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Introduction by the Organizers

The workshop on Complex Geometry and Dynamical Systems was organized by
Tien-Cuong Dinh (Singapore), George Marinescu (Köln), Valentino Tosatti (New
York) and Elizabeth Wulcan (Gothenburg).

Complex geometry is a highly attractive branch of modern mathematics that
witnesses active and successful research. Due to its interactions with various
other fields (differential, algebraic, and arithmetic geometry, but also mathemat-
ical physics), it has become an area with many facets. The connection to Dy-
namical Systems is particularly fruitful. These subjects are advancing on many
fronts due to several recent developments in pluripotential theory, Kähler geome-
try, and intersection theory for currents. The meeting focused on recent progress
on pluripotential theory (including the non-Kähler setting), Monge-Ampère equa-
tions, foliation theory, Levi-flat hypersurfaces, complex dynamics and theory of
currents, Bergman kernels, statistical properties of holomorphic maps and zeros
of holomorphic sections.
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The workshop had 47 on-site participants, and 12 online participants. Alto-
gether we had 24 talks (45 minutes each), covering a broad range of topics. There
were intensive interactions and lively discussions among the participants after the
talks and during the breaks.

The opening talk was given by Duong H. Phong, who described his recent
work proving uniform estimates for a very large class of geometric PDEs on com-
plex manifolds, including the complex Monge-Ampère equation, using direct PDE
methods as opposed to classical pluripotential techniques. In particular, he ex-
plained a new proof of a celebrated L∞ estimate of Ko lodziej, and its extensions
to many other geometric PDEs. Complex Monge-Ampère equations also featured
prominently in the talk by Vincent Guedj, in the context of non-Kähler Hermitian
manifolds. In this realm a major challenge is that one loses a priori control on the
Monge-Ampère volumes (due to the non-closedness of the Hermitian form) and
there is a priori the possibility that these volumes might approach 0 or ∞. The
main result presented rules out these scenarios if the Hermitian form is pluriclosed,
and interesting examples are furnished by 3-dimensional nilmanifolds. Another
talk on complex geometry was given by Daniel Greb, who presented recent results
about the cycle space of the period domain of complex K3 surfaces. Unlike the K3
period domain, this cycle space has many nice properties, and over a large portion
of it there is a marked family of K3 surfaces, which can be interpreted in terms
of deformations of complex hyperkähler metrics. Min Ru has focused his talk on
the recent interaction between geometry (namely the K-stability), the Nevanlinna
theory and Diophantine approximation.

Foliation theory was originally introduced by Poincaré in order to study equa-
tions from physics that one cannot solve explicitly. The goal is to study directly
the properties of the solutions which are represented by leaves of foliations in the
phase space. Holomorphic foliations are a classical area where holomorphic dynam-
ics and several complex variables interact fruitfully, and several talks were devoted
to this topic. Judith Brinkschulte discussed codimension 1 foliations on compact
complex manifolds (of dimension 3 or higher) with ample normal bundle, and
showed that every leaf (which must necessarily be noncompact) accumulates on
the singularities of the foliation, as was conjectured by Brunella. The talk by Lu-
cas Kaufmann took a fresh look at a classical topic, the Baum-Bott residue classes
for holomorphic foliations with singularities, which localize characteristic classes
of the foliation around the singularities. These residue classes can be computed
using Grothendieck residues when the leaves are complex curves and the singu-
larities are isolated, but are more mysterious in general. The speaker explained
a new construction of residue currents which naturally represent the Baum-Bott
classes, which in particular allows for an explicit description of these currents in
the rank 1 case when the singularities are not isolated. Foliations also featured in
the talk by Takayuki Koike who studied compact Kähler manifolds which admit a
semipositive definite smooth real (1, 1)-form whose cohomology class contains at
least another such form. In this case he constructs a codimension 1 holomorphic
foliation away from a (possibly empty) closed set, and in particular deduces the
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existence of uncountably many compact real-analytic Levi-flat hypersurfaces in the
manifold. He also mentioned applications to the study of embeddings of hyper-
surfaces in complex manifolds with numerically trivial normal bundle, which was
directly related to the main topic of the talk by Laurent Stolovitch. In this talk,
the speaker considered a complex torus embedded in a larger complex manifold,
with numerically trivial normal bundle. Generalizing classical work of Arnol’d and
Il’yashenko-Pyartli, they show that if the normal bundle satisfies a non-resonant
Diophantine condition (which is almost-surely the case) then the torus has a holo-
morphic tubular neighborhood. Also related to the theory of foliations, Jun-Muk
Hwang presented his study with Qifeng Li on (2, 3, 5)-distributions in the holo-
morphic setting and relate them to nondegenerate lines on holomorphic contact
manifolds of dimension 5. This continues a celebrated work by E. Cartan and can
be extended to higher dimension.

Another classical topics at the intersection of complex analysis and dynamics
is the theory of complex currents. While smooth forms can be pulled back via
holomorphic maps, there is no general pullback map for currents, and construct-
ing one under suitable hypotheses is often needed for applications in dynamics.
H̊akan Samuelsson Kalm explained how to define the pullback of a large class
of currents under an arbitrary holomorphic map between complex manifolds, so
that the pullback enjoys many desirable properties. The talk by Duc-Viet Vu
discussed the positive intersection product of closed positive (1, 1)-currents in big
cohomology classes on compact Kähler manifolds, as introduced by Boucksom-
Eyssidieux-Guedj-Zeriahi. It is known that some mass can be lost when taking
this product, and a very natural question is to characterize those currents for
which there is no loss of mass. For the top self-product of one such current there
is a well-developed theory, however there were no such results known for general
positive products of possibly different currents. The speaker presented a result
that shows that in this case at least one of the currents has as small as possible
Lelong number along any given analytic subvariety.

A topic appearing in several talks was the asymptotic expansion as p → ∞
of the Bergman kernel of tensor powers Lp of a positive line bundle L. This as-
ymptotic expansion plays a crucial role in the work of Tian, Donaldson and many
others, where the existence of Kähler metrics with constant scalar curvature is
shown to be closely related to the Chow-Mumford stability. The talk by Viet-Anh
Nguyen studied the space of holomorphic sections of Lp, which vanish to order
comparable to p along finitely many given analytic sets. The speaker discussed
estimates of the partial Bergman kernel, convergence of the Fubini-Study currents
and their potentials, and the equilibrium distribution of currents of integration on
zero divisors of random holomorphic sections as p→∞. Xiaonan Ma presented an
asymptotic version of Bismut’s local family index theorem for the Bergman kernel
by using superconnections, and showed that the curvature operator of the direct
images associated with a fiberwise positive line bundle is a generalized Toeplitz op-
erator. One consequence is a new proof of Berndtsson’s result about the positivity
of direct image bundles. This description is applied in the talk by Nikhil Savale
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to obtain a generalization of earlier results of Marinescu-Savale for semipositive
line bundles to families of Bochner Laplacians. Chin-Yu Hsiao presented the as-
ymptotic expansion near the boundary of the Bergman kernel of the ∂-Neumann
Laplacian of a complex manifold admitting a holomorphic R-action. This has
applications to compactification of pseudoconcave manifolds. The talk of Siarhei
Finski dealt with semiclassical asymptotics of Ohsawa-Takegoshi extension oper-
ator associated with high tensor powers of a positive line bundle. This result is
needed in Demailly’s approach to the invariance of plurigenera for Kähler families.
Xiaojun Huang explained the solution of a long standing conjecture by Cheng
stating that if the Bergman metric of a smoothly bounded strongly pseudoconvex
domain is Kähler-Einstein, then the domain is biholomorphic to the ball. More-
over, he showed that a Stein space with compact strongly pseudoconvex boundary
must have spherical boundary and when the boundary is algebraic, then this Stein
space has to be a finite ball quotient. Sung-Yeon Kim discussed proper holo-
morphic maps between bounded symmetric domains which extend to the Shilov
boundary and gave a general form from and derived criteria for their rationality.

Concerning the fast developing theory of complex dynamics in higher dimension,
Fabrizio Bianchi explained a unified approach to obtain the statistical properties
of holomorphic maps on projective spaces. Soft techniques have been introduced to
handle dynamical objects such as Green currents and equilibrium measure which
are known to be rigid. Jasmin Raissy gave a talk about her study of holomorphic
endomorphisms which are tangent to the identity at a fixed point. The goal is
to obtain an example for which the immediate basin of attraction of the fixed
point has an infinite number of distinct invariant connected components, where
the orbits converge to the fixed point without being tangent to any direction (spi-
ralling domain). Keiji Oguiso presented his recent results about some applications
of dynamics in algebraic geometry. Namely, special automorphisms of algebraic
varieties are used to study the finiteness and non-finiteness of real structures of
these varieties. Serge Cantat talked about a recent development on random dy-
namics of automorphisms of a complex projective surface which can be seen as
an analogue of some homogeneous dynamical systems. To study meromorphic
dynamical systems on a compact Kähler surface, the hypothesis on the algebraic
stability is often assumed in several methods. Jeffrey Diller showed that one can
sometimes get around the stability hypothesis. Finally, inspired by complex dy-
namics, Charles Favre presented an extension of Gromov’s upper bound of topo-
logical entropy for holomorphic maps to the case of dynamical systems defined
over a non-Archimedean metrized field. Non-Archimedean dynamics is also a fast
growing research direction.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Chin-Yu Hsiao in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Estimates for the complex Monge-Ampère equation and other fully
non-linear equations

Duong H. Phong

(joint work with Bin Guo, Freid Tong)

In 1998, Kolodziej [14] had obtained sharp L∞ estimates for the complex Monge-
Ampère equation, considerably refining the estimates originally established by
Yau [15] in his solution of the Calabi conjecture. Kolodziej’s methods relied on
pluripotential and capacity theory, which is specific to Monge-Ampère equations.
It had been an open question since whether his sharp estimates can be obtained
instead by PDE methods, with possible generalizations to other fully non-linear
equations. This question was answered positively by the authors [9] in 2021. In
this talk, we describe the answer, and we also survey many of the consequences of
the new methods in [9].

Let (X,ωX) be a compact n-dimensional Kähler manifold. If ω is another Kähler
metric, and ϕ is a smooth function, we let ωϕ = ω+ i∂∂̄ϕ, and define hϕ to be the

relative endomorphism hϕ = (ωX)−1ωϕ, or in components, (hϕ)jk = ωjm̄X (ωϕ)m̄k.
Let λ[hϕ] be the unordered set of eigenvalues of hϕ. We shall consider non-linear
operators f : Γ→ R+ defined on a cone Γ satisfying the following properties:

(1) Γ ⊂ Rn is a symmetric cone containing the first octant Γn = {λ ∈ Rn;λj >
0, 1 ≤ j ≤ n} and contained in λ1 + · · ·+ λn > 0;

(2) f(λ) is symmetric in λ and homogeneous of degree 1;

(3) ∂f
∂λj

> 0 for each j and λ ∈ Γ;

(4) There is a γ > 0 such that
n∏

j=1

∂f

∂λj
> γ, λ ∈ Γ.

The Monge-Ampère equation corresponds to f(λ) = (
∏n
j=1 λj)

1
n . It has been

shown by Harvey and Lawson [13] that the class of functions f(λ) satisfying all
the above conditions is quite large, and includes all invariant Garding-Dirichlet
operators. They also noted that the condition (4) was introduced independently
in [1] for the purpose of W 2,p interior regularity. For any such f(λ), we consider
the second order PDE given by

f(λ[hϕ]) = cωe
Fω , supXϕ = 0, hϕ ∈ Γ (1)

where Fϕ and cϕ are defined by the normalization
∫
X e

nFωωnX =
∫
X ω

n
X . We also

set Vω =
∫
X ω

n. We have then the following theorem:

Theorem 1 [9]. Assume that ω ≤ κωX for some constant κ > 0. Fix any p > n.
Then any C2 solution ϕ of the equation (1) must satisfy

supX |ϕ| ≤ C
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where C is a constant depending only on ωX , n, p, γ, κ and upper bounds for the
following three quantities

cnω
Vω
, E(ω) =

cnω
Vω

∫

X

(−ϕ)enFωωnX , Entp(ω) =

∫

X

enFω |Fω|pωnX . (2)

Perhaps as important as the theorem itself is its proof. It is based on comparing
the solution ϕ of (1) to the solution ψ of an auxiliary Monge-Ampère equation

(ω + i∂∂̄ψk)n =
τk(−ϕ− s)

As,k
f(λ[hϕ])ωnX (3)

with normalization supXψk = 0, and τk(x) is a sequence of strictly positive func-
tions decreasing monotonically to the function xH(x) where H(x) is the Heaviside
function. The coefficient As,k is defined by As,k =

∫
X τk(−ϕ − s)f(λ[hϕ])ωnX , so

that the compatibility condition for the equation (3) is satisfied, and it admits a
unique solution by Yau’s theorem. Applying the maximum principle, we find the
following relation between ϕ and ψk

−ϕ− s ≤ ǫ(−ψ + Λ)
n

n+1 (4)

if the following choices are made

ǫ = (
n+ 1

n2
)

n
n+1A

1
n+1

s,k γ−
1

n+1 , Λ =
1

(n+ 1)nn−1

As,k
γ

.

A comparison of ϕ with ψk seems naively ineffective, since ψk itself depends on ϕ.
But it turns out that to get to the required L∞ estimate for ϕ from (4), we need
to know very little about ψk besides the exponential estimate resulting from the
simple fact that ψ is ω-plurisubharmonic.

In [9], it was shown that, in the case of a fixed background metric ω, the energy

E(ω) can be estimated by
cnω
Vω

and the Nash entropy Entp(ω). The proof of this

step was similar to the one of X.X. Chen and J.R. Cheng [4] for constant scalar
curvature metrics, and required the Alexandrov-Bakelman-Pucci maximum princi-
ple [2], which worked only for fixed ω. Very recently, a more effective proof using a
similar auxiliary Monge-Ampère equation as in the proof of Theorem 1 was found
that works uniformly in ω, giving:

Theorem 2 [6]. Assume as before that ω ≤ κωX for a fixed constant κ. Then
for any p > 0, any C2 solution ϕ of the equation (1) must satisfy the inequality

∫

X

(−ϕ)pqenFωωnX ≤ C

where the exponent q is defined to be q = n
n−p if p < n, and can be any strictly

positive exponent if p ≥ n. The constant C is computable, and depends only on

ωX , n, p, q, γ, κ and upper bounds for
cnω
Vω

and Entp(ω).

The method of proof of Theorem 1 has now been shown to extend to a large
number of situations. We would like to mention in particular:

• Stability estimates for the Monge-Ampère and Hessian equations [10];
• L∞ estimates for these equations in the case of nef classes [11];



Complex Geometry and Dynamical Systems 2343

• Estimates for the modulus of continuity of solutions to Monge-Ampère
equations in non-Hölder cases [12];
• Estimates for parabolic equations [5];
• Lower bounds for the Green’s function [8];
• L∞ estimates for the Monge-Ampère and other fully non-linear equations

on Hermitian manifolds [6]. Here the auxiliary Monge-Ampère equation
is a Dirichlet problem on a ball, whose solvability is guaranteed by the
classic theorem of Caffarelli-Kohn-Nirenberg-Spruck [3];
• L∞ estimates for form equations [6]. In both this application as well as

the preceding one, our method gives a much simplified proof of the known
cases, together with extensions to a much wider class of equations;
• A general theory of estimates for diameters in Kähler geometry [7].
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Semiclassical Ohsawa-Takegoshi extension theorem and applications

Siarhei Finski

The results presented in the talk are based on the recent papers of the speaker
[7], [8], [9], [10]. The main goal of those papers is to give an asymptotic version
of Ohsawa-Takegoshi extension theorem when the power of the twisting positive
line bundle tends to infinity (i.e. in the so-called semiclassical limit) and derive
several consequences of such asymptotics.

