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Introduction by the Organizers

Riemann surfaces are of fundamental importance in many areas of mathematics
and theoretical physics. The study of the moduli space of Riemann surfaces of a
fixed topological type is intimately related to the study of the Teichmüller space
of that surface, together with the action of the mapping class group. Classical
Teichmüller theory has many facets and involves the interplay of various methods
from geometry, analysis, dynamics, and algebraic geometry.

Through the Uniformization theorem, the Teichmüller space of a surface can be
realized as the space of marked hyperbolic structures. In this way, the Teichmüller
space can be identified with a subset of the character variety of the fundamental
group of the surface to the Lie group PSL(2,R), corresponding to conjugacy classes
of faithful representations with discrete image. It turns out that this subset of the
character variety is actually a full connected component.
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This is part of a more general phenomenon: given a closed surface of genus at
least two, there are also higher rank semisimple real Lie groups admitting con-
nected components of the character variety of the surface corresponding only to
faithful representations with discrete image. These connected components are of-
ten called higher rank Teichmüller spaces, and their study higher rank Teichmüller
theory.

Like classical Teichmüller theory, higher rank Teichmüller theory builds on a
combination of methods from various areas of mathematics: bounded cohomology,
Higgs bundles, positivity, cluster algebras, harmonic maps, incidence structures,
geodesic currents, real algebraic geometry, dynamics... The variety of techniques
involved adds to the richness of the topic.

In the Arbeitsgemeinschaft, organized by Fanny Kassel (CNRS & IHES), Beat-
rice Pozzetti (Heidelberg), Andrés Sambarino (CNRS & Jussieu) and Anna Wien-
hard (Heidelberg), almost 50 participants, ranging from beginning graduate stu-
dents to established professors, came together to learn and explore some aspects of
higher rank Teichmüller theory. Starting from a short review of key properties of
the classical Teichmüller space, the program focused on geometric aspects, but ex-
plored also relations to algebraic structures (e.g. cluster algebras), Higgs bundles,
and dynamical properties. Several talks were given by graduate students, who
had been assigned a postdoc or faculty member with more experience as a mentor.
The quality of the talks was excellent, and the atmosphere was very conducive to
learning. Many questions were asked during and after the talks, discussion contin-
ued during the afternoon break, and in the evenings we had some lively question
and answer sessions.
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Teichmüllerspace I: Definitions and parametrizations . . . . . . . . . . . . . . . . . 2691
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Abstracts

Teichmüllerspace I: Definitions and parametrizations

Raphael Appenzeller

(mentored by V. Disarlo)

Let S be a smooth oriented closed surface of genus g ≥ 2. The surface S admits
a Riemannian metric of constant curvature −1. The goal of Teichmüller-theory
is to describe the space of all such hyperbolic structures. We give two definitions
of Teichhmüller space Teich(S) and indicate why they are equivalent. General
references include [3, 7, 2, 6].

1. Definitions

Definition 1. The Teichmüller space of S is

Teich(S) = {(X,ϕ) marked hyperbolic structures of S} /homotopy.

A marked hyperbolic structure (X,ϕ) of S consists of a Riemannian surface X with
constant curvature −1 and a diffeomorphism ϕ : S → X , called the marking. Two
marked hyperbolic structures (X,ϕ), (X ′, ϕ′) are homotopic if there is an isometry
g : X → Y such that g ◦ ϕ is homotopic to ϕ′.

Definition 2. The Teichmüller space Teich(S) of S is one of the two connected
components consisting entirely of discrete and faithful representations of the char-
acter variety

Hom(π1(S),PSL2(R))/PSL2(R),

where the quotient is by the action of PSL2(R) by conjugation.

Since π1(S) is generated by 2g elements, representations π1(S) → PSL2(R)
are determined by 2g images in PSL2(R). Viewing Hom(π1(S),PSL2(R)) as a
subspace of the topological space PSL2(R)

2g induces the quotient topology on
Teich(S). After showing that the two definitions agree, we can pull back the
topology to the set in the first definiton. We first note that PSL2(R) can be
identified with the group of orientation preserving isometries Isom+(H2) of the
hyperbolic plane H2.

Proposition 3 ([1, 4]). Let Γ < PSL2(R) ∼= Isom+(H2) be a subgroup. The
following are equivalent:

(1) Γ is a torsion-free Fuchsian (i.e. discrete) group.
(2) Γ y H2 freely and properly discontinuously.
(3) H2/Γ is Hausdorff and H2 → H2/Γ is a covering map.

Theorem 4 ([1]). For every hyperbolic surface X, there is a homomorphism
Hol: π1(X)→ Isom+(H2), called the Holonomy representation, such that

(1) Hol is injective.
(2) Hol(π1(X)) is discrete.
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(3) H2/Hol(π1(X)) is isometric to X.
(4) Hol is unique up to conjugation in Isom(H2).

To go from the first definition to the second, we start with a marked hyperbolic
surface (X,ϕ) and use the holonomy representation Hol to obtain a discrete and
faithful representation ρ : π1(S) ∼= π1(X) → Isom+(H2) ∼= PSL2(R). Taking a
different marked hyperbolic structure related to (X,ϕ) by homotopy, results in
the same identification π1(S) ∼= π1(X). Since the holonomy representation Hol is
only unique up to conjugation in Isom(H2), representations that are conjugated
have to be identified. Finally since in the character variety, we quotient by the
target group PSL2(R) = Isom+(H2) instead of Isom(H2), we obtain two copies of
Teichmüller space, corresponding to two orientations on H2.

If we start with a discrete and faithful representation ρ on the other hand,
then we can define a hyperbolic surface X = H2/ρ(π1(S)). This way we get a
group isomorphism π1(S) ∼= π1(X), which we can improve to a homotopy equiv-
alence S → X , which induces the isomorphism π1(S) ∼= π1(X), since S and X
are Eilenberg-McLane classifying spaces. The homotopy equivalence can then be
upgraded to first a homeomorphism and then a diffeomorphism ϕ : S → X , which
we can use as a the marking for the marked hyperbolic surface (X,ϕ). We note
that starting with equivalent representations produces isometric hyperbolic sur-
faces X and the same marking up to homotopy. Thus the result is only defined
up to homotopy, as stated in Definition 1. Details can be found in [1, 2].

2. Parametrizations

In this section we follow [2]. We will discuss the Fenchel-Nielsen-coordinates for
Teichmüller space, from which it follows that Teich(S) is homeomorphic to R6g−6.
We first have to choose a framing, consisting of

(1) A collection of 3g− 3 oriented curves Γ = {γ1, . . . , γ3g−3}, decomposing S
into pairs of pants,

(2) A transverse multicurve µ that cuts each pair of pants into hexagons.

1 32

µ

γ γ γ

Figure 1. A framing (Γ, µ) of a genus 2 surface.
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Given a framing (Γ, µ), we define a map

Teich(S)→ R
3g−3
>0 × R3g−3

[(X,ϕ)] 7→ (ℓi, θi)i∈{1,...,3g−3}

by considering the unique geodesic representatives ci of ϕ(γi) ⊆ X . The parame-
ters ℓi are defined to be the lengths of ci as measured in the hyperbolic surface X .
For the parameters θi, we consider the two pairs of pants on the left and the right
of ci and two connected components µL, µR of ϕ(µ) ⊆ X \ {ci : i = 1, . . . , 3g − 3}
that intersect in a common point on ci. Comparing µL and µR with their geodesic
representatives (making a right angle with the boundary components of the pairs
of pants), results in twists tL and tR, whose difference we normalize as

θi =
tL − tR
ℓi

· 2π.

to obtain the twist parameters θi in the Fenchel-Nielsen map.

Theorem 5 (Fricke). The Fenchel-Nielsen map

Teich(S)→ R
3g−3
>0 × R3g−3 ∼= R6g−6

is a homeomorphism.

Further topics include Shear-coordinates [6], the mapping class group [2], the
(9g − 9)-theorem [2] and Thurston’s compactification of Teichmüller space [5].
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Teichmüller space II

Balthazar Fléchelles

(mentored by I. Calderon)

Given the definition of Teichmüller space as the space of marked hyperbolic struc-
tures on S considered up to homotopy, one may wonder how to add more structure.
It turns out the analytic point of view provides a lot of structure on TS , in partic-
ular, an analytic structure giving, and a Kähler structure.

We follow John Hubbard [1] in our exposition, if one needs further details.

1. TS as a complete metric space

The first step is to define the Teichmüller metric, which relies on the notion of
quasi-conformal maps between two Riemann surfaces X and Y .

Definition 1. An application f : X → Y is K-quasi-conformal (for K ≥ 1) if it

admits distributional derivatives ∂f
∂z and ∂f

∂z̄ satisfying

(1)

∣∣∣∣
∂f

∂z̄

∣∣∣∣ ≤ µ
∣∣∣∣
∂f

∂z

∣∣∣∣ ,

for µ = K−1
K+1 .

Observe that the closer K is to 1, the closer f is to being conformal, which
explains the terminology.

Given a Riemann surface of finite volume X , we can consider X ”up to quasi-
conformal mappings”, and call the result a quasi-conformal surface S of finite type.
It is known that quasi-conformal maps distinguish between cusps and funnels, so
that any analytic structure on S compatible with its quasi-conformal structure
will be of finite volume.

This motivates a new definition of Teichmüller space, without the need to choose
a base point X .

Definition 2. The Teichmüller space TS of S is

(2) TS = {ϕ : S → X quasi-conformal isomorphism}/ ∼,

where two markings ϕ1 : S → X1 and ϕ2 : S → X2 are equivalent if there exists
an analytic map f : X1 → X2 such that f ◦ ϕ1 = ϕ2.

In this framework, we can define the Teichmüller metric: the distance between
ϕ1 : S → X1 and ϕ2 : S → X2 is then given by

dTS
([ϕ1], [ϕ2]) = inf{logK(f◦ϕ1◦ϕ

−1
2 ), f : X1 → X2 quasi-conformal, f◦ϕ1 = ϕ2}

With this metric, TS is a complete metric space. Using Beltrami forms, and
holomorphic quadratic forms, we can add an additional analytic structure.
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2. Analytic structure on TS

A first step is to describe the geodesics of the Teichmüller metric. Using a com-
pactness argument on families of quasi-conformal applications, one can show that
there always exists a quasi-conformal map realizing the distance between two given
points of TS , called a Teichmüller mapping.

