Trianglular meshes are the most prevalent surface representation in geometry pro-
cessing. However, for many applications, such as architectural design, animation
and numerical simulation, a more structured representation is required, such as
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a quadrangular or hexagonal mesh. Specifically in architectural design, meshes
with planar faces are amenable to realization using wood or glass panels, and are
thus highly sought after. While planar quadrangular meshes have been intensively
researched in recent years, planar hexagonal meshes remain an open challenge.
Due to considerable technical difficulties, such as a strict restriction on allowable
element orientations, and the necessary existence of non-convex faces, existing ap-
proaches are either limited to specific types of surfaces, or are not fully automatic,
or both.

From the perspective of the geometry processing framework available for mesh-
ing, much progress has been made in recent years. Still, the “standard” approach
relies on computing vector fields on the surface, which are the candidate gradi-
ents of the parameterization functions [1]. However, with the exception of a few
recent works, there is no guarantee that these candidates are in fact integrable,
i.e. that there exist parameterization functions whose gradients are these vector
fields. Furthermore, while using the candidate gradients as the primary variables
is convenient in some applications, in many cases, such as the planar hexagonal
meshing application, and especially when the gradients are not expected to be
orthogonal, this is not the most natural choice.

In our paper [3], we propose a novel optimization framework for parameteriza-
tion-based meshing, whose primary variables are a pair of tangent vector fields,
which are candidate Coordinate Power Fields (CPF). CPFs are a generalization of
coordinate vector fields, which are the pushforward of the 2D coordinate grid under
a given local patch parameterization. Unlike coordinate vector fields, coordinate
power fields allow for rotational jumps in the parameterization, and thus (up to
global holonomy constraints) lead to a seamless global paramterization. Specifi-
cally, at the heart of our framework lies a new continuity constraint, which two
tangent vector fields should fulfill in order to be CPFs, and which provably guar-
antees the local existence of a seamless parameterization with quantized rotational
jumps.

We leverage our framework to compute planar hexagonal meshes. Specifically,
we define additional constraints on the CPFs, using a novelDupin metric approach,
such that a pushed forward hexagonal grid would be planarizable. We demonstrate
that this holds if the CPFs are conjugate, and are additionally aligned and sized
according to the Dupin Indicatrix [2]. By combining these constraints with our
optimization framework we automatically generate planar hexagonal meshes that
approximate a wide variety of shapes, including complex shapes which, to the best
of our knowledge, are not achievable by existing automatic methods. Furthermore,
on meshes where existing approaches are applicable, we achieve a comparable or
better planarity error as existing approaches, while using a considerably smaller
number of elements. Finally, we demonstrate that our framework is additionally
applicable to planar quad meshing.
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Figure 1. A computer rendered image of one of the planar
hexagonal meshes computed with our approach.
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Learning Low Bending and Low Distortion Manifold Embeddings

Juliane Braunsmann

(joint work with Marko Rajković, Martin Rumpf, Benedikt Wirth)

Autoencoders, which consist of an encoder and a decoder, are widely used in
machine learning for dimension reduction of high-dimensional data. The encoder
φ : M → R

l embeds the input data manifold M ⊂ R
n into a lower-dimensional

latent space Rl, while the decoder ψ : Rl → Rn represents the inverse map. A
good regularity and structure of the embedded manifold may substantially simplify
further data processing tasks such as cluster analysis or data interpolation. In [1]
we propose a novel regularization for learning the encoder map φ by considering a
loss functional that prefers isometric, extrinsically flat embeddings. We consider
M to be a compact,m-dimensional Riemannian manifold (without boundary) with
metric g and denote by dM (x, y) the Riemannian distance between any two points
x, y ∈ M and by avM (x, y) = expx

v
2 their geodesic midpoint, where v ∈ TxM is

such that expx v = y. For a fixed, admissible sampling radius ǫ > 0 we consider
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a finite training data set Sǫ ⊂ {(x, y) ∈ M ×M : dM (x, y) ≤ ǫ} and define the
discrete sampling loss functional

ESǫ [φ] :=
1

|Sǫ|
∑

(x,y)∈Sǫ

(

γ(|∂(x,y)φ|) + λ |∂2(x,y)φ|2
)

,

with λ > 0 and first and second order difference quotients defined as

∂(x,y)φ := φ(y)−φ(x)
dM(x,y) , ∂

2
(x,y)φ := 8

av
Rl
(φ(x),φ(y))−φ(avM (x,y))

dM(x,y)2 ,

where avRl(a, b) = (a+b)/2 denotes the linear average in Rl and γ : [0,∞) → [0,∞)
a strictly convex function with minimum γ(1) = 0. In order to evaluate the
functional, input triples (x, y, avM (x, y)) and dM (x, y) are needed.

The first term in ESǫ has a strict minimum for |∂(x,y)φ| = 1 and thus promotes
|φ(x)−φ(y)| ≈ dM (x, y) and therefore low distortion and an approximate isometry.
The second term in ESǫ penalizes the deviation of intrinsic averages on φ(M) from
extrinsic ones in R

l and thus low bending.
When sampling first x ∈ M uniformly and then y uniformly in BM

ǫ (x), the
geodesic ball around x, we have, as the number of samples goes to infinity, almost
sure convergence to the continuous sampling loss functional

Eǫ[φ] :=

∫

M

∫

BM
ǫ (x)

γ(|∂(x,y)φ|) + λ |∂2(x,y)φ|2 dVg(y) dVg(x),

where Vg denotes the Riemann–Lebesgue volume measure on M .
In [1] we show the above functional is consistent with the local limit loss func-

tional defined on H2(M,Rl) given by

E [φ] :=
∫

M

Γ(gradφ(x)) + λ‖Hessφ(x)‖2 dVg(x) with

Γ(W ) :=

∫

Bm
1 (0)

γ(|gx(W, w̄)|) dw, ‖A‖2 :=
∫

Bm
1 (0)

|gx(A[xw̄], xw̄)|2 dw

for all W ∈ TxM and A ∈ L(TxM,TxM) and w̄ = w
|w| . The first term penalizes

deviation from an isometric embedding. The second term defines a squared norm
on the space of symmetric endomorphisms on TxM and thus penalizes a non-
vanishing Riemannian Hessian and thus extrinsic bending.

Analogously to approaches in numerical analysis, in which an infinite dimen-
sional optimization problem is approximated by introducing an auxiliary length
scale parameter ǫ and restricting to a space of functions parametrized with finitely
many parameters, in [2] we introduce function spaces F ǫ(M,Rl) ⊂ H2(M) and
the modified functional

Eǫ
F [φ] :=

{

Eǫ[φ] if φ ∈ F ǫ(M,Rl),

∞ else.

In our application, the discrete function space F ǫ(M,Rl) consists of deep neural
networks. To relate the above discrete problem to the original one, the expressivity
of the discrete function space has to increase in a way compatible with the discrete
functional as ǫ → 0. In our case this corresponds to a regularity measure of the
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discretized functions decreasing more slowly than ǫ asymptotically, which can be
implemented as a weight constraint on the neural networks.

More formally, we ask for the following conditions:

• For every ǫ > 0 F ǫ(M,Rl) is closed as a subset of L2(M,Rl),
• F ǫ(M,Rl) ⊂ C2,1(M,Rl) with supφǫ∈Fǫ(M,Rl) Lgrad(φ

ǫ) + LHess(φ
ǫ) =

o(1
ǫ
),

• For every φ ∈ H2(M,Rl) there exists a sequence {φǫ}ǫ>0 with φǫ ∈
F ǫ(M,Rl) such that limǫ→0‖φǫ − φ‖H2(M,Rl) = 0,

where Lgrad(φ
ǫ) and LHess(φ

ǫ) denote the Lipschitz constants of the Riemannian
gradient and Hessian of φǫ, respectively, as defined in [3].

Theorem 1. Under the above conditions, the nonlocal regularization energies
{Eǫ

F}ǫ>0 converge to the continuous regularization energy E as ǫ→ 0 in the sense
of Mosco [4] in H2(M,Rl). Further, for every small enough ǫ > 0 there exists a
minimizer φǫ of Eǫ

F and ‖φǫ‖H2(M,Rl) ≤ C independently of ǫ.

The proof relies on Taylor expansions, where the Lipschitz bounds ensure con-
vergence of the remainder terms.

To test our regularization functional, we use artificial image manifolds where the
manifold is explicitly known. In general imaging applications there exist methods
to define a manifold structure and thus compute distances and averages, such
as LDDMM [5], metamorphosis [7] or optimal transport [6]. Our method allows
to either train the encoder φ separately by minimizing ESǫ [φ] and to train the
decoder map ψ subsequently by minimizing, for fixed φ, the reconstruction loss

R[φ, ψ] =
1

2|Sǫ|
∑

(x,y)∈Sǫ

‖ψ(φ(x)) − x‖2L2 + ‖ψ(φ(y))− y‖2L2

with ‖ · ‖L2 the discrete L2-norm on pixel images. Alternatively, encoder and
decoder can be trained simultaneously by minimizing ESǫ [φ] + κR[φ, ψ] for some
κ > 0. In our experiments, the latent space dimension l was chosen larger than
the minimum value required for a smooth embedding. In this way, the encoder
might achieve flatter embeddings. We observe in practice that the number of used
dimensions, determined by PCA on a point cloud in latent space computed from a
test set of images, indeed tends to be higher than the minimum required value for
any choice of λ. However, removing the bending term, i.e., setting λ = 0, leads to
even more dimensions being used, since isometric embeddings are possible using
arbitrarily many Euclidean dimensions and no preference on the amount of used
dimensions is given. For x and y moderately far apart, we further observe that
inclusion of the bending term leads to lower errors between averages obtained via

ψ(φ(x)+φ(y)
2 ) and the ground truth averages avM (x, y), even if the encoder was

only trained on point pairs with small distance.
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Figure 1. Example of an image manifold. Images represent
shadows of a pole cast by a lightsource moving on the hemisphere,
which induces the geometry. Three input triples are shown in the
middle. On the right, the first three PCA components are used
to visualize the obtained embeddings for λ = 0 and λ = 5.
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Towards convergence of the heat method via large deviations

Simon Schwarz

(joint work with Anja Sturm and Max Wardetzky)

Consider a polyhedral surface Γ equipped with a discrete Laplace operator ∆. The
heat method proposed in [1] is frequently used to compute the geodesic distance
on Γ to a given subset γ.