More precisely, we fix two complex manifolds X,Y of dimensions n and m
respectively. For the sake of simplicity, we assume that X and Y are compact,
although our results work in a more general setting of manifolds and embeddings
of bounded geometry. We fix also a complex embedding ι : Y → X , a positive line
bundle (L, hL) over X and an arbitrary Hermitian vector bundle (F, hF ) over X .
In particular, we assume that for the curvature RL of the Chern connection on

(L, hL), the closed real (1, 1)-differential form ω :=
√
−1
2π RL is positive. We denote

by gTX the Riemannian metric on X so that its Kähler form coincides with ω. We
denote by gTY the induced metric on Y . We denote by dvX , dvY the associated
Riemannian volume forms on X and Y .

For smooth sections f, f ′ of Lp ⊗ F , p ∈ N, over X , we define the L2-scalar
product using the pointwise scalar product 〈·, ·〉h, induced by hL and hF as

〈
f, f ′〉

L2(X)
:=

∫

X

〈
f(x), f ′(x)

〉
h
dvX(x).

Similarly, using dvY , we introduce the L2-scalar product for sections over Y .
A standard argument based on short exact sequences and Serre vanishing theo-

rem implies that there is p0 ∈ N, such that for any p ≥ p0, g ∈ H0(Y, ι∗(Lp ⊗F )),
there is f ∈ H0(X,Lp ⊗ F ), extending g, i.e. satisfying f |Y = g.

We define the optimal extension operator

Ep : H0(Y, ι∗(Lp ⊗ F ))→ H0(X,Lp ⊗ F ),

by putting Epg = f , where f |Y = g, and f has the minimal L2-norm among those
f ′ ∈ H0(X,Lp⊗ F ) satisfying f ′|Y = g. Clearly, the minimizing f exists and it is
unique. Moreover, the operator Ep is linear since the minimality of the L2-norm of
f among different extensions is characterized by a linear condition, requiring f to
be orthogonal to the space of holomorphic sections vanishing along Y . Our main
goal is to find an explicit asymptotic expansion of the operator Ep, as p→∞.

We identify the normal bundle N of Y in X as orthogonal complement of
TY in TX (with respect to gTX) so that we have the orthogonal decomposition
TX |Y → TY ⊕N . We denote by gN the metric on N induced by gTX .

For y ∈ Y , ZN ∈ Ny, let R ∋ t 7→ expXy (tZN ) ∈ X be the geodesic in X in
direction ZN . This map induces a diffeomorphism of r⊥-neighborhood of the zero
section in N with a tubular neighborhood U of Y in X for a certain r⊥ > 0. We
use this identification, called geodesic normal coordinates, implicitly.

We denote by π : U → Y the natural projection (y, ZN ) 7→ y. Over U , we
identify L, F to π∗(L|Y ), π∗(F |Y ) by the parallel transport with respect to the
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Chern connections along the geodesic [0, 1] ∋ t 7→ (y, tZN) ∈ X , |ZN | < r⊥, where
the norm |ZN |, ZN ∈ N , is with respect to gN .

We define the trivial extension operator E0
p : H0(Y, ι∗(Lp⊗F ))→ L2(X,Lp⊗F ):

for g ∈ H0(Y, ι∗(Lp ⊗ F )), we let (E0
pg)(x) = 0, for x /∈ U , and in U , we let

(E0
pg)(y, ZN ) = g(y) exp

(
− pπ

2
|ZN |2

)
ρ
( |ZN |
r⊥

)
,

where the bump function ρ : R+ → [0, 1] satisfies

ρ(x) =

{
1, for x < 1

4 ,

0, for x > 1
2 .

The Gaussian integral calculation gives us the following asymptotics

(1)
∥∥E0

p

∥∥ ∼ 1

p
n−m

2

,

as p → ∞, where ‖ · ‖ denotes the operator norm. Now, the section E0
pg satisfies

(E0
pg)|Y = g, but it is not holomorphic over X (unless g is null). Nevertheless,

as our main result says, E0
pg approximates very well the holomorphic section Epg.

More precisely, we have the following result.

Theorem. There are C > 0, p1 ∈ N∗, such that for any p ≥ p1, we have

∥∥Ep − E0
p

∥∥ ≤ C

p
n−m+1

2

.

Remark.
a) By (1), the theorem tells that the principal asymptotic term of the optimal

extension operator is given by the trivial extension operator.
b) Our result refines Randriambololona [14, Théorème 3.1.10], stating that for

any ǫ > 0, there is p1 ∈ N∗, such that
∥∥Ep

∥∥ ≤ exp(ǫp) for p ≥ p1.

Theorem above appears in [7, Theorem 1.1] as almost direct consequence of more
precise results about the asymptotics of the Schwartz kernel Ep(x, y) ∈ (Lp⊗F )x⊗
(Lp⊗F )∗y, x ∈ X , y ∈ Y , of Ep with respect to dvY . More precisely, in [7, Theorem
1.5], we show that Ep(x, y) has exponential decay with respect to the distance
between the parameters. In particular, to understand fully the asymptotics of
Ep(x, y), it suffices to do so for x, y in a neighborhood of a fixed point (y0, y0) ∈ Y ×
Y in X×Y . In [7, Theorem 1.6], we show that after a reparametrization, given by
a homothety with factor

√
p in the so-called Fermi coordinates around (y0, y0), the

Schwartz kernel Ep(x, y) admits a complete asymptotic expansion in integer powers
of
√
p, as p → ∞. The first two terms of this expansion can be easily calculated

explicitly, and the first term corresponds to the Schwartz kernel of the optimal
extension operator of the Bargmann space. This term corresponds in geodesic
normal coordinates precisely to the first asymptotic term of the trivial extension
operator. Establishing the above theorem then becomes a routine exercise.

Theorem above has several applications. Among those are the proof of the
asymptotically optimal L∞-bound on the extension of holomorphic sections [7,
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Theorem 1.10], refining previous results of Zhang [15, Theorem 2.2] and Bost [4,
Theorem A.1], the proof of asymptotic transitivity of the optimal holomorphic
extension with respect to a tower of submanifolds [8, Theorem 1.1], the proof of
the asymptotic isometry for the space of holomorphic jets along the submanifold
[9, Theorem 1.3] and the algebraic characterization of L2-metrics on the section
ring of an ample line bundle [10, Theorems 1.5 and 1.6].

The general strategy for dealing with semi-classical limits in our papers is in-
spired by Bismut [1] and Bismut-Vasserot [3]. Our methods are based on spectral
techniques inspired by Bismut-Lebeau [2] and the proofs of the extension theo-
rem due to Ohsawa-Takegoshi [13] and Demailly [6]. Technically, our work relies
on exponential estimate for the Bergman kernel due to Ma-Marinescu [12], off-
diagonal asymptotic expansion of the Bergman kernel due to Dai-Liu-Ma [5], and
an asymptotic characterization of Toeplitz operators due to Ma-Marinescu [11].
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Topological entropy of endomorphisms of projective varieties over a
general metrized field

Charles Favre

(joint work with Tuyen Trung Truong, Junyi Xie)

This report contains a summary of the results discussed during my talk based
on [FTX22]. For pedagogical reasons, I chose to restrict my attention to analytic
maps. We refer the interested reader to op. cit. for the more general case of
meromorphic maps.

The most basic dynamical invariant associated to a continuous self-map of a
compact space f : X → X is arguably its topological entropy htop(f) ∈ [0,+∞]
which measures in a rough way its dynamical complexity. Recall that it is defined
as the exponential growth of the complexity of the sequence of open covers Un :=
U ∨ · · · ∨ f−nU where U is a fixed open cover of X . Our aim is to compute (or
at least estimate) the topological entropy of a regular self-map f : X → X of a
projective variety defined over some field k.

A first elementary observation is that htop(f) = 0 when X is endowed with its
Zariski topology. This reflects the fact that the Zariski topology is too crude so
that the dynamics of f does not exhibit chaos.

The first interesting case to consider is when k = C, and one considers the
map induced by f on the complex analytification Xan of X (which is compact). A
famous theorem by Yomdin [Yo87] and Gromov [Gr03] states that in this situation

(1) htop(f) = max
0≤i≤d

{logλi(f)} .

Here λi(f) ≥ 1 is the dynamical degree of f firsyt introduced by Russakovskii and
Shiffman [RS97], and defined as the spectral radius of the action of f by pull-back
on the Dolbeault cohomology Hi,i(X).

Let us briefly explain how Gromov obtained the upper bound in (1). First one
observes that it is sufficient to estimate the complexity N(n, ǫ) of the cover Un
when U is the open cover given by the set of all balls of radius ≤ ǫ for some fixed
ǫ > 0. For each n, consider the Zariski closure Γn ⊂ Xn of the set of orbits of
length n, (x, · · · , fn−1(x)). Observe that Γn is an algebraic variety of dimension
d := dim(X) for all n. Fix an ample line bundle L → X , and let Ln be the

restriction to Γn of the line bundle
∑n−1

i=0 π
∗
i L where πi is the projection Xn → X

onto the i-th factor.
We may choose a smooth positive metrization on L whose curvature defines a

Kähler form ω on X . By Wirtinger’s theorem the volume of Γn for the Kähler

form ωn :=
∑n−1
i=0 π

∗
i ω can be computed in cohomological terms, and we get

Volωn
(Γn) = degLn

(Γn) := c1(Ln)∧d. By a clever calculation, Gromov proves that

lim supn
1
n log degL(Γn) ≤ max0≤i≤d{logλi(f)}. On the other hand, the minimal-

ity of complex subvarieties (or a theorem by Lelong) implies the volume Volωn
(Γn)

to be no less than N(n, ǫ) up to a uniform constant which implies the upper bound
of (1).
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Now suppose (k, | · |) be a complete metrized non-Archimedean field. Defining
the topological entropy of f raises some difficulties in this context, since the set
X(k) of k-points in X can be endowed with a metric topology coming from the
norm on k, but this space is not locally compact if d ≥ 1 except if k is a local
field. To get around this problem, one considers the Berkovich analytification Xan

of X , see [Ber90]. This space has good topological properties and is in particular
compact. Our main theorem can be stated as follows.

Theorem. Let (k, | · |) be any complete metrized non-Archimedean field, and let
f : X → X be any algebraic self-map of a projective variety X defined over k. Then
the topological entropy of the map induced by f on the Berkovich analytification of
X is bounded from above by max0≤i≤dim(X){logλi(f)}.

Here the dynamical degrees are computed in an algebraic way as the limit
λj(f) := limn(fn∗c1(L)j ·c1(L)d−j)1/n. It is a theorem by Dinh and Sibony [DS05]
in characteristic 0 and by Tuyen [Tr20] in positive characteristic that this limit ex-
ists. The definition is also consistent with the one given previously in the complex
case. Note that the theorem was obtained by the first author and Rivera-Letelier
in the case X = P1

k, see [FR10, Théorème C].
Our proof in higher dimension follows very closely Gromov’s argument. Def-

initions of a Kähler form have been proposed in [BFJ15, §2.3] and [Yu18, §3] in
the non-Archimedean case based on the notion of models, but the general theory
of these objects is not developed yet. In particular, it is unclear what the analog
of Wirtinger’s theorem should be. A model of X over k◦ = {|z| ≤ 1} ⊂ k is by
convention a flat projective scheme X→ Spec k◦ whose generic fiber is isomorphic
to X . In our argument, the choice of a relatively ample line bundle L→ X replaces
the choice of a Kähler form in the complex setting.

The first observation is that any fixed model X defines an open cover U and
that it is sufficient to estimate the growth of the complexity N(n,X) of Un. The
second observation is that N(n,X) is bounded from above by the number Qn of
irreducible components of the model G〈n〉 of Γn obtained by taking the closure of
Γn inside Xn. Next we prove that

Qn ≤ c1(Ln)∧d ·G〈n〉
s

where Ln =
∑n−1

i=0 π
∗
i L, and πi is the projection Xn → X onto the i-th factor.

Using the invariance of intersection numbers under flat morphisms, we get Qn ≤
c1(Ln)∧d. We then adapt Gromov’s calculation using ideas from [D20] to relate
c1(Ln)∧d to the dynamical degrees, and our proof is complete.

A large part of our article is then devoted to the characterization of self-maps
whose topological entropy is 0. In dimension 1, such maps are exactly the ones
conjugated to maps having good reduction, see [FR10]. We prove that any map
having good reduction has topological entropy is 0 in arbitrary dimension. I refer
to [FTX22] for more informations.
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Spiralling domains in dimension 2

Jasmin Raissy

(joint work with Xavier Buff)

In this joint work in progress with Xavier Buff, we study the dynamics of holo-
morphic endomorphisms F : C2 → C2 fixing the origin and tangent to the identity
at the origin 0, i.e., such that D0F = Id. In particular, we are interested in the
basin of attraction of the origin, i.e., the set of points whose orbit under iteration
of F converges to the origin:

B =

{
z ∈ C2 | F ◦n(z) −→

n→+∞
0

}
.

This set is a priori neither open nor closed. It may have nonempty interior, as
it happens for the map F (z, w) = (z − z2, w − w2). But it may also have empty
interior, and this is the case if F is a complex Hénon map. A parabolic domain P
at the origin for F is a connected component of the interior of B which is invariant
under F (i.e., F (P ) ⊆ P ).

In our main result, we show the existence of polynomial maps F : C2 → C2

which are tangent to the identity at the origin and have infinitely many spiralling
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parabolic domains, i.e., parabolic domains with orbits converging to the origin
without being tangent to any direction.

Spiralling parabolic domains are a purely higher dimensional phenomenon. In
fact, in dimension one, the classical Leau-Fatou flower Theorem ensures that there
are only finitely many parabolic domains and neither of them can be spiralling.

Theorem 1 (Leau-Fatou flower Theorem [4, 6]). Let f(z) = z+azk+1 +O(zk+2),
with k ≥ 1 and a 6= 0, be a holomorphic function fixing the origin and tangent to
the identity at the origin. Then there are k distinct attracting directions v1, . . . , vk,
i.e., unit vectors vj ∈ S1 so that a ·vkj is real and negative, and k disjoint parabolic
domains P1, . . . , Pk such that in each Pj orbits converge to the origin tangentially
to the attracting direction vj.

Applying the Leau-Fatou flower Theorem to the inverse of f , we obtain a de-
scription of the dynamics in a full neighbourhood of the origin.

Given F : C2 → C2 fixing the origin and tangent to the identity at the origin,
it is natural to take inspiration from the one-dimensional picture, and look at the
first non-linear term V in the homogeneous expansion of F at the origin. One
can search for preferred directions for the dynamics, but can also interpret V as
a homogeneous vector field, and try to understand orbits of F by studying the
real-time trajectories of the vector field V .

Figure 1. Left: slice {z = −w} for F (z, w) = (z − z2, w + w2 +
4z2). In black, points of the slice whose orbit stays bounded; in
white, projection on {z = −w} of an orbit starting in the black
region. Right: in white, radial projection of the directions of the
points in the orbit on the left.

If an orbit of F converges to the origin tangentially to a complex direction
[t] ∈ P1(C), then the complex line passing through the origin and directed by [t] is
invariant under the homogeneous map V (see [5] for a proof). Such a direction is

called characteristic, and Écalle [3] and Hakim [5] gave the first sufficient conditions
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ensuring the existence of parabolic domains where orbits converge to the origin
tangentially to a characteristic direction.

Rivi constructed in [7] a first example of orbits converging to the origin with-
out being tangent to any direction, and Rong provided in [8] a first example of
spiralling domain. In these examples orbits converge spiralling around a charac-
teristic direction (see figure 1).

In the previous examples, one could prove the existence of finitely many par-
abolic domains. The precise statement of our main result is the following (see
figures 2 and 3).

