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Introduction by the Organizers

The workshop Large scale stochastic dynamics is the continuation of the highly
successful series of Oberwolfach workshops with the same title, whose organising
team included along the years T. Bodineau, C. Landim, S. Olla, H. Spohn and two
of the present organisers. This new edition, organised by P. Caputo (Roma Tre),
F. Toninelli (TU Wien) and B. Tóth (Bristol/Budapest), was well attended with
56 participants (48 in person and 8 online) with broad geographic representation,
including postdocs and graduate students, working in diverse intertwining areas
of probability and statistical mechanics.

The workshop was devoted to the wide mathematical problem of understanding
emergent structures on large space-time scales in the evolution of physical systems.
These are modelled by particle systems, namely high-dimensional Markov pro-
cesses and/or by systems of particles with deterministic (Hamiltonian) dynamics
where randomness comes only with the initial conditions. With respect to the pre-
vious editions of this series of workshops, there was a larger focus on the presently
very active topic of Markov chain mixing and total variation cutoff phenomena.
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Very interesting links with integrable systems and with singular SPDES/SDEs
have been emphasized by several of the talks.

During the meeting, 12 talks of 50 minutes and 18 talks of 20 minutes were
scheduled and an evening ”open problem session” was organised with 12 more
short informal presentations of 10 minutes, many of which by younger partici-
pants. In our choice of 30 talks, we tried to illuminate major recent advances in
the field and to expose and address at least some aspects of the works for each of
the participants. The chosen schedule format (with a long afternoon break until
5pm, intended to favour discussions and interactions) was unanimously appreci-
ated by the participants. The evening session was the occasion to learn both about
intriguing open problems in this area, and about the recent results of early career
participants. Both the talks and the evening session triggered further discussions
afterwards.

A summary account of the 50- and 20-minute presentations is given below,
grouped in thematic units.

1. Stochastic behaviour of large scale deterministic (Hamiltonian)
systems with random initial data

• New exponential decay bounds of correlations in a locally randomised pe-
riodic Lorentz gas in 2-dimensions open the way towards the invariance
principle for the Lorentz gas in non-periodic setting. [Liverani]

• Computation of the generalised Gibbs ensemble for the Calogero fluid pro-
vide one of the rare instances where equilibrium statistical physics of an
integrable system with infinitely many conservation laws is fully formu-
lated. [Spohn]

• Another integrable interacting particle system with an abundance of con-
servation laws is the one-dimensional hard rod gas whose equilibrium large
scale fluctuation fields were computed. [Olla]

• The equilibrium fluctuation field of a classical Hamiltonian system of hard-
sphere gas, in the Boltzmann-Grad limit converges weakly to the Ornstein-
Uhlenbeck process which solves the so-called fluctuating linear Boltzmann
equation. [Simonella]

• The two-dimensional Lorentz gas with randomly placed scatterers and con-
stant transverse magnetic field in the Boltzmnn-Grad limit shows strik-
ingly different behaviour from the same system with no external field.
[Saffirio]

• A statistical mechanics approach to point vertex model in 2D turbulence
allows to obtain Law of Large Numbers and CLT type results [Geldhauser]
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2. Equilibrium statistical physics of lattice systems

• The arboreal gas model on Zd is bond percolation conditioned on having
no cycles. It shows, however, surprising differences from the percolation
model: in d = 2 it is subcritical at any density, in d ≥ 3 in the supercritical
regime it shows signs of self-organized criticality. [Helmuth]

• The random interlacement process on Zd, d ≥ 3, is factor of i.i.d. That
is, it can be realised as a measurable and shift-invariant mapping of a
collection of i.i.d. random variables indexed by Zd. The result extends to
similar constructions on Cayley graphs of finitely generated groups. [Ráth]

• The solid-on-solid model of phase separating interfaces delocalizes in 2-
dimensions. A new hands-on proof of this known fact gives fresh insight
to this phenomenon. [Ott]

• Computing the thermodynamical free energy of statistical physics models
with random interactions (like spin glasses or the perceptron) is notoriously
difficult even in the mean field setting. Conditioning on trickily chosen sub-
sigma-algebras where some form of concentration of measure is available
helps in some relevant cases. [Bolthausen]

3. SPDEs, KPZ growth and random media

• The 2-d Stochastic Heat Equation(SHE)with multiplicative noise is closely
related to the 2-d KPZ equation and to directed polymers in random
environment. New results concern the high moments of the SHE in the
weak disorder regime [Cosco], the scaling limit of SHE at the critical point
[Caravenna] and the case where the noise is not Gaussian but a Lévy white
noise [Lacoin]

• Last passage percolation (LPP) is intimately related to 1-d KPZ growth.
Of particular interest are Busemann functions [Balázs] that provide new
insights [Busani] on infinite geodesics in the directed landscape, the scaling
limit of LPP.

• 2-dimensional (self)-interacting diffusions are expected to exhibit logarith-
mic superdiffusivity. Recent rigorous results confirm this for the AKPZ
equation and for a Brownian particle in the curl of the GFF [Cannizzaro,
Haunschmid-Sibitz, de Lima Feltes]

• The simple exclusion process is perhaps the most well-studied interacting
particle system. New tools allow to obtain its hydrodynamic limit when
the process has random conductances and the underlying geometry is a
very general quenched random graph [Faggionato]

4. Interacting particle systems

• “First-passage percolation in hostile environment” is an interacting par-
ticle system with two competing types on the integer lattice. A novel
multi-scale approach was presented which allows one to prove a phase
transition regarding coexistence of the two types. [Stauffer]
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• The contact process (CP) is a classical interacting particle system showing
a transition from a unique stationary measure to multiple ones. Percola-
tion ideas from Duminil-Copin et al. have recently allowed to deepen our
understanding of very general related models [Hartarsky]

• The hydrodynamic limit for non-gradient interacting particle systems is
a notoriously difficult problem. A new approach that borrows ideas from
algebraic geometry and solves several open cases was presented [Sasada]

• The study of dynamical large deviations for interacting particle systems,
i.e. the study of the probability of anomalous deviations of the current or
density profile evolutions, has uncovered new phenomena, such as dynam-
ical phase transitions. New results for the weakly asymmetric exclusion
process have been presented [Landim]

5. Markov chain mixing and cutoff phenomena

• The abrupt convergence to stationarity of Markov chains on the rele-
vant time scale is known as the cutoff phenomenon. Despite much effort
this special type of phase transition remains elusive. Important progress
was reported for reversible exclusion processes with reservoirs [Salez], for
random walks in finite dimensional geometries [Quattropani,Sau] and for
generic bistochastic matrices [Ben-Hamou].

• A non-robustness result for random walks on graphs under quasi-isometries
was presented [Kozma]

• A result on the convergence to stationarity for low-temperature stochastic
Ising models with suitable random initializations sheds some new light on
a notoriously challenging problem for Glauber dynamics [Gheissari]

• The relative entropy decay in Markov chains encodes key feature of the
convergence to stationairity. Remarkable advances based on functional
inequalities were presented for various types of spin systems [Dagallier,Liu]

Summary. The workshop helped to update the participants on the state of the
art and on the important pending open problems in the fields related to their do-
main of research. This was especially needed and welcome, after 2 years of Covid.
The workshop triggered interactions between people working in different fields:
probability, (stochastic and deterministic) PDEs, dynamical systems, theoretical
computer science. It was also the perfect occasion to initiate and pursue collab-
orations. The scientific presentations proved that this research field is still very
active and is absorbing new ideas from other branches of mathematics (e.g. inte-
grable systems, SPDEs, group theory). Altogether, the atmosphere was extremely
pleasant and constructive.

Acknowledgement: The MFO and the workshop organizers would like to thank the
Simons Foundation for supporting Milton Jara in the “Simons Visiting Professors”
program at the MFO.
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multiplicative Lévy white noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2443

Benoit Dagallier (joint with Roland Bauerschmidt)
log-Sobolev inequalities and renormalisation . . . . . . . . . . . . . . . . . . . . . . . . . 2443

Giuseppe Cannizzaro (joint with D. Erhard, F. Toninelli)
Superdiffusivity and Weak Coupling: the Anisotropic KPZ equation . . . . 2446

Levi Haunschmid-Sibitz (joint with Giuseppe Cannizzaro, Fabio Toninelli)√
log t-superdiffusivity for a Brownian particle in the curl of the 2d GFF 2450

Guilherme L. Feltes (joint with Hendrik Weber)
Brownian particle in the curl of 2-d stochastic heat equations . . . . . . . . . . 2450

Chiara Saffirio (joint with Alessia Nota, Sergio Simonella)
2D Lorentz gas for magnetotransport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2452

Anna Ben-Hamou (joint with Yuval Peres)
Cutoff for permuted Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2453

Sergio Simonella (joint with Thierry Bodineau, Isabelle Gallagher, Laure
Saint-Raymond)
Global-in-time fluctuations of the empirical measure at low density . . . . . 2455

Clément Cosco (joint with Ofer Zeitouni)
High moments of the 2D polymer partition function . . . . . . . . . . . . . . . . . . 2458
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Abstracts

Random Lorentz gas

Carlangelo Liverani

(joint work with Mark Demers)

The Lorentz gas was introduced by Lorentz in 1905 as a model for conduction in
metals. The model consists of a gas of independent particles interacting elastically
with fixed scatterers. Given the independence of the particles, the model is natu-
rally reduced to the study of the motions of a single particle colliding elastically
with the scatterers.

In the last fifty years many results have been obtained for the periodic Lorentz
gas starting with the seminal works of Bunimovich and Sinai [3] and Bunimovich
Sinai and Chernov [4] which establish the Central Limit Theorem in the diffusive
scaling. Generalizations and more refined theorems have been recently established
[4, 12] and [26], the latter being in the Boltzmann-Grad limit (low density limit).

On the contrary, understanding the aperiodic Lorentz gas, in the high density
regime, is almost completely an open problem. Results on the statistical properties
exist only for the case of locally perturbed gases (the obstacles are nonperiodic only
in a bounded region) [13]. For the random Lorentz gas is known only recurrence
in tubes [5, 6, 17, 18, 19, 20, 27].

While statistical properties are understood in the Boltzmann-Grad limit (e.g.
see [14, 25, 24]), in the high density situation nothing is known. In particular, the
problem of establishing a CLT is wide open, and very few ideas are on the table.

Given this state of affairs, it is important to relate the random Lorentz gas with
probabilistic models that may be more easily understood. In particular, one would
like to bring to bear the huge literature on random work in a random environment.
In [1] it has been shown that some simple classes of deterministic walk in a random
environment (the deterministic dynamics consists simply of expanding maps of
the interval) are equivalent to a random walk in a random environment with a
uniformly exponentially decaying memory, there called GRWRE (Gibbs random
walk in random environment). In [11] the same result is obtained for some classes
of Lorentz gases.

Namely, we consider Lorentz gases in which the obstacles are arranged on a
square lattice, forming periodic cells, but in each cell there is a central obstacle
whose position varies (randomly) from one cell to the next. To study the system we
introduce a Poincarè sectionM consisting of the boundary of the central (random)
obstacle and of lines (that we call gates) that the particle must necessarily cross to
transit from one cell to another. Finally, for technical reasons, we limit ourselves
to lazy gases. This means that the gates are normally closed (that is the particle
reflects elastically against them) and open only each n∗ collisions, for some n∗
large enough (depending only on the class of possible cell configurations).

For the above class of lazy random Lorentz gasses, in [11] we establish equiv-
alence with a GRWRE. To be more precise we need to set some notation. Let
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zn ∈ R2, n ∈ N, be the cell in which is situated the particle at time n. Then we
can have the jumps wk = zk+1 − zk ∈ {0,±e1,±e2} =: W. If O∗ are the possible
configurations of the center obstacle in a cell, then the space of obstacle configu-

ration is Ω := OZ
2

∗ . Let Pe be a Z2 translation invariant and ergodic probability
measure. Then Pe describes the random obstacle configuration of the Lorentz gas.

We assume that the process starts from the cell z = 0 with an initial position
x in the cell described by a smooth density. Accordingly, for each configuration
ω ∈ Ω of the random obstacles, the increments of the walk {w0, w1, . . . } are random
variables described by a probability distribution Pω. With this notation we prove
the following Theorem.

Theorem 1. There exist C∗ > 0 and ϑ ∈ (0, 1) such that for P-a.e. ω ∈ Ω, if x is
distributed according to f ∈ C1 with

∫
M f = 1 and z0 = (0, 0), for all n > m ≥ 0

and all w ∈ W
N,∣∣Pω(wn | wk0 . . . wn−1)− Pξzmω(wn | wm . . . wn−1)

∣∣ ≤ C∗ϑ
n−m.

That is, the transition probabilities at time n depend only on the near past.
Note that to compute the probability of a trajectory conditioned to the path
z1, . . . , zn one must consider all the gates that allow for a different cell trajectory
as holes. Hence the computation of such probability is similar to the study of
escape rates in open systems.

To establish Theorem 1 we combine several ideas: the cone technique introduced
in [21, 22]; the functional spaces first proposed in [2, 15, 16] and adapted to systems
with discontinuities, and then billiards, in [7, 8, 9, 10]; the work on open systems
with large holes [23] and, finally, the general ideas already put forward in [1].
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Non-equilibrium multi-scale analysis and coexistence in competing

first-passage percolation

Alexandre Stauffer

We consider the following model of growth process with competition on Zd. There
are two growth processes, which we call type 1 and type 2. Type 1 starts from
the origin, whereas for each site in Zd \ {0} with probability p we place a so-
called type 2 seed, otherwise we leave the site empty. Then type 1 starts spreading
through Zd as a first passage percolation process at rate 1 (that is, with passage
times distributed as independent exponential random variables of rate 1). Type 2
initially does nothing. Whenever a process (type 1 or type 2) attempts to occupy
a site which hosts a type 2 seed, the occupation does not happen and that seed is
activated. Activated seeds are regarded as being occupied by type 2. From that
moment on, type 2 starts spreading from that seed as a first passage percolation
process of rate λ. As other type 2 seeds are activated, more and more clusters of
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type 2 will start to grow. Each site of Zd will be occupied by the type that arrives
to each first, and will never switch types afterwards.

The above process was introduced by Sidoravicius and Stauffer [8] under the
name of first passage percolation in a hostile envronment (FPPHE). We say that
a type survives if in the limit as time goes to ∞ the type occupies an infinite
cluster ; that is, it occupies an infinite connected set of sites. Our definition of
survival differs from what is commonly used in the literature: the occupation of
an infinite set of sites. The reason is that type 2 will eventually occupy all the
seeds, which already consist of an infinite set of sites. We refer to a cluster of
type 2 as a maximal connected set of sites that are occupied by type 2, regardless
of whether they were all occupied from the activation of the same type 2 seed or
from several type 2 seeds. We say that a type dies out if it does not survive.

There are three possible outcomes for FPPHE: extinction (meaning that type
1 does not survive), strong survival (meaning that, with positive probability, type
1 survives and type 2 dies out), and coexistence (meaning that both types 1 and
2 simultaneously produce infinite clusters with positive probability).

Let η1t and η2t be the set of sites occupied by type 1 and type 2, respectively,
at time t (where non-active seeds of type 2 are not included in η2t ). With Vladas
Sidoravicius we showed the following result.

Theorem 1 (Small p regime [8]). For any d ≥ 2 and any λ < 1, there exists
p0 > 0 such that for all p ∈ (0, p0) there exists a constant c > 0 for which

P(η1t ⊃ Bct for all t ≥ 0) > 0,

where Br stands for the collection of sites within distance r from the origin.

In other words, the above theorem shows the existence of a strong survival
regime for all λ < 1, provided p is small enough.