The algorithm is motivated by the short-time asymptotics of the heat kernel
pM on a Riemannian manifold (M, g): In this case, a classical result by Varadhan
[3] shows that

(1) lim
t→0

−2t log pMt (x, y) = d2g(x, y)
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Algorithm 1 The Heat Method for distance computing

1: Approximate the heat kernel by (∆− t Id)u = δγ for some fixed time t.
2: Evaluate the vector field X = −∇u/|∇u|.
3: Solve the Poisson equation ∆φ = ∇ ·X .

holds uniformly for all x, y ∈M . However, the heat method uses a backward Euler
step approximation of the discrete heat kernel. Hence, Varadhan’s formula does
not apply in our setting – it is even known that the short-time asymptotics of the
discrete heat kernel pG on a graph G = (V,E) equipped with any graph Laplacian
differs substantially from the smooth case and satisfies (see [2])

(2) lim
t→0

log pGt (x, y)

log t
= dc(x, y),

where dc denotes the combinatorial graph distance. This difference in the conver-
gence behavior implies that we have to decrease the edge length h of the polyhedral
surface and time t simultaneously, to possibly obtain convergence to the geodesic
distance. This is consistent to the suggestion in [1] to choose t = h2 in step 1.

Our main result – proven by establishing a large deviation principle – makes
this relation precise for sequences of planar infinite graphs with decreasing edge
lengths and shows that there is a phase transition in β for t = hβ : If β ≤ 1 we
can recover the Euclidean distance corresponding to the behaviour in (1), while
we obtain the combinatorial graph distance for β > 1 similar to (2).

Theorem 1. Let (Γh)h>0 be a sequence of planar infinite graphs embedded in C

with decreasing edge length of order h satisfying some additional assumptions and
let ph, h > 0 denote the discrete heat kernels obtained by using a geometric graph
Laplacian. Then, for any β ∈ (0, 1], x ∈ C and fixed t > 0,

lim
h→0

hβ log phhβt(x, y) = − 1

2t
|x− y|2

uniformly in y ∈ C over compact sets. If β > 1 and the limit

dJ(x, y) = lim
h→0

hdch(x, y)

exists, where dch is the combinatorial distance on Γh, then

lim
h→0

h

log hβ−1
log phhβ (x, y) = dJ (x, y)

for any x, y ∈ C.

The theorem yields convergence of the heat method on the plane, since we find

h log uh2(x, y) ∼ max
c>0

(

−c+ h log phch(x, y)
)

∼ −
√
2 |x− y| as h→ 0

by using a Laplace integral asymptotic. Notice that our theoretical insights sug-
gests that it is possible to replace steps 2 and 3 in the heat method by directly
computing h√

2
log u.
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Discrete Riemannian calculus on implicit latent manifolds

Florine Hartwig

(joint work with Juliane Braunsmann, Marko Rajković, Martin Rumpf,
Josua Sassen, Benedikt Wirth)

Implicit representations of manifolds are a flexible and effective tool for many appli-
cations in geometry processing. However, computing geometric operators on them
is challenging. We develop a scheme for discrete Riemannian calculus on implicit
manifold representations, allowing us to efficiently compute discrete geodesics, ex-
ponential shooting, and parallel transport. This approach fits nicely into a general
framework [1], which shows that it is a consistent discretization of Riemannian
calculus. We show how this scheme can be applied to compute geometric oper-
ators on learned latent manifolds. This allows us to compute visually appealing
shape interpolations of high-dimensional data on a learned low-dimensional man-
ifold representation derived by an autoencoder.

Discrete geodesic calculus on implicit manifolds. Let M = {X ∈ Rn |
Φ(X) = 0} be a d-dimensional embedded manifold with Φ : R

n → R
n−d and

rankDΦ(X) 6= 0 for all X ∈ Rn. The Riemannian distance on M can be locally
approximated by the Euclidean distance in ambient space. For the discretization
of the geometric operators, we follow [1] and compute discrete geodesics on M by
minimizing the discrete path energy

EK [(X0 = XA,X, XK = XB)] =
K
∑

i=1

|Xk −Xk−1|2 .

To this end, we use an augmented Lagrangian approach to incorporate the con-
straint Φ(Xk) = 0 for every point Xk of a discrete path X on M. For this, we
consider the augmented Lagrangian

L[X,Λ, µ] = EK [(X0 = XA,X, XK = XB)] + Λ : Φ(X) +
µ

2
‖Φ(X)‖22 ,

with Lagrangian multiplier Λ ∈ Rn−d,K−1, penalty factor µ > 0 and Φ(X) =

(φi(Xk))
i=1,...,n−d
k=0,...,K . This combines a pure penalty method which often leads to an

ill-conditioned problem with a classical Lagrangian approach. Exponential shoot-
ing can be computed by discretizing the continuous geodesic equation Ẍ(t) ⊂
TX(t)M for an arc-length parameterized curve X(t) ⊂ M. See Figure 1 for exem-
plary results on analytic surfaces.
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Figure 1. Geodesic on a torus (left), closed geodesic on a torus
(middle) and exponential shooting on a quartic surface (right) .

Figure 2. Results for a toy model with images of ellipses as
input manifold. Top: Computed geodesic on the latent manifold
with K = 12. The 4-dimensional latent manifold embeddedd in
R

16 is visualized by encoding 10k points of the input dataset and
choosing 3 dimensions based on PCA to display (point cloud).
Bottom: The geodesic is decoded to the image space.

Discrete geodesic calculus on latent manifolds. We consider the autoen-
coder derived in [2], that autoencoder promotes an isometric and intrinsically flat
embedding of a high-dimensional input manifold. Hence, distances on the derived
latent manifold M correspond to geodesic distances on the original data manifold.
We follow a denoising approach [3] to learn a projection p : Rn → M ⊂ Rn on the
latent manifold M. Then Φ = id− p gives an approximate implicit representation
of M. As a numerical experiment, we consider images of anisotropic Gaussians,
which are rotated, scaled and translated (experiment (G) of [2]). The learned
manifold is a 4-dimensional cylinder S1 × [0.5, 1.5]× [−1, 1]2. See Figure 2 for a
result.
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Repulsive Shells

Josua Sassen

(joint work with Keenan Crane, Martin Rumpf, Henrik Schumacher)

Shape interpolation and extrapolation are among the core tasks in geometry pro-
cessing. However, to date most approaches to these problems are not able to
prevent self-intersections. We propose a method that is able to do so by lever-
aging recent work on repulsive energies. To this end, we build on previous work
that studies the space of triangular surfaces as a Riemannian manifold with a
metric based on discrete shell elasticity. We show how to incorporate the repulsive
tangent-point energy into this metric, such that shapes with self-intersection are
pushed infinitely far away. This guarantees that geodesics on this shape space of
repulsive shells consist of intersection-free surfaces and thus form a useful tool for
shape interpolation. We apply variational time-discretization and develop a trust-
region approach with appropriate preconditioners for the resulting minimization
problem. Finally, we explore further potential applications for the combination of
elastic and repulsive energies.

Figure 1. Intersection-free interpolation between clasping
hands. Our proposed method computes interpolations between
surfaces as geodesics on a Riemannian shape space, where the
metric guarantees the avoidance of self-intersections.



2232 Oberwolfach Report 38/2022

The Space of Discrete Shells. We begin by recalling the underlying Rie-
mannian structure on the space of immersions of a discrete surface introduced
in [1]. To this end, we consider a triangular surface Sh with vertices V, edges
E ⊂ V × V, and faces F ⊂ V × V × V. Furthermore, we consider piece-
wise affine immersions x : Sh → R3 describing the midsurface of a discrete thin
shell and study piece-wise affine deformations of Sh. Then we consider the space
M of all such immersion modulo rigid body motions and aim to equip it with
a Riemannian metric. To this end, we consider a discrete elastic shell energy
W [x, x̃] = Wmem[x, x̃] + Wbend[x, x̃] as introduced in [1, 2] consisting of a mem-
brane contribution Wmem and a bending contribution Wbend. To obtain a metric,
we need to pass to a viscous model, which we do via Rayleigh’s paradigm and can
finally construct the metric gsx(u, v) :=

1
2 d2yW(x, y)

∣

∣

y=x
(u, v). With this metric

at hand, we can define geodesics c : [0, 1] → M, variationally as critical points of
the path energy

Es[c] :=

∫ 1

0

gsc(t)(ċ(t), ċ(t)) dt,

for fixed endpoints c(0) and c(1). To compute geodesics numerically, we define for
(x0, . . . , xK) ∈ MK+1 the discrete path energy

EK
s [x0, . . . , xK ] := K

K
∑

k=1

W(xk−1, xk),

which has been shown to be a consistent discretization in [3].