Theorem 2 (Buff-R., in progress). For a ∈ R\{0}, the polynomial endomorphism
Fa : C2 → C2 defined by

(1) Fa

(
z
w

)
=

(
z
w

)
+

(
w2

z2

)
+ a

(
z(z − w)
w(z − w)

)

has infinitely many distinct spiralling parabolic domains.

To prove such result, we study the real-time trajectories of homogeneous vector
fields, geodesics on affine surfaces (following ideas from [1]) and triangular billiards.

Figure 2. Left: slice {z = −w} for Fa as in (1) with a = 0.1.
In black, points of the slice whose orbit stays bounded; in white,
projection on {z = −w} of an orbit starting in a black region.
Right: in white, radial projection of the directions of the points
in the orbit on the left.
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Figure 3. Left: zoom in the slice {z = −w} for Fa as in (1) with
a = 0.1. In black, points of the slice whose orbit stays bounded;
in white, projection on {z = −w} of an orbit starting in a black
region different from that in figure 2. Right: in white, radial
projection of the directions of the points in the orbit on the left.
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Semi-classical Bergman kernel asymptotics on complex manifolds
with boundary

Chin-Yu Hsiao

(joint work with Xiaoshan Li, George Marinescu)

Let M be a relatively compact connected open subset with smooth connected
boundary X of a complex manifold M ′ of complex dimension n. Let (L, hL)→M ′

be a holomorphic line bundle over M ′. Let

H0(M,L) := {u ∈ C∞(M,L); ∂u = 0},
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where ∂ is the Cauchy-Riemann operator acting on sections of L. LetH0
(2)(M,L) ⊂

L2(M,L) be the L2 closure of H0(M,L) and let

Π : L2(M,L)→ H0
(2)(M,L)

be the orthogonal projection (Bergman projection). The study of boundary be-
havior of Π is a classical subject in several complex variables. When M is strongly
pseudoconvex and L is trivial, Fefferman [Fef74] obtained an asymptotic expan-
sion of Π on the diagonal of the boundary. Subsequently, Boutet de Monvel-
Sjöstrand [BS76] described the singularities of the distribution kernel of Π by
showing that it is a complex Fourier integral operator (see also [Hsiao], [HM19]).
When M is not strongly pseudoconvex, for example, if M is strongly pseudocon-
cave, the space H0(M,L) could be trivial. In general, the usual methods (L2-
estimates for ∂) cannot be used to construct holomorphic section in H0(M,L), if
M is not pseudoconvex. To get non-trivial holomorphic sections of M and a rich
and flexible theory, we can consider high tensor powers Lk and study asymptotic
behavior of the space H0

(2)(M,Lk) and the orthogonal projection

Πk : L2(X,Lk)→ H0
(2)(M,Lk).

The study of large k behaviour of Πk is closely related to the problem of extending
the Kodaira embedding theorem and deformation theory to complex manifolds
with boundary. and is a fundamental question in the study of complex manifolds
with boundary. The difficulty of the study of Πk comes form the fact that we do
not know if the associated ∂-Neumann Laplacian has spectral gap. The spectral
gap property plays an important role of the study of Bergman kernel asymptotic
expansions on complex manifolds without boundary (see [MM07]). The boundary
X is a compact CR manifold and L is a CR line bundle overX . In [HLM], [HHL17],
it was shown that if X admits a transversal and CR R-action and (L, hL) is a R-
invariant positive CR line bundle, then the associated Kohn Laplacian has partial
spectral gap and the associated Szegő kernel admits a full asymptotic expansion.
Therefore, it is natural to study Πk whenM ′ admits a holomorphic R-action. A big
difference between CR case and complex manifolds with boundary case is that even
M ′ admits a holomorphic R-action, it is still very difficult to see if the associated
∂-Neumann Laplacian has spectral gap or partial spectral gap. From the Szegő
kernel asymptotic expansion obtained in [HLM], [HHL17] and by carefully study
semi-classical Poisson operator and using some kind of reduction to the boundary
technique, we establish an asymptotic expansion for the Bergman kernel of the
∂-Neumann operator on M with respect to high powers of a positive line bundle
L under under certain natural assumptions.

More precisely, in this work [HLM22], we assume that M ′ admits a holomorphic
R-action and the R-action preserves the boundary of M and is CR-transversal to
the boundary. Under these assumptions and some curvature conditions, we estab-
lish an asymptotic expansion for the Bergman kernel of the ∂-Neumann operator
on M with respect to high powers of L.
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Bergman-Einstein Metrics on a Normal Stein Space

Xiaojun Huang

This talk is taken from two recent papers, one jointly with M. Xiao at UCSD [2]
and one with X. Li from Wuhan University [1].

For any bounded domain in Cn, there exists a canonical Kähler metric-the Bergman
metric. Cheng-Yau proved that there exists a complete Kähler-Einstein metric on
a bounded pseudoconvex domain in Cn with a C2-smooth boundary. A well-known
open question by Cheng asked in 1979 asks when the Bergman metric on a bounded
pseudoconvex domain with smooth boundary is Kähler-Einstein. It is well known
that the Bergman metric on the unit ball is Kähler-Einstein. A long standing con-
jecture given by Cheng states that if the Bergman metric of a smoothly bounded
strongly pseudoconvex domain is Kähler-Einstein, then the domain is biholomor-
phic to the ball. This conjecture was solved by Fu-Wong and Nemirovski-Shafikov
in the case of complex dimension two. In the first paper mentioned above, Huang-
Xiao gave a confirmative answer to this conjecture in higher dimension. In the
same paper, Huang-Xiao generalized the classical Kerner theorm to a stein space
with possible isolated singularities. A crucial ingredient of Huang-Xiao’s proof of
the Cheng’s conjecture is a classical uniformization result of Lu which is general-
ized to stein space. In the same paper, they asked if the generalization of Cheng’s
conjecture on Stein spaces with compact strongly pseudoconvex boundaries is still
true or not. In the second paper mentioned above, Huang-Li proved that such a
Stein space must have spherical boundary. When the boundary is algebraic, then
this Stein space has to be a finite ball quotient. The general conjecture remains
open.
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On dynamical aspects of holomorphic foliations with ample
normal bundle

Judith Brinkschulte

(joint work with Masanori Adachi)

Let X be a complex manifold of dimension n ≥ 2. We discuss holomorphic folia-
tions in the following sense:

Definition. We say that a collection of holomorphic 1-forms F = {ωµ}, where
ωµ ∈ Ω1(Uµ) and U = {Uµ} is an open covering of X , define a codimension one
holomorphic foliation on X if they satisfy the following conditions: for any µ and
ν,

(1) There exists gµν ∈ O∗(Uµ ∩ Uν) such that ωµ = gµνων on Uµ ∩ Uν ;
(2) The analytic set {p ∈ Uµ | ωµ(p) = 0} has codimension ≥ 2;
(3) The integrability condition is fulfilled: ωµ ∧ dωµ = 0 on Uµ.

Here Ω1 denotes the sheaf of germs of holomorphic 1-forms on X . From the first
condition, we see that {gµν} enjoys the cocycle condition and defines a holomorphic
line bundle over X . We call it the normal bundle of F and denote it by NF .

From the first and second condition, the zero sets of the ωµ’s glue together and
define an analytic set of codimension ≥ 2 on X . We call it the singular set of F
and denote it by Sing(F). We also denote X◦ := X \ Sing(F) for a given foliation
F .

On X◦, the kernels of the ωµ’s define an integrable holomorphic subbundle of

T 1,0
X◦ of corank one, called the tangent bundle of F , denoted by TF . It follows that
X◦ is decomposed into the union of all the maximal integral submanifolds of TF ,
the leaves of F . Therefore, we may think of a foliation as a higher dimensional
analogue of flows on X .

From this perspective, it would be natural to seek for a Poincaré–Bendixson
type property for foliations.

When X is compact and NF is ample, Baum–Bott theory tells us that Sing(F)
cannot be empty. It is also not difficult to see that F does not have any compact
leaf.

Our main result in [1] is that F admits no nontrivial minimal sets if NF is
ample.

Main Theorem. Let X be a compact complex manifold of dimension ≥ 3. Let
F be a codimension one holomorphic foliation on X with ample normal bundle
NF . Then every leaf of F accumulates to Sing(F).
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This result was conjectured by Brunella in [3].

In the special case of X = CPn, n ≥ 3, the result goes back to Lins Neto [6]; note
that in this situation, the normal bundle NF is automatically ample since CPn has
positive holomorphic bisectional curvature. In [4], Brunella gave an affirmative
answer to his conjecture when X is a complex torus or, more generally, a compact
homogeneous manifold. Also, under the assumption that Pic(X) = Z, Brunella
and Perrone confirmed the conjecture in [5].

If dimX = 2, the problem becomes more difficult, and even for the special case
X = CP2, no answer is known.

On the other hand, the Main Theorem might be seen as a further generalization of
nonexistence theorems for compact Levi-flat real hypersurfaces that have attracted
a great interest in the field of complex analysis over the last decades. Several
results concerning the nonexistence of smooth real hypersurfaces invariant by a
holomorphic foliation or, more generally, a Levi-flat real hypersurface, related to
positivity of the normal bundle can be found in [6], [8], [3], [7] and [2]. In this
setting, however, the assumption dimX ≥ 3 is crucial: examples for dimX = 2
can be found in [3].

The proof of the Main Theorem is by contradiction. If there exists a leaf L of
F such that M := L does not intersect Sing(F), then Brunella’s convexity result
proved in [4] implies that X \M is strongly pseudoconvex. Then we use analytic
tools, L2 Hodge theory on complete Kähler manifolds, which permits to localize
c1(NF ), the first Chern class of the normal bundle, to the maximal compact an-
alytic set A ⊂ X \M . Once we can localize c1(NF ) to A, a contradiction easily
follows from the ∂∂-lemma and the maximum principle for strictly plurisubhar-
monic functions.
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A spectral gap for the transfer operator on complex projective spaces

Fabrizio Bianchi

(joint work with Tien-Cuong Dinh)

We develop a new method, based on pluripotential theory, to study the transfer
operator induced on Pk = Pk(C) by a generic holomorphic endomorphism and a
suitable continuous weight. This method not only allows us to prove the existence
and uniqueness of the equilibrium state and conformal measure for very general
weights (due to Denker-Przytycki-Urbański in dimension 1 and Urbański-Zdunik
in higher dimensions, both in the case of Hölder continuous weights), but, most
importantly, to establish the existence of a spectral gap for the transfer operator
and its perturbations on various functional spaces, which is new even in dimension
1, and to deduce a complete statistical study of the equilibrium states.

Given a weight φ : Pk → R, the pressure P (φ) is defined as sup
{

Entf (ν) +

〈ν, φ〉
}
, where the supremum is taken over all f -invariant probability measures

ν and Entf (ν) denotes the metric entropy of ν. An equilibrium state for φ is a
measure µφ realizing a maximum in the above formula. The transfer (or Perron-
Frobenius) operator L with weight φ is defined as

(1) Lg(y) := Lφg(y) :=
∑

x∈f−1(y)

eφ(x)g(x),

where g : Pk → R is a continuous test function and the points x in the sum are
counted with multiplicity. A conformal measure is an eigenvector for the dual
operator L∗ acting on positive measures.

When φ is Hölder continuous and Ω(φ) := maxφ−min φ < log d, the existence
and uniqueness of equilibrium states and conformal measures in any dimension was
established by Urbański-Zdunik [4], under a genericity assumption for f . When φ
is constant, the operator L reduces to a constant times the push-forward operator
f∗ and the equilibrium state is the measure of maximal entropy. For an account
of the known results in this case, see, e.g., [3]. Our first result is as follows.

Theorem 1 ([1]). Let f be a generic endomorphism of Pk of algebraic degree
d ≥ 2. Let φ be a real-valued logq-continuous function on Pk, for some q > 2,
such that Ω(φ) < log d. Then φ admits a unique equilibrium state µφ, which is K-
mixing and mixing of all orders, and repelling periodic points of period n (suitably
weighted) are equidistributed with respect to µφ as n goes to infinity. Moreover,
there is a unique conformal measure mφ associated to φ. We have µφ = ρmφ for
some strictly positive continuous function ρ on Pk and the preimages of points by
fn (suitably weighted) are equidistributed with respect to mφ as n goes to infinity.

We say that a function is logq-continuous if its oscillation on a ball of radius r
is bounded by a constant times (log⋆ r)−q.

A reformulation of Theorem 1 is the following: given φ as in the statement, there
exist a number λ > 0 and a continuous function ρ = ρφ : Pk → R such that, for
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every continuous function g : Pk → R, the following uniform convergence holds:

(2) λ−nLng(y)→ cgρ

for some constant cg depending on g. By duality, this is equivalent to the con-
vergence, uniform on probability measures ν, λ−n(L∗)nν → mφ, where mφ is a
conformal measure associated to the weight φ. The equilibrium state µφ is then
given by µφ = ρmφ, and we have cg = 〈mφ, g〉.
The main idea of our method is as follows. Let us just consider g and φ of class
C2 (the general case is handled with suitable approximations). First we prove that
the ratio maxLng/minLng stays bounded with n. This allows us to define the
good scaling ratio λ and to get that the sequence λ−nLng is uniformly bounded.
Next, we prove that this sequence is equicontinuous. This, together with other
technical arguments, implies the existence and uniqueness of the limit function ρ.

In order to establish the above controls, we study the sequence of (1, 1)-currents
given by ddcLng. First we prove that suitably normalized versions of these currents
are uniformly bounded by a common positive closed (1, 1)-current R. This is the
core of our method which replaces all controls on the distortion of inverse branches
of fn in the geometric method of [4] by a unique, global, and flexible estimate.
Namely, for every n ∈ N we can get an estimate of the form

(3)
∣∣∣ddcL

ng

cn

∣∣∣ .
∞∑

j=0

(eΩ(φ)

d

)j (f∗)jωFS

d(k−1)j
with cn := ‖g‖C2〈ωk

FS
,Ln1〉.

Here, ωFS denotes the usual Fubini-Study form on Pk normalized so that ωk
FS

is a
probability measure. We then establish some general criteria which allow one to
bound the oscillation of c−1

n Lng in terms of the oscillation of the potentials of the
current in the RHS of (3), which is controllable.

Combining all these ingredients, the existence and uniqueness of the equilibrium
state and conformal measure, as well as the equidistribution of preimages and the
equality P (φ) = logλ, follow from more standard arguments.

Without extra arguments, the convergence in (2) is not uniform in g. Our next and
main goal is to establish an exponential speed of convergence in (2). This requires
to build a suitable (semi-)norm for which the operator λ−1L is a contraction. The
following statement is then our main result.

Theorem 2 ([2]). Let f, q, φ,mφ be as in Theorem 1 and L, λ the above transfer
operator and scaling factor. Fix A > 0 and 0 < Ω < log d. For every constant
0 < γ ≤ 1, there exist two explicit equivalent norms for functions on Pk: ‖ · ‖⋄1

,
depending on f, γ, q, and ‖ · ‖⋄2

, depending on f, φ, γ, q, such that

‖ · ‖∞ + ‖ · ‖logq . ‖ · ‖⋄1
≃ ‖ · ‖⋄2

. ‖ · ‖Cγ ,

and a positive constant β = β(f, γ, q, A,Ω) < 1 such that when ‖φ‖⋄1
≤ A and

Ω(φ) ≤ Ω we have
∥∥λ−1Lg

∥∥
⋄2
≤ β‖g‖⋄2

for every function g : Pk → R with 〈mφ, g〉 = 0.



Complex Geometry and Dynamical Systems 2359

The construction of the norms ‖·‖⋄1
and ‖·‖⋄2

is quite involved. We use ideas
from the theory of interpolation between Banach spaces combined with techniques
from pluripotential theory and complex dynamics. Roughly speaking, an idea from
interpolation theory allows us to reduce the problem to the case where γ = 1. The
definition of the above norms in this case requires a control of the derivatives of
g (in the distributional sense), and this is where we use techniques from pluripo-
tential theory. This also explains why these norms are bounded by the C1 norm.
Note that we should be able to bound the derivatives of Lg in a similar way. A
quick expansion of the derivatives of Lg using (1) gives an idea of the difficulties
that one faces. The existence of these norms is still surprising to us.

