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In this snapshot, we explain two important mathe-
matical concepts (representation and degeneration)
in elementary terms. We will focus on the simplest
meaningful examples, and motivate both concepts by
study of symmetry.

1 Degenerat ion as a mathematical term

Mathematical terms sometimes sound as usual words but have a completely
different meaning. As Humpty Dumpty explains to Alice in “Through the
looking glass” (when she is puzzled by his words): “when I use a word, it means
just what I choose it to mean – neither more nor less”. Degeneration is one of
such puzzling mathematical terms. According to the Oxford English dictionary,
the word “degeneration” is synonymous with “decline” or “loss of function”,
which does not sound like a good thing at all. However, the mathematical
meaning of “degeneration” is more positive. We first explain this meaning using
art rather than mathematics.

Suppose we want to reconstruct a complicated real-life object, for example
we would like to draw a realistic cat. We may first try to build a simplified
version of the object focusing on its key features, and then gradually add details
to this simplified version to come as close as possible to its real-life version.

1 The first author is supported in part by the Simons Foundation.
2 The second author is supported in part by the Russian Academic Excellence Project
“5-100”.
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Speaking in artistic terms, we will first draw a sketch (just a few basic shapes),
and then add details (see Figure 1). Professional artists are able to make simple
sketches that capture the essence of an object (a famous example is the series
of lithographs “The Bull” (Le Taureau) by Pablo Picasso, another example is
the evolution of the Starbucks logo (Starbucks Siren)) and we may say that a
sketch is a “degeneration” because it does not have all the qualities of a real-life
object.

Figure 1: From sketch to final drawing.

In mathematics, degeneration is a way to produce a realistic yet simple sketch
out of a complicated mathematical object, just like the artistic process we have
described. We now illustrate the concept of degeneration with a mathematical
example.

1.1 Degenerat ion of hyperbolas

A hyperbola is the set of all points (x, y) in the plane that satisfies the equa-
tion xy = 1. We will degenerate this hyperbola to a pair of lines. The main
idea is to consider the hyperbola not on its own but as a member of the family
{Ht | t ∈ R}, where Ht is the set of all points (x, y) satisfying xy = t, which we
call again hyperbola, see Figure 2.

All hyperbolas for t 6= 0 look similar, and are, in fact, a scaled version of our
original hyperbola H1. Because of this, Ht for t 6= 0 is called a generic fiber
of the family. However, there is a black sheep or a special fiber in this family:
the element H0 described by the equation xy = 0, which is not a hyperbola
but the union of the two lines x = 0 and y = 0. As t approaches 0, the generic
hyperbola Ht approaches the special fiber H0. Note that if we zoom out far
enough from the origin, H1 is almost indistinguishable from H0. So the special
fiber indeed yields a good sketch of a generic fiber.

The whole picture can be visualized by a surface P in 3-dimensional space
given by the equation z = xy, see Figure 3. The intersections of this surface
with the planes z = t are exactly the hyperbolas Ht. So the family of hyperbolas
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Figure 2: The hyperbola H1 on the right and the family Ht on the left. The
thick line represents H1 as member of the family.

can be encoded by the surface P together with the function f : P → R defined
by f(x, y, z) = z. Then the preimage f−1(t) coincides with Ht. Mathematically
speaking, we have a family of algebraic curves Ht over the line R, and t 6= 0 is
a generic point of R (that is, the fiber over this point is generic). In contrast,
the point t = 0 belongs to the family but it is non-generic, since the fiber H0
over this point is a special one. Also in 3-dimensional space, if we zoom out far
enough from the origin, the hyperbola H1 will be very similar to H0. Hence we
can regard H0 as a degeneration of H1.

Figure 3: The surface P and the hyperbolas H0 and H1.
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2 Representat ions of groups

In contrast to degeneration, representation as a mathematical term is much
closer to the usual meaning of the word “representation”. According to the
Oxford English dictionary, representation is the description or portrayal of
something or someone in a particular way. In order to convert this into a
mathematical definition, we just have to say explicitly what we are going to
represent and by which means. Below we explain the concept of representation
of a group 3 by means of matrices.