2.1. Teichmüller’s theorem. The Teichmüller theorem describes precisely these
Teichmüller mappings, using holomorphic quadratic forms. These are given in
coordinates in the neighborhood of non-cusped points as

(3) q = µ(z)dz2,

where µ is a holomorphic function, and has a pole of order 1 at cusped points.
Up to a holomorphic change of coordinates, one can find natural coordinates in

which one can write

(4) q = dz2.

In these coordinates, there is a natural notion of horizontal and vertical directions.
This defines a structure of half-translation surface on the surface. The space of
holomorphic quadratic forms on a Riemann surface X is denoted by Q(X).

Theorem 3 (Teichmüller’s theorem). An application f : X1 → X2 is a K-
Teichmüller mapping if and only if there exist holomorphic quadratic forms qk ∈
Q(Xk) (k = 1, 2) such that f sends zeroes (resp. poles) of q1 to zeroes (resp.
poles) of q2, and, in natural coordinates xk + iyk (k = 1, 2) for q1 and q2, f can
be expressed as

(5) f(x1 + iy1) = x2 +
i

K
y2

This, in some sense, relates holomorphic quadratic forms on X to tangent vec-
tors at the associated point in TS .

One can make this intuition more precise by using Beltrami forms to define an
analytic structure on TS .

2.2. Beltrami forms.

Definition 4. A Beltrami form µ ∈ Bel(X) is a L∞ (−1, 1)-form on a Riemann
surface X . It is written in coordinates as

(6) µ = ξ(z)
dz̄

dz
,

where ξ is a L∞ function on X of norm smaller than 1.

The full vector space of L∞ (−1, 1)-forms on X is denoted by bel(X), in which
Bel(X) lies as the unit open ball.

Observe that if f : X → X is a quasi-conformal application, then µ = (∂f)−1∂̄f
∈ Bel(X) by (1), and f is a solution of the Beltrami equation

(7) ∂̄f = ∂f ◦ µ.

Conversely, given a Beltrami form µ ∈ Bel(X), the mapping theorem says:
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Theorem 5 (Mapping theorem). Given µ ∈ Bel(X), the Beltrami equation (7)
given by µ locally has solutions on charts. Moreover, two solutions differ by an
analytic change of coordinates.

Therefore, a Beltrami form µ ∈ Bel(X) determines a new analytic structure
Xµ on X , such that the identity map id : X → Xµ is quasi-conformal of constant
1+‖µ‖
1−‖µ‖ .

Observe that we have a bilinear form

(8)





bel(X)×Q1(X)→ C

(µ, q) 7→

∫

X

µq

(where Q1(X) denotes Q(X) endowed with the L1 norm).

2.3. Analytic structure on TS. Theorem 5 yields a new definition for TS , in
terms of Beltrami forms on S.

Definition 6. A Beltrami form µ ∈ Bel(S) is an equivalent class of µ = [ϕ :
S → X, ν] where ν ∈ Bel(X) and ϕ is quasi-conformal. (ϕ1, ν1) and (ϕ2, ν2) are
equivalent if ν1 = (ϕ2 ◦ ϕ

−1
1 )∗ν2.

Observe that the group QC(S) of quasi-conformal isomorphisms of S acts nat-
urally on Bel(S) by composition. Using the last paragraph, we obtain the identi-
fication

(9) TS = Bel(S)/QC0(S),

where QC0(S) is the group of quasi-conformal isomorphisms of S that are homo-
topic to the identity.

Hence, the mapping class group MCG(S) := QC(S)/QC0(S) has a natural
action on TS .

The bilinear form (8) induces a pairing TτTS × Q
1(X) → C (where τ = [ϕ :

S → X ]) using the identification (9).
After dividing by the proper power of the volume element on X , one also gets

a pairing Q1(X) × Q∞(X∗) → C, where X∗ is X with the opposite orientation,
obtained through conjugating the coordinates.

Therefore, we can identify TτTS with Q∞(X∗). One can show that this is
compatible with an analytic structure on TS .

3. The Weil-Petersson metric

In the same manner, one gets a pairing Q2(X)×Q2(X∗)→ C which is a Hermitian
metric on TS . In fact, it makes TS a Kähler manifold. This metric is different from
the Teichmüller metric.

Several results show that it is a very natural metric on TS . Wolpert’s formula
[2] links the imaginary part of this pairing to the Fenchel-Nielsen coordinates.
Goldman’s symplectic form on the character variety restricts to its imaginary part
[4]. Moreover, Bonahon’s inner product on the space of geodesic currents coincides
with its real part on TS [3].
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The Hitchin component

Jacques Audibert

(mentored by K. Tsouvalas)

Let S be a closed orientable surface of genus g ≥ 2 and let G be a connected
semisimple Lie group. We are interested in connected components of the character
variety

X(S,G) = Hom(π1(S), G)/G

consisting only of discrete and faithful representations. For G = PSL(2,R) there
is exactly two such components. They are copies of the Teichmüller space of S.
When G has rank at least 2, connected components consisting only of discrete
and faithful representations are called higher Teichmüller spaces. If G is compact
or complex, no such components exist [2] [3]. When G is real however, higher
Teichmüller spaces can exist. The prototypical example is the Hitchin component,
named after Hitchin’s seminal work [1].

Let n ≥ 3. When n is odd, the character variety X(S,PSL(n,R)) has three
connected components. The Hitchin component is one of them. When n is even,
X(S,PSL(n,R)) has 6 connected components and there are two Hitchin compo-
nents. In both cases Hitchin showed that those components are balls of dimension
(2g − 2)(n2 − 1).

Let us define the Hitchin component for G = PSL(n,R). There exists a unique
(up to conjugation) irreducible representation of SL(2,R) of dimension n. We can
describe it by identifying Rn with the space of homogeneous polynomials in two
variables X and Y of degree n− 1. The irreducible representation

τn : SL(2,R)→ SL(n,R)

is defined by the following action:
(
a b
c d

)
Xn−i−1Y i = (aX + cY )n−i−1(bX + dY )i

for all 0 ≤ i ≤ n− 1. Let j : π1(S)→ SL(2,R) be a discrete and faithful represen-
tation. The Hitchin component is the connected component of X(S,PSL(n,R))
that contains τn ◦ j.

Similar to the Teichmüller space, the Hitchin component of X(S,PSL(3,R)) has
an interpretation in terms of geometric structures on the surface S. As showed
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by Koszul [4], Goldman [5] and Choi-Goldman [6] it parametrizes convex real
projective structures on S: for every Hitchin representation ρ : π1(S)→ PSL(3,R)
there exists a properly convex domain Ω ⊂ RP2 which is invariant by ρ and such
that Ω/ρ(π1(S)) is homeomorphic to S. It follows that Hitchin representations
in PSL(3,R) are discrete and faithful. Note that hyperbolic structures on S are
convex real projective structures as can be seen using the hyperboloid model of
the hyperbolic plane. It corresponds to embedding the Teichmüller space in the
Hitchin component of PSL(3,R) using τ3.

In 2006, Labourie [7] and Fock-Goncharov [8] showed that Hitchin representa-
tions ρ : π1(S)→ PSL(n,R) admit a boundary map

ξ : ∂∞π1(S)→ Flag(Rn)

which is continuous, ρ-equivariant and transverse. This implies that Hitchin rep-
resentations are discrete and faithful. Labourie investigated the dynamical prop-
erties of Hitchin representations. He defined the notion of Anosov representations
and showed that Hitchin representations are Anosov. On the other hand, Fock
and Goncharov proved that additionally to the above mentioned properties, the
boundary map is positive; a notion that has been generalized for other higher
Teichmüller spaces.

Hitchin representations can be defined whenever G is a centerless split real
Lie group. Such Lie groups admit a special copy of PSL(2,R) which is called
principal. It allows to embed the Teichmüller space in X(S,G) by postcomposition.
The Hitchin component is the connected component of X(S,G) that contains it.
Each of the previous properties have a suitable generalization in this setting. In
particular, it is always a higher Teichmüller space.
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Maximal Representations

Lisa Ricci

(mentored by J.-P. Burelle)

Let S be a closed connected orientable surface of genus g ≥ 2 and let G be a Lie
group of Hermitian type. We define the Toledo number T (ρ) of a representation
ρ : π1(S)→ G, which coincides with the Euler number when G =PSL(2,R) and we
show that it satisfies an analogous Milnor-Wood type inequality. In particular it is
bounded, and representations for which the Toledo number attains the biggest pos-
sible value |χ(S)|rank(G) are called maximal. In [3] Goldman shows that maximal
representations into PSL(2,R) are precisely the holonomies of complete hyperbolic
metrics on S, so that they coincide with the classical Teichmüller space consid-
ered as a subset of Hom(π1(S), PSL(2,R)). In [2] Burger, Iozzi and Wienhard
prove that the map T : Hom(π1(S), G)→ R is continuous and takes finitely many
values in the interval [χ(S)rank(G),−χ(S)rank(G)]. This implies that the set of
maximal representations forms a union of connected components. Moreover, in [1]
Burger, Iozzi and Wienhard show that a representation ρ : π1(S)→ G into a tube-
type Hermitian Lie group G is maximal if and only if there exists a continuous
ρ-equivariant map RP1 → Š that sends positive triples in RP1 to maximal triples
in the Shilov boundary Š. A consequence of this result is that maximal represen-
tations are injective and have discrete image. In particular, they are an example
of a higher Teichmüller space. Another example are Hitchin components, and we
prove that Hitchin representations are maximal when G = Sp(2n,R), which is
the only Lie group both split real simple and of Hermitian type. We conclude by
showing that the diagonal embedding of SL(2,R)→ Sp(2n,R) precomposed with
a faithful, discrete and orientation-preserving homomorphism π1(S)→ SL(2,R) is
a further example of a maximal representation.
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Introduction to Anosov representations

Timothée Bénard

(mentored by F. Zhu)

Anosov representations were first introduced by Labourie in [7] to show that
Hitchin representations are faithful and discrete. It is now a fundamental tool
in Higher Teichmüller Theory. It is also a relevant generalization of the notion of
convex cocompact representation to the higher rank setting.
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1. Definitions of Anosov representation

Notations. We denote by D the Poincaré disc, and identify its unit tangent
bundle T 1D with PSL2(R). The right-action of at = diag(et/2, e−t/2) corresponds
to the geodesic flow on T 1D. Given x ∈ T 1D, we write (ε+(x), ε−(x)) ∈ ∂D× ∂D
its limit points obtained by following forward/backward the geodesic defined by
x. We let Γ be a surface group, i.e. a discrete torsion-free cocompact subgroup of
PSL2(R), and fix a representation ρ : Γ→ SLd(R).