The Space of Repulsive Shells. To construct our modified metric that avoids
self-intersections, we consider the tangent-point energy first introduced for curves
in [4]. We first recall its formulation for a continuous surface S with immersion

φ. For two points s, t ∈ φ(S) the tangent-point radius Rφ
tp(s, t) is defined as the

radius of the smallest sphere through s and t that is also tangent to φ(S) at s.

This radius can be expressed as Rφ
tp(s, t) := |s−t|2

2 |Pφ(s) (s−t)| , where Pφ(s) denotes

the orthogonal projection onto the normal space at s. The tangent-point energy
for integrability parameter p ≥ 1 is then defined as the integral of the inverse
tangent-point radius for all pairs of points, i.e.

V(φ) :=
∫

φ(S)

∫

φ(S)

|Pφ(s) (s− t)|p
|s− t|2p ds dt.

In [5], it has been proven that for p > 4 this indeed provides a barrier against
self-intersections, i.e. every C1-immersion with finite energy V is already a C1,α-
embedding with α = 1− 4

p
> 0. Due to its nonlocality, this energy is challenging to

discretize and we follow the approach from [6] to obtain a discrete energy, which
we will refer to as Vh going forward.

In our approach, we combine the measurement of infinitesimal membrane and
bending distortion with infinitesimal changes of the tangent-point energy. The
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Figure 2. Packing objects by minimizing the sum of elastic,
tangent-point energy and a barrier term for a given, shrinking
geometry.

combination is realized by the graph of Vh over the shape space M of viscous
shells. That is, we define

MV := {(x,Vh(x)) | x ∈ M} ⊂ M× R
+ ∪ {∞}.

We can picture MV as a mountain range over the underlying shape space, where
the height of mountains corresponds to the amount of tangent-point energy a given
shape carries.

Then, the metric g̃ obtained by pulling back the product metric from MV to
M is given by gx(u, v) := gsx(u, v)+( dxVh u) ( dxVh v), for x ∈ M and u, v ∈ TxM.
Indeed, one can show that with this metric immersions with self-intersections are
infinitely far away from ones without. The corresponding path energy is given by

E [c] :=
∫ 1

0

gsc(t)(ċ(t), ċ(t)) + ( dc(t)Vh ċ(t))
2 dt.

We can again apply the same time-discretization as before and obtain

EK [x0, . . . , xK ] := K

K
∑

k=1

W(xk−1, xk) + |Vh(xk−1)− Vh(xk)|2.

To minimize this energy numerically, we use a trust-region Newton method, where
we approximate the Hessian of the tangent-point part of the discrete path energy
via a Gauß-Newton approach and solve the resulting trust-region subproblem via
Steihaug’s CG method. In Figure 1, we show an exemplary result for a discrete
geodesic between two clasping hands.

Elastic Deformations. The combination of elastic and tangent-point energy is
also useful for applications beyond the shape space framework discussed so far.
It models deformations of a shell repelling itself, which especially means that it
avoids intersections. That means, we consider the variational problem

(1) min
x

W(x̃, x) + V(x),

where x̃ is some given reference configuration and add further terms based on the
specific application.

One application we consider is packing objects into tight spaces. To this end,
we add a barrier term to (1) that forces the surface to stay inside a given geometry.
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Then, in Figure 2, we reduce the size of the geometry step-by-step and thus get a
tight packing of the shapes.
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A finite element approach for minimizing line and surface energies
arising in the study of singularities in liquid crystals

Dominik Stantejsky

(joint work with François Alouges, Antonin Chambolle)

Motivated by a problem originating in the study of defect structures in nematic liq-
uid crystals [1, 2], we consider the numerical minimization of an energy consisting
of the following energy

E0(T ) = M(T |Ω) +
∫

M
|ν3| dµT |M + βM(∂T + Γ) .

The central object is a two dimensional flat chain T in R3 with coefficients in Z2.
The first contribution to the energy is given by the mass of T outside an obstacle
E with the notation Ω = R3 \ E. The second part is the integral of a density
integrated over the part of T on the obstacle surface M := ∂E. In our case the
density is given by |ν3|, the absolute value of the 3−component of the normal
vector field on M. The last term is the mass of the boundary ∂T reduced by a
given prescribed curve Γ and weighted by a parameter β ∈ (0,∞). The latter is
essential since for Γ = 0 the minimizer is trivial.

While the problem in [2] is stated for finite mass rectifiable flat chains with co-
efficients in Z2, we relax this assumption and consider T to be a normal current
in order to obtain a convex problem. The minimization of the energy can been
seen as generalization of the obstacle problem and Plateau problem. If β ≫ 1
and E = ∅ this reduces to the classical Plateau problem which has recently been
treated with similar methods in [5].

The algorithm we present in [3] is based on the Alternating Direction Method of
Multipliers used to minimize a finite element representation of our energy. We
represent T by Nédélec finite elements and ∂T by the P0−field given by its curl.
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For vanishing curl away from ∂T , the Nédélec elements are a gradient and our
algorithm reduces to the minimization of the total variation as e.g. in [4]. The
obstacle surface M is extended to a boundary layer. This allows us to take into
account the obstacle, the density |ν3| and the parameter β in a unified way via
penalization. A priori information about the minimizers allow us to use structured
meshes to improve the quality of our solutions.

We are able to obtain minimizing configurations of the problem studied in [2] and
validate our algorithm in the case of a spherical obstacle.

References

[1] F. Alouges, A. Chambolle, and D. Stantejsky. The saturn ring effect in nematic liquid crystals
with external field: Effective energy and hysteresis. Arch. Ration. Mech. Anal., 2021.

[2] F. Alouges, A. Chambolle, and D. Stantejsky. Convergence to line and surface energies in
nematic liquid crystal colloids with external magnetic field. Preprint, 2022.

[3] D. Stantejsky. A finite element approach for minimizing line and surface energies arising in
the study of singularities in liquid crystals. In preparation, 2022.

[4] A. Chambolle, and T. Pock. Approximating the total variation with finite differences or
finite elements. Geometric Partial Differential Equations - Part II, Elsevier, 2021.

[5] S. Wang, and A. Chern. Computing Minimal Surfaces with Differential Forms. ACM Trans.
Graph., 40(4), 2021.

Learning from Synthetic 3D Priors for Real-World 3D Perception

Angela Dai

(joint work with Alexey Bokhovkin, Pablo Palafox)

Understanding the 3D structure of real-world environments is a fundamental chal-
lenge in machine perception, with many applications towards robotic navigation
and interaction, content creation, and mixed reality scenarios. In this talk, we
propose to develop learned neural parametric models to capture structural and
object priors from large-scale synthetic shape datasets. We show that such neural
parametric models can be used to model a space of shape parts, which can be used
to fit to real-world observations from commodity sensors at test time (Figure 1). In
particular, neural coordinate field representations can be leveraged to form para-
metric models of shape and part geometry as signed distance fields; given an input
RGB-D scan with detected objects, rather than making independent predictions
for each object’s structure, the learned parametric model can be used to fit against
both individual object observations and to multiple observations across a scene.

We further demonstrate the effectiveness of learned neural parametric models
for deformable shapes to reconstruct and track depth sequence observations. Here,
a disentanglement of deformable object representation into shape and pose, along
with a structural decomposition into parts, enables robust fitting to new depth
observations even under random initialization (Figure 2). These learned paramet-
ric models will enable the construction of intuitive, semantic primitives for future
virtual or real-world interaction or manipulation of real environments.
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Figure 1. Learned parametric models of shape parts from syn-
thetic shape data enable test-time fitting and holistic scene opti-
mization for new real-world observations [1].

Figure 2. Learned parametric models can additionally model
deformable shapes, disentangling shape and pose while leveraging
structured part decompositions to enable robust fitting to new
depth sequence observations [2].
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Curvature effects in geometric statistics: empirical Fréchet mean and
parallel transport accuracy

Xavier Pennec

Two fundamental tools for statistics on objects living in non-linear manifolds are
the Fréchet mean and the parallel transport. We present in this talk new results to
quantify the accuracy of these two fundamental tools that put forward the impact
of the manifold curvature.

In the spirit of the Baker-Campbell-Hausdorff (BCH) formula for Lie groups,
Gavrilov developed a coordinate free expansion of the logarithm of the composition
of two Riemannian exponential maps [1]. The double exponential expx(v, u) =

expexpx(v)
(Π

expx(v)
x u) corresponds to a first geodesic shooting from the point x

along the vector v, followed by a second geodesic shooting from y = expx(v)
along the parallel transport Πy

xu of the vector u along the first geodesic. Its
Riemannian logarithm at the point x has a surprisingly simple coordinate free
Taylor expansion that only depends on the Riemannian curvature tensor and its
covariant derivatives:

hx(v, u) = logx(expx(v, u)) = v + u+ 1
6R(u, v)(v + 2u)

+ 1
24 (∇vR)(u, v)(2v + 5u) + 1

24 (∇uR)(u, v)(v + 2u) +O(5),

where O(5) is a polynomial of order 5 and more in the two variables u and v.
We introduced in [2] in a companion Taylor expansion on manifolds called the
neighbouring log which is measuring how the logarithm u = logx(y) changes when
the foot-point x is geodesically moved in the direction of v:

lx(v, w) = Πx
xv

logexpx(v)
(expx(w)) = w − v + 1

6R(w, v)(v − 2w)

+ 1
24 (∇vR)(w, v)(2v − 3w) + 1

24 (∇wR)(w, v)(v − 2w) +O(5).

These two tensorial and coordinate free Taylor expansions constitute a complete
toolbox for the polynomial approximations of problems related to infinitesimal
geodesic triangles. Moreover they are valid in general affine connection manifolds
(with additional terms including torsion and its covariant derivative if they are
not vanishing) and computations can be pushed to higher orders if needed.