Let us highlight two among these difficulties. First, the objects from complex
analysis and geometry are too rigid for perturbations with a non-constant weight:
none of the operators f∗, d, and ddc commutes with the operator L. In particular,
the ddc-method developed by Dinh-Sibony (see for instance [3]) cannot be applied
in this context, even for small perturbations of the weight φ = 0. Moreover,
we have critical points on the support of the measure, which cause a loss in the
regularity of functions under the operators f∗ and L.

Our solution to these problems is to define a new invariant functional space and
norm in this mixed real-complex setting, taking into account both the regularity
of the function (to cope with the rigidity of the complex objects) and the action
of f (to take into account the critical dynamics). The construction of this norm
requires the definition of several intermediate semi-norms and the precise study of
the action of the operator f∗ with respect to them.

A spectral gap for the transfer operator and its perturbations is one of the most
desirable properties in dynamics. We deduce an exponential speed for the equidis-
tribution of the backward orbits of points, and a full list of statistical properties
for the equilibrium states: K-mixing, mixing of all orders, exponential mixing,
CLT, Berry-Esseen theorem, local CLT, ASIP, LIL, LDP, almost sure CLT. Many
of these properties are new even in dimension one, some even in the case of φ = 0
(i.e., for the measure of maximal entropy). Properties such as the local CLT seem
to be unattainable without a spectral gap.
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Holomorphic sections of line bundles vanishing along subvarieties

Viet-Anh Nguyen

(joint work with Dan Coman, George Marinescu)

Let (X,L) be a polarized projective manifold of dimension n, let Σ be a com-
plex hypersurface of X , and let τ be a positive real number. The study of
holomorphic sections of Lp which vanish to order at least pτ along Σ received
much attention in the past few years. The density function of this space, called
partial Bergman kernel, appears in a natural way in several contexts, and es-
pecially in Kähler geometry and pluripotential theory, linked to the notion of
extremal quasiplurisubharmonic (qpsh) functions with poles along Σ, see e.g.
[Be1, RoS, PS, RWN1, RWN2, CM3, ZZ]. One of the motivations is the no-
tion of slope of the hypersurface Σ in the sense of Ross-Thomas [RT06] and its
relation to the existence of a constant scalar curvature Kähler metric in c1(L).

In this paper we consider a compact normal complex space X of dimension
n, a holomorphic line bundle L over X and the space H0

0 (X,Lp) of holomorphic
sections vanishing to order at least pτj along irreducible proper analytic subsets
Σj ⊂ X , j = 1, . . . , ℓ. We study algebraic and analytic objects associated to
H0

0 (X,Lp), especially the partial Bergman kernels, the Fubini-Study currents and
their potentials.

We first give an analytic characterization for H0
0 (X,Lp) to be big, which means

by definition that dimH0
0 (X,Lp) ∼ pn, p → ∞. This criterion, stated in terms

of singular Hermitian metrics with positive curvature current in the spirit of the
Ji-Shiffman/Bonavero/Ta-kayama criterion for big line bundles, involves a desin-
gularization of X where the Σj ’s become divisors.

Next we prove that under natural hypotheses the Fubini-Study currents asso-
ciated to H0

0 (X,Lp) and their potentials converge as p → ∞. The limit of the
sequence of Fubini-Study potentials is the push-forward ϕeq of a certain equi-
librium envelope with logarithmic poles defined on a desingularization. The se-
quence of the Fubini-Study currents converge to the corresponding equilibrium
current Teq. These are analogues of Tian’s theorem [T] which applies for smooth
Hermitian metrics with positive curvature. In the context of singular Hermitian
metrics they were introduced in [CM1, CM2]. The convergence of the Fubini-
Study currents/potentials is based on the asymptotics of the logarithm of the
partial Bergman kernel (see also [CM1, CM2, CMM, DMM] for results of this
type concerning the full Bergman kernel).

Returning to the case of a polarized projective manifold (X,L), Shiffman-
Zelditch [SZ] showed how Tian’s theorem can be applied to obtain the distribution
of the zeros of random holomorphic sections of H0(X,Lp). Dinh-Sibony [DS] used
meromorphic transforms to obtain an estimate on the speed of convergence of ze-
ros to the equilibrium distribution (see also [DMS] for the non-compact setting).
Random polynomials or more generally holomorphic sections in high tensor pow-
ers of a holomorphic line bundle and the distribution of their zeros represent a
classical subject in analysis (see e.g. [BP, ET, H, Ka]). The result of [SZ] was
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generalized for singular metrics whose curvature is a Kähler current in [CM1]
and for sequences of line bundles over normal complex spaces in [CMM] (see also
[CM2, DMM]). We show here that the equilibrium distribution of random zeros
of sections from H0

0 (X,Lp) is the equilibrium current Teq and we give an estimate
on the convergence speed.
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Plurisigned hermitian metrics

Vincent Guedj

(joint work with Daniele Angella, Hoang Chinh Lu)

The study of complex Monge-Ampère equations on compact hermitian (non-
Kähler) manifolds has gained considerable interest in the last decade. Tosatti-
Weinkove [TW10] and then Székelyhidi-Tosatti-Weinkove [STW17] have resolved
the Gauduchon-Calabi-Yau conjecture, extending to the hermitian setting Yau’s
fundamental result [Yau78]. Associated degenerate complex Monge-Ampère equa-
tions have been systematically studied by Dinew, Ko lodziej, and Nguyen (see e.g.
[Din16, KN19]), as well as in [LPT21, GL21, GL21b].

By comparison with the setting of Kähler manifolds, a key new difficulty lies in
the uniform control of Monge-Ampère volumes. Given X a compact complex
manifold of complex dimension n equipped with a hermitian metric ω, it is of
crucial importance to decide whether

v+(ω) := sup

{∫

X

(ω + ddcϕ)n : ϕ ∈ C∞(X) and ω + ddcϕ > 0

}

is finite, and whether

v−(ω) := inf

{∫

X

(ω + ddcϕ)n : ϕ ∈ C∞(X) and ω + ddcϕ > 0

}

is bounded away from zero. Here d = ∂ + ∂ and dc = 1
2i (∂ − ∂).

It follows from Stokes theorem that v−(ω) = v+(ω) =
∫
X
ωn when ω is closed

or, more generally, when ddcω = 0 and ddcω2 = 0. The latter conditions are
however rather restrictive and it is an important open problem to decide whether
v+(ω) (resp. v−(ω)) is always finite (resp. positive). We refer the reader to
[GL21, Theorem C] for an illustration of how the finiteness of v+(ω) is related to a
transcendental form of Demailly’s holomorphic Morse inequalities, while [GL21b]
strongly motivates the condition v−(ω) > 0.

It has been shown in [GL21, Theorem A] that the condition v+(ω) < +∞ (resp.
v−(ω) > 0) is independent of the choice of hermitian metric and is a bimeromorphic
invariant. We further study these conditions in the joint work [AGL22], testing
them on various classes of examples. We establish the finiteness of v+(X) (resp.
positivity of v−(X)) when X admits special plurisigned hermitian metrics.

Theorem A. Let X be a compact complex manifold of dimension n.

(1) If there exists a pluripositive hermitian metric ω then v+(ω) < +∞.

(2) If there exists a plurinegative hermitian metric ω then v−(ω) > 0.

A hermitian metric ω is pluripositive if there exists ε > 0 such that ddcω ≥ 0
and ddcωq ≥ εω ∧ ddcωq−1, for 2 ≤ q ≤ n − 2. The plurinegativity condition is
more involved; it can be reduced to ddcω ≤ 0 in dimension ≤ 3. In particular if
n = 3 and ω is pluriclosed then 0 < v−(ω) ≤ v+(ω) < +∞.
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These conditions are always fulfilled when n ≤ 2, so we initiate a systematic study
of the 3-dimensional case. One can show that plurisigned hermitian metrics cannot
coexist in dimension 3, i.e. the following conditions are mutually exclusive:

• X admits a hermitian metric ω such that ddcω ≥ 0 and ddcω 6= 0;
• X admits a hermitian metric ω such that ddcω = 0;
• X admits a hermitian metric ω such that ddcω ≤ 0 and ddcω 6= 0;
• X does not admit any hermitian metric ω such that ddcω has a sign.

Each case does occur as we show by analyzing several classes of examples:
(e.g. twistor spaces of K3 surfaces admit pluripositive hermitian metrics; Vaisman
manifolds admit plurinegative hermitian metrics; non-Kähler manifolds from the
class C of Fujiki do not admit any plurisigned hermitian metric).

We take a closer look at nilmanifolds X = Γ\G of (real) dimension 6, where
G is a connected and simply connected nilpotent Lie group, and Γ is a discrete
co-compact subgroup. There are 18 isomorphism classes of nilpotent Lie algebras
in dimension 6 which admit a complex structure. Following [COUV16] we gather
them in four large families (Np), (Ni), (Nii), (Niii) and show the following.

Theorem B. Consider a six-dimensional nilmanifold X = Γ\G endowed with a
left-invariant complex structure. There is always a plurisigned hermitian metric.
More precisely if X is not a complex torus, then

• either X belongs to one of the classes (Np), (Nii), (Niii) and then any
left-invariant hermitian metric is pluripositive but not pluriclosed.
• or X belongs to the class (Ni) and –depending on the complex structure–
it admits a left-invariant hermitian metric wich is either pluriclosed, or
pluripositive but not pluriclosed, or else plurinegative but not pluriclosed.

This analysis largely generalizes the influential work of Fino-Parton-Salamon
[FPS04] who characterized the existence of pluriclosed metric in this context.
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A pullback on a class of currents

Håkan Samuelsson Kalm

Let f : X → Y be a holomorphic mapping from a complex manifold X to a
complex Hermitian manifold Y . We explain how the usual pullback f∗ of smooth
forms can be extended to a certain class of currents. Similar pullback problems
turn up in, e.g., intersection theory (pullback of rational equivalence classes) and
arithmetic geometry (pullback of Green currents). In complex geometry it has
mainly been considered for closed positive (p, p)-currents; for instance by Dinh–
Sibony in several papers, Meó, Truong and others, often with applications in
complex dynamics in mind.

One cannot expect to have a reasonable pullback of all currents unless f is very
special. If f is a submersion, then there is a well-known natural pullback of all
currents, but since we allow arbitrary f we need to restrict to a subclass. We
say that a current is a PS-current if it locally is a finite sum of direct images of
smooth compactly supported differential forms (of arbitrary bidegree) under an
arbitrary holomorphic mapping. For instance, the Lelong integration current of
any subvariety or cycle is a PS-current. All PS-currents have order 0, and the
class of PS-currents is closed under multiplication by smooth forms, under d, ∂̄,
and ∂, and under conjugation. Our class neither contains nor is contained in the
class of closed positive currents, but there is a significant overlap. Our first result
is

Theorem 1. There is a linear bidegree preserving mapping f∗ : PS(Y )→ PS(X)
extending the usual pullback of smooth forms such that f∗ commutes with d, ∂̄,
and ∂; if ϕ is a smooth form in Y and µ ∈ PS(Y ), then f∗(ϕ∧µ) = f∗ϕ∧f∗µ; f∗

is locally defined; if f is a submersion, then f∗µ coincides with the usual pullback
of a current under a submersion.

Some consequences of this result are: supp f∗µ ⊂ f−1suppµ; if µ is smooth in

an open U ⊂ Y , then f∗µ is the usual pullback in f−1U ; if Ũ ⊂ X is open and

f |Ũ is a submersion, then f∗µ is the usual pullback under a submersion in Ũ . We
remark that f∗µ in general depends on the Hermitian structure of Y .

Our second result says that f∗ is cohomologically sound. For proof-technical
reasons (but probably not necessary ones) we assume that Y is good, by which
we mean that there is a holomorphic vector bundle F → Y × Y and a global
holomorphic section of F vanishing precisely on the diagonal in Y × Y to first
order. For instance, all projective manifolds are good, and any submanifold of a
good manifold is again good.
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Theorem 2. Assume additionally that X is compact and that Y is compact and
good. If µ ∈ PS(Y ) is closed, then

[f∗µ]dR = f∗[µ]dR,

where [·]dR means de Rham cohomology class and f∗[µ]dR is the usual pullback of a
cohomology class. In particular, [f∗µ]dR is independent of the choice of Hermitian
structure on Y .

Our pullback is not functorial in general, and in fact one cannot expect it to
be. Indeed, if we have

X1
f1−→ X2

f2−→ Y,

then f∗
1 f

∗
2µ depends in general on Hermitian structures on both X2 and Y whereas

(f2◦f1)∗µ only depends on the Hermitian structure on Y . However, since pullback
of cohomology classes is functorial it follows from Theorem 2 that

[f∗
1 f

∗
2µ]dR = [(f2 ◦ f1)∗µ]dR.

The basic idea to construct our pullback is standard; it is the following formal
calculation. Let Γ ⊂ X × Y be the graph of f and let π1 : X × Y → X and
π2 : X × Y → Y be the natural projections. If µ is a current in Y , then π∗

2µ is a
well-defined current in X × Y since π2 is a submersion. Suppose that the product

(1) [Γ] ∧ π∗
2µ

makes reasonable sense, where [Γ] is the integration current along Γ. Then one
can make the definition

(2) f∗µ := (π1)∗([Γ] ∧ π∗
2µ).

Notice that if µ is a smooth form, then (1) makes canonical sense and the right-
hand side of (2) coincides with the usual pullback of µ.

The novelty in the construction of our f∗ is our definition of the product (1)
when µ ∈ PS(Y ). To indicate how this product is defined we assume for simplicity
that Y is good. Then there is a holomorphic vector bundle E → X × Y and a
global holomorphic section Ψ of E vanishing to first order precisely on Γ. Let
N → Γ be the normal bundle of Γ equipped with the Hermitian metric induced by
the canonical isomorphism N ≃ TY . A key observation is the following formula,
which follows from [2].

[Γ] = ĉ(N) ∧MΨ,

where ĉ(N) is the full Chern form of N and MΨ is a certain current introduced
by Andersson in [1]. This current is a Monge–Ampère type product with support
in Γ and it can be obtained as the weak limit of explicit smooth forms MΨ,ǫ. It
turns out that if µ ∈ PS(Y ), then the limit

MΨ ∧ π∗
2µ := lim

ǫ→0
MΨ,ǫ ∧ π∗

2µ

exists, has support in Γ, and is in PS(X × Y ). In general, even if µ has pure
bidegree, ĉ(N) ∧ MΨ ∧ π∗

2µ has components of various different bidegrees. We
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let (ĉ(N) ∧MΨ ∧ π∗
2µ)eb be the components of the “expected bidegree”, which is

(dim Y, dimY ) + bidegµ. Our definition of (1) then is

[Γ] ∧ π∗
2µ := (ĉ(N) ∧MΨ ∧ π∗

2µ)eb.
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Holomorphic foliation associated with a semi-positive class of
numerical dimension one

Takayuki Koike

Let X be a connected compact Kähler manifold and α ∈ H1,1(X,R)(:= H1,1(X,C)
∩H2(X,R)) be a class such that #SP(α) > 1 and nd(α) = 1, where SP(α) is the
set of all C∞’ly smooth d-closed semi-positive (1, 1)-forms on X which represents
the class α, and

nd(α) := max{k ∈ {0, 1, 2, . . . , dimX} | α∧k 6= 0 in Hk,k(X,C)}.
For such a class α, we denote by Kα the closed subset of X defined by

Kα :=
⋂

θ∈SP(α)

⋂

ψ∈PSH∞(X,θ)

{x ∈ X | (dψ)x = 0},

where PSH∞(X, θ) is the set of all the θ-plurisubharmonic functions of class C∞

for a C∞’ly smooth (1, 1)-form θ on X : i.e. PSH∞(X, θ) := {ψ : X → R : C∞ |
θ+
√
−1∂∂ψ ≥ 0}. Note that it follows from the ∂∂-lemma that PSH∞(X, θ) 6= R

holds for θ ∈ SP(α) and Kα 6= X , since #SP(α) > 1. For such X and α, we show
the following:

Theorem 1. Let X and α be as above. Then there uniquely exists a non-singular
holomorphic foliation Fα on X \Kα of complex codimension 1 such that i∗Lθ ≡ 0
for any θ ∈ SP(α) and any leaf L of Fα, where iL : L → X is the holomorphic
immersion.