An example of a group is the set of real numbers R considered together with
the operation of addition +. Generally speaking, a group is a pair (S, ?) where S
is a set and ? is an operation on S assigning an element a ? b ∈ S to every
pair of elements a, b ∈ S, and having properties which mimic the properties of
the addition on R. However, in contrast to +, the operation ? does not need
to be commutative, that is, we do not necessarily have a ? b = b ? a. In fact,
non-commutative operations occur naturally, for example when S is a set of
symmetries of a geometric object. Symmetries, groups, and group actions are
central notions in mathematics. Below we focus on a concrete example of a
symmetry group (for a more formal treatment of symmetry groups, we refer the
reader to Snapshot 3/2018 Computing with Symmetries by C. M. Roney-Dougal
and to Snapshot 5/2019 Algebra, matrices, and computers by A. S. Detinko,
D. L. Flannery, and A. Hulpke).

Let S be the set of transformations of the plane that preserve a given
equilateral triangle ∆. Such transformations are called symmetries of the
triangle. There are six different symmetries, see Figure 4, and every symmetry
can be realized by a sequence of rotations r and reflections f . Here r rotates ∆
by 120◦ counterclockwise around the center of the triangle ∆, and f flips ∆
about its vertical axis of symmetry. By e we denote the identity symmetry,
which takes every point of ∆ to itself. Traditionally, the notation rf means that
we first apply f and then r. 4 The symmetry rf , also denoted r ◦ f , is called
the composition of r and f . Composition ◦ is a non-commutative operation
on the set of symmetries S. In fact, with the help of Figure 4, the reader can
check that r ◦ f 6= f ◦ r. The set S = {e, r, rr, f, rf, rrf} together with the
operation ◦ of composition is called the symmetry group of ∆. The elements
of S are uniquely defined, they are the transformations in Figure 4, but there
are different ways to write them mathematically. For example, the identity

3 Apart from groups, there are other mathematical objects such as algebras (in particular,
Lie algebras) whose representations play an important role in mathematics and physics.
4 This notation looks misleading as we usually read from left to right. However, it agrees with
the standard notation F (G(x)) for the composition of functions. For instance, if F (x) = sin x,
and G(x) = x2, then F (G(x)) = sin(x2) and not sin2(x).
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Figure 4: Symmetries of an equilateral triangle.

transformation e can be obtained by applying the reflection f twice (e = ff),
and we may also write S = {ff, r, rr, f, rf, rrf}.

In general, the pair (S, ?) might be quite hard to work with, even when (S, ?)
is a symmetry group of some mathematical object. In essence, representation
theory is an attempt to linearize complicated symmetries and group actions,
meaning that we replace them by linear transformations (such as reflections
and rotations) of vector spaces. Since linear transformations are best captured
by matrices, they are one of the main tools of representation theory.

We now briefly explain what a representation by matrices is. Suppose we
assign a square matrix R(a) to every element a ∈ S so that the operation ?
corresponds to the matrix multiplication 5

R(a ? b) = R(a)R(b).

This identity should hold for all pairs of elements a, b ∈ S and, in particular,
the matrices R(a) and R(b) should have the same number of columns and
rows. If R is a representation of (S, ?) by n× n matrices with real entries, we
call it a real representation of dimension n. 6 Note that matrix multiplication
is a straightforward operation that uses only addition and multiplication of

5 The definition of matrices and matrix multiplication as well as their relation with linear
transformations can be found in Snapshot 5/2019 by A. S. Detinko, D. L. Flannery, and
A. Hulpke.
6 Similarly, we can define complex representations by considering matrices whose entries
are complex numbers.
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real numbers (there are also online calculators that perform this task). Hence,
working with a matrix representation R of (S, ?) might be easier than working
with (S, ?) itself. Below we consider examples of matrix representations.