1.1. Definition in terms boundary maps ξk, ξd−k. Fix a Γ-invariant continu-
ous family of norms on the trivial bundle T 1D × Rd and write ||.||x the norm on
the fibre {x} × Rd above x ∈ T 1D.

Definition 1.1. We say that ρ is Pk-Anosov (k ∈ {1, . . . , d − 1}) if there exist
boundary maps

ξk : ∂D→ Grk(R
d) ξd−k : ∂D→ Grd−k(R

d)

satisfying

(i) ξk, ξd−k are continuous ρ-equivariant, and transverse: ∀p 6= q ∈ ∂D,

Rd = ξk(p)⊕ ξd−k(q)

(ii) There exists C, c > 0 such that for every x ∈ T 1D, v ∈ ξk(ε+(x)), w ∈
ξd−k(ε−(x)), v, w 6= 0,

||v||xat

||v||x
≤ Ce−ct ||w||xat

||w||x

Remark that by cocompactness of Γ, this definition does not depend on the
choice of norms ||.||x. It also makes sense if ρ takes values in PSLd(R) instead of
SLd(R). Finally, one can check that the inclusion map Γ →֒ PSL2(R) is indeed
P1-Anosov.

1.2. Definition in terms of singular values. Every element g of SLd(R) can
be written

g = k



et1

. . .

etd


 l

where k, l ∈ SOd(R) and the ti’s are real number of sum 0, and such that t1 ≥
· · · ≥ td. The tuple (t1, . . . , td) is unique and called the Cartan projection of g, we
write it µ(g) = (µ1(g), . . . , µd(g)).

Theorem 1.2. [5, 4, 6, 1] Fix a word distance d on Γ. Then ρ is Pk-Anosov if
and only if there exists C, c > 0 such that for every γ ∈ Γ,

µk(ρ(γ))− µk+1(ρ(γ)) ≥ cd(1, γ)− C
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We stress a mental image to be associated to the above inequality. By definition,
the Cartan projection belongs to the Weyl chamber

a+ = {t ∈ Rd,
∑

i

ti = 0, t1 ≥ · · · ≥ td}

This is a convex cone, delimited by “walls”, namely a+∩{t1 = t2}, . . . , a
+∩{td−1 =

td}. The above inequality yields that

µk(ρ(γ))− µk+1(ρ(γ)) ≥ c
′||µ(γ)|| − C′

for some C′, c′ > 0 (here we use that ||µ(g1g2)−µ(g2)|| ≪ ||µ(g1)|| so ||µ(ρ(γ))|| ≪
d(1, γ)). In other words, the Cartan projection of ρ(Γ) drifts away linearly from
the wall a+ ∩ {tk = tk+1} of a

+.

1.3. Level of generality. In greater generality, we can give meaning to the sen-
tence

“ρ : Γ→ G is P -Anosov”

when Γ is hyperbolic, G a non compact reductive real linear algebraic group, and
P ⊆ G a parabolic subgroup (see for instance [5] or [4]).

2. Properties of Anosov representations

We cite a few properties of Anosov representations. Proofs can be found in [3].

2.1. Quasi-isometric embedding.

Proposition 2.1. Let ρ : Γ → SLd(R) be a Pk-Anosov representation. Then
ρ is a quasi-isometric embedding for any left invariant metric on SLd(R). In
particular, it is discrete and faithful (here Γ is torsion-free).

2.2. Proximality. The image of a Pk-Anosov representation has a particular dy-
namics on the Grasmannian variety Grk(R

d). We introduce the Jordan projection
of g ∈ SLd(R)

λ(g) = lim
n→+∞

1

n
µ(gn)

As µ1(g) = log ||g||, we get that λ1(g) stands for the logarithm of the spectral
radius of g. Considering exterior products representations ΛiRd, we see as well
that λ(g) is (well defined and is) the logarithm of the modules of the eigenvalues
of g, ordered by decreasing order.

Say that g ∈ SLd(R) is Pk-proximal if λk(g) > λk+1(g). This translates dy-
namically by asking that Rd decomposes as Rd = ξ+k (g)⊕ ξ

−
d−k(g) where ξ

+
k (g) ∈

Grk(R
d), ξ−d−k(g) ∈ Grd−k(R

d) and ξ+k (g) is attracting in the sense that for every

k-plane V in direct sum with ξ−d−k(g), we have g
nV → ξ+k (g) as n→ +∞. We call

ξ+k (g) the attracting space of g, and ξ−k (g) the repelling space of g. Of course they
are unique.

For example, every non-trivial γ ∈ Γ is P1-proximal, and this reads on the
boundary ∂D ≡ P(R2): the action of γ on ∂D has 2 distinct fixed points γ−, γ+

such that ∂D \ {γ−} is contracted toward γ+ under the action of γ.
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The following proposition states that Anosov representations respect the dynamics
on the boundary.

Proposition 2.2. Assume ρ : Γ → SLd(R) is Pk-Anosov, with limit maps
ξk, ξd−k. Then every element of ρ(γ) is Pk-proximal. Moreover ξk sends the at-
tracting point γ+ of γ to the attracting k-plane of ρ(γ). Analogously, and ξd−k(γ

−)
is the repelling d− k-plane of ρ(γ).

Using the continuity of ξk and that the set {γ+, γ ∈ Γ} is dense in ∂D, (and
the analog for ξd−k, γ

−) we get

Corollary 2.3. The limit maps ξk, ξd−k of a Pk-Anosov representation are unique.

2.3. Stability.

Proposition 2.4. Assume ρ : Γ→ SLd(R) is a Pk-Anosov representation. Then
any representation ρ′ : Γ→ SLd(R) close enough from ρ on a fixed generating set
of Γ is also Pk-Anosov.

3. Examples

Theorem 3.1 ([5]). A representation ρ : Γ → G to a rank-one simple connected
real Lie group G is Anosov if and only if it is convex cocompact (or equivalently a
quasi-isometric embedding).

Theorem 3.2 ([7]). If G is a split simple Lie real group, then every representation
in the Hitchin component of the character variety Hom(Γ, G)/G is P -Anosov for
every parabolic subgroup P .

Theorem 3.3 ([2]). Let G be a real Lie group of Hermitian type, and ρ : Γ→ G
a maximal representation. Then ρ is P -Anosov with respect to the stabilizer of a
point in the Shilov boundary associated to G.
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Domains of discontinuity and geometric structures

Sami Douba

(mentored by F. Stecker)

Let Z be a compact metric space and Γ a discrete group acting continuously on Z.
Suppose the action of Γ on Z is a convergence action, that is, suppose that for
every sequence γn →∞ in Γ, there are (not necessarily distinct) points z± ∈ Z and
a subsequence (γnk

) of (γn) such that γnk

∣∣
Z−{z−}

→ z+ uniformly on compacta.

In this setting, the limit set ΛΓ ⊂ Z of the Γ-action is defined as the set of all
points in Z of the form z+ as above; this is a closed Γ-invariant subset of Z on
whose (possibly empty) complement Γ acts properly.

Convergence actions arose as abstractions of Kleinian group actions on the Rie-
mann sphere. More generally, let X be a rank-one symmetric space of noncompact
type and ∂∞X = G/P its visual boundary, where G = Isom(X) and P is a proper
parabolic subgroup of G. Then a proper isometric action of a discrete group Γ onX
induces a convergence action of Γ on ∂∞X . The quotient Γ\(∂∞X−ΛΓ) is then an
orbifold endowed with a (G, ∂∞X)-structure. This provides a useful link between
discrete representations Γ→ G and (G, ∂∞X)-structures on Γ\(∂∞X − ΛΓ).

If we now remove the restriction on the rank of X , it is no longer true that
proper isometric actions on X give rise to convergence actions on ∂∞X . To re-
strict to a setting where the action at infinity nevertheless retains some desirable
features of convergence dynamics, one considers P -divergent actions on X ; if a+

is a Weyl chamber of X with origin o ∈ X , and P is the stabilizer G[ξ] in G of

the asymptoticity class [ξ] ∈ ∂∞X of a geodesic ray ξ ⊂ a+ emanating from o,
then an isometric action of a discrete group Γ on X is P -divergent, or P -regular,
if for every sequence γn → ∞ in Γ, the a+-valued distances da+(o, γno) diverge
from each wall of a+ not containing the ray ξ. Since a P -divergent group action
on X is also P−-divergent for any parabolic subgroup P− < G opposite to P , we
will make the simplifying assumption that P is conjugate within G to its opposite.
We say an action on X is divergent if the action is P -divergent for some choice
of P < G.

If X has rank one, then a divergent action of Γ on X is nothing but a proper
isometric action. If X is a product X1 × . . .×Xn of symmetric spaces Xi of non-
compact type, then a diagonal isometric action of Γ on X is divergent if and only
if the action of Γ on at least one of the factors Xi is divergent. A proper isometric
action of Γ on X preserving a totally geodesic rank-one subspace Y ⊂ X is G[ξ]-
divergent, where ξ is any geodesic ray in Y . On the other hand, if rank(X) ≥ 2 and
some subgroup of Γ preserves and acts cocompactly on a maximal flat in X (for
instance, if Γ is a lattice in G), then the action of Γ on X is not divergent (with re-
spect to any proper parabolic subgroup of G). Important examples of P -divergent
actions on X are those coming from P -Anosov representations Γ→ G.