Because we have in practice a limited number of samples, a problem in geometric
statistics is to determine the properties of the empirical Fréchet mean of n IID
samples in a Riemannian manifold. In sufficiently concentrated conditions, the
empirical Fréchet mean exists and is unique for each sample, so that we can define
its expected moments for a fixed number of samples. Using the above Taylor
expansion of the Riemannian logarithm, we computed the Taylor expansion of
these moments which were used in turn to compute the first and second order
moments of empirical means of an IID n-sample [2]. The expected empirical mean
turns out to have an unexpected non vanishing term (a bias) of order 4 in the
distribution extension and in 1/n with respect to the number of samples. This
bias term is a double contraction of the covariant derivative of the Riemanian
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curvature with the covariance matrix, and vanishes for symmetric spaces:

Bias(x̄n)
a = E [ logx̄(x̄n)

a ] = 1
6n

(

1− 1
n

)

∇bR
a
cdeM

ce
2 M

bd
2 +O

(

ǫ5).

In this formula, ǫ is the diameter of the support of the distribution. Likewise, the
covariance of the empirical mean has a correction term in 1/n contracting twice
the Riemannian curvature with the covariance:

Cov(x̄n)
ab = 1

n

(

M
ab
2 − 1

3

(

1− 1
n

)

M
cd
2 (Mae

2 R
b
cde +Ra

cdeM
be
2 )

)

+O
(

ǫ5).

This term can be intrepreted as an extended Ricci curvature: in positively curved
spaces, the convergence with the number of samples is slower than in Euclidean
spaces while it is accelerated in negatively curved spaces. These curvature effects
become important with large curvature and can drastically modify the estimation
of the mean. They could partly explain the phenomenon of sticky means recently
put into evidence in stratified spaces with negative curvature, and smeary means
in positive curvature.

Parallel transport is a key geometric algorithm to compare local statistical mod-
els at different locations. This is the geometric equivalent of domain adaptation
in machine learning. In previous works, we have build on the Schild’s ladder prin-
ciple to engineer a more symmetric discrete parallel transport scheme based on
iterated geodesic parallelograms, called pole ladder. This scheme is surprisingly
exact in only one step on symmetric spaces, which makes it quite interesting for
many applications involving simple symmetric manifolds. For general manifolds,
iterated Schild’s and pole ladders were thought to be of first order with respect
to the number of steps, similarly to other schemes based on Jacobi fields. How-
ever, the literature was lacking a real convergence performance analysis when the
scheme is iterated. Using the previous Taylor expansions of geodesic triangles,
we showed in [3] that pole ladder naturally converges with quadratic speed (one
step being of order 4), and that Schild’s ladder can be modified to perform identi-
cally even when geodesics are approximated by numerical schemes. This contrasts
with Jacobi fields approximations that are bound to linear convergence. The ex-
tra computational cost of ladder methods is thus easily compensated by a drastic
reduction of the number of steps needed to achieve the requested accuracy. Exper-
iments showed that these theoretical errors are measured in prcatice with a high
accuracy. This work closes several years of attempts to establish the numerical
accuracy of parallel transport with discrete ladders methods.
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A Koopman Approach to Analyzing Sequence Neural Models

Omri Azencot

(joint work with Ilan Naiman)

Understanding the inner workings of predictive models is an essential requirement
in many fields across science and engineering. This need is even more important
nowadays with the emergence of neural networks whose visualization and inter-
pretation is inherently challenging. Indeed, modern computational neural models
often lack a commonly accepted knowledge regarding their governing mathemati-
cal principles. Consequently, while deep neural networks may achieve remarkable
results on various complex tasks, explaining their underlying decision mechanisms
remains a challenge. The goal of this talk is to help bridge this gap by proposing a
new framework for the approximation, reasoning, and understanding of sequence
neural models.

Sequence models are designed to handle time series data originating from im-
ages, text, audio, and other sources of information. One approach to analyzing
sequence neural networks is through the theory and practice of dynamical systems
[1, 2]. For instance, the temporal asymptotic behavior of a dynamical system can
be described using the local analysis of its attractor states [3]. Similarly, recurrent
models have been investigated in the neighborhood of their fixed points [4], lead-
ing to work that interprets trained RNNs for tasks such as sentiment analysis [5].
However, the local nature of these methods is a limiting factor which may lead to
inconsistent results. Specifically, their approach is based on fixed-point analysis
which allows to study the dynamical system in the neighborhood of a fixed-point.
In contrast, our approach is global—it does not depend on a set of fixed-points,
and it facilitates the exploration of the dynamics near and further away from fixed
points.

Over the past few years, a family of data-driven methods was developed, allow-
ing to analyze complex dynamical systems based on Koopman theory [6]. These
methods exploit a novel observation by which nonlinear systems may be globally
encoded using infinite-dimensional but linear Koopman operators. In practice,
Koopman-based approaches are lossy as they compute a finite-dimensional ap-
proximation of the full operator. Nevertheless, it has been shown in the fluid
dynamics [7, 8] and geometry processing [9, 10] communities that the dominant
features of general nonlinear dynamical systems can be captured via a single ma-
trix per system, allowing e.g., to align time series data [11]. Thus, we pose the
following research question: can we design and employ a Koopman-based approach
to analyze and develop a fundamental understanding of deep neural models?

Given a trained sequence neural network and a procedure to extract its hid-
den states, our Koopman-based method generates a moderate size matrix which
faithfully describes the dynamics in the latent space. Unlike existing work, our
approach is global and independent of a particular latent sample, and thus it can
be virtually applied to any hidden state. A key advantage of our framework is
that we can directly employ linear analysis tools on the approximate Koopman
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operator to reason about the associated neural network. In particular, we show
that the eigenvectors and eigenvalues of the Koopman matrix are instrumental
for understanding the decision mechanisms of the model. For instance, we show
in our results that the dominant eigenvectors carry crucial semantic knowledge
related to the problem at hand. Moreover, the eigenvalues represent the memory
of the network as they provide a timestamp for the temporal span of the respec-
tive eigenvectors. Finally and most importantly, Koopman-based methods such
as ours are backed by rich theory and practice, allowing us to exploit the recent
advances in Koopman inspired techniques for the purpose of developing a compre-
hensive understanding of sequence neural networks. Thus, the key contribution
in this work is the novel application of Koopman-based methods for understand-
ing sequential models, and the extraction of high-level interpretable and insightful
understandings on the trained networks.

We focus our investigation on two learning tasks: sentiment analysis and elec-
trocardiogram (ECG) classification. We will identify four eigenvectors in the sen-
timent analysis model whose roles are to highlight: positive words, negative words,
positive pairs (e.g., “not bad”), and negative pairs. In addition, we demonstrate
that the eigenvectors in the ECG classification task naturally identify dominant
features in normal beat signals and encode them. Specifically, we show that four
Koopman eigenvectors accurately capture the local extrema points of normal beat
signals. These extrema points are fundamental in deciding whether a signal is nor-
mal or anomalous. Our results reinforce that the network indeed learns a robust
representation of normal beat signals. Then, we will verify that the main com-
ponents of the nonlinear network dynamics can be described using our Koopman
matrices by measuring the difference in accuracy results, and the relative error in
predicted states. Given the versatility of our framework and its ease of use, we
advocate its utility in the analysis and understanding of neural networks, and we
believe it may also affect the design and training of deep models in the future.
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Metric Optimization in Penner Coordinates

Denis Zorin

(joint work with Ryan Capouellez)

Many parametrization and mapping-related problems in geometry processing can
be viewed as metric optimization problems, i.e., computing a metric minimizing
a functional and satisfying a set of constraints, such as flatness. Penner coordi-
nates [1] are global coordinates on the space of metrics on meshes with a fixed
vertex set and topology, but varying connectivity, making it homeomorphic to the
Euclidean space of dimension equal to the number of edges in the mesh, without
any additional constraints imposed, and reducing to logarithms of edge lengths
when restricted to a fixed connectivity. These coordinates play an important role
in the theory of discrete conformal maps [2, 3] enabling recent development of
highly robust algorithms with convergence and solution existence guarantees for
computing such maps [5, 6]. We demonstrate how Penner coordinates can be used
to solve a general class of problems involving metrics, including optimization and
interpolation, while retaining the key guarantees available for conformal maps [4].
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Shape Spaces: From geometry to biological plausibility

Laurent Younes

(joint work with Nicolas Charon)

This talk reviews several Riemannian metrics and evolution equations in the con-
text of diffeomorphic shape analysis. After a short review of of various approaches
at building Riemannian metrics on shape spaces (with a special focus on the foun-
dations of the large deformation diffeomorphic metric mapping algorithm), the
attention is turned to elastic metrics and to growth models that can be derived
from them. In the latter context, a new class of metrics, involving the optimization
of a growth tensor, is introduced and some of its properties are studied.

The talk is based on [1].
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Fast Nonlinear Vector Quantile Regression

Alex Bronstein

Quantile regression (QR) [1] is a well-known method which estimates a conditional
quantile of a target variable Y, given covariates X. A major limitation of QR is
that it deals with a scalar-valued target variable, while many important appli-
cations require estimation of vector-valued responses. A trivial approach is to
estimate conditional quantiles separately for each component of the vector-valued
target. However this assumes statistical independence between targets, a very
strong assumption rarely held in practice. Extending QR to high dimensional
responses is not straightforward because (i) the notion of quantiles is not trivial
to define for high dimensional variables, and indeed multiple definitions of multi-
variate quantiles exist [2]; (ii) quantile regression is performed by minimizing the
pinball loss function [1], which is not defined for high dimensional responses.