2.1 Representat ions of R

For example, consider (S, ?) = (R,+). By the definition we gave above, a one-
dimensional real representation of (R,+) is a function R : R → R such that
R(a+ b) = R(a)R(b). For instance, the exponential function ex will do the trick
as ea+b = eaeb. Another example is the trivial representation R(a) = 1 for all a.

We now construct a two-dimensional representation by setting

R(a) =
(

1 a
0 1

)
.

This again satisfies the property R(a+ b) = R(a)R(b) as(
1 a+ b
0 1

)
=
(

1 a
0 1

)(
1 b
0 1

)
.

This representation is an example of a reducible but not completely reducible rep-
resentation (we discuss this notion in more detail in the next section). Informally
speaking, this representation shows us that classifying all representations 7 of R
is not an easy task. 8

2.2 Representat ions of the symmetr ic group S3

Let (S3, ◦) be the group of symmetries of an equilateral triangle considered
above (also called symmetric group on three elements). This group has two
one-dimensional representations: the trivial representation and the sign repre-
sentation. The latter assigns −1 to all elements that change the orientation
of the triangle (that is, change the abbreviation “MFO” on Figure 4 to its
mirror image), and assigns +1 to all elements that preserve orientation. There
is also a natural two-dimensional representation, where we encode rotations and
reflections by 2× 2 matrices. Let us introduce Cartesian coordinates (x, y) so
that the origin coincides with the center of the triangle, and the x- and y-axis

7 Here and later we consider only continuous representations, that is, entries of the matrix
R(a) are continuous functions of a.
8 An advanced result from linear algebra, the Jordan normal form theorem, is required as a
tool. In particular, the two-dimensional representation of R constructed above corresponds to
a 2× 2 matrix with the same non-zero entries on the diagonal, entry equal to 1 in the upper
corner, and entry equal to zero in the lower corner (this form of matrix is known as Jordan
block).
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are the (usual) horizontal and vertical line meeting perpendicularly at the origin.
In these coordinates, the rotation r sends the vectors (1, 0) and (0, 1) to the
vectors (− 1

2 ,
√

3
2 ) and (−

√
3

2 ,−
1
2 ), respectively, see Figure 5.

x

y

(1, 0)

(0, 1)r((1, 0))

r((0, 1))

x

y

(1, 0)

f((0, 1)) =(0, 1)

f((1, 0))

Figure 5: The rotation r on the left and the reflection f on the right.

Therefore, the matrix associated to r is R(r) =
(
− 1

2 −
√

3
2√

3
2 − 1

2

)
. The reflec-

tion f sends the vector (1, 0) to (−1, 0) and preserves the vector (0, 1), see again

Figure 5, so its associated matrix is R(f) =
(
−1 0
0 1

)
. Following this process,

the matrices associated to the remaining linear transformations e, rr, rf, rrf
are

R(e) =
(

1 0
0 1

)
, R(rr) =

(
− 1

2

√
3

2
−
√

3
2 − 1

2

)
,

R(rf) =
(

1
2

√
3

2√
3

2 − 1
2

)
, R(rrf) =

(
1
2 −

√
3

2
−
√

3
2 − 1

2

)
.

Since the matrix representation of a linear transformation depends on the choice
of coordinates, it is not unique. Indeed, if we changed the x- and y-axis, for
example choosing them to be the axis obtained by rotating the original horizontal
and vertical line by a certain angle, we would use vectors different from (1, 0)
and (0, 1) to write the matrix associated to the six linear transformation above,
and we would then obtain different matrices. However, the old and new matrices
will be related: one can be obtained from the other by conjugation by a third
matrix, which is the same for all pairs of old and new matrices. In this case,
we say that the two matrix representations are similar. In representation
theory, representations are usually classified up to such similarity. So far, we
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listed three representations of (S3, ◦). Since S3 is a group with finitely many
elements (called a finite group), it is not hard to classify all its representations. 9

Every representation of a finite group is completely reducible, that is, can be
decomposed into simplest parts, which are called irreducible representations. It
turns out that our list already contains all irreducible representations of (S3, ◦)
(this follows from a purely combinatorial description which can be found in
Section 5 of the Snapshot 5/2016 Symmetry and characters of finite groups by
E. Giannelli and J. Taylor).