Intuitively, one expects that increasing p or λ favors type 2, however there is
no proof of monotonicity for FPPHE on Zd. In fact, it is easy to show that the
standard coupling that could be used to show monotonicity fails; moreover, there
are graphs for which FPPHE is not monotone at all.

Theorem 2 (Non-monotonicity [2]). There is a connected, infinite, quasi-transi-
tive graph of bounded degrees and values p1, p2 with 0 < p1 < p2 < 1 such that for
λ small enough

Pp1,λ(type 1 survives) = 0 and Pp2,λ(type 1 survives) > 0,

where Pp,λ stands for the probability measure induced by FPPHE with parameters
p, λ.

In other words, the theorem above shows that the probability that type 1 sur-
vives can increase if p is increased. The result in [2] shows three phase transitions:
Pp1,λ(type 1 survives) is positive for all p small enough, then become 0 for an in-
terval containg p1, then turn positive again for an interval containing p2 and then
finally become 0 for all p large enough. It is implicit in the proofs that it is possible
to elaborate on the graph in [2] to construct quasi-transitive graphs with a larger
number of phase transitions.
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FPPHE has also been studied in hyperbolic and non-amenable graphs, where
the results are shown to change drastically [3]. For example, in such graphs type
2 survives with positive probability for any p and λ. Moreover, a similar version
of Theorem 2 can be established.

Returning to the case of Zd, it is not difficult to see that when p > 1 − psitec ,
where psitec is the critical probability for site percolation on Zd, there is extinction
because almost surely the origin is confined to a finite cluster of sites not hosting
a type 2 seed. One can also show that when λ ≥ 1 there is extinction for all p.
This follows since even at λ = 0 we obtain that the growth of type 1 is slowed
down by the presence of seeds. This can be made formal by using a result of
van den Berg and Kesten [1], which applied to our case gives that there exists a
value ǫ = ǫ(d, p) > 0 such that the growth of type 1 is contained in first passage
percolation of rate 1− ǫ. Then, extinction follows for any λ > 1− ǫ.

In Theorem 2 we studied the case of p small. Even though monotonicity is not
known, it is natural to believe that type 1 can survive also when it is λ that is
made small. This is confirmed by the theorem below.

Theorem 3 (Small λ regime [6]). For any d ≥ 2 and any p < 1 − psitec , there
exists λ0 > 0 such that for all λ ∈ (0, λ0) there exists a constant c > 0 for which

P(type 1 survives) > 0.

The above theorem has a curious consequence in dimensions d ≥ 3. In this case,
it is known that psitec < 1/2 and, hence, the interval (psitec , 1 − psitec ) is not empty.
When p is inside this interval, Theorem 3 gives that type 1 survives if λ is small
enough. However, type 2 also survives since the set of seeds occupies an infinite
cluster at time 0. Therefore, we obtain coexistence. Indeed, an even stronger form
of coexistence occurs, where both type 1 and type 2 occupy infinite clusters of
positive density. Such a strong form of coexistence is impossible in other growth
processes with competition such as the two-type Richardson model [7].

It is an interesting open problem to establish whether coexistence occurs in
d = 2, and to obtain a coexistence regime (in any dimension) for p < psitec .

The proof of Theorem 3 goes by a novel type of multi-scale analysis, which we
call multi-scale analysis with non-equilibrium feedback. This gives a way to handle
non-local events inside a multi-scale renormalization scheme, and we believe could
have wide applicability.

We conclude by mentioning that FPPHE was introduced in [8] as a tool to un-
derstand a notoriously challenging model known as multi-particle diffusion limited
aggregation (MDLA). In fact, FPPHE seems to be a way to understand growth
processes or models with a moving front (such as aggregation models and spread of
infection). The idea is that the growth of type 1 from the origin models the progress
of the moving front through “typically good” regions of the environment. It is un-
avoidable that in such models the moving front will eventually passes through bad
regions of the environment. The locations of such regions are randomly spreadout
and are modelled by the seeds of FPPHE. When the moving front gets to such a
bad region (i.e., when the corresponding seed gets activated), then the growth of
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type 2 from the activated seed represents the effect that discovering such a bad
region of the environment may have in nearby regions. The speed at which this
effect spreads is modelled by the value of λ. If p and λ are small enough, then bad
regions are rare (p small) and their effect do not spread quickly (λ small), creating
the conditions for the moving front to advance through the typically good regions
of the environment, leaving the bad regions behind.

The above strategy was employed in the study of MDLA in [8], and was further
developed by Duncan Dauvergne and Allan Sly in the study of non-equilibrium
models of spread of infection [4, 5], where they generalized FPPHE to more general
passage times and showed that type 1 survives with positive probability provided
p and λ are small enough.
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The critical 2d Stochastic Heat Flow

Francesco Caravenna

(joint work with Rongfeng Sun, Nikos Zygouras)

We consider the Stochastic Heat Equation (SHE), formally written as follows:

(SHE) ∂tu(t, x) =
1
4∆u(t, x) + β ξ(t, x)u(t, x) , t ≥ 0, x ∈ Rd ,

where β > 0 is a coupling constant and ξ(t, x) denotes space-time white noise, i.e.
the Gaussian generalized process on [0,∞)× Rd with formal covariance

Cov(ξ(t, x), ξ(s, y)) = δ(t− s) δ(x− y) .

In dimensions d ≥ 2, this equation falls outside the scope of existing solution theo-
ries for singular stochastic PDEs, such as Regularity Structures or Paracontrolled
Calculus, and it is highly non-obvious to give a rigorous meaning to its solution.
We focus here on d = 2 which is the critical dimension for this equation.
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We regularise the SHE by discretising space-time diffusively. More precisely,
we fix a (large) scale parameter N ∈ N and we consider the solution uN(t, x) of a

suitable discretised SHE, defined for (t, x) ∈ TN := N

N × Z
2

√
N

by

(d-SHE) ∂Nt uN (t, x) = 1
4∆

NuN(t, x) +N ξβN (t+ 1
N , x) 〈uN (t, x)〉

where we give the following definitions (we write x′ ∼ x to denote nearest neigh-

bour vertices in the rescaled lattice Z
2

√
N
, i.e. such that |x′ − x| = 1√

N
):

• ∂Nt uN(t, x) := N{uN(t+ 1
N , x)− uN(t, x)} is a rescaled lattice derivative;

• ∆N
t uN (t, x) := N

4

∑
x′∼x

{uN(t, x′)−uN(t, x)} is a rescaled lattice Laplacian;

• (ξβN (t, x))(t,x)∈TN
are i.i.d. centred random variables with variance ∼ β2

(so that N ξβN (·, ·) converges to white noise β ξ(·, ·) as N → ∞);
• 〈uN (t, x)〉 := 1

4

∑
x′∼x

uN (t, x′) is a local space average of uN(t, x).

Given any initial condition uN(0, ·), the difference equation (d-SHE) admits a well-
defined unique solution uN (t, x) for all (t, x) ∈ TN (the choice of evaluating the

noise ξβN at time t+ 1
N ensures that uN(t, x) is a martingale).

We make the structural assumption ξβN > −1, which ensures that uN(t, x) > 0
for every (t, x) ∈ TN . We parametrise the noise distribution as follows:

(⋆) ξβN =
eβω

E[eβω]
− 1

for some fixed centred random variables ω with unit variance and finite exponential
moments (note that the r.h.s. of (⋆) is centred with variance ∼ β2 as β → 0).

Consider for simplicity the flat initial condition uN (0, ·) ≡ 1. The question is:
does the solution uN(t, x) of (d-SHE) admit a non-trivial limit U(t, x) as N → ∞?
Our main result provides a positive answer, with two important caveats.

(1) We look at uN(t, ·) as a random distribution on R2, since the limit U(t, ·)
is not expected to be a function. We actually prove vague convergence as
a locally finite random measure on R2, namely

∫

R2

ϕ(x)uN (t, x) dx
d−−−−→

N→∞

∫

R2

ϕ(x)U(t, dx)

for any continuous and compactly supported ϕ : R2 → R.
(2) We rescale the coupling constant β = βN as N → ∞ as follows:

β ∼ β̂√
logN

for the critical value β̂ =
√
π. This is natural because, see [2],

Var

[ ∫

R2

ϕ(x)uN (t, x) dx

]
−−−−→
N→∞

{
0 if β̂ <

√
π ,

∞ if β̂ >
√
π ,
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and note that E[
∫
R2 ϕ(x)uN (t, x) dx] =

∫
ϕ(x) dx is constant. This means

that uN(t, x) dx converges for β̂ <
√
π to a deterministic limit, the Lebesgue

measure dx, with Gaussian fluctuations proved in [2].

We can now state our main result, where we actually explore a “critical window”

around the critical parameter β̂ =
√
π. Let us denote by “f.d.d.” convergence in

the sense of finite-dimensional distributions.

Theorem 1 ([5]). Let uN(t, x) solve (d-SHE), with ξβN as in (⋆), where β = βN
is rescaled in the critical window

β =

√
π√

logN

(
1 +

θ

logN

)
for θ ∈ R .

Then we have the convergence to a unique and non-trivial limit

(uN (t, x) dx)t≥0
f.d.d.−−−−→
N→∞

Uθ = (Uθ(t, dx))t≥0

which we call the critical 2d Stochastic Heat Flow.

Many properties of the limit Uθ are known, e.g. the first and second moments

E[Uθ(t, dx)] = dx , E[Uθ(t, dx)Uθ(t, dy)] = Kθ
t (x, y) dx dy ,

for an explicit non-trivial kernel Kθ
t (x, y) ∼ C log 1

|x−y| as |x−y| → 0, see [1]. The

third moment was first derived in [3], while higher order moments were obtained
in [8] (but they grow too fast to uniquely determine the law).

More recently, we showed in [6] that the limiting random measures Uθ(t, dx)
cannot be realised as a Gaussian Multiplicative Chaos, i.e. as the (renormalised)
exponential of a generalised Gaussian field on R2. This result is interesting because
it suggests that log uN (t, x), which is the Cole-Hopf solution of a discretization of
the 2d KPZ equation, might have a non Gaussian limit as N → ∞.

We conclude by describing the strategy of the proof of Theorem 1. It was proved
in [1] that (uN (t, x) dx)t≥0 is tight with bounded second moment, hence it admits
non-zero limits along subsequences, but it is highly non trivial to prove uniqueness
of the possible subsequential limits, due to the lack of a characterisation of the lim-
iting distribution (e.g. via moments). This is, indeed, the main difficulty to prove
Theorem 1. The strategy adopted in [5] is based on a Cauchy argument : we show
that the random measures uN (t, x) dx and uM (t, x) dx are close in distribution for
large M,N ∈ N. This is obtained through four key tools:

(1) coarse-graining, which lets us approximate uN(t, x) dx in L2 by a coarse-
grained model Zǫ(t, dx|ΘN,ǫ), which depends on N through a family ΘN,ǫ

of (dependent) random variables built out of uN(·, ·);
(2) a renewal structure which provides a probabilistic framework for second

moments calculations, based on the so-called Dickman subordinator [4];
(3) a Lindeberg principle for dependent random variables, to show that the

distribution of the coarse grained model Zǫ(t, dx|Θ) is insensitive to the
distribution of the random variables Θ, if we keep mean and covariance;

(4) functional inequalities for the Green’s function of multiple random walks,
which are needed to bound the moments of the coarse-grained model.
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Last but not least, a cornerstone of our proof is a Feynman-Kac formula for

the solution uN (t, x) of (d-SHE), under the parametrisation (⋆) for the noise ξβN
in terms of i.i.d. random variables ω. More precisely, if we fix uN (0, ·) ≡ 1 for
simplicity, writing (t, x) = ( n

N ,
z√
N
) for n ∈ N and z ∈ Z2 we have

uN (t, x) = ZN(n, z) =
E
[
e
∑n−1

i=0 βω(n−i,Si)
∣∣S0 = z

]

E[eβω]n
,

where S = (Si)i≥0 denotes the simple random on Z2 with expectation E (while
E denotes the expectation with respect to the variables ω). This means that the
solution uN of the discretized SHE is, up to a time reversal, the partition function
ZN of the much-studied model of directed polymer in random environment [7].
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A statistical physics view on gSQG point vortices

Carina Geldhauser

(joint work with Marco Romito)

Point vortex models are a classical approach in 2D turbulence. We characterize a
point vortex by its position Xj in R2, and its intensity γj ∈ R. Point vortex models
describe the evolution of vortex positions according to the system of equations

(1)

{
Ẋj =

∑
k 6=j γk∇⊥Gm(Xj , Xk),

Xj(0) = xj ,
j = 1, 2, . . . , N,

where γk are real numbers and Gm is the Green function of the operator (−∆)
m
2 .

Here, we consider the case m ∈ [1, 2], where m = 2 is the Euler case and
m = 1 the surface-quasigeostrophic case. The equations (1) form a Hamilton-
ian system with Hamiltonian HN (γN , XN ) = 1

2

∑
j 6=k γjγkGm(Xj , Xk), where

XN = (X1, X2, . . . , XN ) and γN = (γ1, γ2, . . . , γN ).
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Efforts have been made to consider the atomic measure θt(dx) =
∑N

i=1 γiδXi
t

as a kind of weak solution to a generalized Euler PDE in vortex form.
In the case m = 2, Marchioro constructed Euler point vortices as limits of L∞-

vorticity patch solution to the Euler vortex equation, and this quality of being a
true (although irregular) solutions makes them particularly interesting.

Onsager [4] suggested to use methods of statistical physics to investigate 2D
turbulence. There, we look at the invariant distribution for the Hamiltonian dy-
namics (1), the measure

(2) µN
β (dXN ) =

1

ZN
β

e−βHN (XN ,γN ) dℓ⊗N ,

where we denoted by ℓ the normalized Lebesgue measure.
Form < 2, ZN

β is not finite, and therefore (2) does not make sense. Nevertheless,

we are able to prove [2] a Law of Large Numbers and a Central Limit Theorem, by
regularizing the Green function in a suitable way, and taking this regularization
to zero in the limit as N → ∞. However, the speed of convergence of ǫ = ǫ(N)
must be at least logarithmically slow in terms of N .

Under the conditions β > 0, propagation of chaos can be shown, namely vortices
decorrelate and are independent in the limit. Our result holds for a fractional
Green function on the torus, a common restriction to avoid issues of self-interaction
between vortices, also used in the work of [1] for the Euler case. While recently it
was possible to prove CLTs for bounded domains [3], this does not work (for now)
in the gSQG case. Here, it would be necessary to build up the necessary theory
on two-sided estimates on Gm, in order to have control on the partition function.
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Mixing times from random phase initializations

Reza Gheissari

(joint work with Alistair Sinclair)

1. Overview

It is well-known that local Markov chains (e.g., Glauber dynamics) for spin sys-
tems suffer an exponential slowdown in regimes of phase coexistence, referring to
the emergence of multiple phases in the state space, separated by narrow bot-
tlenecks. Much effort has been devoted to overcoming this and sampling using
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non-local dynamics, dynamics for alternative representations of the system, and
non-dynamical methods (e.g., [4, 5, 18, 10, 12, 14]).

There is a much more “obvious” proposed solution to this problem: initialize
the standard Glauber dynamics to be in an appropriately weighted mixture of the
ground states (one maximum likelihood configuration from each phase). Presum-
ably, the main obstacle to rapid mixing is the slow transitions between phases, and
it can converge rapidly “within each phase”, at least when initialized nicely. Since
the overall probability distribution on configurations is approximated by a mixture
of the single-phase distributions, this should suffice for global convergence.

We describe recent progress with Alistair Sinclair towards the above folklore
sampling approach in two classical contexts at which slow mixing is induced by
phase coexistence: (1) the Ising model in its entire low-temperature regime, and
(2) the random-cluster model at its critical point when q is large.