Seminal works of [2] and [3] introduced a notion of quantiles for vector-valued
variables, termed vector quantiles. Key to their approach is extending the notions
of monotonicity and strong representation of scalar quantile functions to high
dimensions, i.e.

Co-monotonicity: (QY(u)−QY(u′))⊤ (u− u′) ≥ 0, ∀ u,u′ ∈ [0, 1]d(1)

Strong representation: Y = QY(U), U ∼ U[0, 1]d(2)

where Y is a d-dimensional random variable, and QY : [0, 1]d 7→ R
d is its vector

quantile function.
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Moreover, [2] extended QR to vector-valued targets, which leads to vector quan-
tile regression (VQR). This enables estimation of conditional vector quantile func-
tions QY|X from samples drawn from P(X,Y), where Y is a d-dimensional tar-
get variable and X are k-dimensional covariates. They show that a conditional
quantile function QY|X which obeys co-monotonicity (1) and strong represen-
tation (2) exists and is unique. Under the assumption of a linear specification
QY|X(u;x) = B(u)⊤x+a(u), they formulate VQR as an optimal transport prob-
lem between the measures of Y|X and U, with the additional mean-independence
constraint E [U|X] = E [X]. 1 provides a visualization of these notions for a two-
dimensional target variable. The primal formulation of this problem is large-scale
linear program and is thus intractable for modestly-sized problems. A relaxed dual
formulation which is amenable to gradient-based solvers exists [4], but results in
violations of co-monotonicity.

The first goal of our work is to address the following limitations of [2, 4]: (i)
the linear specification assumption on the conditional quantile function, and (ii)
the violation of co-monotonicity when solving the inexact formulation of the VQR
problem. The second goal of this work is to make VQR an accessible tool for
off-the-shelf usage on large-scale high-dimensional datasets. Currently there is no
available solver for the relaxed dual formulation of VQR, which is necessary in
order to scale reasonably with problem size. Below we list our contributions.

Nonlinear VQR. To address the limitation of linear specification, we propose
nonlinear vector quantile regression. The key idea is fit a nonlinear embedding
function of the input features jointly with the regression coefficients. We demon-
strate that nonlinear VQR can model complex conditional quantile functions sig-
nificantly better than linear VQR.

Vector monotone rearrangement (VMR). We propose VMR, which resolves
the co-monotonicity violations in estimated conditional vector quantile functions.
We solve an optimal transport problem to rearrange the vector quantiles such
that they satisfy co-monotonicity. It can be viewed as a vector extension to the
monotone rearrangement originally proposed by [5] for scalar quantiles.

Scalable VQR. We introduce highly-scalable solvers for linear and nonlinear
VQR. Our approach, inspired by [6] and [4], relies on solving the relaxed dual for-
mulation of the VQR problem. We propose stochastic-gradient-based solvers which
maintain a constant memory footprint regardless of problem size. We demonstrate
that our solvers can scale to millions of samples and thousands of quantile levels
and allow for GPU-acceleration.

Open-source software package. We release a feature-rich, well-tested software
implementing estimation of vector quantiles, vector ranks, vector quantile con-
tours, linear and nonlinear VQR, and VMR. To the best of our knowledge, this
would be the first publicly available tool for estimating conditional vector quantile
functions at scale.

The full paper can be found at https://arxiv.org/abs/2205.14977. Our open-source
package vqr is available at https://github.com/vistalab-technion/vqr.
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(a) (b)

Figure 1. Illustration of vector quantiles of a 2-dimensional star-shaped distribu-
tion, where T = 50 quantile levels were estimated in each dimension. (A) Vector
quantiles (colored dots) are overlaid on their data distribution (middle). Differ-
ent colors correspond to α-contours, each containing 100 · (1 − 2α)2 percent of
the data, a generalization of confidence intervals for vector-valued variables. The
vector quantile function (VQF) QY(u) = [Q1(u), Q2(u)]

⊤ is co-monotonic with
u = (u1, u2). The components Q1, Q2 of the VQF are shown as surfaces (left,
right) with the corresponding vector quantiles overlaid. On Q1, increasing u1 for
a fixed u2 produces a monotonically increasing curve, and vice versa for Q2. (B)
Conditional vector quantile functions (CVQFs) for a joint distribution of (X,Y)
where Y|X = x has a star-shaped distribution rotated by x degrees. The CVQF
of Y|X = x changes nonlinearly with the covariates x, while e.g. E [Y|X] remains
the same. This demonstrates the challenge of estimating CVQFs from samples of
the joint distribution. Two α-contours are depicted for each x. Digital zoom-in
recommended.
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Geometric Measure Theory and Kelvin Geometry for Convexifying
and Compactifying Computational Problems

Albert Chern

(joint work with Stephanie Wang, Sina Nabizadeh and Ravi Ramamoorthi)

We use geometric techniques to approach two classical computational challenges:
optimizing non-convex variational problems and solving partial differential equa-
tions (PDEs) on unbounded domains. These problems are fundamental in shape
synthesis and physical simulations. In our work, we use the ideas from Geometric
Measure Theory and Felix Klein’s geometric philosophy to re-examine these com-
putational challenges. Surprisingly, many problems associated to non-convexity or
non-compactness are removed just by suitable changes of variables.

1. Minimal Surface Problem

A classical computational differential geometry problem is the Plateau problem:

Problem I In a space M ( R3 or a Riemannian manifold), ex-
tend a given boundary curve Γ ⊂ M into a surface Σ ⊂ M with
minimal area.

The traditional approach is based on (regularized) mean curvature flows on tri-
angle meshes, which are (Sobolev) gradient flows of the area functional. However,
this is a non-convex problem. Directly minimizing the area can lead to being
stuck at local minima. Mean curvature flows can also develop finite time blow up.
Initializing a correct surface is topologically and combinatorially challenging.

Geometric measure theory provides new ways of approaching this problem. In
the theory, curves and surfaces are represented as differential forms. In an n-
dimensional manifold, for each oriented k-dimensional surface Σ we construct an
(n− k)-form δΣ ∈ Ωn−k(M), called a Dirac δ-form, with the defining property

∫

M

ω ∧ δΣ =

∫

Σ

ω for all continuous ω ∈ Ωk(M).

Geometric operations become familiar linear algebraic operations:

δA∩B = δA ∧ δB, δ∂A = (−1)n−k+1dδA

where dim(A) = k. The area of a surface Σ becomes the L1 norm (mass norm)
for the δ-form:

Area(Σ) =

∫

M

|δΣ|.

In terms of differential forms, the oriented Plateau problem becomes

Problem II minimize
Σ

∫

M

|δΣ| subject to dδΣ = δΓ

which we relax to a convex L1 optimization problem with a linear constraint:

Problem III minimize
η∈Ω1(M)

∫

M

|η| subject to dη = δΓ.
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Figure 1. Plateau problem computed with differential forms.
Given a boundary curve represented by a Dirac δ 2-form (left),
we find the minimal surface as the L1 minimizer subject to the
exterior derivative constraint (middle) followed by a Poisson sur-
face reconstruction (right).

Problem II and Problem III are equivalent due to the following estimate: Given
any η ∈ Ω1(M), dη = δΓ, there exists a surface Σ, dδΣ = δΓ, such that

∫

M
|δΣ| ≤

∫

M
|η|. To see this estimate, observe that dη = δΓ implies η = dθ for some S1-

valued function θ branched at Γ, and use the Fubini theorem (co-area formula)
∫

M
|η| = 1

2π

∫

S1

∫

M
|δθ−1(a)| da ≥

∫

M
|δθ−1(a∗)| for a∗ ∈ S1 that yields the minimal

level set of θ.
As such, the seemingly non-convex minimal surface problem is revealed as a

convex one in disguise. We solve the convex Problem III numerically by standard
L1 optimization techniques known by ADMM, proximal gradient descent, Bregman
iterations, etc [1]. A typical result is shown in Figure 1. We also solve Problem III
by representing functions and forms by deep neural fields [2].

While the least squares problem for differential forms under linear constraints
on their d yields the Hodge decomposition as the optimality condition, we obtain
a generalization of the Hodge decomposition for our L1 problem.

Every η ∈ Ωk can be decomposed into

η = dφ+ ξ + ζ

where (ξ + ζ) is a homologically constrained minimal surface, and
ξ is a globally minimal surface.

2. Infinite Domain Problem

Many physical simulation problems take place on an open unbounded space. The
non-compactness of the domain poses additional challenges, since we can no longer
directly discretize the entire domain using a regular grid. Standard numerical
approaches rely on coordinate mapping or domain truncation, yielding coordi-
nate singularity or artifacts on the truncation boundary. We describe a general
Kelvin transformation technique, which maps the infinite domain to a bounded
one without creating singularities. The method is made possible by factoring out
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Figure 2. A 2D slice of a numerical solution to the 3D Helmholtz
equation on the infinite exterior domain of the Bunny. The solu-
tion is computed by a generalized Kelvin transform, consisting of
inverting the domain and factoring out the singularity at infinity.

an asymptotic of the singularity induced by the coordinate stretching. The result-
ing transformation of functions can be understood as the natural transformation
for fractional densities in geometric measure theory. In the viewpoint of Klein’s
Erlangen Program, the analysis reveals a “Kelvin Geometry,” where objects are
functions subject to Kelvin transforms, leaving the PDE of interest invariant. The
key to solving the infinite domain problem is to recognize that the boundedness
quality of the domain is not a geometrically invariant notion under Kelvin Geom-
etry. Therefore, we can transform the infinite domain problem into a compact one
without sacrificing numerical accuracy.