3 How degenerat ions meet representat ions

So far, we used matrices (and linear transformations) as a tool to study symmetry.
We now go further and study symmetries hidden in matrices. An important
example of a matrix group is the general linear group GLn(R), that consists of
all invertible n×n matrices with real entries. The operation on this group is the
matrix multiplication (we will not use any symbol for this operation and just
write AB for the product of matrices A and B). A matrix A is called invertible
if there exists another matrix A−1, called the inverse of A, such that AA−1 = I,
where I is the identity matrix (namely, the matrix with diagonal elements equal
to 1 and all other elements equal to 0). For example, the matrix below is
invertible:

A =
(

0 1
1 2

)
; A−1 =

(
−2 1
1 0

)
; AA−1 =

(
1 0
0 1

)
= I.

Similarly, we can define GLn(F) by considering matrices with entries in a set of
numbers F, such as F = Z (integer numbers) or F = C (complex numbers).

It turns out that the representation theory of the group GLn(C) is simpler
than the one of GLn(R) (this sounds counterintuitive, but complex numbers
are often used to simplify things). While GLn(C) is an infinite group, its
representation theory can be managed by almost the same methods as in the
case of finite groups. Despite their non-real nature, complex matrices are
not far from physical reality. For instance, a model of the hydrogen atom in
quantum mechanics relies on representation theory of GL2(C) (as explained
in [11]). 10 More precisely, measurable physical characteristics of the atom can

9 Classifying representations of a finite group is always a manageable task, see the Snap-
shot 5/2016 by E. Giannelli and J. Taylor for more details on why and how it is possible.
10 Strictly speaking, it relies on representation theory of the groups SO3(R) (rotations in
3-dimensional space) and its close relative Spin(3). There is a beautiful relation between
SO3(R) and SU2(C) (special unitary 2× 2 matrices with complex entries), which identifies
Spin(3) with SU2(C) and reduces the representation theory of SO3(R) to that of SU2(C).
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be neatly encoded by the decomposition of a representation into its irreducible
components. 11

We now explain the representation theory of GLn(C) for n = 1 and n = 2.
We will consider complex representations, that is, we would like to represent ma-
trices from GLn(C) by matrices from GLm(C). Note that we get an irreducible
representation of dimension m = n for free, since GLn(C) is by definition repre-
sented by n× n matrices. This representation is called standard or tautological.
It is interesting that irreducible representations with m > n can be built from
the tautological representation by methods of tensor algebra. 12 In particular,
representation theory of GLn(C) is a good playground to master computational
skills with tensor, symmetric, and exterior products.

3.1 Representat ions of GL1(C)
The group GL1(C) is just the group C∗ of all non-zero complex numbers with the
operation of multiplication. Note that C∗ is commutative. Because of commuta-
tivity, all irreducible representations of C∗ have dimension one. 13 A complete
list of irreducible representations is infinite, but still quite simple: its elements
χ0, χ±1, χ±2, . . . are labelled by integer numbers and any representation χn,
for n ∈ Z, is given by the formula χn(z) = zn. For instance, χ−1(z) = z−1 = 1

z .
The map χn is a representation since χn(zw) = (zw)n = znwn = χn(z)χn(w)
for any pair of complex numbers z, w ∈ C∗.

Any other representation of C∗ is completely reducible (here the difference
between C and R comes into play). We will explain two important ideas behind
this fact, since these ideas also work in a more general setting. In fact, they
are also used in representation theory of reductive groups such as GLn(C) and
SOn(C) for larger n.