For a P -divergent action of Γ on X , the associated action of Γ on G/P satisfies
the following weaker notion of convergence: for any sequence γn →∞ in Γ, there
are points z± and a subsequence (γnk

) of (γn) such that γnk

∣∣
C(z−)

→ z+ uniformly
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on compacta, where C(z−) ⊂ G/P denotes the set of all points in G/P opposite
to z−. One analogously defines the limit set ΛΓ ⊂ G/P in this setting as the
set of all points in G/P of the form z+ as above. An elementary consequence
of the above weak form of convergence is that Γ preserves and acts properly on
the (possibly empty) open subset of G/P consisting of all points in G/P that are
opposite to each point in ΛΓ.

We rephrase the preceding statement so that we can later refine it. For any
proper parabolic subgroup Q < G, the set P\G/Q of positions that a point in G/Q
can occupy relative to a point in G/P is a finite poset on which the longest
element w0 of the restricted Weyl group of G acts as an order-reversing involution
PgQ 7→ Pw0gQ. Given an ideal Th ⊂ P\G/Q and a subset S ⊂ G/P , we
denote by Th(S) the set of all points in G/Q whose position relative to some
point in S lies in Th. Taking Q = P and Th ⊂ P\G/P to be the ideal consisting
of all elements in P\G/P except the greatest element Pw0P , the conclusion of
the previous paragraph reads as follows: the subset Th(ΛΓ) ⊂ G/P is closed and
Γ-invariant, and Γ acts properly on the complement G/P − Th(ΛΓ).

With the aim of constructing larger domains of proper discontinuity for Γ,
Kapovich, Leeb, and Porti [3] observed that, in fact, the weak form of convergence
satisfied by the Γ-action on G/P implies that for any proper parabolic subgroup
Q < G and any ideal Th ⊂ P\G/Q with the property that P\G/Q = Th ∪ w0Th,
the subset Th(ΛΓ) ⊂ G/Q is closed and Γ-invariant, and Γ acts properly on
the complement G/Q − Th(ΛΓ). The quotient Γ\(G/Q − Th(ΛΓ)) is then an
orbifold endowed with a (G,G/Q)-structure. This establishes a link between P -
divergent representations Γ→ G and (G,G/Q)-structures on Γ\(G/Q− Th(ΛΓ))
that had already been fruitfully explored in the higher-rank setting by Guichard
and Wienhard [1, 2].
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Pressure metrics

Cagri Sert

The talk consisted of three parts. In the first part, we stated the main results
and indicated the proof roadmap; this consists of roughly three parts: first, as-
sociating a Hölder function (via a flow) to a projective Anosov representation;
second, bringing in the convexity of pressure functional and relating the pressure
semi-definite form to the intersection numbers; and third, showing that the form
is positive definite. In the last two parts of the talk, we spoke about the first two
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stages of the proof (in the reverse order). For the exposition, we mainly followed
the original reference [4] as well as the more recent paper and survey [3, 5].

1. Statements of results and proof roadmap

We start by introducing some terminology and notation needed to state the main
results.

Let Γ be a finitely generated word-hyperbolic group and G be a closed reductive
subgroup of SLd(R). The main example for such a group Γ is the fundamental
group π1(S) of an orientable, closed surface of genus ≥ 2, but the class of word-
hyperbolic groups contains many other examples (virtually free groups, free prod-
ucts etc.). An element g of G is called generic if its centralizer is a maximal torus
in G (for example, if G = SLn(R) any complex-diagonalizable matrix with dis-
tinct eigenvalues is generic). A representation Γ→ G is called generic if its image
contains a generic element. Finally, a representation Γ→ G is called regular if its
a smooth point of the algebraic variety Hom(Γ, G). Let C(Γ, G) denote the space
of (conjugacy classes) of regular, irreducible, projective Anosov representations
of Γ in G < SLd(R). Let Cg(Γ, G) be the space of (conjugacy classes of) those
representations in C(Γ, G) that are additionally generic.

Remark. 1. It is shown in [4, §6] that the sets C(Γ, G) and Cg(Γ, G) have natural
analytic structures compatible with the algebraic structure of Hom(Γ, G) (as quo-
tients by a free, proper and algebraic action).
2. When Γ = π1(S), a Hitchin component for representations of Γ in PSLd(R)
lifts to component of Cg(Γ, G).

The following is the main result of [4] obtained in combination with the previous
work of Wolpert [7] and Bonahon [1].

Theorem 1 (Bridgeman–Canary–Labourie–Sambarino [4]). Keep the above set-
ting.
1. There exists a Riemmanian metric, called the pressure metric, on Cg(Γ, G) that
is Out(Γ)-invariant.
2. When Γ = π1(S) and G = SLn(R), the restriction of this metric to the Fuchsian
locus coincides with Weil–Petersson metric.

The proof of this result is very dynamical in nature and consists of several
parts. The outcome of the dynamical argument consist of two things. One of
them Theorem 2 below which yields a semi-metric on C(Γ, G). The other part of
the outcome is a characterization of when the semi-metric degenerates. Theorem
1 is then deduced by showing that the degeneration does not happen when the
semi-metric given by Theorem 2 is restricted to Cg(Γ, G). In this note, we will
focus on the elements of the proof of the following.

Theorem 2. Keep the above setting. There exists a positive, Out(Γ)-invariant
analytic map J : C(Γ, G) × C(Γ, G) → R such that for every analytic path γ :
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(−1, 1)→ C(Γ, G), letting Jγ(t) := J(γ(0), γ(t)), we have

d

dt |t=0
Jγ = 0 and

d2

dt2 |t=0
Jγ ≥ 0.

In other words, the Hessian of J on yields a non-negative analytic 2-tensor field
on C(Γ, G) (pressure form). Theorem 1 is deduced from Theorem 2 by show-
ing additionally that the restriction of the pressure form to Cg(Γ, G) is positive
definite.

The rest of the note will focus on exposing elements of proof of the previous
theorem. The proof goes by associating a flow (on a compact metric space) to a
representation in C(Γ, G) which is shown to be a Hölder reparametrization of the
standard (or Gromov) flow of Γ on U0Γ which therefore yields a (Livsic class of)
Hölder function(s). The authors show that this association is analytic and after
constructing the pressure form on the pressure zero Hölder functions and relating
it with an intersection number functional J0, one obtains J by precomposiong with
the above-described association.

2. Metric Anosov flows, pressure and intersection numbers

2.1. Metric Anosov flows. Let X be a compact Riemannian manifold and Φt

a smooth flow. Recall that the flow is called uniformly hyperbolic (in particular
Anosov) if there exists a flow-invariant splitting of the tangent bundle TX =
Es ⊕ Eo ⊕ Eu such that Eu is the flow direction, Es is uniformly contracted in
the future (as t→∞) and Eu is uniformly contracted in the past (as t→ −∞).

A metric Anosov flow is a generalization of an Anosov flow in a setting where
the underlying space X has only a metric space structure. We refer to [4, 6] for its
definition noting that many of the ergodic properties of Anosov flows were shown
to hold for metric Anosov flows by Pollicott [6].

2.2. Hölder reparametrizations of flows. Let Φt be a topologically transitive
metric Anosov flow on a compact metric space X . Given a Hölder function f :

X → R>0, we define the f -reparametrization Φf of Φ by Φf
t (x) = Φαf (t,x)(x),

where αf (t, x) is defined as the unique real satisfying t =
∫ αf (t,x)

0 f(Φs(x))ds.
This is another continuous flow Hölder orbit equivalent to Φ.

2.3. Topological entropy and pressure. For T > 0, let RT (Φ) be the set of
periodic orbits of Φ of period at most T . Following Bowen [2], we define the

topological entropy h(Φ) as lim supT→∞
log #RT (Φ)

T .
Given a Hölder function (a potential) f : X → R, we define its topological

pressure PΦ(t) with respect to the flow Φ to be

lim sup
T→∞

1

T
log

∑

a∈RT (Φ)

eℓf(a),

where ℓf(a) is the period of a ∈ RT (Φ) for the flow Φf . By the variational
principle, PΦ(t) is equal to the supremum of hµ(Φ) +

∫
fdµ, where µ varies over

Φ-invariant probability measures and hµ(Φ) is the Kolmogorov entropy of (Φ, µ).
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A measure attaining the supremum in the variational principle is called an equi-
librium measure for f . In our setting, there is a unique equilibrium measure [4, 6],
we denote it by mf .

Theorem 3 (Ruelle, Parry–Pollicott). Let f, g : X → R be Hölder functions.

1. ∂P (f+tg)
∂t |t=0

=
∫
gdmf .

2. If
∫
gdmf = 0, then ∂2P (f+tg)

∂t2 |t=0
=:var(g,mf ) ≥ 0.

3. var(g,mf ) = 0 if and only if g is Livsic cohomologous to zero.

To define the pressure semi-norm; on considers the space P (X) of pressure
zero Hölder functions (for some fixed exponent). For f ∈ P (X), one identifies
the tangent space TfP (X) with {g :

∫
gdmf = 0}. On TfP (X), one defines the

pressure semi-norm by setting ‖g‖2P =var(g,mf).

2.4. Intersection numbers. Let f, g be positive Hölder functions on X . We
define their intersection number I(f, g) as

lim
T→∞

1

#RT (Φf )

∑

a∈RT (Φf )

ℓg(a)

ℓf (a)
.

The limit exists in view of an equidistribution result of Bowen [2]. Finally, we

define the normalized intersection number J0(f, g) as
hg(Φ)
hf (Φ) I(f, g).

It turns out that for two positive Hölder functions f, g, we have J0(f, g) ≥ 1 and
J0(f, g) = 1 if and only if the Hölder reparametrized flows associated to hf (Φ)f and
hg(Φ)g are Hölder conjugate (i.e. there is Hölder homeomorphism ofX equivariant
with respect to two flows). The following result relates the pressure sermi-norm to
the normalized intersection (and therefore relates the pressure semi-norm to the
Weil–Petersson metric via the results of Wolpert [7] and Bonahon [1]).