Our Kelvin geometric technique has been applied to the Poisson equation and
Helmholtz equation [3] (Figure 2). On going work includes the Kelvin transform
of the wave equation and the eikonal equation.
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Guaranteed Queries on General Neural Implicit Surfaces via
Range Analysis

Nicholas Sharp

(joint work with Alec Jacobson)

Implicit Neural Surface Representations. Implicit surface representations
encode an embedded 3D surface as the level set of some function f : R3 → R. By
convention, the locations x where f(x) < 0 are inside the shape, and f(x) > 0
are outside of the shape. In neural implicit surfaces, the function f is a neural
network fθ with parameters θ, which can be fit to encode a surface of interest. The
networks have proven recently useful for a variety of tasks in computer graphics
and vision [3], in part because many tasks involving generating a potentially-
complex surface can be approached via simple gradient-based optimization on
fθ. This abstract considers the computational geometry of such a representation:
when we use neural networks as a function space to encode 3D shapes, how do we
computationally evaluate queries against the shape such as finding intersections
between a ray and the surface, or testing whether two such shapes intersect. An
extended treatment of this work can be found in [1].

The primary past approach for such queries is to attempt to fit the neural net-
work fθ such that it has a signed distance function (SDF) property, meaning that
it satisfies the Eikonal equation |∇fθ| = 1 almost everywhere and the magnitude
|fθ| gives the distance to the implicit surface. If fθ is an SDF, then it is not too
difficult to evaluate geometric queries. However, there are many disadvantages
to the SDF representation: a neural network only ever approximately encodes an
SDF, and the SDF property holds only at the conclusion of training, precluding
the use of queries in loss functions. Instead, we will seek an approach which ap-
plies to general neural implicit surfaces, without any particular assumptions on
the function encoded fθ.

Range Analysis. Our key tool to evaluate geometric queries on general neural
implicit surfaces is a numerical technique called range analysis [2]. Given some
range of inputs to a function, range analysis automatically computes bounds on
the output of the function over that range. These bounds are necessarily valid,
in the sense that they contain the true output range of the function, but they are
not necessarily tight—various range analysis schemes have been developed with
different tradeoffs off tight bounds vs. computational cost. The most common
form of range analysis is interval arithmetic, but we find that when applied to
typical neural implicit surface networks, the bounds from interval arithmetic are
so loose that they are not useful in practice. Instead, we leverage a 1st order
generalization called affine arithmetic, which gives much tighter bounds for neural
networks (Figure 1).

Geometric Queries. Equipped with range analysis of neural networks, we can
analyze regions of space, and potentially determine that the value of the implicit
function is strictly positive or negative on that region. Whenever a region cannot
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interval arithmetic affine arithmetic

Figure 1. We empirically find affine arithmetic to be much more
effective than interval arithmetic for analyzing neural implicit sur-
faces, likely because it is exact within the affine layers of neural
networks.

be classified as such, either because the range analysis bounds are too loose, or
because it actually intersects the level set, we subdivide the region into two smaller
regions and recurse. This basic recipe becomes our building block to construct
higher-level geometric queries, including ray casting, constructing bounding k-
d trees, and intersection testing. These queries allow efficient computational-
geometry-style queries on existing neural implicit surface representations for the
first time, opening the door to a wide range of applications in surface processing.
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Computational optimal transport: mature tools and open problems

Jean Feydy

(joint work with Minh-Hieu Do, Olga Mula-Hernandez, Marc Niethammer,
Gabriel Peyré, Bernhard Schmitzer, Thibault Séjourné, Zhengyang Shen,

Anna Song, Alain Trouvé, François-Xavier Vialard)

Optimal transport is a fundamental tool to deal with discrete and continuous
distributions of points [1, 2]. We can understand it either as a generalization of
sorting to spaces of dimension D > 1, or as a nearest neighbor projection under
a mass preservation constraint. Over the last decade, a sustained research effort
on numerical foundations has led to a x1,000 speed-up for most transport-related
computations. This has opened up a wide range of research directions in geometric
data analysis, machine learning and computer graphics.
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This talk will discuss the consequences of these game-changing numerical ad-
vances from a user’s perspective. We will focus on:

(1) Mature libraries and software tools that can be used as of 2022, with a
clear picture of the current state-of-the-art [3, 4, 5, 6, 7, 8].

(2) New ranges of applications in 3D shape analysis, with a focus on popula-
tion analysis [9] and point cloud registration [10].

(3) Open problems that remain to be solved by experts in the field.
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Adjoint mismatch

Dirk A. Lorenz

Optimization methods in mathematical imaging frequently need to evaluate linear
operators and their adjoint: The minimization of an objective of the form

1
2‖Ax− b‖2 + αR(x)

in x ∈ X over a Hilbert space X for some given linear operator A, some well
behaved (e.g. convex, lower semi-continuous and coercive) function R, and some
given data b can be done, for example, by the proximal gradient iteration xk+1 =
proxταR(x

k − τA∗(Axk − b)), while for objectives of the form F (Ax) + G(x) for
equally well behaved F and G one can, for example, use the Chambolle-Pock itera-
tion which iterates xk+1 = proxτG(x

k−τA∗yk), yk+1 = proxσF∗(yk+σA(2xk+1−
xk)) (where F ∗ is the convex conjugate of F ). The former method converges if
0 < τ < 2/‖A‖2 while the latter needs 0 < στ < 1/‖A‖2 [1].

Examples for linear maps are derivative operators, interpolation operators, con-
volutions or more complicated “forward operators” like the Radon transform or
solution operators for differential equations. For many operators, the adjoint is
readily available, but in other cases, the forward operator is only available through
a numerical method and the adjoint operator has to implemented seperately. A
discretization of the adjoint is not necessarily the adjoint of the discretization.
Sometimes people even use a mismatched adjoint on purpose, e.g. if the replace-
ment of any application of A∗ by some V ∗ is much faster to compute or produces
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output which seems to be more plausible. The former happens, for example, for
the Radon transform where there are faster and slower methods for the adjoint
(which is known as backprojection), and the latter can occur, for example, in su-
perresolution where the forward operator does sampling and the adjoint does some
interpolation.

Up to now there are only a few results on convergence under mismatch available.
In [3] and [4] the authors investigate the Landweber method under mismatch and
[6] treats the randomized Kaczmarz iteration. The work [2] analyzes the effect
of mismatch and [7] investigates the Chambolle-Pock method. For the latter, we
could show that the method still converges if both G and F ∗ are strongly convex
and the product of the constants of strong convexity is larger than a constant that
depends on the quantity ‖A− V ‖.

The fact that sometimes linear operators A are available only via black-box
implementations, i.e. one can give some input x to a program and gets back
a vector Ax, and that the respective adjoint are available via other black-box
implementations which give V ∗y for vectors y raises some other questions: How
can one compute ‖A‖ (which is needed in the bounds for the step-sizes) if only black
boxes are available and there is no access to an adjoint? Moreover, we assume that
probabilistic sketching methods based on randomized numerical linear algebra are
not applicable due to the hardware constraints that do not permit to store enough
vectors to form a large enough sketched matrix. An even more difficult question
is, how to compute ‖A − V ‖ if only a black-box for A and another one for V ∗ is
available.

For the first question we propose to use projected stochastic gradient ascent for
the problem

max
‖v‖=1

‖Av‖2.(1)

The gradient of the objective is ATAv, but under our assumption, we can not
compute it. However, we can get an unbiased estimate by using a trick: Let x be
a random vector of appropriate size such that E(xxT ) = I. Then it holds that

E
[

(Av)T (Ax)x
]

= E
[

xxTATAv
]

= ATAv.

Thus, the iteration

vk+
1
2 = vk + τk(Av

k)T (Ax)x

vk+1 =
vk+

1
2

‖vk+
1
2 ‖

has a good chance to converge to a solution of (1) for appropriate step-sizes τk.
While it can be shown that there are simple methods to choose step-sizes that lead
to a guaranteed increase of ‖Avk‖ in every iteration, a full convergence prove is
still missing, but the method can be observed to converge in practice. The idea
using random vectors x with covariance E(xxT ) = I is also used in the well-know
trace estimator due to Hutchinson [5]. For the computation ‖A− V ‖ one can use



2252 Oberwolfach Report 38/2022

the characterization

‖A− V ‖ = max
‖u‖=‖v‖=1

[

uT (A− V )v
]

= max
‖u‖=‖v‖=1

[

uT (Av) − (V Tu)T v
]

and perform projected stochastic gradient ascent in a similar fashion.
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Linear and Quadratic Shape Functions for Polygons and Polyhedra

Mario Botsch

(joint work with Astrid Bunge, Philipp Herholz, Olga Sorkine-Hornung,
Marc Alexa, Misha Kazhdan)

Solving PDEs on surface meshes or volume meshes is a central goal in computer
graphics and geometry processing. The continuous surfaces/volumes are typically
discretized with either triangles/tetrahedra or quadrangles/hexahedra, and then
the finite element method (FEM) is employed using linear P1 shape functions on
the former or bilinear/trilinear Q1 shape functions on the latter. In several appli-
cation scenarios, however, the meshes consist of arbitrary polygons or polyhedra,
and we want to solve PDEs directly on these general meshes without having to
remesh to standard elements.