2. Low-temperature Ising dynamics

The Ising model at inverse temperature β > 0 on the torus Tn = (Z/nZ)d is
the distribution over configurations in {−1,+1}Tn with Gibbs weight given by
exp(−β∑v∼w 1{σv 6= σw}). The (continuous-time) Glauber dynamics for the
Ising model is well-known to undergo the following transition in its mixing times
from a worst-case initialization in every d ≥ 2. When β < βc(d), the mixing
time is O(log n) [16], whereas when β > βc(d) the mixing time is exponential in
nd−1 [2, 17]. This is due to the bottleneck between the two dominant phases of
the Ising model—corresponding to the majority of sites taking state +1 versus −1.
In [7], we established a version of the folklore paradigm described in the overview
for the Ising dynamics on Tn in all d ≥ 2 and all β > βc.

Theorem 1. Fix d ≥ 2 and β > βc(d). The Ising Glauber dynamics initialized
from the all +1 configuration converges to the Ising distribution conditioned on
having a majority of its spins being +1 in time at most O(log n) times the worst-
case mixing time on a box of side-length C log n with all +1 boundary conditions.

Plugging in the best known bounds on the mixing time with plus boundary
conditions from [15], the above bound is an almost optimal no(1) in d = 2 and quasi-
polynomial in every d ≥ 3. Stitching this together with its symmetric analogue
from the all −1 initialization, we obtain that the mixing time of the Ising Glauber
dynamics on Tn initialized from the 1

2 -
1
2 mixture of ground states satisfies the

same bound. It is a long-standing conjecture [13] that the mixing time in a box
of side-length m with +1 boundary conditions is polynomial in m, which would
make the above mixing time bounds (logn)O(1).

We note that even restricted to the plus phase, the worst-case mixing time is
much larger, exponentially so in d ≥ 3, than the above bound, but the dynamics
initialized from all +1 avoids all such secondary, geometric, bottlenecks.
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3. Critical random-cluster dynamics

The random-cluster model is a model of dependent edge-percolation parametrized
by (p, q), that at integer q is coupled to the Ising (q = 2) and more generally
q-state Potts models with p = 1− e−β [9].

The Glauber dynamics of the random-cluster model is both interesting in its
own right, and is algorithmically salient because it is closely connected to the
Swendsen–Wang algorithm for the Potts model. Not only do the random-cluster
Glauber dynamics on Tn mix rapidly (from worst-case initialization) at all high
temperatures p < pc(q, d) [11], they are also expected to mix rapidly at all low-
temperatures p > pc(q, d): this is known in d = 2 [1], and at sufficiently large
p ≫ pc(q, d) [8]. The phase coexistence and slow mixing regime of the random-
cluster dynamics are instead at the critical point p = pc(q, d) when q is large [3, 6].

This slow mixing around the critical point is induced by the coexistence of a
wired phase, in which there is a giant connected component, and a free phase in
which all connected components are microscopic. In [8], we proved analogues of
our results of [7] for the random-cluster dynamics on Tn in a microscopic window
about its critical point. Namely, if one starts from the all-wired initialization,
the dynamics converges to the wired phase in quasi-polynomial time (and no(1) in
d = 2), and similarly to the free phase from the all-free initialization.

4. Open questions

In the above, we relied on the monotonicity of the Ising and random-cluster models
quite strongly. It would be of significant interest to generalize the results to a non-
monotone setting like the Potts Glauber dynamics.

Question 2. Show that the Potts Glauber dynamics on Tn at β > βc(q, d) ini-
tialized from a (1q , ...,

1
q ) mixture of the q ground states mixes in sub-exponential

time.

Another avenue of investigation is to study mixing times not from ground states,
but from random initializations that don’t need a priori knowledge of the phases
of the system. The most natural choice is the uniform-at-random initialization.

Question 3. Show that the Ising Glauber dynamics on Tn at β large, initialized
uniformly over {±1}Tn, mixes in polynomial time.
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Random interlacement is a factor of i.i.d.

Balázs Ráth

(joint work with Márton Borbényi, Sándor Rokob)

Random interlacements, introduced in [1], describe the local distributional limit

of the trace of a random walk on a d-dimensional discrete torus (Z/NZ)
d
, d ≥ 3

if we run the random walk up to times comparable to the volume of the torus
and let N → ∞, cf. [3]. The notion of random interlacements was generalized to
transient weighted graphs in [2].

Let us denote by W the space of doubly infinite transient nearest neighbour
trajectories in G. We say that w,w′ ∈ W are equivalent modulo time-shift if
there exists k ∈ Z such that for all n ∈ Z we have w(n) = w′(n + k). Let
us denote by W ∗ the set of equivalence classes of W with respect to time-shift



2418 Oberwolfach Report 41/2022

equivalence. Let us denote by π∗ : W → W ∗ the function which maps to each
w ∈ W its equivalence class modulo time-shift. The random interlacement point
process Z =

∑
i∈I δ(w∗

i ,ti)
is a Poisson point process (PPP) on the space W ∗×R+

of labeled trajectories modulo time-shift with intensity measure ν × λ, where λ
denotes the Lebesgue measure on R+ and ν is a certain σ-finite measure on W ∗.
The following property characterizes ν: for each finite subset K of the vertex set
of G, an alternative way of generating a PPP on W ∗ with the same distribution
as the point process of trajectories of Z that hit K and have a label in the interval
[0, u] is as follows: independently for each vertex v of K, let us start a POI(u)
number of i.i.d. doubly infinite random walks from v indexed by Z, throw away
those trajectories that already visit K at a time indexed by a negative number
and take the point process that consists of the equivalence classes of the remaining
trajectories modulo time-shift.

Our main result is that we construct the interlacement Poisson point process
Z from a family of i.i.d. random variables indexed by the vertex set of a locally
finite, connected, transitive, transient infinite simple graph G via a measurable
map which intertwines the action of the automorphism group Γ of G. In other
words, we show that the interlacement point process is a factor of i.i.d.

It is relatively easy to check that if there exists a PPP X =
∑

i∈I δwi
onW such

that the law of X is invariant under the action of Γ and π∗(X ) :=
∑

i∈I δπ∗(wi) is a
PPP with intensity measure ν then X , π∗(X ) and the interlacement point process
are all factors of i.i.d. However, we also prove that such an X exists if and only if
G is non-unimodular.
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Generalized Gibbs Ensembles for the Calogero Fluid

Herbert Spohn

In Statistical Mechanics of many classical particles, Gibbs ensemble refers to a
probability measure on phase space of the form

(1) Z−1 exp
[
− β(H − ηP − µN)

]
.

Here H is the hamiltonian, P the total momentum, and N the number of particles.
The control parameters are β, η, µ and Z is the normalizing partition function.
The parameter η controls the average momentum. Usually one sets η = 0. But to
describe fluid flow such a parameter has to be included. Physically the rationale
relies on a natural choice for spacetime stationary probability measures of large
mechanical systems.
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Generalized Gibbs ensembles (GGE) refer to mechanical systems with an ex-
tensive number of conserved fields. Such a property is exceptional and requires a
fine-tuning of the interaction potential. Integrable many-body systems are mostly
restricted to one space dimension. Following the same rationale as leading to (1),
now all locally conserved fields must be written in the exponential. The three
control parameters will have to be replaced by a function over R. Such general-
ized Gibbs ensembles have surprising novel structures, which have been explored
systematically only in recent years. In this note I discuss exclusively the Calogero
fluid as a challenging example. As regards to prior work I mention the lecture
notes by B. Doyon [1], the two recent special issues on the topic [2, 3], and the
forthcoming book [4], which serve as an entry point to original research articles.

The Calogero fluid consists of particles on the real line, position qj and mo-
mentum pj of the j-th particle, j = 1, ..., N , see the book [5]. Particles interact
through a repulsive potential of the form

(2) Vca(x) =
1

(2 sinh(x/2))2
,

Therefore Newton equations of motion are

(3)
d2

dt2
qj =

N∑

i=1,i6=j

1
4 cosh(

1
2 (qj − qi))

(
sinh(12 (qj − qi))

)−3
,

j = 1, ..., N . The phase space is R2N . At short distances the potential has a
repulsive 1/|x|2 singularity, which implies that the spatial ordering of particles is
maintained throughout time. Thus alternatively the phase space can be taken as
WN × RN with the Weyl chamber WN = {q1 ≤ ... ≤ qN}.

The dynamics admits a Lax pair consisting of theN×N matrices, L,M , through

Li,j = δijpj + i(1− δij)
(
2 sinh(12 (qi − qj))

)−1
,(4)

Mi,j = iδij

N∑

k=1,k 6=j

(
2 sinh(12qj − qk))

)−2
(5)

−i(1− δij) cosh(
1
2 (qi − qj))

(
2 sinh(12 ((qi − qj))

)−2
.

The Lax matrix is hermitian, hence has real eigenvalues, while the partner matrix
is anti-hermitian. Then, with L,M evaluated along trajectories of (3),

(6)
d

dt
L(t) = [L(t),M(t)].

Merely having a commutator implies that

(7)
d

dt
tr[L(t)n] = 0, n = 1, 2, ... .

The eigenvalues of L(t) do not change in time and the conserved charges are

(8) Q[n] = tr[Ln]
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with their density given by

(9) Q[n](x) =

N∑

j=1

δ(x− qj)(L
n)j,j ,

x ∈ R. The total momentum corresponds to Q[1] and total energy to 1
2Q

[2]. As a
general fact for Calogero type models, under the standard Poisson bracket,

(10) {Q[m], Q[n]} = 0.

Thus we have obtained a set of N conserved fields in involution. In addition there
is the particle number

(11) Q[0] = N, Q[0](x) =

N∑

j=1

δ(x− qj).

In the sense of hamiltonian systems the constant function is a trivial conservation
law. But it must be included in a hydrodynamic context, since the particle density
is a central physical observable.

Having obtained the conserved fields, a GGE can be written as minus the ex-
ponential of

(12)

∞∑

n=0

µntr
[
Ln

]
= trV (L),

where the confining potential V equals to the power series on the left. Analyticity
is not such a natural condition and one should think of V as being continuous,
bounded from below, and having a at least linear increase at infinity. To under-
stand the precise class of confining potentials is still an open problem.

With these preparations, the finite volume GGE is defined by

(13) Zca,N(ℓ, V )−1 exp
(
− tr

[
V (L)

]
−

N∑

j=1

Vbox,ℓ(qj)
) N∏

j=1

dqjdpj .

We added the box potential Vbox,ℓ to ensure that the positions of the particles
are in essence constrained to lie in a box of length ℓ. Note that in general such
a box potential breaks integrability. But here it is only a mathematical tool to
properly construct the infinite volume GGE. This probability measure will then
be spacetime stationary.

Our goal is a study of the infinite volume limit with N, ℓ → ∞ at fixed ratio
ℓ/N = ν, hence 1/ν the macroscopic density of particles. For notational simplicity
we still use bothN, ℓ, but their ratio is fixed as stated. Of interest is the generalized
free energy per unit length

(14) Fca(ν, V ) = lim
N→∞

−1

ℓ
logZca,N (ℓ, V ).
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Physically even more important is density of states of the Lax matrix,

(15) ̺Q,N (w) =
1

N

N∑

j=1

δ(λj − w),

where λ1, ..., λN are the real eigenvalues of L. Under a GGE, ̺Q,N is a random
measure on R.

Using the transformation to scattering coordinates and the specific box potential

(16) Vbox,ℓ(q) =
N∑

j=1

e−ℓ/2 cosh(qj),

we recently obtained the following two results.
(i) The infinite volume limit in (14) exists and is determined by a variational
principle. We introduce the two-particle scattering shift of the Calogero fluid

(17) φca(p1 − p2) = − log
(
1 +

1

(p1 − p2)2

)

and the free energy functional
(18)

Fca(̺) = ν−1

∫

R

dw̺(w)
(
V (w)− 1+ log ̺(w)− log

(
ν+

∫

R

dw′̺(w′)φca(w−w′)
))

in case ν +
∫
R
dw′̺(w′)φca(w − w′) > 0 and F◦

ca(̺) = ∞ otherwise. Varying over

all ̺ with ̺(w) ≥ 0 and
∫
R
dw̺(w) = 1, there is a unique minimizer, ̺∗, and

(19) Fca(ν, V ) = Fca(̺
∗).

(ii) When integrating (15) against smooth test functions, the density of states has
a deterministic limit given by

(20) lim
N→∞

̺Q,N(w) = ̺∗(w).

As an apparently rather general feature of integrable many-body systems the gen-
eralized free energy has a nonlinearity which involves the two-body scattering
shift - an unusually close connection between free energy and dynamics. For non-
integrable systems no such connection is available.
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Hydrodynamic limit of simple exclusion processes on point processes

with random conductances

Alessandra Faggionato

We are interested in transport properties of disordered media. We consider a very
large class of simple exclusion processes in random environments and show that
the hydrodynamic limit is described by the heat equation with diffusion matrix
given by the effective homogenized matrix of a single particle.

Let us define our model. Below (Ω,F ,P) is a probability space and the elements
ω ∈ Ω are called environments. The environment encodes all the microscopic ran-
domness of the medium under consideration. We then fix a simple point process,
i.e. a measurable map Ω ∋ ω 7→ ω̂ ∈ {locally finite subsets of Rd} (see [3] also
for the topology of the last space). We also fix a conductance field, i.e. a map
c : Ω×Rd ×Rd ∋ (ω, x, y) 7→ cx,y(ω) ∈ [0,+∞) such that cx,y(ω) = cy,x(ω). As it
will be clear later, the relevant values of the conductance field are for x 6= y in ω̂.
At this point we can introduce the weighted undirected graph G(ω) with vertex set
ω̂, edge set { {x, y} : x 6= y in ω̂ , cx,y(ω) > 0 } and weight of the edge {x, y} given
by cx,y(ω), which is called the conductance of {x, y} similarly to [2]. We assume
that the abelian group G = Rd or G = Zd acts both on the Euclidean space and
on the probability space in a covariant way. To simplify the notation, we restrict
here to the case G = Rd. The action (τg)g∈G of G on the Euclidean space is given
by translations, and one can take τgx := x+g. We denote by (θg)g∈G the action of
G on the probability space. Roughly, θgω is the new environment when we apply
the translation τ−g on the Euclidean space and in particular on the medium. The
covariant relation between the two actions is given by

θ̂gω = τ−g(ω̂) ,

cx,y(θgω) = cτgx,τgy(ω) .

We assume that the law P of the environment is stationary and ergodic for the
action (θg)g∈G. We call P0 the Palm distribution associated to P . Roughly P0 =
P(·|0 ∈ ω̂). We require some basic moment bounds:

∑

x∈ω̂:x 6=0

c0,x(ω) ∈ L1(P0) ,
∑

x∈ω̂:x 6=0

c0,x(ω)|x|2 ∈ L1(P0) .

Although the above formalism can appear very abstract, it allows to describe
several relevant models also with different geometrical features as explained in [1].

Given a realization of the environment ω, the particles of the exclusion process
lie on the vertex set ω̂. In particular, the particle configuration is described by
an element η ∈ {0, 1}ω̂, where η(x) is the occupation number at the vertex x.
Particles can jump only along the edges of the graph G(ω) with rates cx,y(ω).
More precisely, the infinitesimal generator is formally given by

Lωf(η) =
∑

x∈ω̂

∑

y∈ω̂

cx,y(ω)η(x)
(
1− η(y)

)
[f(ηx,y)− f(η)] .
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Equivalently,

Lωf(η) =
∑

{x,y}⊂ω̂

cx,y(ω)
[
f(ηx,y)− f(η)

]
.