Proposition 4. Let (ft)t∈(−1,1) be an analytic family of positive Hölder functions
of a fixed exponent on X. Let ψt = −hft(Φ)ft the pressure zero form of ft. Then,
∂2

∂t2 |t=0
J0(f0, ft) = ‖ψ̇0‖

2
p.

In other words, the pressure semi-norm on TΨ0
P (X) is given by the symmetric

2-tensor corresponding to the Hessian of J0.

3. From representations to flows

Given a representation Γ → G in C(Γ, G), the goal here is to define a flow on
a compact metric space which is Hölder conjugate to a Hölder reparametriza-
tion of the standard flow of Γ. This allows to pull-back the pressure form to
C(Γ, G) × C(Γ, G) appearing in Theorem 2. Let ρ ∈ C(Γ, G). Recall that there
exist boundary maps ξ : ∂Γ → P (Rn) and θ : ∂Γ → P (Rn)∗ where ∂Γ is the
Gromov- boundary of Γ and P (Rn) and P (Rn)∗ are respectively the projective
space of Rn and its dual. For x ∈ ∂Γ, choose vx ∈ Rn such that Rvx = ξ(x). Let
Fρ = ∂Γ(2) × R>0 where ∂Γ(2) is the Cartesian product of ∂Γ with itself minus
the diagonal. The space Fρ is endowed with commuting Γ and R actions given
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respectively by γ(x, y, s) = (γx, γy, ‖ρ(γ)vx‖‖vx‖
s) and t(x, y, s) = (x, y, ets). Before

stating the following main result of this part, recall that the spaces Ũ0Γ and Fρ

has metrics adapted to their topology with respect to which Γ acts by isometries.

Theorem 5. [4, §4 and §5] Let ρ ∈ C(Γ, G).
1.The Γ-action on Fρ is proper and cocompactly — denote the quotient space Fρ/Γ
by UρΓ.

2. The R-action on UρΓ is a metric Anosov flow — denote it by Φt.

3. The flow Φt is Hölder conjugate to a Hölder reparametrization of the standard
flow on U0Γ.

4. The Φ-orbit associated to an infinite order primitive element γ has period equal
to the logarithm of the spectral radius of ρ(γ).

Therefore, this result allows us to associate a Hölder function (or a Livsic class
of such functions) on U0Γ to a representation ρ ∈ C(Γ, G). The authors also show
that this association varies analytically when ρ varies in an analytic family [4, §6
and §7]. This constitute the second piece in the proof of Theorem 2 combined with
Proposition 4.
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Fock-Goncharov coordinates and cluster varieties

Jared Miller

(mentored by D. Kaufmann)

In [1], Fock and Goncharov show that if S is a closed surface then a positive rep-
resentation ρ : π1(S)→ PSLm(R) is discrete and faithful. Further, they show that
for a surface S without boundary and G a split semisimple Lie group with trivial
center, the moduli space of positive representations from π1(S) into G coincides
with the Hitchin component in the representation space of π1(S) into PSLm(R).
Given this, we aim to understand the moduli space of framed representations in the
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style of Fock-Goncharov. In this talk, we describe the moduli space of framed rep-
resentations for the fundamental group of a surface with boundary into PGLm(C),
which generalizes to closed surfaces without boundary.

In the first part of the talk, we introduce spaces of representations. Given some
compact surface S with boundary and the group G = PGLm(C), a representation
of π1(S) into G is a homomorphism ρ ∈ hom(π1(S), G) and the moduli space of
representations is RG(S) = hom(π1(S), G)/G where the action of G is by conju-
gation. We can decorate ∂S with marked points {p1, · · · , pj} and consider the so

called ciliated surface Ŝ = S\ {p1, · · · pj}. Such a surface has boundary ∂Ŝ which
consists of arcs and loops, with loops coming from boundary components of S
without any marked points.

We define a flag as a nested sequence of m many vector subspaces in Cm such
that the index of a subspace in the sequence is equal to its dimension. Given a
ciliated surface Ŝ, a framed representation consists of

(1) a representation ρ ∈ hom(π1(S),PGLm(C))

(2) flags (F (1), · · · , F (t)) in Cm associated to each connected component of ∂Ŝ
such that if Cj ∈ π1(S) corresponds to a boundary curve with no marked
points, the associated flag is invariant under left multiplication by ρ(Cj)

The moduli space of framed representations is defined as the quotient of the set
of framed representations by the action of PGLm(C), where PGLm(C) acts on
representations by conjugation and on flags by left multiplication.

The second part of the talk focuses on the so called Fock-Goncharov coordi-
nates. In particular, we describe how to obtain Fock-Goncharov coordinates from
a framed representation and triangulation of the associated ciliated surface. We
define triangulations of a ciliated surface Ŝ as a maximal collection of disjoint,
nonhomotopic, simple curves joining connected components of ∂Ŝ and discuss
configuration spaces of triples and quadruples of flags in Cm. Given a flag F , let
Fi denote the i dimensional subspace in the flag. We say that a collection of k flags{
A(1), A(2), · · · , A(k)

}
in Cm is in generic position if for every i1+ i2+ · · ·+ ik = m

we have A
(1)
i1
⊕A

(2)
i2
⊕ · · · ⊕A

(k)
ik

= Cm. Given a quadruple of flags (A,B,C,D) in

C2 in generic position, taken as points in CP 1, by transitivity of PGL2(C) we can
map (A,B,C) to (0,−1,∞) with D sent to x ∈ CP 1. x is given by the cross ratio
of the four points (A,B,C,D) and can be computed as

(A−D)(B − C)

(A−B)(C −D)

It is well known that the cross ratio is invariant under action by PGL2(C) and
that the cross ratio of four points in CP 1 is real if and only if the four points lie
on a circle or line. We note that with this normalization we have that a real cross
ratio is positive if and only if the triangles (A,B,C) and (A,C,D) are disjoint.

For a framed representation into PGL2(C), to each interior edge (A,C) be-
tween triangles (A,B,C) and (A,C,D) in a triangulation we assign the cross ratio
of (A,B,C,D) to the edge (A,C). These cross ratios are the Fock-Goncharov
coordinates in dimension 2. We describe how for a framed representation into
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A = 0

B = −1

C =∞

RP 1

A

B

C

D

Positive Real

A

B

C

D

Negative Real

PGLm(C), for each interior edge of the triangulation we project the four flags at
the vertices of the adjacent triangles to m−1 different subspaces of dimension 2 to
obtain m− 1 cross ratios assigned to the edge (A,C). These m− 1 edge invariants
are assigned to each interior edge of the triangulation and are one of two types of
Fock-Goncharov coordinates in dimension m ≥ 3.

We then discuss triples of flags (A,B,C) in C3, given by a point and line in
CP 2. If we choose direction vectors va, vb, vc for the one dimensional subspaces
in flags A,B,C and linear form representatives fa, fb, fc ∈ (C3)∗ defining the two
dimensional subspaces in A,B,C, then the triple ratio of (A,B,C) is given by

fa(vb) fb(vc) fc(va)

fa(vc) fb(va) fc(vb)

As with the cross ratio, the triple ratio is invariant under action by PGL3(C). For a
framed representation into PGL3(C), to each triangle (A,B,C) in a triangulation,
we assign the triple ratio r3(A,B,C) to that triangle. These triple ratios are the
second type of Fock-Goncharov coordinates in dimension 3. We describe how to
project a triple of flags in Cm to (m − 1)(m − 2)/2 subspaces of dimension 3, to
obtain triangle invariants assigned to the triangle. Given a framed representation
and triangulation, the collection of m− 1 cross ratios on each interior edge of the
triangulation and (m − 1)(m − 2)/2 triple ratios on each triangle are the Fock-
Goncharov coordinates in dimension m.

In part three of the talk, we describe how to construct a framed representation
given a triangulation of a ciliated surface Ŝ and collection of Fock-Goncharov
coordinates therein. The construction essentially consists of finding two things:
the representation and the flags associated to each connected component of ∂Ŝ.
Determining the flags up to action by PGLm(C) is done by choosing a triangle
in the triangulation and normalizing so that the flags at two vertices and the one
dimensional part of the flag at the third vertex are arbitrary and in generic position.
The Fock-Goncharov coordinates then describe the remaining flags, which can
be computed explicitly. For the representation, we construct an oriented graph
dual to the triangulation, as illustrated in the figure below representing part of
a triangulation and embedded graph. To each edge of the embedded graph, we
assign a matrix in PGLm(C). These matrices have explicit formulas, but matrices
associated to edges of the graph inside a triangle in the triangulation can be seen
as the transformations mapping the flags (A,B,C) at the vertices to (B,C,A)
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and matrices associated to edges of the graph crossing an edge (A,C) in the
triangulation can be seen as transformations mapping the flags A↔ C and B1 7→
D1.

Each curve in π1(S) is homotopic to a curve on the embedded graph and the
representation can be found by taking the product of matrices associated to the
corresponding edges in the embedded graph.

In the final part of the talk, we discuss positive representations and the role
that the triangulation plays in the Fock-Goncharov coordinates. The triangulation
does affect the coordinates, but it does so in a well defined way. For a framed rep-
resentation into PGL2(C), we show that an edge flip in the triangulation changes
the Fock-Goncharov coordinates in a subtraction free way.

x

d

cb

a

edge flip 1
x

a(1 + x) dx
1+x

c(1 + x)bx
1+x

We quickly describe quivers and how to use a sequence of cluster mutations
to determine the Fock-Goncharov coordinates of a framed representation into
PGLm(C) corresponding to a different triangulation and again note that these
change of coordinate formulas are subtraction free. We conclude the talk by
defining positive representations as framed representations which have all posi-
tive Fock-Goncharov coordinates with respect to any triangulation and stating
relevant results of [1].
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Higgs Bundles

Tianqi Wang

Let X be a closed Riemann surface of genus at least 2. We denote the collection
of smooth (p, q)-forms with coefficients in a smooth C-vector bundle E over X by
Ap,q(E).