One possibility is to use generalized barycentric coordinates [6] as shape func-
tions, as done, e.g., by Wicke et al. [9] using mean value coordinates or by Martin
et al. [7] using harmonic coordinates. The drawback of these approaches is that
evaluation, derivation, and numerical integration is rather complex for the gen-
eralized barycentric shape functions. Alexa and Wardetzky [1] and deGoes et
al. [5] proposed discrete differential operators for general polygon meshes based on
discrete exterior calculus. While being much simpler to use than the generalized
barycentric coordinates, these methods include a hyper-parameter that has to be
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tuned to achieve optimal results. We propose a simple method for deriving linear
and quadratic shape functions on polygon surface meshes and polyhedral volume
meshes, which inherit the beneficial numerical properties of linear/quadratic shape
functions for P1/P2 elements, reproduce them on triangles/tetrahedra, and thus
generalize them to arbitrary polygons/polyhedra.

Linear Shape Functions for Polygon Meshes

The main idea is to (virtually) insert a center vertex into each polygon, thereby
splitting it into a fan of triangles. This operation turns the general polygon mesh
into a pure triangle mesh, on which we can use the standard linear P1 shape func-
tions. For a polygon with n vertices x1, . . . ,xn, the center vertex x0 is represented
as an affine combination using the weights w = (w1, . . . , wn)

T:

(1) x0(w) =

n
∑

j=1

wjxj with

n
∑

j=1

wj = 1.

Its position is chosen as the minimizer of squared triangle areas summed over the
triangles incident to the center vertex, being optimized directly in terms of the
affine weights:

(2) min
w

∑

j

area (xj ,xj+1,x0(w))
2

such that
∑

j

wj = 1.

As (2) is underdetermined, we choose the solution with minimal L2 norm ‖w‖,
which can be computed through a simple linear system solve.

The resulting weights define the shape functions φi on the original polygon
mesh in terms of the shape functions ψj on the refined triangle mesh:

(3) φi = ψi + wiψ0.

Putting the weights of each polygon into a global prolongation matrix P (with PT

begin the corresponding restriction matrix) allows to define the discrete Lapla-
cian L and mass matrix M of the polygon mesh through the standard cotangent
Laplacian Ltri and mass matrix Mtri of the refined triangle mesh as

(4) L = PTLtriP and M = PTMtriP.

Through the prolongation and restriction matrices the simplicial refinement can
be completely hidden from the user and can be efficiently implemented within the
matrix assembly stage. As shown in Bunge et al. [2], the resulting differential
operators on polygon meshes inherit the properties of standard P1 elements and
provide the expected quadratic convergence rate under element refinement.

Linear Shape Functions for Polyhedral Meshes

The virtual refinement can straightforwardly be extended to polyhedral meshes by
using a two-step prolongation process: First, each polygon is split into a triangle
fan by inserting the center vertex that minimizes the sum of squared triangle areas,
leading to a prolongation matrix Pface. Second, each polyhedron (now having
triangle faces) is split into a fan of tetrahedra by inserting the center vertex that
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minimizes the sum of squared tetrahedron volumes, leading to a prolongation
matrix Pcell. Both prolongation weights can be determined through simple linear
systems. The combined prolongation matrix P = Pcell · Pface can then be used
to “sandwhich” discrete differential operators computed on the refined tetrahedral
mesh, analogously to (4). This idea was first proposed in [3] and leads to differential
operators that inherit the properties of linear P1 shape functions on tetrahedral
meshes, in particular the quadratic convergence rate under element refinement.

Quadratic Shape Functions for Polygon Meshes

Compared to their linear counterparts, higher-order shape functions feature faster
convergence rate and decrease the well-known locking artifacts when simulating
elastic materials with high Poisson ratio. Quadratic shape functions turned out
to be a good choice in the large scale analysis of Schneider et al. [8].

When generalizing the virtual refinement idea to quadratic shape functions on
polygon meshes, the virtually refined triangle meshes will have degrees of freedom
both at the vertices and at the edge midpoints. Inserting a virtual center vertex
into a polygon with n vertices therefore also leads to additional n virtual edge
vertices on the edges connecting the polygon vertices to the virtual center vertex.
The prolongation weights are now responsible for distributing the values at the
n+1 virtual vertices to the n vertex nodes and n edge nodes of the original polygon.
When we denote by C the nodes of the polygon mesh and by K the nodes of the
refined triangle mesh, the polygon shape functions become

(5) φi = ψi +
∑

j∈K
wijψj with

∑

j∈K
wij = 1 for i ∈ C.

We optimize wij to yield as-smooth-as-possible piecewise quadratic shape func-
tions, by minimizing the gradient jump across internal virtual edges incident to
the center vertex. The resulting shape functions inherit the properties of P2 shape
functions and can be shown to reproduce quadratic P2 elements on tetrahedra, to
have quadratic precision, and to yield the desired cubic convergence rate [4].

Quadratic Shape Functions for Polyhedral Meshes

Combining the two-level prolongation of linear polyhedral shape functions with
the smoothness optimization of quadratic polygon shape functions allows to derive
quadratic shape functions for arbitrary polyhedra. The first prolongation matrix
Pface is derived by minimizing cross-edge gradient jumps as in (5). For the second
prolongation matrix Pcell one optimizes smoothness by penalizing the gradient
jump across the virtual triangles incident to the cell’s center vertex. The quadratic
polyhedral shape functions provide the same beneficial properties as the in the
surface case. See [4] for more details and comparisons to other approaches.
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Near optimal statistical estimation of smooth
optimal transport potentials

François-Xavier Vialard

(joint work with Adrien Vacher, Boris Muzellec, Alessandro Rudi,
and Francis Bach)

It was recently shown in [5] that under smoothness conditions, the squaredWasser-
stein distance between two distributions can be efficiently computed with appeal-
ing statistical error upper bounds, avoiding the curse of dimension in the rate of
convergence. However, rather than the distance itself, the object of interest for
applications such as generative modelling or other downstream applications is the
underlying optimal transport map. The optimal transport map being the gradient
of the optimal potential in the classical dual formulation of optimal transport,
computational and statistical guarantees need to be obtained on such a quantity.
In this paper, we propose the first tractable algorithm for which the statistical L2

error on the maps nearly matches the existing minimax lower-bounds for smooth
map estimation. Our method is based on solving the semi-dual formulation of
optimal transport with an infinite-dimensional sum-of-squares reformulation, and
leads to an algorithm which has dimension-free polynomial rates in the number
of samples, with potentially exponentially dimension-dependent constants. There-
fore, for small dimensions but greater than 2,3 or 4, the theoretical constant is still
tractable. This work settles the question of whether the smoothness of optimal
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solutions can be taken advantage of from a computational and statistical point of
view in order to estimate the optimal transport potentials.

Optimal transport is a linear optimization problem on a space of functions
under an inequality constraint. A particular case of optimizing on non-negative
functions can be found in polynomial optimization [3]. A typical problem of inter-
est is the optimization of a polynomial function on a set constrained by polynomial
inequalities. Leveraging, when available, a representation theorem such as Puti-
nar’s Positivestellensatz, the optimization problem can be reduced to a hierarchy
of SDP problems, see [3]. Recent works develop this idea in Reproducing Kernel
Hilbert Spaces [4], for non-convex optimization in [1] where the authors recast, as
is standard, the problem of minimization of a function f : D ⊂ Rd → R defined
on a domain D as a convex optimization problem, max c under the inequality
constraint c ≤ f(x) for every x ∈ D. Obviously, this problem is computationally
intractable in general and they propose to solve it under structural assumptions
on f(x)− c = 1

2 〈φ(x), Aφ(x)〉 for a positive self-adjoint operator A : H 7→ H where
H is a RKHS. The value of this new optimization problem is a priori less than the
minimum value of f but it does coincide under the assumption that

(1) f = cste+
1

2
〈φ(x), A∗φ(x)〉 ,

for some A∗. The key point here is a representation result stating that a fairly large
space of smooth functions (to be considered for optimization) can be represented
by a sum of squares in RKHS, as in Equation (1). It turns out that optimal
transport enjoys such a similar structure that can be used in a similar way as
shown in [5].

In [5], an estimator that is computationally feasible using SDP programming
is proposed. In order to get near-optimal estimation of the optimal transport po-
tentials, this method needs to be refined in order to take advantage of the gain
in strong convexity of the semi-dual functional associated with optimal transport.
Indeed, the usual dual formulation of optimal transport presents no strong con-
vexity since it is a linear optimization problem. However, optimizing on one of
the potentials turns it into a more strongly convex functional, at least on smooth
potentials. This strong convexity is exploited, together with the smoothness as-
sumptions to refine a statistical estimator of the potentials. For further details,
we refer to [6].
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Towards Molecular Computational Anatomy?

Alain Trouvé

(joint work with Michael Miller, Daniel Tward, Laurent Younes)

Current descriptions of brain diseases usually need to put together several orders
of magnitude ranging from the millimeter scale for tissues in standard imaging
devices to the micron or even nano scale for neural cells and molecules.

Organizing these representations within a given patient or between a population
for statistical modelling and understanding could be quite helpful but is still very
challenging from a mathematical and computational perspective. In this talk, I
will present our recent attempt to make a step in that direction in the context
of computational anatomy based on two key assets: 1- Layered coarse-to-fine dif-
feomorphic transport based on idea coming from optimal control and riemannian
geometry 2- Varifold based representations of information and reduction.
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Analysis of 1-Lipschitz Neural Networks

Sebastian Neumayer

(joint work with Pakshal Bohra, Stanislas Ducotterd, Alexis Goujon,
Dimitris Perdios, and Michael Unser)

The topics covered in this talk are related to the recent preprint [1]. Lipschitz
constrained neural networks have several advantages compared to unconstrained
ones and can be applied to various different problems. Consequently, they have
recently attracted considerable attention in the deep learning community. Since
designing and training expressive Lipschitz-constrained networks is very challeng-
ing, there is a need for improved methods and a better theoretical understanding.
As the general case is very demanding, we restrict our attention to feed-forward
neural networks with 1-Lipschitz component-wise activation functions and weight
matrices with p-norm less or equal than one. This indeed leads to 1-Lipschitz
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neural networks, for which naturally the question of expressiveness arises. Unfor-
tunately, it turns out that networks with ReLU activation functions have provable
disadvantages in this setting. Firstly, they cannot represent even simple piece-wise
linear functions such as the hat function. Secondly, there exists a whole class of
relatively simple functions that cannot be approximated in terms of the uniform
norm on bounded boxes. To show this fact, we can make use of the second-order
total variation and the fact that ReLU networks can only produce functions with
bounded second-order total variation.