First, since z ∈ C is given by z = x + iy for x, y ∈ R, it is possible to
identify C with R2 by the correspondence z 7→ (x, y). With this correspondence,
S1 = {z ∈ C | |z| = 1} is identified with the circle of radius one and center at the
origin. Trigonometry tells us that any point p on this circle can be written as
(cos(θ), sin(θ)), where θ is the angle formed by the x-axis and the line through
the origin and p. If one considers any other point (0, 0) 6= (x, y) ∈ R2, it belongs
to a circle of radius r > 0 and center at the origin. Similarly as before, this
point can be written as (r cos(θ), r sin(θ)) = r(cos(θ), sin(θ)). Going back to C∗,

This relation is also used in computer 3D graphics to encode spatial rotations (SO3(R)) by
means of unit quaternions (SU2(C)).
11 For simplicity, we consider representations of finite dimension in this snapshot. However,
infinite-dimensional representations occur naturally in applications of representation theory
to physics.
12 The reader may find more details about this construction in [7, Lectures 11, 12, and 15].
13 This sentence is, in essence, Schur’s Lemma, which can be found in [3].
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we then have the correspondence z 7→ (x, y) 7→ r(cos(θ), sin(θ)). Therefore
we could think of C∗ as the product of {r ∈ R | r > 0} with S1. An elegant
argument (called Weyl’s unitarian trick [13]) implies that representations of C∗
can be fully reconstructed from representations of S1. In short, C∗ and S1 have
the same representation theory.

Second, note that the set S1 is compact (that is, it is a closed and bounded
subset of the plane) and so S1 is a compact group. 14 Representation theory of
compact groups mirrors the representation theory of finite groups. In particu-
lar, continuous representations of S1 can be classified by essentially the same
method as representations of finite commutative groups, up to some technical
modifications in the argument. This means that the representation theory of S1

is manageable.

3.2 Representat ions of GL2(C)

The group GL2(C) is not commutative as the following example shows:

A =
(

0 1
1 0

)
; B =

(
1 0
0 −1

)
; AB =

(
0 −1
1 0

)
6=
(

0 1
−1 0

)
= BA. (1)

It turns out that for every positive integer m, there exists an irreducible
representation Rm of GL2(C) of dimension m. The representations Rm are
constructed using the map

GL2(C)× C→ C, (A, z) 7→ az + b

cz + d
, (2)

identifying the matrix A with the linear fractional transformation z 7→ az+b
cz+d .

For example, the matrices A and B in (1) correspond to the transformations
z 7→ 1

z and z 7→ −z, respectively. However, the transformation z 7→ 1
z is not

well-defined when z = 0. To solve this issue, we extend the map in (2) to
GL2(C)× CP1, where CP1 15 is called Riemann sphere and can be thought of
as C with the additional point ∞. In this way, z 7→ 1

z interchanges 0 and ∞.
The Riemann sphere CP1 plays an important role in complex analysis and

algebraic geometry and it can also be used to reconstruct representations of
GL2(C) as follows. Let (x0 : x1) be homogeneous coordinates on CP1. Roughly
speaking, a point z ∈ CP1 has “homogeneous coordinate” (x0 : x1) if z = x0

x1
(unless x1 = 0). In this way, (x0 : x1) and (tx0 : tx1) represent the same

14 This is the simplest interesting compact group, in particular, periodic functions such as
sin x can be regarded as functions on S1.
15 The notation CP1 means projective line over C.
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point for all t 6= 0. When the map (2) is extended to GL2(C)× CP1, it can be
rewritten in homogeneous coordinates as

(x0 : x1) 7→
(
ax0 + bx1
cx0 + dx1

)
.

In other words, if we regard (x0 : x1) as coordinates of a vector, then the matrix
A ∈ GL2(C) acts on this vector by a linear transformation.