Let (E, h) be a hermitian vector bundle over X . For a connection ∇ on E, there is
a unique decomposition ∇ = ∇h+Φh, such that ∇h is a hermitian connection and
Φh is symmetric with respect to h, that is, the adjoint Φ∗h

h equals Φh. Therefore,
we have a one-to-one correspondence defined as

{∂̄-operator on E} ×A1,0(End(E))←→ {connections on E}

(∂̄E , ϕ) 7−→ ∂̄E + ∂h + ϕ+ ϕ∗h(1)

(∇0,1
h ,Φ1,0

h )←[ ∇ = ∇h +Φh,

where ∇h = ∂̄E + ∂h is the Chern connection of the holomorphic hermitian vector
bundle (E, ∂̄E , h), ∇

0,1
h is the (0, 1)-part of the connection ∇h, and Φ1,0

h is the
(1, 0)-part of Φh.

Definition 1 (Hitchin[3]). Let (E, ∂̄E) be a holomorphic vector bundle and ϕ ∈
A1,0(End(E)). The triple (E, ∂̄E , ϕ) is called a Higgs bundle if ∂̄Eϕ = 0. Such ϕ
is called a Higgs field.

The nonabelian Hodge correspondence states that there is a one-to-one correspon-
dence between the conjugacy classes of semisimple representations of the funda-
mental group π1(X) into GL(r,C), and the isomorphism classes of polystable Higgs
bundles of rank r and degree 0 over X .

We can replace the conjugacy classes of semisimple representations by the iso-
morphism classes of flat C-vector bundles of rank r over X , followed from the
Riemann-Hilbert correspondence.

The relation of flat vector bundles and polystable Higgs bundles can be built by
introducing an intermediate notion, called the harmonic bundles.

Definition 2. We call a flat hermitian vector bundle (E,∇, h) a harmonic bundle

if ∇0,1
h Φ1,0

h = 0, up to the correspondence (1). Equivalently, we say a Higgs
bundle with a hermitian metric (E, ∂̄E , ϕ, h) is a harmonic bundle if the connection
∇ = ∂̄E + ∂h + ϕ+ ϕ∗h is flat, up to the correspondence (1).

Actually, ∇ = ∂̄E + ∂h +ϕ+ϕ∗h being flat is equivalent to the conditions that

(2)

{
∂̄Eϕ = 0

F∂̄E ,h + [ϕ, ϕ∗h ] = 0,

where the second equation is called the Hitchin equation (the self-dual equation in
[3]) and F∂̄E ,h denotes the curvature form of the Chern connection with respect to
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the pair (∂̄E , h). The first equation is equivalent to that h is a harmonic metric,
that is, it minimizes the energy functional

E(∇, h) =

∫

X

tr(ϕ ∧ ϕ∗h).

The nonabelian Hodge correspondence can be shown by the following series of
theorems (see [1],[2],[3],[5],[7],[8] etc.).

Theorem 3 (Donaldson[2],Corlette[1]). Let (E,∇) be a flat irreducible vector
bundle over X, then there exists a hermitian metric h, unique up to scaling, such
that (E,∇, h) is harmonic, i.e., ∇0,1

h Φ1,0
h = 0.

The idea of the proof is finding the hermitian metric h that minimizes the energy
function. The problem can be simplified by fix a hermitian metric and apply
“the gauge transformations”. The proper “gauge transformation” can be found
by applying Uhlenbeck’s compactness theorem [9].

Proposition 4 (Corlette [1]). Let (E,∇, h) be a harmonic vector bundle, then the
flat vector bundle (E,∇) is semisimple.

Theorem 5 (Kobayashi[5]). Let (E, ∂̄E , h), ϕ, h) be a harmonic vector bundle,
then the Higgs bundle (E, ∂̄E , ϕ) is polystable.

Theorem 6 (Hitchin[3],Simpson[7],[8]). Let (E, ∂̄E , ϕ) be a stable Higgs bundle,
then there exists a hermitian metric h, unique up to scaling, such that (E, ∂̄E , ϕ, h)
is harmonic, i.e., F∂̄E ,h + [ϕ, ϕ∗h ] = 0.

The proof of the above theorem is similar to the proof of Corlette’s theorem by
minimizing the Yang-Mills-Higgs functional

YMH(∂̄′E , ϕ
′) =‖ F∂̄′

E ,h + [ϕ′, ϕ′∗h ] ‖2

in the space HP = {(∂̄′E , ϕ
′) : ∂̄′Eϕ

′ = 0}.

One important example is the Hitchin section introduced in [4] (see also [6]).
LetMHiggs(SL(n,C)) denote the isomorphism classes of polystable Higgs bundles
corresponding to the conjugacy classes of semisimple representations of π1(X) into
SL(r,C) by the nonabelian Hodge correspondence. Let K denote the canonical
bundle over X . The Hitchin fibration is the map

h :MHiggs(SL(n,C)) −→
n
⊕
j=2

H0(Kj)

(E,ϕ) 7−→ (tr(ϕ2), tr(ϕ3), ..., tr(ϕn)),

and the Hitchin section is given by

s(q2, q3, ..., qn)= (K
n−1

2 ⊕K
n−3

2 ⊕...⊕K
3−n
2 ⊕K

1−n
2 ,

















0 q2 q3 ... qn−1 qn

r1 0 q2 ... ... qn−1

0 r2 0 ... ... ...

... ... ... ... ... ...

... ... ... ... 0 q2

0 ... ... 0 rn−1 0

















).
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The conjugacy classes of representations, that correspond to the points in the
image of the Hitchin section by the nonabelian Hodge correspondence, have ho-
lonomy in SL(n,R), which actually give the Hitchin component Hitn(X) in the
character variety.
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Projections to Teichmüller space

Nicholas Rungi

Let S be a closed oriented surface of genus g ≥ 2. For any complex structure J
on S we denote with Σ = (S, J) the associated Riemann surface structure, seen
as a point in Teichmüller space T (S). For any fixed Σ ∈ T (S), given a con-
nected simple complex Lie group G with adjoint split real form G0, Hitchin ([12])
found a connected component in the associated G0-character variety parametrized
by a complex vector space and diffeomorphic to an open ball of real dimension
−χ(S)dimG0. Such a component Hit(S,G0) is now-known as the Hitchin compo-
nent of the G0-character variety and it contains a copy of T (S) induced by the
principal embedding PSL(2,R) →֒ G0 ([13]). These were the first examples of
higher rank Teichmüller components. The aforementioned parametrization gives
rise to a complex structure on Hit(S,G0) which is not invariant under the action
of the mapping class group Mod(S) since it depends on the initial choice of a Rie-
mann surface structure. In [15] Labourie proposed a strategy to solve this issue
when G0 = PSL(n,R), which can be easily generalized to any split real form. Let
ρ : π1(S)→ G0 be a reductive representation (i.e. the Zariski clousure of ρ(π1(S))

is dense in G0), then for any Σ ∈ T (S) let us denote with fρ : Σ̃ → G0/K0 the
(unique) ρ-equivariant harmonic map from the universal cover of Σ to the sym-
metric space of G0 ([10],[9]). For any reductive ρ, let eρ be the energy functional
which associates to any Σ = (S, J) ∈ T (S) the energy of fρ. The critical points of
this functional are called conformal maps and they can be characterized as those



Arbeitsgemeinschaft: Higher Rank Teichmüller Theory 2715

fρ’s for which the Hopf differential H(fρ) ( the (2,0) part of f∗
ρ gG0/K0

) vanishes
([17]). Labourie proved that for any ρ in the Hitchin component (actually for
any Anosov representation) the energy functional eρ is smooth and proper ([15]).
In particular, there exists a Riemann surface structure Σ ∈ T (S) such that the
associated ρ-equivariant harmonic map fρ is conformal.

Labourie’s conjecture (split case): For any ρ ∈ Hit(S,G0) the associated

ρ-equivariant conformal map fρ : Σ̃→ G0/K0 is unique.

It is clear from the preceding argument that such conjecture can be stated also for
simple real Lie groups of Hermitian type replacing Hitchin representations with
the maximal ones. In order to understand how this conjecture is related to the
problem of the Mod(S)-invariant parametrization of Hit(S), let us denote with E
the holomorphic vector bundle on Teichmüller space whose fiber over a point J is

EJ =
⊕l

i=2H
0(Σ,Kmi+1), where l is the rank of G0 and (1,m2, . . . ,ml) are its

exponents. For any element
(
J, (qm2+1, . . . , qml+1)

)
∈ E , let ρ0,qm2+1,...,qml+1

be
the monodromy of the solution to the self-duality equations of the Higgs bundles
constructued by Hitchin ([12]) using the t-uple
(0, qm2+1, . . . , qml+1). This gives a well-defined map

Φ : E −→ Hit(S,G0)

Moreover, since Mod(S) acts on the representations space by pre-composition
and on E by pull-back, from the previous construction follows that the map Φ is
Mod(S)-equivariant. By the work of Labourie Φ is surjective since for any Hitchin

representation ρ there exists a ρ-equivariant conformal map fρ : Σ̃→ G0/K0 and
the t-uple (q2, qm2+1, . . . , qml+1) corresponding to ρ via the Hitchin section has
the holomorphic quadratic differential q2 equal to zero (q2 = c · H(fρ), for some
c ∈ C). This implies that the element

(
J, (0, qm2+1, . . . , qml+1)

)
belongs to E and it

is mapped to ρ by Φ. In the end, if the conjecture were true, the above map would
be injective (unique conformal map fρ) and it would induce a Mod(S)-invariant
parametrization of Hit(S,G0) as a holomorphic vector bundle over Teichmüller
space.

Theorem 1 ([18],[14],[16]). If G0 is a split simple real Lie group of rank 2 with
finite center, then Labourie’s conjecture holds.

Theorem 2 ([7],[1],[8]). If G0 is a simple real Lie group of rank 2 and of Hermitian
type, then Labourie’s conjecture holds.