Examples are given (cf. [1, 6]) by the symmetric exclusion process with random
jump rates on Zd (or another lattice), on the supercritical percolation cluster on
Zd (or another lattice), on the Delaunay triangulation defined as the dual graph of
the Voronoi tessellation of ω̂, the symmetric exclusion process obtained by adding
the exclusion interaction to the Mott variable range hopping.

To describe the hydrodynamic behavior of the above exclusion process we intro-
duce the effective homogenized matrix as the d× d nonnegative symmetric matrix
D such that, for all a ∈ Rd,

a ·Da = inf
f∈L∞(P0)

1

2

∫
dP0(ω)

∑

x∈ω̂

c0,x(ω) (a · x−∇f(ω, x))2 ,

where ∇f(ω, x) := f(θxω) − f(ω). In [5] we have proved that the above matrix
describes indeed the homogenization of the massive Poisson equation for a single
particle, hence performing a random walk on ω̂ with jump rates cx,y(ω). We point
out that D can be degenerate.

We can now describe our main result. Let M be the space of Radon measures
on Rd with the vague topology. Let (Pt)t≥0 be the Markov semigroup of the
Brownian motion on Rd with diffusion matrix 2D. Given m ∈ Prob({0, 1}ω̂), let
Pm,ω be the law of the symmetric exclusion process on ω̂ with initial distribution
m. Finally, given ǫ > 0 and η ∈ {0, 1}ω̂, let πǫ(η) be the empirical measure
πǫ(η) := ǫd

∑
x∈ω̂ η(x)δǫx.

Then, under few additional minor technical assumptions, we have:

Theorem 1 ([1]). For P–a.a. ω the following holds. Let ρ0 : Rd → [0, 1] be
measurable and define ρ : Rd × [0,∞) → [0, 1] as ρ(x, t) := Ptρ0(x). For ǫ > 0

fix mǫ ∈ Prob
(
{0, 1}ω̂

)
such that, when η

L∼ mǫ, it holds πǫ(η)
ǫ↓0→ ρ0(x)dx in

probability in M. Then, for all T > 0, when (ηs)s≥0
L∼ Pmǫ,ω we have

(
πǫ(ηǫ−2t)

)
0≤t≤T

ǫ↓0→
(
ρ(x, t)dx

)
0≤t≤T

in probability

in D([0, T ],M).

Above the symbol A
L∼ B means that A and B have the same law. In [1] and

[6] applications of the above theorem are discussed to several important exclusion
processes, also getting improved results for the hydrodynamics of the symmetric
exclusion process with random jump rates on supercritical percolation clusters of
Zd (see [4] for previous results). The proof of the above theorem is based on
homogenization and duality. While homogenization heavily relies on [5], duality
can be treated by techniques initially introduced in [10] and improved in [4], or
equivalently by means of the corrected empirical measure [7, 8]. We point out
that, although for a fixed environment the system is non-gradient [9], the above
methods allow to avoid the heavy machinery of non-gradient systems.
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Large deviations of the empirical current over long time intervals

Claudio Landim

(joint work with L. Bertini, D. Gabrielli)

Stochastic lattice gases, that describe the evolution of interacting random particles
on a lattice of mesh 1/N , have been an instrumental tool in the development of non-
equilibrium statistical mechanics. Their macroscopic behavior, usually referred to
as hydrodynamic scaling limit, is described as follows. Given a microscopic real-
ization of the process, the empirical density πN is defined by counting locally the
average number of particles while the empirical current JN is defined by counting
the net flow of particles. By the local conservation of the number of particles,
πN and JN satisfy the continuity equation. The content of the hydrodynamical
limit is the law of large numbers for the pair (πN ,JN ) in the limit N → ∞. For
driven-diffusive systems the limiting evolution is given by

(1)

{
∂tρ+∇ · j = 0,

j = −D(ρ)∇ρ+ σ(ρ)E,

where E = E(x) is the applied external field, D is the diffusion matrix, and σ is
the mobility. In particular, the density profile ρ = ρ(t, x) solves the non-linear
driven diffusive equation

(2) ∂tρ+∇ ·
(
σ(ρ)E

)
= ∇ ·

(
D(ρ)∇ρ

)
.
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The large deviations with respect to the hydrodynamic limit in the time window
[0, T ] are characterized by the rate function

(3) AT (ρ, j) =

∫ T

0

dt

∫
dx

∣∣j +D(ρ)∇ρ− σ(ρ)E
∣∣2

4 σ(ρ)
,

that is at the base of the Macroscopic Fluctuations Theory and it is widely used
in non-equilibrium statistical mechanics.

A significant problem is the behavior of the average of empirical current over
the time interval [0, T ] in the limit when N → ∞ and then T → ∞. By the
hydrodynamical large deviations principle and contraction principle, this amounts
to analyze the behavior as T → ∞ of the minimizers to (3) with the constraint
1
T

∫ T

0 dt j = J . This problem has been initially raised in [4] while in [1] it has
been pointed out that the minimizers can exhibit a non-trivial time dependent
behavior. In [2, 5] it has been then shown that this is actually the case for the
weakly asymmetric exclusion process and the Kipnis-Marchioro-Presutti model
where, for suitable value of the parameters, traveling waves are more convenient
than constant profiles.

Denote by I(2)(J) the limiting value as T → ∞ of the minimum to T−1AT with

the constraint 1
T

∫ T

0 dt j = J . Varadhan [6] proposed the following representation

for I(2)

(4) I(2)(J) = inf

{∫
dP

∫
dx

∣∣j(t) +D(ρ(t))∇ρ(t)− σ(ρ(t))E
∣∣2

4σ(ρ(t))
;

∫
dP j(t) = J

}

where the infimum is carried out over the probabilities P invariant by time trans-
lations on the set of paths (ρ, j) satisfying the continuity equation ∂tρ+∇·j = 0.
Note that I(2) is convex and that, by the stationarity of P , the actual value of t
on the right hand side of (4) is irrelevant.

The validity of the representation (4), in the context of the weakly asymmetric
exclusion process for which D = 1 and σ(ρ) = ρ(1 − ρ), is the content of [3]
and of the talk presented at this workshop. This is achieved both when the limit
T → ∞ is carried out after the hydrodynamic limit N → ∞ and when the limits
are carried out in the opposite order. In fact, the representation (4) is deduced by
the contraction principle from a large deviation result at the level of the empirical
processes.
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Discrete harmonic analysis on the configuration space of large scale

interacting systems

Makiko Sasada

(joint work with Kenichi Bannai, Yukio Kametani)

The theory of the hydrodynamic behavior of interacting particle systems has been
well developed in the last decades, and the hydrodynamic limits have been shown
for various models. However, we still do not have a sufficient understanding of the
diffusive scaling limit for non-gradient models. In the seminal paper [3], Varad-
han introduced the so-called Varadhan’s method to prove the hydrodynamic limit
for non-gradient models and derived a variational formula for the macroscopic
diffusion coefficient. Since then, the method has been applied to several models
and a common expression of the variational formula in terms of the conserved
quantity appeared repeatedly. Nevertheless, it was not certain how common the
variational formula for the diffusion coefficient holds, in particular for models with
multiple conserved quantities, because we did not know the origin of this universal
structure.

To apply Varadhan’s method for a specific model, we need so-called the decom-
position theorem of shift-invariant closed forms, and the variational formula for the
diffusion coefficient is a direct consequence of the decomposition theorem. In [1],
we introduced a universal geometric structure, which we call a configuration space
with transition structure, and proved a general decomposition of shift-invariant
closed “uniform” forms in terms of a group action on the configuration space and
conserved quantities. It reveals that the group action on the configuration space
was the origin of the common structure. Varadhan’s decomposition theorem can
be understood as L2 forms version, namely the Hodge decomposition ([2]). More-
over, we recently found that the macroscopic diffusion coefficient matrix is the
inverse of the periodic matrix with respect to topological forms and appropri-
ate harmonic forms. This relation between the diffusion matrix and the periodic
matrix holds not only for interacting particle systems but also in the case of one-
particle random walks and in homogenization problems. In my talk, I discussed
this connection between the scaling limits for random processes and the group
cohomology, as well as the period matrix. I also gave examples of interacting sys-
tems, whose decomposition theorem was newly established by our theory, such as
exclusion processes/generalized exclusion processes with finite range jumps or on
general crystal lattices, and multi-species exclusion processes.
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Universality of cutoff for exclusion with reservoirs

Justin Salez

1. Setup

Let V be a finite set, equipped with a collection of vertex rates (κi)i∈V and a
symmetric collection of edge rates (c(i, j))i,j∈V . Let also (S, ν) be a finite proba-
bility space. The S−colored exclusion process with reservoir law ν on the network
G = (V, c, κ) is the continuous-time Markov chain (Xt)t≥0 on SV where

• each pair of vertices {i, j} exchange contents at rate c(i, j);
• each vertex i resamples its content afresh according to ν at rate κ(i).

The product measure π = ⊗i∈V ν is clearly reversible under this dynamics, and
we are here interested in quantifying the rate of convergence to equilibrium, as
measured by the so-called worst-case total-variation distance:

dtv(t) := max
x∈SV

max
A⊆SV

|Px(Xt ∈ A)− π(A)| .

In particular, we seek to estimate the time at which this function drops below a
given precision ε ∈ (0, 1), known as the mixing time of the process:

tmix(ε) := inf {t ≥ 0: dtv(t) ≤ ε} .

2. Main result

Quite remarkably, the mixing properties of our high-dimensional interacting par-
ticle system turn out to be dictated by those of a much simpler object, namely the
Laplacian matrix ∆ ∈ RV×V of the network G:

∆(i, j) :=

{
c(i, j) if j 6= i
−κ(i)−∑

k∈V c(i, k) if j = i.

In words, ∆ is the generator of a killed random walk G which, when alive at a site
i ∈ V , jumps to another site j ∈ V at rate c(i, j) and is killed at rate κ(i). Set

Ψ(t) := 〈1, e2t∆1〉,
which is just |V | times the probability that the walk is still alive at time t, when
starting from the uniform law. Our main result asserts that the function t 7→ dtv(t)
is controlled, in a universal way, by the single-particle statistics t 7→ Ψ(t).
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Theorem 1 (Main reduction). Writing ν⋆ := mins∈S ν(s), we have for all t ≥ 0,

Ψ(t)

4 + Ψ(t)
≤ dtv(t) ≤

√
e

Ψ(t)
ν⋆ − 1.

The first inequality shows that our interacting particle system is far from equi-
librium (dtv(t) ≈ 1) as long as Ψ(t) is large. Conversely, the second inequality
shows that the system is completely mixed (dtv(t) ≈ 0) as soon as Ψ(t) is small.
Thus, the mixing time is essentially the time at which Ψ(t) is of order 1. This
reduction has a number of important consequences, which we now enumerate.

3. Implications

The most fundamental parameter of a reversible Markov generator L is its spectral
gap or Poincaré constant (second smallest eigenvalue of −L). Our first applica-
tion is the following non-conservative analogue of Aldous’ spectral gap conjecture,
proved by Caputo, Liggett and Richthammer [2].

Corollary 2 (Spectral gap). The spectral gap of the S−colored exclusion process
on a network G coincides with the smallest eigenvalue λ of the matrix −∆.

A second notable consequence of Theorem 1 concerns the so-called cutoff phe-
nomenon, a remarkable but still mysterious phase transition in the convergence to
equilibrium of certain chains [3]. Specifically, we say that a sequence of Markov
chains (indexed by n) exhibits cutoff if the first-order n → ∞ asymptotics of the

mixing time t
(n)
mix(ε) is independent of the required precision ε ∈ (0, 1):

∀ε, ε′ ∈ (0, 1),
t
(n)
mix(ε

′)

t
(n)
mix(ε)

−−−−→
n→∞

1.(1)

A simple necessary condition for cutoff is the so-called product condition

λn × t
(n)
mix(1/4) −−−−→

n→∞
+∞,(2)

where λn denotes the spectral gap of the chain. While this criterion is too simple
to be sufficient in general, it has been shown to imply cutoff for all birth-and-death
chains and, more generally, all random walks on trees [1]. Our next result adds
the colored exclusion process with reservoir to this short list.

Corollary 3 (Characterization of cutoff). Consider the S−colored exclusion pro-
cess with reservoir law ν on an arbitrary sequence of networks (Gn)n≥1. Then,
the cutoff phenomenon (1) occurs if and only if the product condition (2) holds.

Finally, our main estimate easily leads to explicit formulae for the spectral gap
and mixing time of the S−colored exclusion process when the underlying Laplacian
matrix ∆ is simple enough to be amenable to Fourier analysis. We illustrate this
by generalizing the one-dimensional results recently obtained in [4, 5].
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Corollary 4 (Discrete Euclidean boxes). Fix an integer d ≥ 1 and let Gn be the
network obtained by restricting the lattice Zd to the box V = {1, . . . , n}d, with edge
rates c(i, j) = 1‖i−j‖=1 and vertex rates κ(i) =

∑
j∈Zd\V 1‖i−j‖=1. Then,

λn = 2d

[
1− cos

(
π

n+ 1

)]
, and t

(n)
mix(ε) =

n2 logn

2π2
+O(n2).
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[5] Patŕıcia Gonçalves, Milton Jara, Rodrigo Marinho, and Otávio Menezes. Sharp convergence
to equilibrium for the ssep with reservoirs, 2021.

Recent developments on the mixing of the Averaging process and its

discrete dual

Matteo Quattropani, Federico Sau

We introduce the Averaging process as presented in the expository article [1],
review some of its main properties, and present some recent quantitative results
on its mixing times on various geometries.

The Averaging process is a Markovian model of mass redistribution among
nearest-neighboring sites of a graph. Informally, the Averaging process may be
described as follows: after initially assigning some real values to each site, at expo-
nentially distributed times neighboring sites are selected and, then, split equally
among themselves their total mass. The process takes place on a growing sequence
of graphs which we assume to be finite-dimensional, in the sense that the random
walk on those geometries satisfies a family of Nash inequalities. Along with the
Averaging process, we introduce a related particle system, analyzed in detail in [4]
and referred to as Binomial splitting process. The Binomial Splitting process is
a natural particle analogue of the Averaging process, in which pairs of sites split
particles rather than mass, according to a Binomial distribution. The Binomial
Splitting process shares some features with some classical symmetric particle sys-
tems. Among these, the presence of dualities and intertwinings play a prominent
role in our analysis. By means of such dual descriptions, on the one hand we
derive sharp upper bounds for the Averaging process from properties of the Bino-
mial Splitting with few particles; on the other hand, we also deduce results on the
many-particle Binomial Splitting through the analysis of the Averaging dynamics.

Our main results amount to showing that the Lp convergence to equilibrium
of the Averaging process occurs gradually, i.e., without exhibiting cutoff, on all
finite dimensional geometries on the timescale of the relaxation time of the simple
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random walk on the underlying graph. By means of a finer analysis of the Avearg-
ing process mixing behavior, we further establish total-variation distance cutoff
for the Binomial splitting on such geometries, as soon as the number of particles
diverges and is at most of the order of the size of the graph squared.

The works [2], [4], and [3], are the main references of our talks.
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Attractive probabilistic cellular automata

Ivailo Hartarsky

1. A classical example

Let us start by recalling a classical result on the contact process. The latter is

a continuous time Markov process on {0, 1}Zd

defined by the following graphical
construction (see [8, 9] for background). Each site x ∈ Zd goes from 1 to 0 at rate
1 and from 0 to 1 at rate λ times the current number of nearest neighbours of x
in state 1, where λ ∈ [0,∞] is the parameter of the model. We denote by ηx(t)
the state of the process at site x at time t and by P1

λ its law, starting from the
all-1 configuration 1. The following was proved by Bezuidenhout and Grimmett
in 1991 [2].