We investigate how large can Fα be analytically extended by classifying the con-
nected components of Kα from the view point of the existence of an Fα-adaptive
function in the following sense on a suitable neighborhood: We say that a continu-
ous function h : W → [−∞,+∞] on the closure of a domain (connected open sub-
set) W of X is Fα-adaptive if h|W is a R-valued non-constant pluriharmonic func-
tion, h|W\Kα

is Fα-leafwise constant, and the preimage h−1({maxW h,minW h})
coincides with the boundary ∂W of W , where the topology of [−∞,+∞] is the
one such that [−∞,+∞] is homeomorphic to the interval [0, 1] ⊂ R.
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Definition. A connected component K ′ of Kα is said to be an essential component
if there does not exist a connected open neighborhood W of K ′ in X such that
W ∩Kα is a relatively compact subset of W and that there exists an Fα-adaptive
function on W . The union of all the essential components of Kα is denoted by
Kess
α .

Our second main result is the following:

Theorem 2. Let X and α be as above. Then the holomorphic foliation Fα on
X \ Kα as in Theorem 1 can be extended to X \ Kess

α as a (maybe singular)
holomorphic foliation. Moreover, one of the following holds:

Case I: There exists a surjective holomorphic map Φ: X → R to a compact
Riemann surface R and a Kähler class αR of R such that α = Φ∗αR. In
this case, Fα is the foliation defined by the fibration Φ, Kess

α = ∅, Kα

is included in the set of all the critical points of Φ, and the set of all the
singular points (Φ−1(p))sing of the (set-theoretical) fiber Φ−1(p) is included
in Kα for any point p ∈ R.

Case II: Not in the case I and Kess
α = ∅. In this case, there exist an open

covering {U1, U2} of X consisting of two domains and Fα-adaptive func-
tions hj : Uj → [−∞,+∞] for each j = 1, 2 such that, on each connected
component W of U1 ∩ U2, there exist constants aW , bW ∈ R such that
h2 = aWh1+bW holds onW . The foliation Fα is defined on X, its tangent
bundle is perpendicular to ∂hj on Uj, and Kα∩Uj = {x ∈ Uj | (dhj)x = 0}
holds for j = 1, 2.

Case III: Kess
α 6= ∅. In this case, X \Kess

α is a domain of X and there exists

an Fα-adaptive function hα : X \Kess
α → [−∞,+∞]. The tangent bundle

of the foliation Fα on X \Kess
α is perpendicular to ∂hα, and Kα \Kess

α =
{x ∈ X \Kess

α | (dhα)x = 0} holds.
As a corollary, one has the following:

Theorem 3. Let X be a connected compact Kähler manifold. Assume that there
exists a (1, 1)-class α ∈ H1,1(X,R) with #SP(α) > 1 and nd(α) = 1. Then X
admits uncountably many compact Levi-flat hypersurfaces of class Cω (i.e. real
analytic).

Let Y be a non-singular hypersurface of X such that the normal bundle NY/X =

[Y ]|Y is unitary flat (i.e. NY/X ∈ H1(Y,U(1)), where U(1) := {t ∈ C | |t| = 1}),
where [Y ] is the holomorphic line bundle on X which corresponds to the divisor Y .
Note that the first Chern class c1([Y ]) of [Y ] satisfies nd(c1([Y ])) = 1 in this case.
Our motivation comes from the study of the relation between the semi-positivity
of [Y ] (i.e. non-emptiness of SP(c1([Y ]))) and the complex analytic structure of
a neighborhood of Y . In [K1, Conjecture 2.1], we conjectured that [Y ] is semi-
positive if and only if the pair (Y,X) is of class (β′) or (β′′) in the classification of
Ueda [U]. The following corollary, which follows from [K2, Theorem 1.4] and the
argument in the proof of Theorem 3, gives an affirmative answer to [K1, Conjecture
2.1] when Y is non-singular.
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Corollary Let X be a connected compact Kähler manifold and Y ⊂ X be a non-
singular connected hypersurface such that NY/X is unitary flat. Then [Y ] is semi-
positive if and only if there exists a neighborhood V of Y such that [Y ]|V is unitary
flat: i.e. there exists a non-singular holomorhic foliation on V which has Y as a
leaf along which the holonomy is U(1)-linear.

Note that Ohsawa pointed out in [O, Remark 5.2] that Corollary for a surface X
can be shown by combining [K2, Theorem 1.4] and Siu’s solution [Si] of Grauert–
Riemenschneider’s conjecture (Kählerness assumption is not needed in his proof).
Note also that this kinds of results can be regarded as a generalization of Brunella’s
theorem [B] for the blow-up of the projective plane at general nine points.

The foliation Fα is constructed by considering the eigenvectors which belongs
to the eigenvalue zero of each element of SP(α), or equivalently, by considering
the Monge–Ampère foliation for each element ψ ∈ PSH∞(X, θ) for an element
θ ∈ SP(α). In the proof, we show that

√
−1∂∂ψ = gψ ·

√
−1∂ψ ∧ ∂ψ holds for

an Fα-leafwise constant function gψ on a suitable domain of X essentially by a
linear-algebraic arguments. When gψ is a non-constant function on some level set
of ψ, we show that the situation is in Case I. When gψ is constant on any level
set of ψ, gψ = χ ◦ ψ holds on a domain for some real function χ. By considering
a solution G of a suitable ordinary differential equation concerning on χ, one can
see that h0 := G ◦ ψ is a pluriharmonic function. In this case, we show that the
situation is either Case II or III by considering the analytic continuation of h0.
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Dynamics of large groups of automorphisms of complex
projective surfaces

Serge Cantat

(joint work with Romain Dujardin)

Consider a group Γ of automorphisms (i.e., holomorphic diffeomorphisms) of a
complex projective surface X , and assume that Γ contains a non-abelian free
group acting faithfully on the cohomology of X . Can we describe the asymptotic
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distribution of the Γ-orbits? This is related to a more technical question, namely
the description of all ν−stationary measures µ on X , where ν is a probability
measure on Aut(X), the support of which generates Γ. In this talk, I explained
results of the following types (under adequate hypotheses):

• stiffness results, showing that any stationary measure is in fact invariant;
• classification of invariant measures;
• finiteness results, for instance a finiteness result for the number of finite

orbits.

The techniques rely on holomorphic dynamics, Hodge theory, ergodic and Pesin
theory (in particular the work of Ledrappier and of Brown and Rodriguez-Hertz),
and arithmetic dynamics (in particular, Yuan’s arithmetic equidistribution theo-
rem). Of course, we also use Furstenberg’s theory of random products of matrices
to study the dynamics of Γ in the cohomology of X .
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The cycle space of the K3 period domain and deformations of complex
hyperkähler metrics

Daniel Greb

(joint work with Martin Schwald)

The Global Torelli Theorem implies that the “moduli space” of biholomorphism
classes of complex (unpolarised) K3 surfaces can be described via Hodge theory
as follows: Let

Ω :=
{

[x] ∈ P(ΛC) | 〈x, x〉 = 0, 〈x, x〉 > 0
}
⊂

{
[x] ∈ P(ΛC) | 〈x, x〉 = 0

}
=: Q,

where (Λ, 〈·, ·〉) is the even, unimodular lattice of signature (3, 19). The set Ω is
an open orbit of the real Lie group G0 = SO0(3, 19) on the quadric Q. If Γ =
O+(Λ) denotes the index two subgroup in the discrete subgroup O(Λ) consisting of
transformations whose real extension preserves the orientation on every positive
three space inside ΛR, then the set-theoretic moduli space is Ω/Γ. In my talk,
I recalled that in contrast to the situation e.g. of Riemann surfaces or polarised
Abelian varieties at this point the following closely related problems appear:

(1) the Γ-action on Ω is not properly discontinuous, the quotient Ω/Γ is very
non-Hausdorff;

(2) any two points in the period domain can be connected with chains of com-
pact one-dimensional submanifolds constructed either as orbits of maximal
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compact subgroups inside G0 or as period maps of twistor families of hy-
perkähler metrics on the real four-manifold M underlying any K3 surface,
in particular, Ω is maximally far from being Stein, as it does not carry
non-constant holomorphic functions;

(3) the moduli space Ω̃ → Ω of marked K3 surfaces, the so-called Burns-
Rapoport space, is a non-Hausdorff éspace étalé over Ω.

While twistor lines form a 57-dimensional real-analytic family, these subman-
ifolds actually deform in a 57-dimensional complex analytic family, parametrised
by one connected component C1(Ω) of the cycle space or Douady space of Ω. I
explained that it is relatively easy to see that in contrast to Ω, the parameter space
C1(Ω) is a bounded symmetric domain, in particular Stein, and that consequently,
the induced Γ-action on it is properly discontinuous. It is hence a very natural and
interesting problem to investigate the meaning of C1(Ω) and its quotient C1(Ω)/Γ
in terms of moduli theory of certain geometric structures on K3-surfaces. This
question was independently raised by Fels-Huckleberry-Wolf in [3] and Looijenga
in [5].

In this direction, one first observes that C1(Ω) has further nice desirable prop-
erties: if

C1(Ω)
p←− C q−→ Ω

is the universal family of cycles over C1(Ω), and if F is the sheaf (of sets) on Ω

corresponding to Ω̃, then F̂ := p∗(q∗(F)) is a Hausdorff sheaf on C1(Ω). Addition-
ally, motivated by observations made by R. Kobayashi [4] and partially building
on results obtained in [1] we show that this sheaf has a Γ-invariant section σR over
the part TR of the cycle space parametrising honest twistor lines that extends

to a (still invariant) section σ in F̂ over a Γ-invariant neighbourhood of TR in
C1(Ω); i.e., there exists an equivariant marked family of K3 surfaces over a sig-
nificant part of C. This family can be seen as a marked complex deformation of
the twistor spaces associated with hyperkähler metrics on M , and in fact there is
an interpretation in terms of deformations (and potentially also moduli theory) of
complex hyperkähler metrics on M or rather its complexification MC via Penrose’s
Nonlinear Graviton Construction, cf. [2].

One of the questions that remain to be investigated is whether the section σ
and the family of marked K3 surfaces it induces can be analytically continued to
the part of the cycle space C1(Ω) parametrising cycles not contained in any of the
hyperplane sections of Ω defined by orthogonality to a (−2)-class in Λ.
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Superconnection and family Bergman kernels

Xiaonan Ma

(joint work with Weiping Zhang)

We establish an asymptotic version of Bismut’s local family index theorem for the
Bergman kernel. The key idea is to use the superconnection as in the local family
index theorem. We only formulate the results in the fiberwise positive holomorphic
line bundle case, while the main results hold also in the fiberwise symplectic case.

Let W,S be smooth compact complex manifolds with S being connected. Let
π : W → S be a holomorphic submersion with compact fiber X and dimX = n.

Let L,E be holomorphic vector bundles on W and the rank rk(L) of L is 1. Let
hL, hE be Hermitian metrics on L,E. Let ∇L,∇E be the Chern (i.e., holomorphic
Hermitian) connections on (L, hL), (E, hE) with curvatures RL, RE. Set

ω :=

√
−1

2π
RL.

Then ω is a smooth real 2-form of complex type (1, 1) on W . We suppose that ω
defines a fiberwise Kähler form along the fiber X , i.e.,

gTRX(u, v) = ω(u, JTRXv)

defines a Riemannian metric on TRX . This simply means that (L, hL) is a fiberwise
positive line bundle on W .

For a differential form ϑ on S, we will denote by ϑ(i) its component in Λi(T ∗
R
S).

By the Riemann-Roch-Grothendieck theorem and the Kodaira vanishing theo-
rem, there exists p0 > 0 such that for p > p0, H0(X,Lp ⊗ E) is a holomorphic
vector bundle on S and we have in H•(S,R)

ch(H0(X,Lp ⊗ E)) =

∫

X

Td(T (1,0)X) ch(E) ch(Lp).

By (), in H2(S,R), we have

c1(H0(X,Lp ⊗ E)) =

[∫

X

Td(T (1,0)X) ch(E) ch(Lp)

](2)

= rk(E)

∫

X

c1(L)n+1

(n+ 1)!
pn+1 +

∫

X

(
c1(E) +

rk(E)

2
c1(T (1,0)X)

)c1(L)n

n!
pn + O(pn−1).

Now, from the local index theory point of view [1], it is nature to ask whether one
can refine () to an equality of differential forms via Chern-Weil representatives.

For s ∈ S, let Pp,s be the orthogonal projection from C
∞(Xs, L

p ⊗ E) onto
H0(Xs, L

p ⊗ E). Note that Pp is the Bergman projection, and its smooth kernel
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is called Bergman kernel, and the asymptotic expansion was studied by a lot of
people.

Let ∇H0(X,Lp⊗E) be the Chern connection on H0(X,Lp ⊗ E) with curvature

RH
0(X,Lp⊗E). The main result of our talk is as follows.

Theorem [2]. The curvature operators

1

p
RH

0(X,Lp⊗E) ∈ Ω2(S,End(H0(X,Lp ⊗ E)))

are Toeplitz operators for any s ∈ S, i.e., there exists RrC
∞(W,π∗(Λ2(T ∗

R
S)) ⊗

End(E)), (r ∈ N) such that for any k ∈ N, when p → +∞, under the operator
norm of the morphisms of vector bundles: H0(X,Lp⊗E)→ Λ2(T ∗

R
S)⊗H0(X,Lp⊗

E) over S, we have

1

p
RH

0(X,Lp⊗E) =
k∑

r=0

TRr,p p
−r +O(p−k−1), with TRr,p = PpRrPp,

R0 =− 2π
√
−1

(ωn+1)(2)

(n+ 1)(ωn)(0)
IdE .
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Real forms of a smooth complex projective surface

Keiji Oguiso

(joint work with Tien-Cuong Dinh, Cécile Gachet, Hsueh-Yung Lin, Long Wang,
Xun Yu)

Let G := Gal (C/R) = {idC, c} be the Galois group of the field extension C/R.

It is quite recent that negative answers are given to the following long standing
natural questions:

Question. Let V be a smooth complex projective variety of dimension ≥ 2.
Are real forms of V , i.e., systems of homogeneous equations with real coefficients
defining V , finite up to isomorphisms over R?

The first negative answer to this question is given by Lesieutre [Le18]. He
constructs a smooth complex projective variety V of dimension 6 with Kodaira
dimension κ(V ) = −∞ with infinitely many real forms. Expanding his idea, Dinh
and Oguiso ([DO19]) construct a smooth complex projective variety V of any
dimension≥ 2 with κ(V ) ≥ 0 with infinitely many real forms and Dinh, Oguiso and
Yu ([DOY21], [DOY22]) construct a smooth complex projective rational variety
V of any dimension ≥ 2 with infinitely many real forms.
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In the talk, being based on [BS64], we confirm a few basic criteria of the finiteness
of real forms of a given smooth complex projective variety, in terms of the Galois
cohomology set of the discrete part of the automorphism group, the cone conjecture
and the topological entropy as follows:

Theorem 1. Let V be a complex projective variety with at least one real form VR.
Then the non-isomorphic real forms of V are at most countable. Moreover, the
non-isomorphic real forms of V are at most finite provided that the cohomology set
H1(G,Aut (V )/Aut0 (V )) is finite. Here we naturally regard Aut (V )/Aut0 (V ) as
a G-group via a real form VR chosen.