It should also be added that the uniqueness of the conformal map holds in the
semisimple case with G = PSL(2,R)×PSL(2,R) ([21]), and it was the first group,
after PSL(2,R) ([23]), for which existence and uniqueness could be proved. Histor-
ically, the first proof for a simple group of higher rank was found independently by
Loftin ([18]) and Labourie ([14]) when G0 = PSL(3,R). In this case the argument
is geometric and there is no need to use the tools of harmonic and conformal maps
in symmetric spaces. Indeed, the connected component Hit(S,PSL(3,R)) can be
parametrized as the space of (properly) convex RP2-structure on S ([11],[6]). In
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particular, thanks to a highly non-trivial theorem ([4],[5]) the datum of a (prop-
erly) convex RP2-structure on the surface is the same as the datum of an immersion

S̃ → R3 as a hyperbolic (equivariant) affine sphere. Such immersion is completely
determined by the Blaschke metric h (second fundamental form) and the Pick
form, i.e. the difference between the restriction of the flat connection on R3 and
the h-Levi-Civita connection. Such tensors descend on the surface by equivariance
and they give rise to a pair (J, q) with q a cubic holomorphic differential with
ℜ(q) equal to the Pick form (up to a contraction with the metric). This gives a
Mod(S)-invariant parametrization of Hit(S,PSL(3,R)) as the holomorphic vector
bundle of cubic differentials over T (S). The general case of a simple split rank
2 real Lie group G0 has been established by Labourie some years ago ([16]). Up
to isomorphism these are: PSL(3,R),Psp(4,R) and GR

2 , where the last one is the
real split form of the exceptional G2. The proof is general and consists of defining

a new class of maps (called cyclic maps) from the universal cover Σ̃ to the homo-
geneous space G0/T , where T < K0 is a maximal torus, that has the structure of
a fibre bundle over the G0-symmetric space. Due to the fact that in the case of
rank 2, every Higgs bundle in the image of the Hitchin section coming from a pair
(q2, qm2+1) with q2 = 0 is cyclic, Labourie showed that the datum of a cyclic map
in G0/T is equivalent to the datum of a conformal map in the symmetric space.
Finally, studying the infinitesimal deformations of cyclic maps, seen as solutions to
a Pfaffian system, he proved that the holomorphic vector bundle E of cyclic Higgs
bundles is Mod(S)-equivariant isomorphic to Hit(S,G0). Notice that this is the
same vector bundle which appears in the definition of the map Φ, since in rank 2
we only have two non-zero exponents: m1 = 1 and m2. When G0 = PSL(3,R) we
recover the previous result, i.e. E is the holomorphic bundle of cubic differentials.
When G0 = Psp(4,R) the second exponent is m2 = 3 and the fibre of E over
J ∈ T (S) is H0(Σ,K4). Finally, when G0 = GR

2 the second exponent is m2 = 5,
hence EJ ∼= H0(Σ,K6).

The case of maximal representations for Lie groups of Hermitian type of rank
2 is somewhat more challenging because in general the related connected com-
ponents in the character variety are neither smooth nor contractible. Imitating
the cyclic surfaces approach, Collier proved that Labourie’s conjecture is true for
every representation in the 2g − 3 Gothen components of the Sp(4,R)-character
variety ([7]). Three years later, Alessandrini and Collier generalized the previ-
ous result to any maximal representation in the Sp(4,R)-character variety ([1]).
In both cases, they provided a Mod(S)-invariant parametrization of the maximal
connected components as a holomorphic fibre bundle over Teichmüller space. In
2019, Collier, Tholozan and Toulisse proved that the Labourie’s conjecture is true
for any simple Lie groups of Hermitian type of rank 2 ([8]). Thanks to the classifi-
cation in rank 2 and to the work in [22],[2],[3], they reduced to study only maximal
representations in SO0(2, n + 1), for n ≥ 2. Then, with the use of Higgs bundles
and the study of the pseudo-Riemannian geometry of H2,n (a homogeneous space
for SO0(2, n+1), n ≥ 2) they proved the existence and uniqueness of the conformal
map, respectively.
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Labourie’s conjecture was also thought to be true for rank 3 and above, but
it has very recently been shown to be false in both the split and Hermitian type
case.

Theorem 3 ([19]). Let n ≥ 3. For every closed oriented surface S of genus
g ≥ 2 there exists a maximal representation ρ : π1(S) → Πn

i=1PSL(2,R) such
that the energy functional eρ : T (S) → R≥0 admits an unstable critical point. In
particular, there are at least two conformal surfaces in the product of hyperbolic
surfaces determined by ρ.

Theorem 4 ([20]). Let G0 be a simple real split Lie group and let S be a closed
oriented surface of genus g ≥ 3. Then, there exists a ρ ∈ Hit(S,G0) with at least
two area minimizing ρ-equivariant conformal maps in G0/K0.

Although Labourie’s conjecture in general is false, it should be noted that it may
still be possible to find a Mod(S)-invariant parameterization of the Hitchin/maxi-
mal connected components using different methods from those proposed here.
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Θ-Positivity I

Merik Niemeyer

(mentored by T. Weisman)

1. Motivation

As always, assume that S is a closed oriented surface with genus g ≥ 2. If G is a
split real semisimple Lie group, Fock and Goncharov showed that Hitchin repre-
sentations in Hom(π1(S), G) can be characterised by the existence of a continuous
positive equivariant boundary map from the boundary of the fundamental group
to the generalised flag variety G/B, for B a Borel subgroup, where a map is called
positive if it maps any finite cyclic subset of the cyclic set ∂π1(S) to a positive
configuration of flags [2]. The underlying notion of positivity in G/B is that of
total positivity as introduced by Lusztig [5].

On the other hand, if G is Hermitian of tube type, maximal representations can
be characterised in a similar way due to Burger, Iozzi and Wienhard [1]: A repre-
sentation is maximal if and only if there exists a continuous positive equivariant
boundary map to the Shilov boundary of the Hermitian symmetric space. This
Shilov boundary can be viewed as a partial flag variety G/Q for some parabolic
subgroup Q of G and the notion of positivity is given by maximality of the Maslov
index.

The similarity of these characterisations makes it plausible to consider positivity
as a unifying framework for higher Teichmüller theory, which leads to the notion
of Θ-positivity as introduced by Guichard and Wienhard [3, 4].

2. Lusztig’s total positivity

A matrix in GL(n,R) is called totally positive if all of its minors are positive num-
bers. The subset consisting of such elements is denoted GL(n,R)>0. A. Whitney
proved a decomposition theorem, namely

(1) GL(n,R)>0 = U>0
− H◦U>0

+ ,
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where U>0
+ and U>0

− denote the subsets of upper and lower triangular unipotent
matrices whose minors are all positive unless they are zero by triangularity, and
H◦ denotes the identity component of the subgroup of diagonal matrices.

This result restricts to SL(n,R) and Lusztig introduced a notion of positivity
for arbitrary split real semisimple Lie groups [5] by reversing the above: Given
such a group G, after fixing a pinning, and thus in particular a pair of opposite
Borel subgroups B±, for G, he defines subsets U>0

± of the unipotent radicals U±

of B±. These are constructed as the image of a map, which depends on choosing
a reduced expression for the longest element in the Weyl group W of G in terms
of the standard generators corresponding to the simple roots of the Lie algebra g

of G. Lusztig proved that this construction is independent of the chosen reduced
expression and that the resulting subsets are actually semigroups, called the totally
positive subsemigroup of U±, respectively.

These are then used to define the totally positive semigroup of G,

(2) G>0 = U>0
− H◦U>0

+ ,

where H◦ denotes the identity component of the maximal torus H = B+ ∩ B−,
just like before.

Finally, this gives a notion of positive triples (or more generally tuples) in the
flag variety F = G/B+, which shows up in the work of Fock and Goncharov
as mentioned in the introduction. Recall that a pair (F1, F2) of flags is called
transverse if it lies in the G-orbit of ([B+], [B−]) in F

2, and that a triple of flags
is called generic if the flags are pairwise transverse. Let us denote by ΩF the set
of flags transverse to F .

Lusztig proved that the subset F>0 := G>0[B+] of F is a connected component
of Ω[B+] ∩ Ω[B−], which carries the structure of a semigroup [5]. Moreover, this
subset is used to define positive triples in F , which are triples (F1, F2, F3) for which
there exists a g ∈ G such that gF1 = [B+], gF3 = [B−] and gF2 ∈ F

>0.

3. Θ-positivity

Θ-positivity, recently introduced by Guichard and Wienhard [3, 4], provides a
further generalization of Lusztig’s total positivity. However, as mentioned in the
beginning it also encompasses the notion of positivity provided by the Maslov
index in the case where G is Hermitian of tube type.

The setup is the following: Let G be a semisimple real Lie group with finite
center. Let K < G be a maximal compact subgroup with Lie algebra k. We have
a decomposition g = k ⊕ k⊥ of the Lie algebra of G. Choose a maximal abelian
Cartan subspace a ∈ k⊥, and consider the corresponding restricted root system
Σ = Σ(g, a). Let ∆ be a set of simple roots and choose a subset Θ ⊂ ∆.

This choice gives us a decomposition

g = lΘ ⊕ uΘ ⊕ u
opp
Θ

of the Lie algebra, where uΘ is the sum of all root spaces for positive roots that
lie in Σ \ Span(∆ − Θ) and u

opp
Θ is the sum of the corresponding negative root

spaces. Finally, lΘ is the sum of all remaining root spaces, i.e. g0 and those for
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which the root lies in Span(∆ − Θ). Associated to these is a pair of opposite
parabolic subgroups PΘ = NG(uΘ) and P opp

Θ = NG(u
opp
Θ ) of G and the Levi

subgroup LΘ = PΘ ∩ P
opp
Θ with Lie algebra lΘ.

Let us denote the center of lΘ by zΘ and its intersection with the Cartan sub-
space by tΘ = zΘ ∩ a. This acts on uΘ via the adjoint action and uΘ decomposes
into weight spaces uβ for this with β ∈ t∗Θ. Since the roots of g restrict to t∗Θ, we
can talk about weight spaces uβ for β ∈ Θ (a slight abuse of notation).