Theorem 1. There exists λc ∈ [0,∞] such that

∀λ > λc, lim
t→∞

P1

λ(η0(t) = 1) > 0,

∀λ < λc,∃C, c > 0, ∀t ≥ 0, P1

λ(η0(t) = 1) ≤ Ce−ct.

2. Setting and result

We seek to generalise Theorem 1. Our setting of interest is slightly different, as
we will work in discrete time, but it is an interesting open problem to extend our
results to the continuous time setting, so as to include Theorem 1. We consider
the class of all attractive probabilistic cellular automata (PCA), which we define
next.

Fix a range R ∈ [0,∞) and let ΩR = {0, 1}[−R,R]d∩Z
d

. An up-set U ⊂ ΩR is a
set such that

∀x ∈ U, ∀y ∈ ΩR, x ≤ y ⇒ y ∈ U ,
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where ≤ holds pointwise. Let υ be a probability measure on the up-sets of ΩR.
Let Ux,t for x ∈ Zd and t ∈ N be a family of i.i.d. random up-sets with law υ. We
define the υ-PCA inductively, starting from an initial condition η(0), by

ηx(t) =

{
1 ηx+[−R,R]d∩Zd(t− 1) ∈ Ux,t,

0 otherwise.

Note that Ux,t = ∅ corresponds to a death (the state becomes 0 regardless of
everything else), while Ux,t = ΩR is a birth.

The main result of this talk is the following (see [6] for more generality).

Theorem 2. Denote by P1
p the law of the pυ + (1− p)δ∅-PCA. There exists pc ∈

[0, 1] such that

∀p > pc, lim
t→∞

P1

p(η0(t) = 1) > 0,

∀p < pc,∃C, c > 0, ∀t ≥ 0, P1

p(η0(t) = 1) ≤ Ce−ct.

The proof applies the method of [3].

3. Further remarks

3.1. Bootstrap percolation. It turns out that when υ is a Dirac measure, there
is a one-to-one correspondence between attractive PCA and a class of bootstrap
percolation models (see [6]). When pushed via this correspondence, Theorem 2
yields an important exponetial decay property in this class. It remains open to
show the exponential decay of the tail of the infection time above criticality for
bootstrap percolation in full generality. By [5] this is equivalent to the positivity
of the spectral gap above criticality of the corresponding kinetically constrained
models.

3.2. Non-trivial transition. Let us note that for the contact process it is classi-
cal that λc ∈ (0,∞). Moreover, when υ is a Dirac measure on the up-set U , there
is a caracterisation of those U which yield a non-trivial pc [11]. For more general,
albeit not as complete results in this direction and in continuous time we refer to
[4, 10].

3.3. Supercritical and cooperative survival phases. While Theorem 2 settles
the subcritical regime, it tells us very little about the supercritical one. Bezuiden-
hout and Gray [1] studied general attractive PCA and their continuous time ana-
logues in the “supercritical” regime. They showed that the phase transition is
continuous and that one can renormalise, based on which one can obtain many
results (see [7] for this program in a restricted case). However, the phase transi-
tion they studied is different, namely, they ask for a positive probability that the
process is not absorbed in the 0 state starting from a single site in state 1. While
for the contact process and, more generally, additive processes, the two transitions
coincide, in general this is not the case. It is a wide open problem to study the
behaviour of attractive PCA in the intermediate regime of cooperative survival,
but individual death.
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Busemann process and infinite geodesics in the directed landscape

Ofer Busani

(joint work with Timo Seppäläinen, Evan Sorensen)

In Last Passage Percolation (LPP) on the lattice, to each site of Z2 we assign a
random positive weight so that the weights are i.i.d. across the lattice. To any
two points such that one is located north-east to the other, we look for an up-right
path that maximizes the weight between the two points. Such paths are called
geodesics and have been much studied in this model as well as other LPP models.
One of the reasons for the interest in such objects is that they can be used as
tools to study models in the KPZ universality class. An infinite geodesic in an
LPP model is and infinite up right path such that its restrictions to between any
to points on it is a geodesic. Since their introduction in the 90’s by Newman and
Hoffman, the Busemann function and the Busemann process, have been proven to
be an important tool in the study of infinite geodesics in LPP as well.

The directed landscape, constructed in the breakthrough work of Dauvergen,
Ortman and Virag 18’, is believed to be the universal scaling limit of all metric-like
(LPP, FPP etc.) models in the KPZ universality class. In a recent work, Rahman
and Virag showed that infinite geodesics exist in the directed landscape as well. In
this talk I will discuss the construction of the Busemann process on the directed
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landscape and show how it can be used to obtain new results about the infinite
geodesics in the directed landscape.
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[2] O. Busani, T. Seppäläinen, E. Sorensen, The stationary horizon and semi-infinite geodesics
in the directed landscape, arXiv:2203.13242.

Spectral Independence: A New Tool to Analyze Markov Chain

Mixing Times

Kuikui Liu

(joint work with Dorna Abdolazimi, Nima Anari, Zongchen Chen, Shayan Oveis
Gharan, Eric Vigoda, Cynthia Vinzant, June Vuong)

A central problem in the analysis of Markov chains for algorithmically sampling
from Gibbs distributions of physical systems is estimating its mixing time. Classi-
cal techniques based on path coupling (and variants thereof) break down dramat-
ically as the parameters of the distribution approach “phase transition points”.
We present a new and versatile technique for analyzing Markov chains called spec-
tral independence which has broken these longstanding barriers, allowing us to
give sharp mixing time bounds for many distributions of interest. Our notion is
essentially a “limited correlations” property of the stationary distribution which
is simple to describe, and is inspired by recent developments in the theory of
high-dimensional expanders.

Definition 1 (Spectral Independence; Informal). Let µ be a probability distribu-
tion over configurations σ ∈ {−1, 1}n, and define the influence matrix Ψµ ∈
Rn×n by

Ψµ(i, j) = Pr
σ∼µ

[σj = 1 | σi = 1]− Pr
σ∼µ

[σj = 1 | σi = −1].

For η ≥ 0, we say µ is η-spectrally independent if the maximum eigenvalue of
Ψµ is at most 1 + η.1

Theorem 2 (Spectral Independence =⇒ Fast Mixing; Informal). Let µ be a
probability distribution over {−1, 1}n, and assume µ, as well as all conditional
distributions of µ, are all η-spectrally independent for some η ≥ 0. Then the
Glauber dynamics for sampling from µ has mixing time at most O(n2+η). If, in
addition, µ satisfies the global Markov property (i.e. conditional independence)
w.r.t. some underlying n-vertex graph of maximum degree ∆ ≤ O(1), then the
Glauber dynamics mixes in Oη,∆(n log n) steps.

1A priori, it isn’t so clear that Ψµ even has real eigenvalues, since it is asymmetric in general,
and has both positive and negative entries. However, one can prove this by showing it is an
appropriate normalization of the covariance matrix of µ. There are also natural generalizations
of this notion beyond the Boolean hypercube {−1, 1}n.
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It is in general a nontrivial task to establish spectral independence, especially
since one requires a bound on the influence matrix for all conditional distributions.
However, the strength of this approach is that it has connections to a wide variety
of different areas of mathematical research. In particular, there are now four
well-known techniques for establishing spectral independence, all originating from
different fields.

(1) Oppenheim’s “Trickle-Down” Theorem: This result says that sufficiently
strong spectral independence for conditional distributions µ | τ over only
partial configurations τ on n−2 many vertices imply spectral independence
for all conditional distributions. This was first observed by Oppenheim in
the study of expansion phenomenon in high-dimensional simplicial com-
plexes, building on the works of Garland. This technique proved decisive
in analyzing the random cluster model when 0 < q < 1.

(2) Exponential Decay of Correlations/Spatial Mixing: This technique was
pivotal to establish spectral independence for the hardcore gas model all
the way up to the critical threshold, beyond which it is hard to sample from
the Gibbs distribution under standard complexity-theoretic hypotheses.

(3) Geometry of Polynomials: Algebraic and analytic properties of the mul-
tivariate generating polynomial of µ such as zero-freeness/stability and
log-concavity imply spectral independence bounds.

(4) Coupling: Finding contractive couplings for local dynamics, or construct-
ing “local couplings” between conditional distributions, yield bounds on
spectral independence.

Diffusive Fluctuations in Hard Rods System

Stefano Olla

(joint work with Pablo Ferrari)

Consider a system of one dimensional hard rods of variable length in the dynamics
considered in [8]: when two rods collide they exchange positions. The equilibrium
dynamics is constructed as follows. We start with Xε = (x, v, r) the Poisson
process on R×R×R+ with intensity ε−1ρ dx dµ(v, r), with µ a positive probability
measure on R2 with finite second moments. The usual hard rods case is given by
dµ(v, r) = δa(dr)dµ(v), a > 0. We define

σ = ρ

∫∫
rdµ(v, r), volume density

π = ρ

∫∫
rvdµ(v, r), momentum density.

(1)

and

mb
a(X

ε) =

{∑
(x,v,r)∈Xε,x∈[a,b] εr b > a

−∑
(x,v,r)∈Xε,x∈[b,a] εr b < a.

(2)



Large Scale Stochastic Dynamics 2435

By the law of large numbers we have

(3) mb
a(X

ε) −→
ε→0

(b− a)σ, a.s. as

To each configuration Xε there is a dilated configuration of the rods

Y ε = {(y = x+mx
0(X

ε), v, r) : (x, v, r) ∈ Xε}
For a given test function ϕ(y, v, r) we have the law of large numbers

ε
∑

(y,v,r)∈Y ε

rϕ(y, v, r) = ε
∑

(x,v,r)∈Xε

rϕ(x +mx
0(X

ε), v, r)

−→
ε→0

ρ

∫∫∫
rϕ(x(1 + σ), v, r)dx dµ(v, r)

=
ρ

1 + σ

∫∫∫
rϕ(y, v, r)dy dµ(v, r) =

1

1 + σ
〈ϕ〉.

(4)

i.e. ρ̄ = ρ
1+σ is the density of the hard rods.

The fluctuation field for the rods is defined by

(5) ξY,ε(ϕ) = ε−1/2


ε

∑

(y,v,r)∈Y ε

rϕ(y, v, r) − E


ε

∑

(y,v,r)∈Y ε

rϕ(y, v, r)




 .

It is not hard to prove, using the underlying CLT of the Poisson process, that

(6) ξY,ε(ϕ)
law−→
ε→0

ξY (ϕ)

where ξY is the centered gaussian field with covariance

< ξY (ϕ)ξY (ψ) >= ρ̄

∫∫∫
r2Cϕ(y, v, r)Cψ(y, v, r)dydµ(v, r).(7)

where C = I − σ
1+σP and P is the projection operator

(8) Pϕ(x) =
ρ

σ

∫∫
rϕ(x, v′, r′) dµ(v′, r′).

In the dynamics that we consider, in the Euler scaling, the position at time t
of the hard rod (y, v, r) that at initial time is at the position y that is the dilated
image (wrt 0) of the point x is given by

(9) yt = x+mx
0(X

ε) + vt+ jXε(x, v, t).

The flux jXε(x, v, t) is defined by

jXε(x, v, t) = ε
∑

(x′,v′,r′)∈Xε

r′
(
1[v′<v]1[x<x′<x+(v−v′)t] − 1[v′>v]1[x+(v−v′)t<x′<x]

)
.

(10)

By the law of large numbers, for any tagged rod (y, v, r) ∈ Y ε we have that

(11) (yt − y) −→
ε→0

veff(v)t, a.s.
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where the effective velocity is given by

(12) veff(v) := v + ρ

∫∫
r(v − w)dµ(w, r) = v(1 + σ)− π.

The fluctuation field in the Euler scaling is defined by

ξY,εt (ϕ) = ε−1/2


ε

∑

(y,v,r)∈Y ε

rϕ(yt, v, r)−
1

1 + σ
〈ϕ〉


 .(13)

It is proven in [3] that ξY,εt converges in law to

(14) ξYt (ϕ) = ξY0 (ϕt), ϕt(y, v, r) = ϕ(y + vefft, v, r).

i.e.

(15) ∂tξ
Y
t (ϕ) = ξY0 (veff∂xϕt) = ξYt (veff∂xϕ),

that in the hard rods with deterministic length correspond to the linerized equation
of the Euler hydrodynamics proven in [1, 2]. Our work concerns the fluctuation
field recentered on the effective velocities under a diffusive rescaling:

ΞY,ε
t (ϕ) = ε−1/2


ε

∑

(y,v,r)∈Y ε

rϕ
[
yε−1t − veff(v)ε−1t, v, r

]
− 1

1 + σ
〈ϕ〉


 .(16)

We prove the following convergence in law:

(17) ΞY,ε
t (ϕ)

law−→
ε→0

ΞY
t (ϕ) = ΞY

(
ϕ(·+

√
DWt)

)
.

This means that an initial fluctuation of rods of velocity v, after recentering around
the effective velocity, evolves in the diffusive scale by random rigid translations
driven by a Brownian motion with diffusivity D(v) explicitely defined by

(18) D(v) = ρ

∫∫
r2|v − v̄|dµ(v̄, r).

In the case of the usual hard rods with deterministic length this coincide with
the diffusivity that appears in the Navier-Stokes corrections of the hydrodynamics
[4, 5] (see also more recent [7]). This rigidity in the evolution of the fluctuations in
the diffusive scaling is in contrast with expected results for chaotic systems where
fluctuation hydrodynamics predict an evolution driven by an additive space-time
white noise [13]. On the other hand, in the case of the ususal hard rods with fixed
size, it is in agreement with previous calculations of the space-time covariance
[10, 12]. We expect this rigid evolution of the fluctuations in other completely
integrable system such as the Ball-Box dynamics [6, 9] or the Toda lattice [14].

The basic argument behind the proof of (17) is that the fluxes jXε(x, v, ε−1t)
and jXε(x̄, v, ε−1t) corresponding to two particles at initial macroscopic distance
x− x̄ are completely correlated in the limit as ε→ 0.

Acknowledgement: We thank Herbert Spohn for very valuable comments on this
work.
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A “quenched=annealed” approach in spin glasses

Erwin Bolthausen

Let ZN be the random partition function of a random spin system, for instance

ZN (ω) :=
∑

σ

exp [βHN,ω (σ)] ,

the σ running over some set of Ising spins, and the ω in HN,ω indicating the
random dependence of the Hamiltonian. N stands for the size of the system. The
free energy is given as

f = lim
N→∞

1

N
logZN

often
= lim

N→∞
1

N
E logZN .

E stands for the expectation with respect to randomness. The second equality is
the so-called self-averaging, which has to be proved, but often follows easily from
a concentration of measure argument.

In the best of all worlds EZ2
N ≤ eo(N) (EZN )

2
. If one has a good concentration

of measure property for ZN , then

f = fann := lim
N→∞

1

N
logEZN ,
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and EZN is in many cases easy to evaluate. This however is true only in very
special situations.

A more sophisticated method: Find σ-fields FN such that

E
(
Z2
N |FN

)
≤ eo(N) (E (ZN |FN ))2

and prove again a suitable concentration of measure property. Then

(1) f = lim
N→∞

1

N
logE (ZN |FN) .

Task 1. Take FN large enough that the estimate is correct, but small enough that
you can compute E (ZN |FN ) .

This has recently been used in spin glasses in [2, 5, 6].
The following result for the so-called perceptron has recently been proved in [4]

extending earlier results by Talagrand [8].
Let u : R →[−∞,∞) be a measurable function which is bounded above and

define

ZN :=
∑

σ∈{−1,1}N
exp

[∑[αN ]

j=1
u (yj)

]
, yσ,i :=

1√
N

N∑

i=1

Jijσi,

where Jij are i.i.d. standard Gaussian random variables. α is a positive constant
where “small α” is equivalent to “high temperature”.