Due to these observations, we propose to use learnable spline activation func-
tions with at least 3 linear regions instead. Clearly, this more complicated archi-
tecture should be motivated by theoretical findings. To this end, we prove that our
architecture is optimal among all component-wise 1-Lipschitz activation functions
in the sense that no other weight constrained architecture can approximate a larger
class of functions. However, it remains an open question whether such NNs are uni-
versal approximators of 1-Lipschitz functions and our result can be seen as a first
step towards its solution. Further, we prove that our proposed networks are in prin-
cipal able to reproduce functions with arbitrary high second-order variation. Note
that our architecture is also at least as expressive as the recently introduced non
component-wise Groupsort activation function [2] for 2-norm-constrained weights.
A more thorough comparison of linear splines to non component-wise activation
functions is subtle, and it is so far unclear which choice leads to more expressive
NNs in the remaining settings. Concerning the question of universality, the talk
focused mainly on the approximation of scalar-valued functions f : Rd → R. This
also reflects the current state of research, where most results are only formulated
for scalar-valued NNs. Extending these results to vector-valued functions appears
highly non-trivial and should be addressed in future research. Finally, I would
like to mention that little is known about the optimal structure for deep spline
and Groupsort NNs, i.e., if it is more preferable to go deep or wide in architecture
design.

On the numerical side, we are currently preparing a preprint with extensive ex-
periments and details for an efficient implementation. For the implementation, we
basically rely on a B-spline representation, which was already used before in [3].
However, we also need to take care of the additional Lipschitz constrained. This
can be done in several ways, but naive approaches can lead to inferior training
performance. To circumvent this issue, we instead propose to directly optimize
over the set of 1-Lipschitz linear splines based on a method called Differentiable
Slope Clipping. Our preliminary numerical results for one-dimensional function
fitting, Wasserstein distance estimation and image reconstruction within the Plug-
and-Play framework confirm that our architecture is at least competitive (often
even better) with other recently proposed activation functions such as GroupSort,
Householder activations and parametric ReLU, which were also all designed with
the goal of increasing expressivity in mind. One additional advantage of our imple-
mentation over the other methods is that it can be applied to any already trained
network by just initializing the linear splines accordingly. This possibly avoids
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an expensive retraining. A Github repository with the implementation will be
available soon.
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Discrete geodesic calculus in the manifold of Sobolev curves

Benedikt Wirth

(joint work with Martin Rumpf)

The manifold of (closed) Sobolev curves is a well-known example of an infinite-
dimensional shape space. It consists of immersions of the circle S1 into Rd with
Sobolev regularity,

Immm = {c ∈Wm,2(S1;Rd) | c′(θ) 6= 0 for all θ ∈ S
1},

where m ≥ 2 and c′ denotes the derivative with respect to the parametrization
variable θ (which form ≥ 2 is everywhere defined). This manifold can be equipped
with a Riemannian metric of Sobolev type,

gc(ξ, ζ) =

∫

S1

m
∑

i=1

∂isξ · ∂isζ ds

for any curve c ∈ Immm and tangent vectors ξ, ζ : S1 → Rd. Above, s =
∫ θ

0
|c′(θ̃)| dθ̃ denotes arclength along the curve c so that

ds = |c′(θ)|dθ, ∂s =
∂θ

|c′(θ)| .

The induced Riemannian distance between two curves c0, c1 ∈ Immm can then be
computed by minimizing the path energy E among all paths (ct)t∈[0,1] in Immm

with fixed endpoints c0, c1,

d2(c0, c1) = inf E [(ct)t∈[0,1]] with E [(ct)t∈[0,1]] =

∫ 1

0

gct(ċt, ċt) dt

(where ċt denotes the derivative of the path with respect to the time variable
t). Furthermore, geodesics in the manifold of Sobolev curves can be defined as
minimizers of this path energy for fixed endpoints.

Bruveris, Michor and Mumford have shown [1, 2] that this manifold of Sobolev
curves is metrically and geodesically complete and that shortest geodesics between
any two curves exist (as long as they lie in the same connected component, thus,
if they have the same winding number when d = 2). To show this one exploits
that the path energy E actually just behaves like the squared Sobolev norm of
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W 1,2([0, 1];Wm,2(S1;Rd)), to which the direct method of the calculus of variations
can readily be applied. This behaviour is not obvious since E contains arclength
derivatives and arclength integration, while Wm,2(S1;Rd) only contains differenti-
ation and integration with respect to the parametrization variable θ. The central
trick is to show that log |c′| is uniformly bounded on any metric ball of Immm,
which more or less (up to bounded terms) turns differentiation and integration
with respect to s into differentiation and integration with respect to θ.

We aim to devise discrete approximations to geodesics in Immm which at the
same time are numerically feasible and provably convergent. To this end we employ
the framework of discrete geodesic calculus [3], that is, we define a discrete K-
geodesic between c0, cK ∈ Immm as a minimizer of a discrete path energy

E[(c0, c1, . . . , cK)] =
1

K

K
∑

j=1

W [cj−1, cj ],

where W [cA, cB] is a suitable approximation of the squared Riemannian distance
d2(cA, cB). The existence and convergence proofs for discrete geodesics would
naturally have to follow the compactness and lower semi-continuity type arguments
from the continuous setting. To this end it is essential that the uniform bound on
log |c′| and similar estimates carry over from the continuous to the discrete setting.
Therefore we consider as initial approximation

W [cA, cB] = E [(cAB
t )t∈[0,1]] for cAB

t = tcB + (1− t)cA.

As a consequence, the discrete path energy E[(c0, . . . , cK)] equals the continu-
ous path energy E [(ct)t∈[0,1]] of the piecewise linear interpolation ct of the points
c0, . . . , cK , and boundedness of the discrete path energy therefore implies the same
estimates as boundedness of the continuous path energy, as desired. However, the
above choice of W is not yet computationally feasible since the time integral in-
volved in

E[(cAB
t )t∈[0,1]] =

∫ 1

0

∫

S1

m
∑

i=1

|∂isċAB
t |2 ds dt

cannot easily be evaluated (the spatial integration over S1 on the other hand is less
critical and will later be approximated via quadrature). As a remedy we replace
the integration ds = |(cAB

t )′|dθ by the larger [t|c′B |+ (1− t)|c′A|]dθ,

W [cA, cB] =

∫ 1

0

∫

S1

[t|c′B |+ (1− t)|c′A|]
m
∑

i=1

|∂isċAB
t |2 dθ dt.

This way the integrand ofW [cA, cB] becomes (after tedious calculations) a rational
function in t, which can be explicitly integrated and thereby makes the discrete
path energy numerically feasible. At the same time, the discrete path energy still
bounds the continuous one from above, E[(c0, . . . , cK)] ≥ E [(ct)t∈[0,1]], so that the
compactness properties are still maintained and we obtain the following.

Theorem 1 (Existence and convergence of discrete geodesics). Let cA, cB ∈
Immm. For K large enough there exists a discrete K-geodesic between cA and
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cB. Furthermore, as K → ∞, the piecewise linear interpolations of these discrete
geodesics converge weakly in W 1,2([0, 1];Wm,2(S1;Rd)) (along a subsequence) to a
continuous geodesic between cA and cB.

For a numerical implementation we additionally propose a spectral space dis-
cretization, that is, we represent a curve c by 2N + 1 Fourier components,

c(θ) =

N
∑

j=0

(

axj
ayj

)

cos(jθ) +

(

bxj
byj

)

sin(jθ),

and we approximate any integral over S1 using trapezium rule quadrature with
M equispaced points (the motivation is the exponential convergence of trapezium
rule quadrature for smooth periodic functions).

Theorem 2 (Convergence of discrete geodesics). If N = Kα and M = Kβ for
some arbitrary β > α > 0, then spatially and temporally discretized geodesics
converge to continuous ones in the same sense as before.

The combination of a spectral discretization with the trapezium rule actually
is essential here – had one instead used spline discretizations, the number M of
quadrature points would have to be chosen as a substantially larger power of
the time step number K. All above convergence results are obtained by actually
showing Mosco convergence of the (time- or space-time-)discrete path energy to the
continuous one. An example of a numerically computed discrete geodesic between
a frog and a turtle shape from the MPEG-7 Core Experiment CE-Shape-1 is
shown below. The last five shapes are obtained by discrete geodesic extrapolation
of which one can show convergence as well.

References

[1] M. Bruveris, P. Michor, D. Mumford, Geodesic completeness for Sobolev metrics on the

space of immersed plane curves, Forum Math. Sigma 2 (2014).
[2] M. Bruveris, Completeness properties of Sobolev metrics on the space of curves, J. Geom.

Mech. 7 (2015), 125–150.
[3] M. Rumpf, B. Wirth, Variational time discretization of geodesic calculus, IMA J. Numer.

Anal. 35 (2015), 1011–1046.

Reporter: Florine Hartwig



2262 Oberwolfach Report 38/2022

Participants

Mariem Abaach

Université de Paris
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