This is asserted by [DIK00, Appendix D] under the assumption that Aut0 (V ) is
linear algebraic group (and ignored the abelian variety factor in [DIK00, Appendix
D]). We also compare the first statement with a recent remarkable result by [Bo21].

Theorem 2. Let V be a complex projective variety and satisfies the cone conjec-
ture in the sense that the natural action of

Aut (V )∗ := Im (Aut (V )→ GL(NS (V )/torsion)

on the rational hull Nef+ (V ) of the nef cone Nef (V ) ∩ NS (V )Q has a rational

polyhedral fundamental domain Σ, or more generally, Nef+ (V ) contains a rational
polyhedral cone Σ′ satisfying

Aut (V ) · Σ′ ⊃ Amp (V ).

Then V has at most finitely many non-isomorphic real forms. In particular, this
is the case where V is a minimal surface of Kodaira dimension zero ([Ka97]).

This is also a generalization and clarification of the assertion of [CF20] and
suggests some unexpected relation with real form problems and cone conjecture
(whose origin goes back to the mirror symmetry).

Theorem 3. Let V be a complex projective variety of dimension ≥ 2. If Aut (V )∗

is virtually solvable, then V admits at most finitely many non-isomorphic real
forms. In particular, this is the case where V is smooth and all automorphisms of
V is of zero-entropy ([DLOZ22]).

This is a slight generalization and clarification of the assertion of [Ki20] and
suggests again some unexpected relation with the real form problems and algebraic
dynamics.

We then apply them to show that a smooth complex projective surface has at most
finitely many mutually non-isomorphic real forms unless it is either rational or a
non-minimal surface birational to either a K3 surface or an Enriques surface. We
finally construct an Enriques surface whose blow-up at one point admits infinitely
many mutually non-isomorphic real forms, which answers a question of Kondo to
us and also, together with [DOY21], shows the three exceptional cases really occur.
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Rationality of proper holomorphic maps between bounded
symmetric domains

Sung-Yeon Kim

The study of proper holomorphic maps between bounded symmetric domains dates
back to the work of Poincaré, who discovered that any biholomorphic map between
two connected open pieces of the the unit sphere in C2 is a restriction of (the

extension to B
2

of) an automorphism of the 2-dimensional unit ball B2. Later,
Alexander and Henkin-Tumanov generalized his result to higher dimensional unit
balls and higher rank bounded symmetric domains respectively. For unit balls of
different dimensions, proper holomorphic maps have been studied thoroughly by
many mathematicians: Cima-Suffridge([CS90]), Faran([Fa86]), Forstnerič([Fo86,
Fo89]), Huang-Ji([HJ01]), Webster([W78, W79]) and many others.

In [Fo89], Forstnerič proved that if a proper holomorphic map f : Bn →
BN , (N > n > 1) extends to a CN−n+1 map on B

n
, then f is a rational map

with degree at most N2(N −n+ 1) and has no pole on ∂Bn. This theorem implies
that the space of all rational proper mappings f : Bn → BN is finite dimensional.
The proof relies on the method of Segre varieties and Reflection Principle devel-
oped first by Webster in [W78]:

Let Ω be a domain with real analytic boundary M in Cn, n > 1. For each
point z0 ∈M there is a neighborhood U of z0 in Cn and a real valued Cω function
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r(z, z) on U with nonvanishing gradient such that

M ∩ U = {z ∈ U : r(z, z) = 0}.
After shrinking U if necessary, we define for each w ∈ U a complex hypersurface
Qw ⊂ U by

Qw = {z ∈ U : r(z, w) = 0}.
These hypersurfaces were first introduced by Segre [S31] and were later used by
many authors to study holomorphic maps preserving real analytic CR manifolds.
Let Ω′ ⊂ CN be another domain with real analytic boundary M ′ and let f : U →
U ′ be a holomorphic mapping taking M ∩ U into M ′ ∩ U ′. Then f(Qw) ⊂ Q′

f(w),

where Q′
w′ is the Segre variety associated to M ′, implying that

f(z) ∈
⋂

w∈Qz

Q′
f(w).

Hence if the right hand side is a finite set, then the value f(z) is determined by
finite jet of f at w ∈ Qz ∩Ω. If Ω and Ω′ are balls, then this is true if f(Ω) is not
contained in a proper linear subspace of CN .

In the case of bounded symmetric domain Ω with rank greater or equal to two,
the Segre varieties associated to the each boundary orbit may be 0-dimensional
and therefore give no further information on the map f . On the other hand
boundary of Ω has so called ’fine structure’ introduced by Wolf([Wo72]). Using
this structure, Mok and Tsai([MT92]) constructed a moduli map from the moduli
space of characteristic symmetric subdomains to that of characteristic symmetric
subdomains of a fixed rank in the target domain, and the moduli map was proven
to admit a rational extension between moduli spaces of characteristic symmetric
subspaces. This moduli map plays an important role in studying the properties of
given proper holomorphic maps.

By modifying Mok-Tsai’s method, we construct a map f ♯ between moduli space
of invariantly totally geodesic subspaces with the property that

f(p) ∈
⋂

σ∈Zp

X ′
f♯(σ),

where Zp is the set of all invariantly totally geodesic subspaces Xσ of a fixed
type that passes through p and X ′

f♯(σ) is the minimal invariantly totally geodesic

subspace that contains f(Xσ). In the moduli space of invariantly totally geodesic
subspaces, the sets of boundary components are homogeneous CR manifolds with
mixed Levi signature and the restriction of moduli map to them are CR maps
between them. Under certain conditions, it forces the moduli map to satisfy
strong local differential-geometric constraints. Using this, we obtain the following
theorems:

An irreducible bounded symmetric domains of type one is a domain defined by

Ωp,q := {Z ∈ Cp×q : Iq − ZZ
t
> 0}, p ≥ q ≥ 1,

where Cp×q is the set of p by q matrices.
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Theorem. Let Ω = Ωp,q and Ω′ = Ωp′,q′ be irreducible bounded symmetric do-
mains of type one with q, q′ ≥ 2 and let f : Ω → Ω′ be a proper holomorphic
map that extends Cp

′·q′−(p−q)·q up to the boundary. Suppose that f maps Shilov
boundary to Shilov boundary. Then f is of the form f = ı ◦ F , where

F = F1 × F2 : Ω→ Ω′
1 × Ω′

2,

Ω′
1 and Ω′

2 are bounded symmetric domains, F1 : Ω→ Ω′
1 is a proper rational map

and ı : Ω′
1 × Ω′

2 →֒ Ω′ is a holomorphic totally geodesic isometric embedding of
a reducible bounded symmetric domain Ω′

1 × Ω′
2 into Ω′ with respect to canonical

Kähler-Einstein metrics. Moreover, if Ω is of non-tube type, then f is a rational
map.

Corollary Let f : Ωp,q → Ωp′,q′ be a proper holomorphic map that extends

Cp
′·q′−(p−q)·q up to the boundary. Suppose

3 ≤ q ≤ q′ ≤ 2q − 1.

Then f is rational or of the form f = ı ◦ F , where
F = F1 × F2 : Ω→ Ω′

1 × Ω′
2,

Ω′
1 and Ω′

2 are bounded symmetric domains, F1 : Ω→ Ω′
1 is a standard embedding

and ı : Ω′
1 × Ω′

2 →֒ Ω′ is a holomorphic totally geodesic isometric embedding of
a reducible bounded symmetric domain Ω′

1 × Ω′
2 into Ω′ with respect to canoni-

cal Kähler-Einstein metrics. If q = 2, then the same conclusion holds under an
additional assumption that f maps Shilov boundary to Shilov boundary.
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[Fo89] Forstnerič, F.: Extending proper holomorphic mappings of positive codimension. Invent.
Math. 95 (1989), 31–61.

[HJ01] Huang, X.; Ji, S.: Mapping Bn into B2n−1. Invent. Math. 145 (2) (2001), 219–250.
[MT92] Mok, N. Tsai, I-H.: Rigidity of convex realizations of irreducible bounded symmetric

domains of rank 2. J. Reine Angew Math., 431 (1992), 91–122
[S31] Segre, B. : lntorno al problem di Poincaré della rappresentazione pseudo-conform. Rend.
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Residue currents for holomorphic foliations

Lucas Kaufmann

(joint work with R. Lärkäng and Elizabeth Wulcan)

This aim of this talk was to present recent results on the use of the theory of
residue currents to study singularities of holomorphic foliations.

Let M be a compact complex manifold of dimension n and F be a holomorphic
foliation on M . It is given by a coherent subsheaf TF of TM , called the tangent
sheaf of F , which is involutive, i.e. closed under the Lie bracket, and such that
the normal sheaf NF := TM/TF is torsion free. The singular set of F is, by
definition, the smallest subset sing F ⊂ M outside of which NF is locally free.
The generic rank of TF , which will be denoted by k, is called the rank of the
foliation F .

A fundamental vanishing theorem of Baum-Bott asserts that, when F is non-
singular, that is, when sing F is empty, all the characteristic classes of NF of
degree ℓ vanish when n − k < ℓ ≤ n, see [3]. This follows from the existence of
a basic connection on the normal bundle NF , which is a connection compatible
with both the holomorphic and foliation structure. Such connections always exist
in the non-singular case.

When F is singular, the above vanishing result implies the following important
index theorem: for every connected component Z of sing F and any homogeneous
symmetric polynomial Φ ∈ C[z1, . . . , zn] of degree ℓ with n−k < ℓ ≤ n, there exists

a cohomology class ResΦ(F ;Z) ∈ H2ℓ(M,C) depending on the local behavior of
F around Z such that

∑

Z⊂sing F
ResΦ(F ;Z) = Φ(NF) in H2ℓ(M,C),

where Φ(NF) is the corresponding characteristic class of NF , see [3]. This should
be seen as a localization formula for Φ(NF) around the singularities of F . The

classes ResΦ(F ;Z) are called Baum-Bott residue classes.
When k = 1 and the singular set consists of isolated points, the Baum-Bott

classes are actually numbers, called Baum-Bott indices. In this case, Baum-
Bott already showed that they can be computed using the so called Grothendieck
residues. This makes the use of Baum-Bott Theory an effective tool in the study
of one-dimensional foliations. However, when the singularities are not isolated or
when k ≥ 2, the situation is more delicate and there is no general effective way to
compute Baum-Bott classes or find explicit representatives. So far, the available
results are limited and rely on a reduction to the above case of rank one foliations
with isolated singularities. See for instance [3, 5, 4]

In our work [6], we have shown that the above Baum-Bott classes can be nat-
urally represented by currents of residue type supported by the corresponding
singular component. The precise statement is as follows.

Theorem. Let M be an n-dimensional projective manifold and F be a holo-
morphic foliation of rank k on M . Then, for every connected component Z of
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sing F and any homogeneous symmetric polynomial Φ ∈ C[z1, . . . , zn] of degree ℓ
with n−k < ℓ ≤ n, there exists a pseudomeromorphic current RΦ

Z on M of degree
2ℓ supported by Z whose cohomology class coincides with the Baum-Bott residue
class ResΦ(F ;Z) ∈ H2ℓ(M,C).

In the above statement, a pseudomeromorphic current is a pushforward of a
current of the form τ = ω ∧ 1

t
m1
1

· · · 1
t
mk
k

∂ 1

t
mk+1

k+1

∧ · · · ∧ ∂ 1
tmr
r
, under a sequence of

holomorphic modifications, projections and open inclusions, where t1, . . . , tr are
local holomorphic coordinates. This is a natural class of currents in multivariable
residue theory. In particular, this class contains several known constructions of
residue currents, see [1, 2] and the references therein.

The first step of the proof of the above theorem is to consider a resolution of
the normal sheaf of the form

0→ EN
ϕN−→ EN−1

ϕN−1−→ . . .
ϕ2−→ E1

ϕ1−→ E0 = TM
ϕ0−→ NF → 0

equipped with suitable connections over M \ sing F with controlled singularities
along sing F as explained below. Here, each Ek is a holomorphic vector bundle,
ϕk are holomorphic and the induced vector bundle complex is exact out of sing F .

Once we fix a hermitian metric on each vector bundle Ek, k = 0, . . . , N , there
are minimal inverses σk of the above morphisms ϕk, which are defined outside
sing F . This allow us to start from basic connection Dbasic on NF over M \sing F
and produce connections on each Ek that are compatible with the maps of the
complex. Via a cut-off procedure one can produce, for any ǫ > 0, connections
Dǫ
k on each Ek over M such that, by Baum-Bott theory, polynomials of the form

rΦZ (ǫ) := Φ(Θ(Dǫ
N), . . . ,Θ(Dǫ

0)) are 2ℓ-forms supported by an ǫ-neighborhood of Z

representing the residue class ResΦ(F ;Z). Here (Θ(Dǫ
k) stands for the curvature

matrix of Θ(Dǫ
k).

A key technical step is to prove that the limit as ǫ → 0 of the forms rΦZ (ǫ)
described above exists and yield a well-defined residue current supported by Z
and representing ResΦ(F ;Z). This is done by working in the category of almost
semi-meromorphic singularities in the sense of [1, 2]. We show that there exists
a basic connection Dbasic on NF over M \ sing F with almost semi-meromorphic
singularities along Z and observe that the minimal inverses σk described above also
have the same singularity type. This allow us to use resolutions of singularities à
la Hironaka and show that rΦZ(ǫ) tends to a well defined current RΦ

Z when ǫ→ 0.

When F is of rank one and has isolated singularities, we recover the known formula
involving Gorthendieck residues, but now expressed in terms of residue currents.
Still in the rank one case, when the singular set is of higher dimension, one can
express residue currents using currents of Bochner-Martinelli type.
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On neighborhoods of embedded complex tori

Laurent Stolovitch

(joint work with Xianghong Gong)

Our talk is dedicated to the following

Theorem [GSb22]. Let C be an n-dimensional complex torus embedded in a com-
plex manifold M of dimensional n+ d. Assume that TCM , the restriction of TM
on C, splits as TC⊕NC. Suppose that the normal bundle of C inM admits transi-
tion functions that are Hermitian matrices and satisfy a non-resonant Diophantine
condition. Then a neighborhood of C in M is biholomorphic to a neighborhood of
the zero section in the normal bundle.

A complex torus C can be identified with the quotient of Cn by a lattice Λ
spanned by the standard unit vectors e1, . . . , en in Cn and n additional vectors
e′1, . . . , e

′
n in Cn, where Ime′1, . . . , Ime

′
n are linearly independent vectors in Rn. Let

Λ′ be the lattice in the cylinder C := Rn/Zn+ iRn spanned by e′1, . . . , e
′
n mod Zn.

There are two coverings for the torus C = Cn/Λ = C/Λ′: the universal covering
π : Cn → C and the covering by cylinder, πC : C → C that extends to a covering
M over M . In section two we recall some facts about factors of automorphy
for vector bundles on C via the covering by Cn. In section three, we study the
flat vector bundles on C. The pull back of the flat vector bundle NC to the
cylinder C is the normal bundle NC of C in M. We show that NC is always
the holomorphically trivial vector bundle C × Cd. By “vertical coordinates”, we
mean “coordinates on Cd”, the normal component of the normal bundle NC , while
“horizontal coordinates” mean the tangential components of NC .