The construction of the FN uses Mézard’s TAP equations (see [7]) for mi :=
〈σi〉 : Define

Fq (x) :=
1√
1− q

EZ

[
Zeu(x+

√
1−qZ)

]

EZ

[
eu(x+

√
1−qZ)

] , q ∈ (0, 1) ,

Z standard Gaussian, and then the fixed point equations for q, ψ ∈ R+

q = EZ tanh2
(√

ψZ
)

ψ = αEZ [Fq (
√
qZ)]

2
.

Mézard’s TAP equations are:

mi = tanh

(∑[αN ]

j=1

Jij√
N
nj − αEZF

′
q (

√
qZ)mi

)

nj = Fq

(∑N

i=1

Jij√
N
mi − (1− q)nk

)
.

For small α, they can iteratively be solved (see [1, 3]), leading to a sequence

m
[k]
i , n

[k]
j , generating the σ-fields

F [k]
N := σ

(
m

[s]
i , n

[s]
j : s ≤ k

)
,
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and if α is small enough, one gets under a weak additional condition the equation
(1) in the following form

f = lim
k→∞

lim
N→∞

1

N
logE

(
ZN |F [k]

N

)
.

With this method, we obtain in [4]

Theorem 2. Assume

sup
x∈R, c∈[1/2,2]

EZ,Z′

[
(Z − Z ′)2 exp [u (x+ cZ) + u (x+ cZ ′)]

]

EZ,Z′ [exp [u (x+ cZ) + u (x+ cZ ′)]]
<∞.

Then for small enough α > 0

fα,u = RS (α, u) := −ψ · (1− q)

2
+ EZ

(
log 2 cosh

√
ψZ

)

+αEZ logEZ′ exp
[
u
(√

qZ +
√
1− qZ ′

)]
.
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Sensitivity of mixing times for groups

Gady Kozma

(joint work with Jonathan Hermon)

For two metric spaces X and Y , we say that X and Y are K-quasi isometric if
there exists a map ϕ : X → Y with the following two properties.

(1) For all x, x′ ∈ X ,

1

K
d(x, x′)−K ≤ d(ϕ(x), ϕ(x′)) ≤ Kd(x, x′) +K.

(2) For every y ∈ Y there exists an x ∈ X such that

d(ϕ(x), y) ≤ K.
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We discussed which properties of random walk are invariant to quasi isometries.
We mentioned the result of Carlen, Kusuoka and Stroock [1] that polynomial
upper bounds for the heat kernel are invariant, and the result of Terry Lyons [2]
simplified by Benjamini [3] that the Liouville property is not.

We then defined the (total variation) mixing time of a finite, connected graph
G,

tmix := max
x

min{t : ||pt(x, ·)− π||TV < 1
4},

where pt(x, y) is the probability that a random walker starting at vertex x arrives
at time t to vertex y, and where π is the stationary distribution. We mentioned
results of Ding and Peres [4] and Hermon and Peres [5] which show that the mixing
time is not invariant to quasi isometries, and the give the optimal amount by which
it may vary.

Finally, we discussed a relatively new result of Hermon and the speaker [6]. The
result is a construction of two sequence of finite Cayley graphs Gn and Hn which
are uniformly quasi-isometric, namely for some K (in fact for K = 3) the graphs
Gn and Hn are K-quasi isometric. But, on the other hand, the mixing times differ
as follows,

tmix(Gn) ≥ log log log |Gn|tmix(Hn).

We concluded with two open problems. Is it possible to give such an example
which, in addition, satisfies that the graphs Gn and Hn have uniformly bounded
degrees? And can the rate log log logn be improved?
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The Arboreal Gas

Tyler Helmuth

(joint work with Roland Bauerschmidt, Nick Crawford, Andrew Swan)

The arboreal gas, defined below, is a discrete probability model of random forests
with a variety of motivations. These include being a model for gelation transitions
of branched polymers [9]; being the q ↓ 0 limit of the q-random cluster model [8];
and falling naturally into a class of models that act as toy models for the Anderson
(metal-insulator) transition [3].
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In this extended abstract we put these motivations aside in favour of contrasting
the behaviour of the arboreal gas with that of the much better understood model
of Bernoulli bond percolation.

We begin with bond percolation, which is a probability measure Qp on subsets
A of edges of a graph G = (V,E). Fixing p ∈ [0, 1], each A ⊂ E is assigned
probability p|A|(1− p)|E\A|. Much of the fundamental behaviour of the model on
Zd can be summarized in a single equation: there is a pc = pc(d) such that for
p 6= pc,

(1) Qp[0 ↔ x] ≈ (θd(p))
2 + exp (−cd,p‖x‖) as ‖x‖ → ∞,

where cd,p > 0 and θd(p) ≡ Qp[0 ↔ ∞] is strictly positive if p > pc and zero if
p < pc. The event 0 ↔ x means that vertices 0 and x are connected in the random
subgraph (V,A), and 0 ↔ ∞ indicates that 0 is contained in an infinite connected
component. It is well-known that 0 < pc(d) < 1 for d ≥ 2, while pc(1) = 1. The
informal use of ≈ in (1) hides some minor technicalities that are inessential here;
for a precise formulation see [6].

The interpretation of (1) is that if p < pc, then distant vertices are in separate
components with high probability. Above pc distant vertices are in the same com-
ponent with essentially probability (θd(p))

2: they independently have a chance of
being in the unique giant component. The exponentially small correction indi-
cates that components other than this giant are small, so it is unlikely two distant
vertices both belong to such a component. The behaviour of the model precisely
at the critical point pc is more subtle and we will not discuss this further.

We now turn to the arboreal gas. For β > 0 the arboreal gas is the probability
measure

(2) Pβ[·] = Qp[· | (V,A) a forest], p =
β

1 + β
,

where we recall that a forest is a graph that contains no cycles. In plain words,
Pβ assigns a probability proportional to βk to a forest that contains k edges.
The conditioning in the definition (2) does not make sense on infinite graphs,
but it is well-defined on finite graphs. Henceforth we will restrict to this finite
setting and aim for estimates that are uniform in the size of the graph. From the
definition (2) and the FKG inequality for Qp, one can deduce that the arboreal
gas is stochastically dominated by bond percolation. This implies that for small
β the arboreal gas is in a subcritical phase where all trees (connected components
of the random forest) have vanishing density. Perhaps surprisingly, this is always
the case in two dimensions in the following sense:

Theorem 1 ([2]). For all β > 0 there is a cβ > 0 such that for all Λ ⊂ Z2,

(3) Pβ[0 ↔ x] ≤ ‖x‖−cβ .

In particular, the density of the tree containing 0 is zero.

On the other hand, the arboreal gas does have a phase transition in d ≥ 3. For
L ∈ N let Λd

N be the d-dimensional torus (Z/LNZ)d of side-length LN . We leave
L implicit in the notation.
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Theorem 2 ([1]). Consider Λd
N with d ≥ 3 and L ≥ L0(d). If β is sufficiently

large then there are constants κ > 0, θd(β) = 1−O(1/β) and cβ of order one such
that

(4) Pβ [0 ↔ x] = (θd(β))
2 − cβ

β‖x‖d−2
+O(

1

β‖x‖d−2+κ
) +O(

1

βLκN
).

The polynomial correction in (4) should be contrasted with the exponentially
small correction in (1). Informally, this correction suggests that the arboreal gas is
critical in the complement of the giant component(s). Rigorous statements in this
direction on Zd would be very interesting. Rather precise statements to this effect
are known in the geometrically simpler settings of the complete graph [10, 11] and
the wired regular tree [7, 12].

The proofs of Theorems 1 and 2 both rely on the fact that connection probabil-
ities for the arboreal gas can be expressed in terms of correlation functions of the
so-called H0|2 spin system [5, 2]. A key point is that the H0|2 spin system has a
continuous (hyperbolic) symmetry; from the point of view Theorems 1 and 2 are
natural. In particular, the proof of Theorem 1 is by a Mermin–Wagner type argu-
ment [2]. Non-rigorous renormalization group heuristics suggest that Theorem 1 is
far from sharp, and that the truth is that the arboreal gas connection probabilities
always decay exponentially in two dimensions [5]. The proof of Theorem 2 is via
a rigorous renormalization group argument, using in part techniques developed by
Brydges and Slade [1, 4].
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Existence of solution and localization for the stochastic heat equation

with multiplicative Lévy white noise

Hubert Lacoin

(joint work with Quentin Berger and Carsten Chong)

We consider the following stochastic partial differential equation in Rd

∂tu = ∆u+ ξ · u
where the unknown u is a function of space and time. The operator ∆ denotes the
usual Laplacian in Rd and ξ is a space-time Lévy white noise. This equation has
been extensively studied in the case where ξ is a Gaussian White noise. In that
case, it is known that the equation is well posed only when the space dimension d
is equal to one [1].

In our presentation, we consider the case where ξ is a Lévy white noise with
no diffusive part and only positive jumps. We identify necessary and sufficient
conditions on the Lévy measure λ associated with ξ for having existence and
uniqueness of solutions to the equation. In dimension one and two the necessary
condition and the sufficient one are the same while for d ≥ 3 they differ only by a
third order factor [2].

We further discuss the connection between the SHE and continuum directed
polymer models, more precisely, how the solution of the SHE with α-stable noise
can be obtained as the limit of a directed polymer with heavy tail [3, 4].
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log-Sobolev inequalities and renormalisation

Benoit Dagallier

(joint work with Roland Bauerschmidt)

The aim of this communication is to report on work started by Roland Bauer-
schmidt and Thierry Bodineau a few years ago, that I joined afterwards. In-
formally speaking, the main objective of this work is to quantify how fast the
Langevin dynamics associated with a statistical field theory model converges to
its invariant measure, in the continuum and/or large system-size limit. The key
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aspect is that we are interested in models for which a certain renormalisation pro-
cedure is required to make sense of these limits. Quantification of the speed of
convergence is done by establishing certain functional inequalities.

To make this informal description more precise, let me start with some no-
tations. A statistical mechanics or field theory model is a probability measure
µΛ
A,V0

= µA,V0 defined on RΛ, with Λ a finite lattice, say Λ = LTd ∩ Zd, d ≥ 1,

where T = [0, 1) is the unit torus, and the side-length L is thought of as large.
The measure reads:

(1) µA,V0(dϕ) ∝ exp
[
− 1

2

(
ϕ,Aϕ

)
− V0(ϕ)

]
.

Above, A ∈ RΛ×Λ is a positive semi-definite matrix, (ϕ,Aϕ) =
∑

x,y ϕxAx,yϕy for

ϕ ∈ RΛ and V0 : RΛ → R is a single site potential, of the form:

(2) V0(ϕ) =
∑

x∈Λ

V (ϕx), V : R → R, ϕ ∈ RΛ.

A typical example for A and V , corresponding to the lattice ϕ4 theory, would be
A = −∆, with ∆ the lattice Laplacian given by:

(3) (∆ϕ)x =
∑

y∈Λ
|y−x|=1

(
ϕy − ϕx

)
.

The ϕ4 potential reads:

(4) V (z) = V (z) =
λ

4
z4 +

µ

2
z2, z ∈ R.

The Langevin dynamics associated with µA,V0 is the following stochastic partial
differential equation (SPDE):

(5) dϕt = −
(
Aϕt +∇V0(ϕt)

)
dt+

√
2dWt,

whereW is space-time white noise on R+×Λ. This SPDE admits µA,V0 as its only
invariant reversible measure. The goal is then to understand how fast convergence
takes place, and in particular how this speed depends on the size of the state
space, parametrised by L. One way to quantify this speed of convergence is via
a log-Sobolev inequality: the measure µA,V0 satisfies LSI(γ) if, for any sufficiently
nice test function F :

(LSI(γ)) EntµA,V0
[F 2] ≤ 2

γ
EµA,V0

[
|∇F |2

]
,

where EntµA,V0
[F 2] = EµA,V0

[F 2 logF 2] − EµA,V0
[F 2] logEµA,V0

[F 2]. One interest

of proving (LSI(γ)) is that it implies an exponential decay of the entropy of the
law ftdµA,V0 of the dynamics at time t ≥ 0:

(6) EntµA,V0
(ft) ≤ e−γtEntµA,V0

(f0).

In this sense, understanding how the speed of convergence of the Langevin dy-
namics depends on L amounts to asking the same thing about the parameter γ.
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Traditional methods to bound γ rely on convexity considerations, following the
seminal idea of Bakry and Emery [2]: if

(7) Hess
(1
2
(ϕ,Aϕ) + V0(ϕ)

)
≥ c id, c > 0,

then LSI(γ) holds with γ = c. Although very general and powerful, the bound (7)
cannot be applied in many models of interest, such as the lattice ϕ4 model (3)–(4).
Indeed, it is expected that, for each λ > 0, there is a critical value µc(λ) < 0 of
the mass µ such that, for µ > µc(λ), convergence of the dynamics to µA,V0 is fast,
that is infL γ(L) > 0. On the other hand, for µ < µc(λ), relaxation is expected to
be slow. Sufficiently far below the critical point, a Peierls-type argument should

give γ(L) ≤ e−c(λ,µ)Ld−1

. However, the convexity-based Bakry-Emery criterion
fails for any µ ≤ 0, since in that case:

(8) Hess
(1
2
(ϕ, (−∆)ϕ) +

∑

x

[λ
4
ϕ4
x +

µ

2
ϕ2
x

])
≥ µ id.

One can understand this failure in two ways. First, the Bakry-Emery criterion
requires convexity of the microscopic potential V0. When L is large, one expects
macroscopic details to not be crucial. A better requirement would then be to
ask for the convexity of an effective potential, in which small scales have been
integrated out. Secondly, and in a related manner, the Bakry-Emery criterion only
involves the energy, while one generally thinks of phase transitions as determined
by a competition between entropy and energy. The entropy should help, which is
not visible here.

To remedy this situation, Bauerschmidt and Bodineau [3] combined the convex-
ity criterion (7) with a renormalisation group procedure known as the Polchinski
equation. Informally, the idea is to progressively integrate out small scales and
obtain an effective measure at each scale that has nicer convexity property. Scales
are defined through the choice of a covariance decomposition for (Ct)t∈[0,∞] for A:

(9) 0 = C0 ≤ Cs ≤ Ct ≤ C∞ = A−1, 0 ≤ s ≤ t.

One can then interpolate between the full measure µA,V = ν0 and a trivial measure
ν∞ = δ0 by defining, for each scale t ≥ 0, the renormalised measure at scale t ≥ 0:

(10) νt(dϕ) ∝ exp
[
− 1

2

(
ϕ, (C∞ − Ct)

−1ϕ
)
− Vt(ϕ)

]
dϕ,

where the renormalised potential Vt is the central object:

(11) exp
[
− Vt(ϕ)

]
= ECt

[
exp

[
− V0(ϕ+ ζ)

]]
, ϕ ∈ RΛ,

with ECt
the Gaussian measure with covariance Ct. This potential follows the

so-called Polchinski equation:

(12) ∂tVt =
1

2

∑

x,y

Ċt(x, y)∂
2
ϕxϕy

Vt −
1

2

(
∇Vt, Ċt∇Vt

)
.