Consider all polynomials f(x0, x1) of degree m in the variables x0, x1 such
that all non-zero terms are of the form aix

i
0x

m−i
1 for i = 0, . . . ,m for some

coefficients ai. We call these polynomials homogeneous. The composition of the
above map with the polynomial f gives us the representations Rm+1, once we
make a linear change of variables by the inverse matrix of A (a linear change of
variables does not change the degree of a polynomial). We explain this for the
casem = 2. We consider the quadratic polynomial f(x0, x1) = px2

0+qx0x1+rx2
1

which, by the inverse of A, is mapped to the polynomial

f(ax0+bx1, cx0+dx1) = p(ax0+bx1)2+q(ax0+bx1)(cx0+dx1)+r(cx0+dx1)2 =

= (a2p+ acq + c2r)x2
0 + (2abp+ adq + bcq + 2cdr)x0x1 + (b2p+ bdq + d2r)x2

1.

This transformation yields the representation R3 given by 16

R3

((
a b
c d

)−1
)

=

 a2 ac c2

2ab ad+ bc 2cd
b2 bd d2

 .

3.3 Degenerat ions for representat ions

The general idea behind the construction of the representation Rm+1 in the
previous example is to consider a geometric object X (such as X = CP1)
together with a group G (such as G = GL2(C)) and a map G×X → X, and
to extract representation theory of G from algebraic and geometric structures
on X. We will refer to the map G×X → X as the action of G on X. Informally
speaking, X contains all the information about representations of G, and we
just have to look at X at the right angle to read them.

However, X can be a complicated object to study. In this situation, it is useful
to consider a degeneration X0 of X carrying an action of a related group G0.
This is already the case for GL3(C), for which the corresponding geometric

16 It is a good exercise in linear algebra to show that if det A = 1 then R3(A) preserves
the quadratic form q2 − 4pr (the discriminant of px2

0 + qx0x1 + rx2
1). By a linear change of

coordinates this form can be transformed into the canonical form (sum of squares). This can
be used to represent A ∈ SU2(C) by a matrix from SO3(R), that is, by a spatial rotation.
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objectX (called flag variety) is considerably more complicated than the Riemann
sphere CP1. We can then degenerate X to a simpler object X0 (called toric
variety), whose algebraic and geometric structures are easier to visualize. While
the action of GL3(C) does not extend to X0, there is a commutative group
G0 = (C∗)3 (an algebraic 3-torus) that acts on X0. 17 Looking at X0 rather
than at X we get more insight about the structure of the representations of G.
In particular, by degenerating X to X0 we may regard representations of G
as representations of G0. This is already meaningful in the case of GL2(C).
In this case, X = X0 (it is hard to degenerate the Riemann sphere since it
is already a very simple object) and G0 = C∗. The action of t ∈ C∗ on CP1

takes a point (x0 : x1) to (tx0 : x1). The resulting representation of C∗ on the
homogeneous polynomials of degree m decomposes into (m+ 1) representations
of dimension 1, namely, χ0, χ1,. . . , χm (see subsection 3.1 for the definition
of χi). Indeed, any homogeneous polynomial of degree m splits into a sum
of simple terms aix

i
0x

m−i
1 for i = 0, 1,. . . , m. The action of t ∈ C∗ takes

aix
i
0x

m−i
1 to ai(tx0)ixm−i

1 = ti(aix
i
0x

m−i
1 ), that is, multiplies it by ti. Speaking

in terms of linear algebra, we constructed a special basis in the vector space of
polynomials by decomposing this space into one-dimensional subspaces invariant
under the action of C∗. A similar technique can be applied to representations
of GLn(C). In the last decades, many interesting results in representation
theory and algebraic geometry were obtained using this technique. Some of
these results are mentioned in a recent survey by E. Feigin [6].

4 Fur ther reading

Textbook [1] contains excellent chapters on symmetry and representation theory.
Paper [5] surveys recent results on degeneration techniques in representation
theory, and paper [9] is a good first introduction to toric degenerations. Slides [4]
provide a short and entertaining introduction to the same topic.

17 For arbitrary n, the flag variety X has dimension d = n(n−1)
2 , and X0 is a toric variety

with an action of an algebraic d-torus (C∗)d.
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