Since C is a Stein manifold, a theorem of Siu says that a neighborhood of C in
M is biholomorphic to a neighborhood of the zero section in its normal bundle,
which is trivial as mentioned above. We show that the holomorphic classification of
neighborhoods M of C with flat NC is equivalent to the holomorphic classification
of the family of the deck transformations of coveringsM of M in a neighborhood
of C. These deck transformations are “higher-order” (in the vertical coordinates)
perturbations τ1, . . . , τn of τ̂1, . . . , τ̂n, where the latter are the deck transformations

of the covering of ÑC over NC . In order to find a biholomorphism between a
neighborhood of C in M and a neighborhood of its zero section in NC , it is
sufficient to find a biholomorphism that conjugates {τ1, . . . , τn} to {τ̂1, . . . , τ̂n}.
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There are two useful features. First, since the fundamental group of C is abelian,
the deck transformations τ1, . . . , τn commute pairwise. Second, we can also in-
troduce suitable coordinates on C so that the ”horizontal” components of deck
transformations have diagonal linear parts. In such a way the classification of
neighborhoods of C is reduced to a more attainable classification of deck transfor-
mations. While the full theory for this classification is out the scope of this paper,
we study the case when NC admits Hermitian transition functions. Since a Her-
mitian transition matrix must be locally constant, we call such an NC Hermitian
flat. Finally, we have : τ̂j(h, v) = (Tjh,Mjv) with Mj := diag(µj,1, . . . , µj,d) and

Tj := diag(λj,1, . . . , λj,n) with λj,k := e2πie
′

jk , j = 1, . . . n. The normal bundle NC ,
is said to be non-resonant Diophantine if for all (Q,P ) ∈ Nd×Zn, |Q| > 1 and all
i = 1, . . . , n, and j = 1, . . . , d,

min

(
max

ℓ∈{1,...,n}

∣∣∣λPℓ µQℓ − λℓ,i
∣∣∣ , max
ℓ∈{1,...,n}

∣∣∣λPℓ µQℓ − µℓ,j
∣∣∣
)

>
D

(|P |+ |Q|)τ .

The proof of the theorem relies on a Newton rapid convergence scheme adapted
to our situation based on an appropriate Diophantine condition among the lattice
and the normal bundle. At step k of the iteration scheme, let δk be the error of

the deck transformations {τ (k)1 , . . . , τ
(k)
n } defined on domain D(k) to τ̂1, . . . , τ̂n in

suitable norms. By an appropriate transformation Φ(k), we conjugate to a new

set of deck transformations {τ (k+1)
1 , . . . , τ

(k+1)
n } of which the error to the linear

ones is now δk+1 on a slightly smaller domain D(k+1). Using our Diophantine
conditions, related to the lattice Λ and the normal bundle, we show that the
sequence Φ(k) ◦ · · · ◦Φ(1) converges to a holomorphic transformation Φ on an open
domain D(∞) where we linearize {τ1, . . . , τn}.

We now describe closely related previous results. Our work is motivated by work
of Arnol’d and Ilyashnko-Pyartli, somehow related to Grauert’s ”Formal Prinzip”
question, the study of which has a long history. Our main theorem was proved
in [Arn76] when C is an elliptic curve (n = 1) and NC has rank one (d = 1).
Il’yashenko-Pyartli [IP79] extended Arnol’d’s result to the case when the torus
is the product of elliptic curves together with a normal bundle which is a direct
sum of line bundles, while our result deals with general complex tori. Our ”non-
resonant Diophantine” assumption on NC is also weaker than theirs. . Also, see
some recent work [Hwa19, Koi21, LTT19]. We refer to [GSa22] for some references
and a different approach to this range of questions.
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Bochner Laplacian and the Bergman kernel expansion for families

Nikhil Savale

(joint work with Xiaonan Ma & George Marinescu)

1. Introduction

Let
(
Y, hTY

)
be a compact, complex Hermitian manifold of dimension n equipped

with a holomorphic, Hermitian vector bundle
(
E, hE

)
. The Bergman projector is

the orthogonal projector ΠE : L2 (Y,E)→ H0 (Y ;E) from from the space of square
integrable holomorphic sections of E onto the square integrable holomorphic ones.
The Bergman kernel ΠE (y, y′) is its Schwartz kernel. More generally, a Toeplitz
operator can be defined via Tf := ΠEfΠE as the quantization of an arbitrary
smooth function f on the manifold.

Tian [10] first described the leading asymptotics of the Bergman kernel on-
diagonal ΠLk (y, y), associated to tensor powers Lk := L⊗k of a positive line bundle
in the semiclassical limit as k → ∞. This was extended to a full asymptotic
expansion in [3, 11] as an application of the fundamental parametrix of Boutet de
Monvel-Sjöstrand [2] for the Szegő kernel of a strongly pseudoconvex CR manifold.
Later a new method for the asymptotic expansion was developed in the articles
of Dai-Liu-Ma [4] and Ma-Marinescu [6]. It is based on the analytic localization
technique of Bismut-Lebeau [1]. A key step in the latter method is the study of
the asymptotics of the smallest positive eigenvalue of the associated Bochner and
Kodaira Laplacians. A similar on-diagonal asymptotic expansion can be proved
for the kernel of a Toeplitz operator.

The present work, and this talk, are motivated by the following natural question.

Question. Can one generalize the classical Bergman kernel asymptotics by

(1) relaxing the positivity assumption (eg. to semi-positive bundles)

(2) considering vector bundles of higher rank (eg. symmetric powers SymkE,
for rk E > 1)

The CR analog of the above problem is also outstanding. Namely to construct a
parametrix for the Szegő kernel of a weakly pseudoconvex CR manifold and a CR
manifold of high co-rank.
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2. Main results

Both generalizations mentioned in our question are well addressed in the setting

of families. Namely, consider a holomorphic submersion
(
W,hTW

) π−→
(
Y, hTY

)
of

compact complex Hermitian manifolds with compact fibers. Let
(
L, hL

)
→W be

a holomorphic, Hermitian line bundle. Under the assumption that the curvature
RL of the fiber bundle is fiber-wise positive, it follows from Kodaira vanishing
and Riemann-Roch that the the direct image Ek := R0π∗Lk, k ≫ 0, is a well-
defined holomorphic vector bundle on the base. Its fiber above y ∈ Y is the

fiber-wise cohomology of the line bundle Ek,y := H0
(
Wy , L

k
∣∣
Wy

)
and carries the

Hermitian metric hEk obtained from the fiber-wise L2 metric. We denote by ∇Ek

the associated Chern connection and by ∆Ek
:=

(
∇Ek

)∗∇Ek the Bochner Laplacian
associated to it.

To state our first result, one introduces the horizontal order of vanishing of the
curvature r : W → R via

r (w)− 2 := ordHw
(
RL

)
= min

{
l|J lTHW

(
Λ2T ∗Y

)
∋ jlTHWR

L 6= 0
}
, rw ≥ 2,

(1)

in terms of the horizontal jet bundles. One now has the following.

Theorem 1. Let
(
W, gTW

) π−→
(
Y, hTY

)
be a holomorphic submersion of compact

complex Hermitian manifolds with compact fibers. Let
(
L, hL

)
→ W be a holo-

morphic Hermitian line bundle on the total space. Assume that its curvature RL

is fiber-wise positive with a fiber-wise constant horizontal order of vanishing (1) of
maximal value r.

The first eigenvalue λ0 (k) of the Bochner Laplacian ∆Ek
on the direct image

bundle Ek := R0π∗Lk then satisfies

(2) λ0 (k) ∼ Ck2/r,
for some positive constant C. Moreover the first eigenfunction ψk0 concentrates on
the locus Yr := {y ∈ Y |ry = r} where the order of vanishing is maximized :

(3)
∣∣ψk0 (y)

∣∣ = O
(
k−∞)

; y ∈ Y \ Yr.
The above result is closely related to the spectral theory of the sub-Riemannian

Laplacian [9].
Our next result concerns the Bergman kernel of the direct image bundle Ek.

To state it, consider the horizontal metric complement THW :=
(
T VW

)⊥
of the

bundle of vertical fibers on the total space and let TH,(1,0)W be its holomorphic
part. We introduce the horizontal curvature tensor ṘL,H ∈ End

(
TH,(1,0)W

)
via

RL,H (., .) := hTY
(
., ṘL,H .

)
. Denote by Spec

(
ṘL,Hw

)
= {a1 (w) , . . . an−1 (w)} its

eigenvalues for each w ∈ W . The curvature is said to be horizontally semipositive
if aj (w) ≥ 0, for each j = 1, . . . , n and w ∈ W . It is said to have comparable
eigenvalues if there exist positive constants c1, c2 > 0 such that c1ai (w) < aj (w) <
c2ai (w) for each i, j = 1, . . . , n and w ∈ W . One now has the following.
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Theorem 2. Let
(
W, gTW

) π−→
(
Y, hTY

)
be a holomorphic submersion of compact

complex Hermitian manifolds with compact fibers. Let
(
L, hL

)
→W be a holomor-

phic Hermitian line bundle on the total space. Assume that its curvature RL is
fiber-wise positive and horizontally semipositive with comparable eigenvalues. Fur-
thermore suppose that the curvature has a fiber-wise constant and finite horizontal
order of vanishing.

Then the point-wise Bergman kernel of the direct image is a generalized Toeplitz
operator

ΠY
k (y, y) = k2n/ry



N∑

j=0

k−2j/ryTgj


 +OL2→L2

(
k−(2N+2−2n)/ry

)

∈ End (Ek,y) := End H0
(
Wy ; Lk

∣∣
Wy

)
,

for each y ∈ Y , N ∈ N and some gj ∈ C∞ (Wy), j = 0, 1, . . ., on each fiber of the
direct image bundle.

To see how the above theorem answers the question that we raised, we consider
two specializations of the above.

(1) In the case when the fibers of the submersion π are points, the direct im-
age bundles are tensor powers Ek = Lk. In this case our theorem Theorem
2 gives the Bergman kernel expansion for line bundles whose curvature
is semi-positive with comparable eigenvalues and a finite order of vanish-
ing. This particularly includes the case of semi-positive line bundles on a
Riemann surface [8], in which case the comparable eigenvalues condition
is automatic. The CR analog of this was also recently analyzed by the
author in [5].

(2) Direct image bundles particularly include highest weight families. Namely,
consider a principal G bundle P → Y with holomorphic connection A,
where G is a compact Lie group. Let t ⊂ g be the Lie algebra of a maxi-
mal torus T ⊂ G and ν ∈ t∗ be a dominant integral weight. Each dominant
weight corresponds to an irreducible representation, giving rise to the fam-
ily of associated Hermitian, holomorphic vector bundles

(
Ekν ,∇kν

)
corre-

sponding to multiples of the dominant weight kν ∈ t∗, k ∈ N. Particularly,
when G is the unitary group and ν the dominant weight corresponding to
its standard representation, the highest weight family Ekν = SymkEν

corresponds to symmetric powers of a higher rank bundle. By the Borel-
Weil-Bott construction, highest weight families can be realized as direct
image bundles with the fibers of the submersion corresponding to flag
manifolds G/T .

Finally, we end with a remark on the proof. It is based on a result of Ma-Zhang
[7] describing the curvature of the direct image REk

y ∈ End (Ek,y) as a fiber-wise
generalized Toeplitz operator. The Chern connection and the Bochner/Kodaira
Laplacians all have expressions in terms of the curvature in suitable geodesic co-
ordinates and a parallel frame. The analytic localization technique is now applied
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to differential operators whose coefficients are valued in the algebra of Toeplitz
operators of a given fiber.
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Contact lines and higher-dimensional generalizations of
(2,3,5)-distributions

Jun-Muk Hwang

(joint work with Qifeng Li)

A holomorphic distribution D ⊂ TM on a complex manifold M is regular if there
is a sequence of vector bundles,

D = ∂(0)D ⊂ ∂(1)D ⊂ ∂(2)D ⊂ · · · ⊂ ∂(d)D = ∂(d+1)D

such that their associated sheaves satisfy

∂(i+1)D = [∂(i)D,D] + ∂(i)D

for each 0 ≤ i ≤ d. In this case, for each x ∈M , the graded vector space

symbx(D) := ⊕di=1(∂(i)D)x/(∂
(i−1)D)x

has a natural structure of a nilpotent graded Lie algebra induced by Lie brackets
of local sections, called the symbol algebra of D at x.

A distribution H ⊂ TX of rank 2m + 2 on a (2m + 3)-dimensional complex
manifoldX is a contact distribution if its symbol algebra at each point is isomorphic
to the Heisenberg algebra. For a contact distribution H ⊂ TX , a smooth rational
curve C ⊂ X is a contact line if TX |C is semipositive and the degree of C with
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respect to the line bundle TX/H is 1. In this case, for each x ∈ C, there is an m-
dimensional deformations of C in X fixing x whose tangent vectors define a germ
of m-dimensional submanifold Cx ⊂ PTxX . We say that C is a nondegenerate
contact line if the Gauss map Cx → Gr(m + 1;TxX) is immersive at [TxC] for
some x ∈ C.

Let (cijk , 1 ≤ i, j, k ≤ m) be a symmetric cubic form on Cm. We assume that
it is nondegenerate in the sense that

{(ti) ∈ Cm |
∑

i

ticijk = 0 for all j, k} = 0.

A Lie algebra associated to the cubic form (cijk) is a graded Lie algebra s1+s2+s3
with bases p1, . . . , pm, q1, . . . , qm for s1, r

1, . . . , rm for s2 and u, v for s3 such that

[pi, qj ] =
∑

k

cijkr
k, [pi, r

j ] = δji u, [qi, r
j ] = δji v.

Our main result is the following.

Theorem. For each integer m ≥ 1, there is a canonical one-to-one correspondence
between germs of distributions D ⊂ TM of rank 2m on a complex manifold M
of dimension 3m + 2 with symbx(D) isomorphic to a Lie algebra associated to a
nondegenerate cubic form (cijk(x)) (possibly depending on x ∈ M) and germs of
nondegenerate contact lines C ⊂ (X,H) on a complex manifold X of dimension
2m+ 3 equipped with a contact distribution H .

When m = 1, this was proved in Theorem 1.2 of [5]. The proof of Theorem is
an elaborate extension of that argument in [5]. One of the key ideas of the proof
comes from the theory of abnormal extremals in geometric control theory (e.g.
[7]).

When m = 1, there is a unique (up to isomorphisms) nondegenerate cubic form
on the 1-dimensional vector space C and any distribution D ⊂ TM of rank 2 on a
5-dimensional complex manifold M satisfying rank(∂(1)D) = 3 and ∂(2)D = TM
has the symbol algebra at each point isomorphic to the Lie algebra associated to a
nondegenerate cubic form. Such distributions are called (2,3,5)-distributions and
have been extensively studied as a distinguished class of geometric structures on
5-dimensional manifolds. In particular, the pioneering work of É. Cartan ([1]) has
been developed into a natural theory of connections on such geometric structures
by N. Tanaka ([6]). Via this theory, our Theorem has the following consequence.

Corollary. A nondegenerate contact line C ⊂ (X,H) on a 5-dimensional man-
ifold X with a contact structure H satisfies the formal principle, namely, given

any rational curve C̃ ⊂ X̃ on a 5-dimensional complex manifold whose formal
neighborhood is formally isomorphic to the formal neighborhood of C in X , the

germs of C ⊂ X and C̃ ⊂ X̃ are biholomorphic.

In Corollary, the normal bundle of C ⊂ X is semipositive, but not positive.
When the normal bundle of a rational curve is positive, the rational curve satisfies
the formal principle by the works of Commichau-Grauert ([2]) and Hirschowitz
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([3]). However, when the normal bundle is semipositive, but not positive, it is
difficult to check the formal principle explicitly (see [4]). To generalize Corollary
to higher-dimensions, we need to develop the structure theory of distributions with
symbols (cijk(x)).
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Equidistribution without stability for rational surface maps

Jeffrey Diller

(joint work with Roland Roeder)

In this talk, I discuss work with Roland Roeder concerning equidistribution of
preimages of curves under a rational self-map f : P2 99K P2 of the complex
projective plane. We focus on cases where the map f cannot be made algebraically
stable by birational conjugacy. A prototype for our main result is the following
theorem [Sib2] of Sibony.