Above, Ċt stands for the component-wise derivative of Ct. Combining the Bakry-
Emery argument with the decomposition (νt), Bauerschmidt and Bodineau obtain
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a multiscale log-Sobolev criterion ([3, Theorem 2.5]): if for each t > 0 there is a

number ℓ̇t ∈ R with:

(13) ∀ϕ ∈ RΛ, ĊtHessVt(ϕ)Ċt −
C̈t

2
≥ ℓ̇tĊt,

then LSI(γ) holds with:

(14)
1

γ
:= |Ċ0|

∫ ∞

0

exp
[
− 2

∫ t

0

ℓ̇s ds
]
,

with Ċ0 the largest eigenvalue of Ċ0.
One can see from the above that the main difficulty when trying to use this

multiscale criterion is to estimate the Hessian of the renormalised potential Vt,
which also reads:

(15) HessVt(ϕ) = C−1
t

(
Ct − Cov(ϕ)

)
C−1

t ,

where Cov(ϕ) is the covariance matrix for the measure µ
C−1

t ϕ
Ct,V0

, defined as in (1)

but with an external field C−1
t ϕ. At present, we have no general method to do so.

The miracle in the ϕ4 case comes from a correlation inequality recently obtained
by Ding, Song and Sun [1], which allows us to take ℓ̇t = 1

t − χt

t2 in (13), with

χt =
∑

x(Cov(0))0,x the susceptibility at 0 field and parameters λ, µ+ 1
t . Injecting

this in the bound (14) of the log-Sobolev constant yields infL γ(L) > 0 under the
optimal condition that supL χ∞ <∞ through the following two observations (with
χ∞ the susceptibility of the original ϕ4 model). First, for t small, χt ≤ t/(tµ+ 1)
(this is Brascamp-Lieb, as for t small the measure has mass µ+ 1

t > 0 and is thus
strictly convex). Secondly, the second Griffiths inequality implies that χt ≤ χ∞
for each t > 0.
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Superdiffusivity and Weak Coupling: the Anisotropic KPZ equation

Giuseppe Cannizzaro

(joint work with D. Erhard, F. Toninelli)

We present a novel approach to prove superdiffusivivity and weak coupling limits
for critical systems at stationarity. In order to streamline the type of results which
can be obtained with our methods, we focus on a specific example, namely an
anisotropic version of the two-dimensional KPZ equation.
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The KPZ equation is a stochastic PDE formally given by

(1) ∂th = 1
2∆h+ λ〈∇h,Q∇h〉+ ξ ,

where h = h(t, x) for t ≥ 0, x ∈ Td (the d-dimensional unit torus), ξ is a space-
time Gaussian white noise on R×Td, Q is a d×d symmetric matrix encoding how
the growth mechanism depends on the slope and λ ≥ 0 is the so-called coupling
constant, tuning the strength of such dependence.

In the last years significant progress has been made in the study of the large-
scale properties of h, at least in the sub- and super-critical regimes, corresponding
to dimensions d = 1 and d ≥ 3 respectively. In the first, it was shown that the
solution h is superdiffusive, meaning that its fluctuations evolve non-trivially on
time scales shorter than those of the stochastic heat equation (SHE), given by (1)
with λ = 0. This can be quantified by means of the bulk diffusion coefficient
Dbulk, which measures how the correlations of a process spread in space as a
function of time and formally is such that the correlation length behaves like
ℓ(t) ∼

√
t×Dbulk(t)

1. For the 1-dimensional KPZ equation, Dbulk(t) grows like

t1/3 for t large (see [1]), as opposed to SHE whose bulk diffusion coefficient is
constant. Further, its fluctuations have been fully characterised in [16, 17]. In the
supercritical regime instead, a recent series of works [15, 2, 14, 8] showed that, for
Q the identity matrix and λ small enough, h is diffusive and its scaling limit is the
solution of a SHE with renormalised coefficients.

Yet, the critical case d = 2 remains poorly understood. Formally, (1) is scale
invariant under diffusive scaling and therefore it is expected that finer features of
the equation, and in particular the nature of the slope dependence determined by
the matrix Q, might qualitatively influence its properties. Wolf conjectured in [18]
that its large scale behaviour will depend on the sign of detQ - in the Isotropic
case, corresponding to detQ > 0, Dbulk(t) ∼ tβ for some universal β > 0, while in
the Anisotropic case, corresponding to detQ ≤ 0, Dbulk(t) ∼ tβ for β = 0.

The present paper focuses on the latter, and more specifically on the case of
Q = QAKPZ = Diag(1,−1). We will refer to (1) with QAKPZ as the Anisotropic
KPZ (AKPZ) equation, which reads

(2) ∂th = 1
2∆h+ λ

(
(∂1h)

2 − (∂2h)
2
)
+ ξ .

Let us stress that (2) is critical as d = 2 is the dimension at which Hairer’s
theory of Regularity Structures [12] and the other pathwise approaches break down
for (1) and a local solution theory is not even expected to hold. One is therefore
naturally led to first regularise the equation and consequently (try to) determine
the large-scale properties of its solution as the regularisation is removed. Contrary
to the folklore belief, in [5] we showed that (2) is not diffusive but logarithmically
superdiffusive. Translating the result therein to the torus T2, we proved that for
every λ > 0, the bulk diffusion coefficient DN

bulk of the solution h
N of (2) regularised

1see [5, eq. (1.6) and Appendix A] respectively, for the definition of Dbulk and for a heuristic
connecting the latter to ℓ(t)
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at level N ∈ N satisfies

(3) DN
bulk(t) ≈

√
logN , for N large and t fixed,

where ≈ hides sub-dominant corrections, of the order of powers of log logN and
possibly depending on λ. We emphasise that the limit N → ∞ corresponds to
removing the regularisation.

As the linear part of (2) is clearly diffusive, the origin of the observed loga-
rithmically superdiffusive behaviour must lie in the slope dependence. In order to
find a regime in which the nonlinearity has a non-trivial but not divergent effect,
it is therefore natural to tune the coupling constant λ = λN , which modulates
the strength of the nonlinearity, together with the regularisation parameter N . In
other words, the present paper is devoted to the study the AKPZ equation (2)

under the weak coupling scaling, i.e. for λ̂ > 0 consider

(4) ∂th
N = 1

2∆h
N + λNNN [hN ] + ξ , λN

def
=

λ̂√
logN

where NN is a regularisation of the nonlinearity in (2) at level N .
In [6], it was shown the following theorem in which the N → ∞ limit of (4) has

been derived and the choice of λN proved to be meaningful.

Theorem 1 (Theorems 1.3 and 1.4 [6]). For any λ̂ > 0, the solution hN of (4)
under the weak coupling scaling converges in distribution in C([0, T ],D′(T2)) to h
which solves

(5) ∂th = νeff
2 ∆h+

√
νeffξ , for νeff

def
=

√

2
λ̂2

π
+ 1 ,

where the effective diffusivity νeff is the limit for N → ∞ of the bulk diffusion
coefficient DN

bulk of hN .

The previous theorem shows on the one hand that the solution hN of (4) is

asymptotically diffusive for any value of λ̂ as the limit of DN
bulk is constant. On

the other, since the effective bulk diffusion coefficient νeff > 1, it also proves that
the nonlinearity, even though tuned down by a logarithmic factor, does not vanish
but actually produces a new noise (and a new Laplacian) in the limit where the
regularisation is removed.

The scaling regime in (4) and the phenomenon observed above have already
appeared for the Isotropic case in [3, 7, 11]. In all of these works, the matrix Q
is chosen to be the identity matrix so that the nonlinearity in (1) becomes |∇h|2.
There is a major difference between the AKPZ and IKPZ (in any dimension).
Indeed, the latter can be linearised via a nonlinear transformation, the so-called
Cole-Hopf transform, which turns IKPZ into the linear stochastic heat equation
with multiplicative noise. Once in possession of a linear SPDE, it is then possible
to obtain an explicit representation of its solution thanks to the Feynman-Kac for-
mula and therefore reduce the analysis of IKPZ to a problem of directed polymers
in random environment. For the AKPZ equation there exists neither a transfor-
mation that linearises the equation nor (up to the authors’ knowledge) an explicit
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representation of its solution, so that we need to resort to a completely alternative
set of tools. What we can and will exploit is that, as shown in [4], (4) admits
an invariant measure which is a Gaussian Free Field χ. Our approach, partly in-
spired by [10], is based on a thorough analysis of the action of the generator LN of
the solution of (4) on the space L2(χ) of square integrable functions with respect
to χ. The idea is that the distribution of the solution of (5) is fully determined
by a number of observables which is a (very small!) subset S of L2(χ). Loosely
speaking, our goal is therefore to identify a (N -dependent) subset SN of L2(χ)
big enough to be able to characterise the fluctuations of hN and such that for
each b ∈ S there exists bN ∈ SN for which both b is well-approximated by bN

and the action of the generator of (5) on b is well-approximated by LNbN . As we
will see, while S admits an easy description, the choice of SN is rather subtle and
SN ∩ S = ∅! In other words, the structure of the bN ’s needs to be sufficiently rich
to be able to capture the roughness of the nonlinearity which is encoded in LN .

References
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√

log t-superdiffusivity for a Brownian particle in the curl

of the 2d GFF

Levi Haunschmid-Sibitz

(joint work with Giuseppe Cannizzaro, Fabio Toninelli)

In the recent article [2], we showed that the mean square displacement of a Brow-
nian particle diffusing in a field given by the curl of the two-dimensional Gaussian
Free Field is of order t

√
log t , which was conjectured by B. Toth and B. Valko

in [3]. There are a number of two-dimensional models for which this behaviour
has been conjectured based on heuristics from [1], but, to the best of the authors’
knowledge, this is the first model for which it has been rigorously established. The
talk introduces the model and gives a sketch of the method, which is inspired by
the method used by H.-T. Yau [4] to proof (log t)

2
3 superdiffusivity for 2d ASEP.
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Brownian particle in the curl of 2-d stochastic heat equations

Guilherme L. Feltes

(joint work with Hendrik Weber)

We study the long time behaviour of a Brownian particle evolving in a dynamic
random environment. Recently, Toninelli et al. [2] proved sharp

√
log-super dif-

fusive bounds for a Brownian particle in the curl of the 2-d Gaussian Free Field
(GFF). Adapting their method, we show that if the environment evolves according
to the stochastic heat equation, then the particle stays super diffusive, whereas
if a fractional stochastic heat equation is considered, then the particle becomes
diffusive. Our results agree with the Alder-Wainwright scaling argument (see [1])
used originally in [4] to predict the log-corrections to diffusivity.

Precisely, we consider (Xt)t≥0 the solution to the Itô SDE
{

dXt = ωt(Xt)dt+
√
2dBt, t ≥ 0,

X0 = 0 ,



Large Scale Stochastic Dynamics 2451

where (Bt)t≥0 is a standard two-dimensional Brownian motion and (ωt(x))t≥0,x∈R2

is a time-dependent random field which is independent from (Bt)t≥0. the coordi-
nates of ω = (ω1, ω2) satisfy

{
dωk

t = −(−∆)sωk
t dt+

√
2∂⊥k (−∆)

s−1
2 dWt , t ≥ 0 , k = 1, 2 ,

ωk
0 = ∂⊥k η , k = 1, 2 ,

where s ∈ [0, 1] and ∇⊥ = (∂⊥1 , ∂
⊥
2 ) := (∂x2 ,−∂x1). Here, W is a mollified (in

space) space-time white noise and ∇⊥η is distributed according to the law of the
curl of a mollified GFF. The environmental process (ωt)t≥0 is Markovian, Gaussian
and leaves the law of ∇⊥η invariant, for every s ∈ [0, 1]. The parameter s ∈ [0, 1]
controls the speed of the environment on different scales: smaller values of s
correspond to faster movement of the larger scales. The case s = 1 corresponds
to the standard stochastic heat equation (SHE), whereas s = 0 is the infinite
dimensional Ornstein Uhlenbeck process (O-U).

Our main theorem [3] shows that if s = 1 (SHE), then, (up to log log correc-
tions),

(1) t(log t)
1
8 . E[|Xt|2] . t(log t)

7
8 .

And if s ∈ [0, 1) (fractional SHE) + (O-U), then

E[|Xt|2] ≈ t .

Both results obtained in a Tauberian sense, i.e., in terms of the Laplace transform
of the mean square displacement D(λ) :=

∫∞
0 e−λtE[|X(t)|2]dt, for λ > 0.

The scaling argument of [1] for 2-d for isotropic drift fields says that if we assume

E[ω0(0)ωt(x)] ≈ β(t)−2ψ(β(t)−1x) and E[|Xt|2] ≈ t2ν(log t)2γ ,

then β(t)
tν(log t)γ ≤ C , t ≥ 0 ⇒ ν = 1

2 and γ = 1
4 . In other words, if the environment

moves slower than the particle, one should expect a
√
log t correction to diffusivity.

Note that for s ∈ (0, 1], β(t) = t
1
2s , and the condition t

1
2s

t
1
2 (log t)

1
4
≤ C is only satisfied

for s = 1, so our result agrees with this argument.
The proof of the sharp estimates obtained in [2] is based on Yau’s method [5] of

recursive estimates of iterative truncations of a resolvent equation. The suboptimal
bounds in (1) are an effect that in the current proof we have, in contrast to [2], the
dynamics of the environment (for s = 1) introduces an extra factor 2 (and 1/2) in
the recursive estimates that propagates to every level, since the lower and upper
bounds interact at every level. The exponent 1/8 in (1) is the sharp 1/2 corrected
by the square of the extra factor 1/2. Obtaining the sharp exponent 1/2 for the
case s = 1 is still work in progress.
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2D Lorentz gas for magnetotransport

Chiara Saffirio

(joint work with Alessia Nota, Sergio Simonella)

We consider a point particle moving in a random distribution of identical hard
disks of radius ε > 0 under the action of a uniform, constant magnetic field
b = (0, 0, B) orthogonal to the plane R2. The point particle with position x ∈ R2

and velocity v ∈ R2 moves according to Newton’s law under the action of the
Lorentz force F (v) = v × b. Without loss of generality we can therefore consider
v ∈ S1. When the test particle encounters an obstacle, a collision takes place
modifying its velocity according to the scattering rule

v′ = v − 2(v · n)n
where n ∈ S1 is the scattering vector.

We consider the case of Poisson distributed scatterers in the low-density regime,
i.e. given ε > 0 small, the intensity is chosen to be proportional to ε−1.

For t > 0, let

Πt =
⋃

m≥0

Πt,m

the path space of the particle in [0, t]. For m = 0, Πt,0 denotes the circling path
space (this happens when the point particle does not encounter any obstacle on its
cyclotron orbit). For m ≥ 1, Πt,m is the m-path space defined by the collection of
ordered impact times and impact vectors with new obstacles encountered by the
point particle.

On Πt we define a path measure P
(x,v)
ε,t induced by the Poisson distribution

under the condition that the test particle does not start from an obstacle at the
initial configuration (x, v) ∈ R2 × S1.

Let {ζε(s)}s∈[0,t] be the random trajectory starting from (x, v) and let refer to
it as the Lorentz process. Let {ζ(s)}s∈[0,t] be the generalized Boltzmann process
starting from (x, v) with forward equation

(∂t + v · ∇x − (v × b) · ∇v)f(t, x, v)

=

[t/T ]∑

k=0

e−2kT

∫

S1

(v · n)+[σn − 1]f(t− kT, S(k)
n (x, v))

(1)

where T is the Larmor time, [ · ] denotes the integer part, [t/T ] is the number of
cyclotron periods T completed before time t > 0, ( · )+ denotes the positive part,
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n ∈ S1 is the scattering vector, σn is the operator implementing the change of

velocity in the scattering process and S
(k)
n acts as S

(k)
n (x, v) = (x,Rkθ(v)) with

Rkθ the kθ-rotation and θ the scattering angle.
In this setting Gallavotti [2] showed that if b = 0 the Lorentz process converges

towards the Boltzmann process with forward equation the linear Boltzmann equa-
tion as ε → 0+, that is equation (1) for k=0. Bobylev et al. observed that when
b 6= 0 the probability of circling orbits is non zero and they proposed equation (1)
as limiting kinetic equation describing a non-Markovian process.

We address the rigorous derivation of the generalized Boltzmann equation pro-
viding the convergence of the particle process to the non-Markovian process gov-
erned by equation (1). More precisely,

Theorem 1. For all t > 0, the Lorentz process {ζε(s)}s∈[0,t] converges as ε→ 0+

to the generalized Boltzmann process {ζ(s)}s∈[0,t] with forward equation (1), in the

sense of weak convergence of path measures on the Skorokhod space D([0, t],R2 ×
S1).

The proof is based on coupling the Lorentz process with the generalized Boltz-
mann process through a parametrization of the process in terms of scattering times
and scattering vectors, as introduced by Gallavotti in [2]. The new difficulty with
respect to Gallavotti’s work is that we have to deal with memory terms which
survive in the limit ε→ 0+. The coupling method needs therefore more additional
care to identify self-recolliding trajectories that survive in the limit. The key idea
is to exploit the fact that there is an underlying Markovian process given by the
sequence of path segments between two different obstacles. This is indeed the
rationale of the definition of the path space Πt.
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Cutoff for permuted Markov chains

Anna Ben-Hamou

(joint work with Yuval Peres)

Let Ω be a finite set of size n ≥ 1. When uniform sampling on Ω is not directly
feasible, it is often the case that there is a natural Markov kernel P on Ω, whose
transitions are easy to simulate, and which converges to the uniform distribution
on Ω. To quantify the speed of this convergence, a commonly used distance is the
worst-case total-variation distance:

D(t) = max
x∈Ω

max
A⊂Ω

{
P t(x,A) − |A|

n

}
,
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and the mixing time is then defined as

tmix(ε) = inf{t ≥ 0 , D(t) ≤ ε} ,
for ε ∈ (0, 1).

In many situations, the natural kernel P is very slow to mix, and it is tempting
to try and speed it up. Here we focused on a model which has been formalized by
Chatterjee and Diaconis [1] and which consists in inserting deterministic jumps in
the trajectory.

More precisely, let π : Ω → Ω a permutation on Ω, and let Π be the associated
permutation matrix with entries Πi,j = 1π(i)=j . The permuted kernel is then given
by Q = PΠ. Note that since P as uniform stationary distribution, so does Q.

For instance, consider the lazy random walk on the circle Zn, for n prime, with
uniform jumps on {−1, 0, 1}. The mixing time is of order n2, which is very slow.
Chung, Diaconis and Graham [2] considered the permuted version of this chain
with π(x) = 2x, and established an upper bound of order logn. Cutoff was then
established by Eberhard and Varjú [3]. Another example of permutation on the
circle which leads to such a speed-up is π(x) = x−1 (where x−1 is the inverse in
the fields Fn), see [13].

In a more general setting, can we find simple conditions on the permutation π
to guarantee a logarithmic mixing time?

In [1], it is shown that, under mild assumptions on the initial kernel P , if the
permutation π satisfies some expansion condition with respect to the kernel P ,
then the mixing time of the permuted kernel Q = PΠ is logarithmic in n, and that
this expansion condition is satisfied by almost all permutations (but interestingly,
it is not satisfied by the Chung–Diaconis–Graham mentioned above).

In this talk, we presented a refinement of this result obtained in [4]: when
the permutation π is chosen uniformly at random, then the mixing time can be
characterized even more precisely: with high probability, there is cutoff at time
logn
h

, where h is the entropic rate of P :

h =
1

n

∑

x,y∈Ω

P (x, y) log
1

P (x, y)
·

This result fits into the more general topic of cutoff for random instances of Markov
chains, see [5, 7, 6, 8, 9, 12, 11, 10].
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Global-in-time fluctuations of the empirical measure at low density

Sergio Simonella

(joint work with Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond)

In this note we report a recent result on the large scale limit problem of a deter-
ministic dynamics with random initial data. For such a problem the number of
situations is limited, in which mathematical results can be proved; especially if we
require our model to live in the physical - say, three-dimensional - space. We focus
here on a traditional case: the classical gas at low density.

To fix ideas, we shall consider an overidealized system. Hard spheres of radius
ε/2 are moving in T3, the unit 3-dimensional periodic box. All the particle vari-
ables are random variables, to be sampled at time zero according to a probability

measure Pε: the positions (xi)
N
i=1, the velocities (vi)

N
i=1, and the total number of

particlesN . They are therefore random variables at time t, uniquely determined by
the hard-sphere dynamics. The hard spheres move freely and interact at distance
ε > 0, by updating their velocities instantaneously according to the conservation
laws: (vi, vj) → (v′i, v

′
j) with v′i = vi − ω[ω · (vi − vj)], v

′
j = vj + ω[ω · (vi − vj)],

where ω = (xj − xi)/ε ∈ S2 is the scattering vector.
We can now choose a scaling ensuring that the mean free path between collisions

is of the same order of magnitude of the macroscopic length (say, the size of the
box). This scaling is known as Boltzmann-Grad limit (see [9]) and it amounts to

the prescription: ε→ 0, Eε[N ]
µε

∼ 1 where Eε [N ] is the average number of particles

and µε := ε−2. The milestone is the work by Lanford [11] proving the law of large
numbers for the empirical measure, under some reasonable assumption on the

initial data. In our setting, denoting by
(
xε0
i ,v

ε0
i

)N
i=1

−→ (xε
i (t),v

ε
i (t))

N
i=1 , t ∈ R

the hard-sphere flow with initial (random) configuration
(
xε0
i ,v

ε0
i

)
i
, we have that
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πε
t (ϕ) :=

1

µε

N∑

i=1

ϕ(xε
i (t),v

ε
i (t)) −→

∫

T3×R3

f(t)ϕ , t ∈ [0, T ], ϕ ∈ C0
b

as ε→ 0, where f solves the Boltzmann equation (∂t + v · ∇x) f = Q(f, f).
This, and subsequent results in the field, are restricted to short times t ≤ T ,

where T is about one fifth of the mean free scattering time [15]. Technically, this
limitation arises from the method (based on the traditional BBGKY hierarchy
of equations for correlation functions) which is a perturbation theory around free
transport. Although, for well prepared initial data, one expects to observe a fast
convergence to global equilibrium for both πε

t and f(t), the methods at disposal
suffer of, and are unable to exclude, the development in time of local singularities.

Our purpose is to tackle the problem of the short time limitation in a simpli-
fied context. We propose to study a different class of observables, for which the
existence (and explicit knowledge) of an invariant measure can be exploited more
directly. We investigate the fluctuations of an equilibrium state

ξεt (ϕ) :=
1

ε
(πε

t (ϕ)− Eε [π
ε
t (ϕ)]) , t ≥ 0

where the expectation is taken with respect to the grand canonical Gibbs measure
with hard sphere potential. This measure is defined by a collection of density distri-
butions {W ε,eq

N : Dε
N → R+ ; N ≥ 0} living on the accessible phase space Dε

N :={
(xi, vi)i ∈

(
T3 × R3

)N | ∀i 6= j , |xi − xj | > ε
}
, where W ε,eq

N := Z−1
ε µN

ε M⊗N

and M(v) := (2π)−3/2 exp
(
−v2/2

)
, with Zε the grand canonical partition func-

tion. Notice that limε→0 Eε [N ] /µε = 1 according to the Boltzmann-Grad scaling
condition. Moreover, as ε→ 0 one finds that πε

t (ϕ) −→
∫
Mϕ for all times t ∈ R:

the law of large numbers becomes then very simple providing an ideal gas with
velocity distribution M .

Before stating the result, let us compare the problem with situations studied
previously. There are two cases in which the time restriction has been lifted.
The first one is a small cloud of gas expanding in the whole space [10, 8], which
corresponds to a stringent assumption on the initial data ensuring that, after a
finite number of collisions, each particle is free to move to infinity. In this case, the
Boltzmann-Grad limit can be worked out globally in time, and the key ingredient
in the proof is the dispersivity of the free flow. The second case (more related
to ours) is the tracer particle in the equilibrium gas [1, 2]: one assumes that the
hard sphere gas is initially distributed according to the Gibbs equilibrium measure,
conditioned on particle 1 being somewhere with certain probability. Following the
evolution of particle 1 only, it is then possible to prove that its distribution is
driven by a linear Boltzmann equation for all times (actually as shown in [2], up
to diffusive times). In both cases mentioned above, the densities are bounded a
priori in strong, uniform (L∞) norms, and Lanford’s perturbative method can be
implemented (with some extra care) on time intervals of arbitrary length. The
study of the fluctuation field (ξεt )t∈R+ is more subtle: in spite of the proximity to
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the invariant measure, there is no simple a priori mechanism telling us that the
moment densities stay well bounded in a uniform norm, globally in time.

We state our result next. Following the general fluctuation theory, as reported
in [14], we introduce the linearized collision operator (around f =M(1 + g))

L (g) (x, v1) = −v1 · ∇xg +

∫

R3

∫

S2

[ω · (v1 − v2)]+M (v2) ∆g(x, v1, v2, ω) dω dv2

where ∆g(x, v1, v2, ω) := g(x, v′1) + g(x, v′2) − g(x, v1)− g(x, v2). Furthermore we
define the Gaussian noise dηt, with mean zero and covariance

E

[ ∫
dt dz1 ϕ(z1)ηt(z1)

∫
ds dz2 ψ(z2)ηs(z2)

]

=
1

2

∫
dt dx dv1 dv2 dω [ω · (v1 − v2)]+ M(v1)M(v2) ∆ϕ ∆ψ .

As explained in [13], the (space-time) white noise is due to memory effects in the
collision process, such as recollisions. Moreover in the quoted references, a central
limit theorem is conjectured to hold. The conjecture is confirmed by the following

Theorem 1 ([6]). In the Boltzmann-Grad limit ε → 0, the fluctuation field
(ξεt )t∈R+ converges in law for all times to the Ornstein-Uhlenbeck process solving
the fluctuating Boltzmann equation: dξt = L (ξt) dt+ dηt .

In the context of a purely stochastic dynamics, fluctuation fields have been
studied in [12] where the same equation is obtained in an appropriate kinetic
limit.

Our proof is based on a weak convergence method focusing on the moments of
ξεt . We rely on L2 bounds on dynamical observables coding the perturbation of
the invariant measure (replacing the standard L∞ bounds on correlation functions
of Lanford’s approach) and on a suitable coupling of the deterministic and the
stochastic limiting dynamics.

A similar result for nonequilibrium states has been proved for short times in
[4], while (local-in-time) convergence of the equilibrium covariance goes back to
[1], recently extended to longer times in [5]. For hard disks in two dimensions, the
global-in-time convergence of the covariance has been also obtained in [3] with a
different proof, by using the uniform boundedness of the partition function (which
is a special feature of hard disks in the canonical ensemble).
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High moments of the 2D polymer partition function

Clément Cosco

(joint work with Ofer Zeitouni)

Let WN (β, x) = Ex

[
e
∑N

n=1 βω(n,Sn)−Nβ2/2
]
be the partition function of a two

dimensional directed polymer in a random environment, where ω(i, x), i ∈ N, x ∈
Z2 are i.i.d. standard normal and {Sn} is the path of a random walk. With

β = βN = β̂
√
π/ logN and β̂ ∈ (0, 1) (the subcritical window), logWN (βN , 0) has

been shown by Caravenna, Sun and Zygouras [1] to converge in distribution to a

Gaussian law of mean −λ2/2 and variance λ2, with λ2 = log(1/(1− β̂2).

In a follow-up work [2], the same authors have proven that for all β̂ < 1,

√
RN

(
logWN (βN , x

√
N)− E logWN (βN , x

√
N)

)
(d)−→

√
β̂2

1− β̂2
G(x),

where G(x) a log-correlated Gaussian field on R2. Log-correlated fields, and in
particular their extremes and large values, have played an important role in vari-
ous problems ranging from branching walks, random matrices, Liouville quantum,
turbulence and more. In the context of polymers, the above convergence opens
the door to the study of extremal values of the polymer partition function.

The first step to tackle this question is to study the moments E[WN (βN )q] in
the subcritical window, for q = O(

√
logN). Our result is the following.
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Theorem 1 ([3]). There exists β̂0 ≤ 1 so that if β̂ < β̂0 and

lim sup
N→∞

3β̂2

(
1− β̂2

) 1

logN

(
q

2

)
< 1,

then,

E[WN (βN )q] ≤ e(
q
2)λ

2(1+εN ),

where εN = ε(N, β̂) ց 0 as N → ∞.

Our starting point is the moment formula:

E[W q
N ] = E⊗q

[
e
β2
N

∑
1≤i<j≤q

∑N
n=1 1

Si
n=S

j
n

]
,

where S1, . . . , Sq are q independent copies of the simple random walk. The analysis
is based on ruling out triple (or more) intersections and estimating the contribution
of diagrams of successive 2-particle interactions.
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A soft proof of delocalization for the SOS model on the square lattice

Sébastien Ott

(joint work with P. Lammers)

The Solid-On-Solid (SOS) model is a random integer valued height function. In two
dimensions, the model is known to be delocalized at high temperatures (i.e.: the
variance of the height difference between far away points diverges). I discussed a
recent soft argument developed in [1] to prove this fact. The proof is a combination
of a planar percolation argument originating from S. Sheffield’s work [2] and a “loss
of memory” property of the SOS model conditioned to be larger than a constant
which follows from the Lipschitz nature of the interaction potential. The method
works at any slope (macroscopic tilt of the model), and for any planar graph
invariant under a Z2 action.

This type of delocalization proof was also used by P. Lammers (see [3]) on a
restricted class of planar graphs (with maximal degree 3) to a wide class of interac-
tion potentials (without the Lipschitz constraint), but limited to the flat interface
(zero slope). This latter result was then used in [4, 5] to prove the existence of a
massless phase for the dual models (plane rotor with suitable interaction on the
dual graph) at low temperature.
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Queues, stationarity, and stabilisation of last passage percolation

Márton Balázs

(joint work with Ofer Busani, Timo Seppäläinen)

Place i.i.d. Exponential weights on the vertices of the 2-dimensional integer lattice.
Take a point a on this lattice and another one y North-East from the first. The last
passage time between the two points is the maximal sum of these weights which
can be collected by a path that takes North and East steps, and the geodesic
between a and y is the a.s. unique path that realises this. The process of these
weights as the endpoint(s) varies is a difficult one.

It has been known that as a is sent to infinity along any of the South-West di-
rections, the geodesic up to a fixed distance from y eventually settles and doesn’t
move anymore [5]. We call this stabilisation, and it gives rise to Busemann func-
tions, differences of last passage times from a, to two fixed locations y and y′ in this
limit. When ||y−y′|| = 1, Busemann functions take particularly nice properties in
the Exponential model, which had also been known under the name stationarity
[2].

The speed of convergence with stabilisation was unknown. We show that as a
gets N far from y, the geodesics to points in a O

(
N2/3

)
-neighbourhood will jointly

stabilise. Corollaries are coalescence of point to point geodesics on the same scale,
furthermore an approximation result of the Airy2 function by Brownian motion in
total variation distance.

The proof is based on joint stationarity recently discovered in [3] for two dif-
ferent directions. In this setup the structure of joint nearest-neighbour Busemann
functions becomes the same as inter-departure and service times of customers in
M/M/1 queues. (Such ideas had been around since [4] for a similar situation in
exclusion.) In particular when the directions are close to each other the queue be-
comes heavy-traffic, and inter-departure times become identical to service times for
long periods of time. Translating back to the language of stationary last passage
this exactly means that stationary paths from these two directions to anywhere
in a small box coincide within that box with high probability. We can now in-
clude one or multiple finite points a (and b) between two such directions to include
coalescence of point-to-point paths as well and complete our results [1].
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