Theorem 1. If f : Pk 99K Pk is a dominating and algebraically stable rational
map with deg(f) > 1, then there exists a positive closed (1, 1) current T ∗ on P2

such that for almost every hypersurface H ⊂ Pk, one has weak convergence

f−n(H)

deg(fn)
→ (degH) · T ∗,

where the preimages on the left are regarded as currents of integration.

A rational map is given in homogeneous coordinates, f = [f0, . . . , fk], where the
components fj are homogeneous polynomials, all with the same degree, and with
no non-constant factor common to all of them. The degree deg(f) is then the
degree of the polynomials fj . One calls f algebraically stable if these components
do not develop common factors under iteration, so that deg(fn) = (deg f)n for all
n ≥ 0. With or without algebraic stability, the (first) dynamical degree λ(f) :=
(deg(fn))1/n ≤ deg f always exists. If dtop(f) denotes the number of preimages of
a general point p ∈ Pk, then one also has the lower bound λ(f)k ≥ dtop(f).
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Theorem 1 was established earlier in dimension k = 1 by Lyubich [Lju] and
Frere-Lopes-Manẽ [FLMn]. In this case hypersurfaces are points, algebraic stabil-
ity always holds, and the limiting current T ∗ is an f -invariant, ergodic probability
measure supported on the Julia set of f . In higher dimensions k ≥ 2, one expects
suppT ∗ to continue to play a role similar that of the Julia set.

When k = 2, algebraic stability of f is equivalent to the geometric condition that
the full forward orbit of every curve C ⊂ P2 is well-defined. That is, algebraic
stability fails precisely when f contracts some C ⊂ P2 to a point p = f(C)
whose forward orbit meets one of the (at most) finitely many points at which f
is ill-defined. It was shown in [DDG1] that Theorem 1 continues to hold for a
rational map f : P2 99K P2 satisfying λ(f)2 > dtop(f) provided only that there
exists a rational surface X and a birational map ϕ : X 99K P2 such that the lift
ϕ−1 ◦ f ◦ϕ : X 99K X is algebraically stable in the geometric sense just described.

Unfortunately there are examples of plane rational maps that cannot be made
algebraically stable by birational conjugacy. These include some monomial maps
[Fav2] and, more generally [DL1], many maps f which are toric in the sense
that they have constant Jacobian δ(f) relative to the natural holomorphic two-

form dx1∧dx2

x1x2
on the algebraic torus (C∗)2. Indeed, with the recent exception of

some skew product examples discovered by Birkett, all the known examples of
unstabilizable plane rational maps are toric. For toric rational maps we introduce
a much weaker condition than algebraic stability that we call ‘internal stability’.
Roughly speaking, a toric map is internally stable if it becomes algebraically stable

on the inverse limit (̂C∗)2 of all toric surfaces obtained from P2 by blowing up.
Internally stable toric maps include most that cannot be stabilized by birational
conjugacy and in particular the recent examples from [BDJ] of rational maps with
transcendental first dynamical degree. Our main result may be stated a little
imprecisely as follows.

Theorem 2. Suppose that f : P2 99K P2 is an internally stable toric rational map
obtained as a finite composition of monomial maps and birational toric maps. If
f is not itself a monomial map, then there exists a positive closed (1, 1) current
T ∗ on P2 satisfying the conclusion of Theorem 1.

Interestingly enough, the exclusion of monomial maps is essential here since they
have only a slightly weaker equidistribution property. On the other hand, we do
not know of any toric rational maps that are not finite compositions of birational
toric and monomial maps.

The proof of Theorem 2 involves several steps. Following [BFJ] we first define
reasonable notions of both (1, 1) cohomology classes and positive closed (1, 1)

currents on (̂C∗)2. We show in particular that every nef (1, 1) class is canonically
represented by a positive closed current that is internal, in the sense that it has
full mass on (C∗)2 and homogeneous in the sense that it has maximal symmetry
related to the multiplicative action of (C∗)2 on itself. We then define an induced
linear pullback f∗ on classes and currents and invoke the main theorem of [BFJ]

to extract a unique nef class α∗ ∈ H1,1((̂C∗)2) that is maximally expanded by
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pullback, satisfying f∗α∗ = λ(f)α∗. Finally, we establish a very weak lower bound
on the extent to which iterates of a map satisfying the hypotheses of Theorem
2 can shrink the volume of an open set in the torus (C∗)2. Combining all these

ingredients we then prove L1 convergence for potentials of the currents fn∗(C)
deg(fn)−C,

which implies the theorem.

References

[BDJ] Jason P. Bell, Jeffrey Diller, and Mattias Jonsson. A transcendental dynamical degree.
Acta Math. 225(2020), 193–225.
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Lelong numbers of currents of full mass intersection

Duc-Viet Vu

Let X be a compact Kähler manifold of dimension n. Let 1 ≤ m ≤ n be an
integer. Let α1, . . . , αm be pseudoeffective cohomology (1, 1)-classes on X . Let
Tj be a closed positive current in αj for 1 ≤ j ≤ m. Let 〈T1 ∧ · · · ∧ Tm〉 be
the non-pluripolar product of T1, . . . , Tm. It generalizes the classical product of
(1, 1)-currents of bounded potentials.

Let T ′
j be closed positive (1, 1)-currents in αj for 1 ≤ j ≤ m such that Tj is

more singular than T ′
j , i.e, potentials of Tj is smaller than those of T ′

j modulo an
additive constant. Recall that

{〈T1 ∧ · · · ∧ Tm〉} ≤ {〈T ′
1 ∧ · · · ∧ T ′

m〉},(1)

where for a closed positive current S, we denote by {S} the cohomology class
of S. In general one does not have equality. This in particular says that the
non-pluripolar products do not preserve masses. If Tj,min is a current of minimal
singularity in αj , then the cohomology class of 〈T1,min∧· · ·∧Tn,min〉 is independent
of the choice of Tj,min. We denote the last class by 〈α1 ∧ · · · ∧αm〉. When αj ’s are
big, the class 〈α1 ∧ · · · ∧ αm〉 coincides with the standard product of big classes
introduced by Boucksom-Essydieux-Guedj-Zeriahi [1].
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As a direct consequence of (1), we get

{〈T1 ∧ · · · ∧ Tm〉} ≤ 〈α1 ∧ · · · ∧ αm〉.
When the equality in the above inequality occurs, the currents T1, . . . , Tm are said
to be of full mass intersection. The last notion lies at the heart of the theory of
non-pluripolar products. The following question comes naturally:

Problem. Characterize currents of full mass intersection. More precisely if
T1, . . . , Tm are of full mass intersection, does Tj have the same singularity as the
currents of minimal singularity in αj .

Previously this problem was studied mainly in the case where m = n and Tj ’s are
the same for every j, as part of the theory of complex Monge-Ampère equations.
The key tools in this case is the characterization of potentials of full Monge-Ampère
masses in terms of plurisubharmonic envelopes by Darvas, Di Nezza, and Lu [2].
Our goal is to report a recent result in the mixed setting, i.e, when Tj ’s are not
necessarily the same or m is not necessarily equal to n.

Let S be a closed positive current on X and V be an irreducible analytic subset
in X . Let α be a pseudoeffective (1, 1)-class on X . Let Tα,min be a current with
minimal singularities in α. We denote by ν(α, V ) the generic Lelong number of
Tα,min along V . This number is independent of the choice of Tα,min. It is clear
that for every current S ∈ α, we have ν(S, V ) ≥ ν(α, V ).

Theorem A. ([3]) Let 1 ≤ m ≤ n be an integer. Let α1, . . . , αm be big cohomology
classes in X and let Tj be a closed positive (1, 1)-currents in αj for 1 ≤ j ≤ m. Let
V be a proper irreducible analytic subset of X of dimension ≥ n−m. Assume that
T1, . . . , Tm are of full mass intersection. Then there exists an index 1 ≤ j ≤ m
such that

ν(Tj , V ) = ν(αj , V ).

The key ingredient in the proof of Theorem A is a new notion of products of
pseudoeffective classes. This new product of pseudoeffective classes is bounded
from below by the positive product introduced in [1]. The feature is that this new
product also captures some pluripolar part of “total intersection” of classes. This
explains why we have a better control on masses.
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K-stability and Nevanlinna-Diophantine approximation

Min Ru

In this talk, we explore the still somewhat mysterious connection of the notion of
K-stability with the Nevanlinna theory (Diophantine approximation).

⋄ Nevanlinna theory. Nevanlinna theory is an extension of the “fundamental
theorem of algebra”. In 1929, Nevanlinna proved the following so-called the “Sec-
ond Main Theorem”: Let f be meromorphic (non-constant) on C and a1, ..., aq ∈
C∪{∞} be distinct. Then, for any ǫ > 0, (q−2− ǫ)Tf(r) ≤exc

∑q
j=1Nf (r, aj), or

equivalently
∑q

j=1mf (r, aj) ≤exc (2 + ǫ)Tf(r), where ≤exc means that the inequal-

ity holds for r ∈ [0,+∞) outside a set E with finite measure. Here mf (r, a) =
1
2π

∫ 2π

0 log+ 1
|f(reiθ)−a|dθ.

⋄ Diophantine approximation. Roth’s theorem states that every irrational
algebraic number α has approximation exponent equal to 2. More precisely, Roth
in 1955 proved the following result: Let α be an algebraic number of degree≥ 2.

For any given ε > 0, we have
∣∣∣α− p

q

∣∣∣ > 1
q2+ǫ for all, but finitely many, coprime

integers p and q. More generally “Roth’s Theorem” holds over an arbitrary number
field: Let k be a number field and S be finite set of places on k. Let a1, . . . , aq
distinct points in P1(k). Then, for any given ε > 0,

∑q
j=1

∑
υ∈S log+ 1

‖x−aj‖υ
≤exc

(2 + ǫ)h(x), where ≤exc means that the inequality holds for all but finitely many x.
Denote by mS(x, a) :=

∑
υ∈S log+ 1

‖x−a‖υ
. Then we have

∑q
j=1mS(x, aj) ≤exc

(2 + ǫ)h(x).

⋄ The result of Ru-Vojta. In extending the above results, we introduce some
notations: Let X be a complex projective variety and D be an effective Cartier
divisor. Let sD be the canonical divisor of [D] (i.e. [sD = 0] = D) and {hα}
be an Hermitian metric, i.e. ‖s‖2 = |sα|2hα. By Poincare-Lelong formula,
−ddc log ‖sD‖2 = −D + c1([D]). Let f : C → X be a holomorphic map. Ap-

plying
∫ t
1
dt
t

∫
|z|<t, we get the so-called “First Main Theorem”:

mf (r,D) +Nf (r,D) = Tf,D(r) +O(1),

wheremf (r,D) =
∫ 2π

0
λD(f(reiθ)) dθ2π with λD(x) = − log ‖sD(x)‖ (Weil-function),

and Tf,L(r) :=
∫ r
1
dt
t

∫
|z|<t f

∗c1(L). Note that if D1 ≥ D2, then λD1
≥ λD2

. In

proving the Second Main Theorem, Ru-Vojta introduced the following β-constant:
Let L be a line bundle on X and D be an effective Cartier divisor on X , we define

β(L,D) := lim sup
m→∞

∑
t≥1 h

0(mL− tD)

mh0(mL)
.

Theorem ([1], analytic version). Let X be a smooth complex projective variety
and let D1, . . . , Dq be effective Cartier divisors in general position. Let L be a line
sheaf on X with h0(LN ) ≥ 1 for N big enough. Let f : C → X be a holomorphic
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map with Zariski image. Then, for every ǫ > 0,

q∑

j=1

βj(L,Dj)mf (r,Dj) ≤exc (1 + ǫ)Tf,L(r).

Theorem ([1], arithmetic version). Let X be a projective variety over a number
field k, and D1, . . . , Dq be effective Cartier divisors intersecting properly on X.
Let L be a line bundle on X with h0(LN ) ≥ 1 for N big enough. Let S ⊂Mk be a
finite set of places. Then, for every ǫ > 0, the inequality

q∑

i=1

β(L,Dj)mS(x,Dj) ≤ (1 + ǫ)hL(x)

holds for all k-rational points outside a proper Zariski-closed subset of X.

⋄ The algebro-geometric K-stability criterion. It turns out the β-constant
introduced above appeared in the recent algebro-geometric stability criterion. Re-
call the following K-E question: Does there always exists a Kähler from ωKE
on X such that Ric (ωKE) = λωKE? Note, in the class level, c1(X) = λ[ω] for
λ = 0, 1,−1. The case λ = 0, it is true by the solution of Calabi conjecture, when
λ = −1, it was proved by Aubin and Yau independently. The case when λ = 1,
X is called Fano. In this case, problem becomes more subtle and there is no def-
inite answer. It was recently established that the existence of K-E metric in the
Fano case is equivalent to the K-stability condition, whose notion was introduced
by Tian in 90’s and it was later reformulated in a purely algebro-geometric form
by Donaldson. In 2015, Fujita showed that if (Fano) X is K-(semi) stable, then
β(−KX , D) < 1 (resp. β(−KX , D) ≤ 1) for any nonzero effective divisor D on
X . Later Fujita and C. Li (with a technical assumption, which were removed by
Blum-Xu) independently proved that it is indeed an equivalence condition if one
goes to the birational model, i.e. the Q-fano variety X is K- stable if and only if
AX(E)

β(−KX,E) > 1 for any prime divisors E over X (i.e. E is a prime divisor on a

birational model π : X̃ → X), where AX(E) := 1 + ordE(KY/X) and is called the

log discrepancy. We call δ(L) = infE
AX(E)
β(L,E) the stability threshold. We summarize

the following valuative criterion of K-stability:
1. X is uniformly K-stable (resp. semi-satble) if and only if δ(−KX) > 1 (resp.

≥ 1) (Fujita-Li).
2. X is K-stable if and only if AX(E) > β(−KX , E) for any E (Blum-Xu).

⋄ The m-basis. Blum-Jonsson (also Fujita-Odaka) used m-basis type to describe
the stability threshold δ(L). For m sufficient large, we say D is a m-basis type
divisor if D = 1

mNm
((s1) + · · · + (sNm

)) where {s1, . . . , sNm
} forms a basis of

H0(X,mL). Let Sm(D) := sup{s1,...,sNm}
1
Nm

∑Nm

i=1 ordD(si), where sup runs all

basis. Note that the sup is achieved by a basis of filtration F tm = H0(X,mL −
tD), t ≥ 0 of H0(X,mL). Define δm(L) := infE

AX (E)
Sm(E) , Blum-Jonsson proved that

limm→ δm(L) = δ(L). It turns out, in Nevanlinna theory, we can estimate the Weil
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functions which are associated to the m-basis divisors. More precisely, we have
the following theorem:

Theorem (m-base estimate). Let X be a complex projective variety and let L
be a line bundle on X with dimH0(X,L) ≥ 1. Let s1, . . . , sq ∈ H0(X,L). Let
f : C→ X be a holomorphic map with Zariski-dense image. Then, for any ǫ > 0,

∫ 2π

0

max
J

∑

j∈J
λsj (f(reiθ))

dθ

2π
≤exc (dimH0(X,L) + ǫ)Tf,L(r)

where the set J ranges over all subsets of {1, . . . , q} such that the sections (sj)j∈J
are linearly independent. Hence, Nevanlinna-Diophantine provided one more step
which gives the estimate for m-base-type divisors. In the proof of Blum-Jonsson’s
result, they used the standard filtration F tm =H0(X,mL−tD), t ≥ 0 ofH0(X,mL).
Ru-Vojta however used a more sophisticated filtration (multi-parameter filtration)
in their proof. It is hoped that such filtration can be used in the study of algebro-
geometric notion of k-stability.
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Institut de Mathématiques de Toulouse
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