In this setup Guichard and Wienhard make the following definition: G is said
to admit a Θ-positive structure if for all β ∈ Θ the weight space uβ contains an
L◦
Θ-invariant acute non-trivial open convex cone [3].
The easiest example to think about is the case where G is split real and Θ = ∆.

Then the weight spaces are simply the root spaces, which are one-dimensional,
and the cones correspond to R+.

Remarkably, Guichard and Wienhard have given a classification of all pairs
(G,Θ) consisting of a simple real Lie group and a subset Θ of the simple roots
such that G admits a Θ-positive structure [3, 4]. Of course, this includes the cases
where G is split real or Hermitian of tube type but also the new case of G being
locally isomorphic to SO(p+ 1, p+ k) with p, k > 1 and some exceptional cases.

Assume that (G,Θ) falls into one of these cases. With the Θ-positive structure
in place, it is possible to define the Θ-Weyl group, which is isomorphic to the Weyl
group of some simple root system. One can use a reduced expression of the longest
word in this group to define a map which is analogous to the map Lusztig uses
in his construction and obtain Θ-positive subsemigroups U>0

Θ ⊂ UΘ = exp(uΘ)

and Uopp,>0
Θ ⊂ Uopp

Θ = exp(uoppΘ ), which finally allows one to define the Θ-positive

subsemigroup G>0
Θ of G as the semigroup generated by U>0

Θ , Uopp,>0
Θ and L◦

Θ.
This gives rise to a notion of positivity on the flag variety G/PΘ, where we have

results which are very similar to the ones discussed in the case of total positivity.
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Θ-positivity II

Guillermo Barajas

(mentored by M. Riestenberg)

1. Θ-positive structures

Let GR be a connected simple real Lie group with Lie algebra gR. Choose a set
of (restricted) simple roots ∆ and fix a subset Θ ⊂ ∆. Let P := PΘ be the
corresponding parabolic subgroup, U ≤ P its unipotent radical. Assume that GR

has a Θ-positive structure N ⊂ U (defined as in ’Θ-positivity I´). A Θ-positive
structure on GR provides a notion of positive tuples on GR/P .

Example 1.1. If we take GR = SL(2,R) then P is the parabolic subgroup consisting
of upper triangular matrices and we get a notion of positive triples and quadruples
in SL(2,R)/P ∼= S1. A triple (a, b, c) ∈ S1 is positive if its elements are pairwise
disjoint, and a quadruple (a, b, c, d) is positive if b and d lie between a and c.

Now let S be a compact real surface of genus g ≥ 2. Recall that its fundamental
group π1(S) acts on its Shilov boundary, which is isomorphic to S1.

Definition 1.2. A representation π1(S) → GR is Θ-positive if there exists a
π1(S)-invariant subset A ⊂ S

1 and a π1(S)-equivariant map A→ GR/P such that
positive quadruples are sent to positive quadruples.

Definition 1.2 was introduced in [4] to find higher Teichmüller components
in the representation variety R(S,GR) := Hom(π1(S), G

R) � GR. These are con-
nected components consisting entirely of faithful representations with discrete im-
age. The set of classes of Θ-positive representations is denoted RΘ−pos(S,G

R).

Theorem 1.3 (Guichard–Labourie–Wienhard). Every Θ-positive representation
π1(S) → GR is Anosov, in particular discrete and faithful. Moreover, the set
RΘ−pos(S,G

R) is open in R(S,GR) and it is closed in the subspace R∗(S,GR)
corresponding to representations π1(S)→ GR which do not virtually factor through
a parabolic subgroup.

In other words, R∗(S,GR) consists of conjugacy classes of representations π1(S)
→ GR which, when restricted to any finite index subgroup of π1(S), do not factor
through a parabolic subgroup of GR.

Theorem 1.4 (Beyrer–Pozzetti). The set RΘ-positive (S,PO(p, q)) is closed in
R(S,PO(p, q)).

In general the question of whether RΘ-positive (S,G
R) is closed in R(S,GR) is

not known. To find higher Teichmüller components we introduce Higgs bundle
techniques following [1].
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2. Magical sl(2)-triples

Let G be a connected simple complex Lie group. By the Jacobson–Morozov
Theorem there exists a one-to-one correspondence between conjugacy classes of
nilpotent elements e ∈ g (such that some power of ad(e) is 0) and conjugacy
classes of sl(2)-triples (f, h, e). Given an sl(2)-triple (f, h, e), the corresponding
sl(2)-subalgebra induces two decompositions of g, namely a decomposition into
irreducible representations:

(1) g =
⊕

j

Wj ,

where Wi is a direct sum of ni copies of the (unique) irreducible representation of
dimension i+ 1, and a decomposition into eigenspaces of ad(h):

g =
l⊕

j=−l

gj .

There is a vector space involution θe of g whose restriction to ad(f)k(Wi ∩ gi)
is equal to (−1)k+1 if i > 0 and is trivial on W0.

Definition 2.1. (f, h, e) is a magical triple if θe is a Lie algebra involution.

A real form of g is the subalgebra of fixed points under an antiholomorphic
involution. We sometimes call the involution itself a real form and we denote the
set of real forms conj(g). Recall that there is a bijection

conj(g)/ Int(g) ↔ Aut2(g)/ Int(g),

where Aut2 is the group of Lie algebra (holomorphic) involutions. More precisely,
for any conjugation ι there exists a compact form τ of g that commutes with ι,
which defines a Cartan involution ιτ of ι.

Remark 1. An (antiholomorphic/holomorphic) involution of g does not, in general,
integrate to an involution form of G. This is true, for example, if G is simply
connected or the adjoint form of g. However, we always assume integrability.

Definition 2.2. The canonical real form gR associated to the magical triple
(f, h, e) is the fixed point subalgebra of g under a real form τe having σe as a
Cartan involution. There is an associated real subgroup GR ⊂ G.

Theorem 2.3 (Bradlow–Collier–Garcia-Prada–Gothen–Oliveira). The simple real
Lie groups which are the canonical form of a magical triple of some complex simple
Lie group are exactly the ones with a Θ-positive structure for some Θ. More
precisely, a magical triple in g determines a parabolic subgroup of GR which is
the same as PΘ for some set of simple restricted roots Θ featuring a Θ-positive
structure, and vice-versa.

See [1] for a precise list of the weighted Dynkin weighted diagrams determined
by the respective magical triples.
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3. Higgs bundles and Cayley components

Equip S with a complex structure, making it a compact Riemann surface X . Let
gR = hR ⊕mR be a Cartan decomposition of GR (i.e. hR is maximal compact and
mR is its orthogonal subspace according to the Killing form). Let h and m be the
respective complexifications, and let H < G be subgroup with Lie algebra h.

Definition 3.1. Let L → X be a holomorphic line bundle. An L-twisted GR-

Higgs bundle is a pair (E,ϕ), where E is a holomorphic H-bundle and ϕ ∈
H0(X,E(m) ⊗K) is a holomorphic section (the Higgs field). Here E(m) := E ×
m/H, where H acts on the first factor via the bundle action and on m via the
restriction of the adjoint representation of G on g; this is a holomorphic vector
bundle with fiber m. If L = K, the canonical bundle of X, we omit L.

There is a moduli spaceML(X,G
R) of L-twisted GR-Higgs bundles parameter-

ising isomorphism classes of polystable L-twisted GR-Higgs bundles. If L = K we
omit the subscript.

Theorem 3.2 (Non-abelian Hodge correspondence). There exists a real analytic
isomorphism

M(X,GR)
∼
−→ R(X,GR).

In particular, connected components can be studied from both points of view.

Theorem 3.3. There exists an open and closed complex algebraic embedding

(2) Ψ̂e :MKmc+1(GR

0,ss)×

rk(g(e))∏

j=1

MKlj+1(R+)→M(GR),

where we have dropped X from the notation for simplicity and: {mc} ∪ {lj}j is
a subset of the exponents j appearing in (1) and the group GR

0,ss is a real form
of the subgroup G0,ss < G whose Lie algebra is the semisimple part of g0. More-
over, each connected component inMe(G

R), which we call a Cayley component,
contains elements which are mapped, via the non-abelian Hodge correspondence,
to Θ-positive -representations, and it consists entirely of representations which do
not virtually factor through a parabolic subgroup of GR.

Using Theorems 1.3 and 3.3 together, we find the following important result:

Theorem 3.4. Cayley components consist entirely of Θ-positive representations,
in particular they are higher Teichmüller components.
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Compactifications via currents

Xenia Flamm

(mentored by G. Martone)

In this talk, we will use Bonahon’s space of projectivized geodesic currents to
construct compactifications of higher rank Teichmüller spaces. A recipe is the
following. Let T be a higher rank Teichmüller space. Assume that a continuous
map

f : T → {geodesic currents} → P({geodesic currents})

exists. Then f(T ) provides a compactification of T , since the space of projectivized

geodesic currents is compact. A boundary point will be a point in f(T ) \ f(T ).
The first part of this talk will be concerned with the properties of the space of
(projectivized) geodesic currents following [3]. In the second part we will discuss
the question on how to assign to a representation in a higher rank Teichmüller
space a geodesic current following [5] and [9].

Let S be a closed, orientable, connected surface of genus g ≥ 2, endowed with
an auxiliary hyperbolic metric. We will denote its fundamental group by π1(S).
A geodesic current on S is a locally finite, π1(S)-invariant, regular Borel measure
on G, the space of (unoriented and unparametrized) geodesics in the universal

cover S̃ of S. Denote by C the space of geodesic currents on S endowed with the
weak*-topology. It is not difficult to see that C is independent of the choice of
hyperbolic metric on S [3, Fact 1]. Many seemingly different objects are in fact
geodesic currents, e.g. homotopy classes of closed curves on S or isotopy classes of
hyperbolic metrics, i.e. points in the Teichmüller space T (S) of S [3, Lemma 9].
The induced map f : T (S)→ C is continuous, injective and a homeomorphism onto
its image, see [3, Corollary 11]. ConsiderDG ⊆ G×G the set of pairs of transversely
intersecting geodesics. We define the intersection number i : C × C → R≥0 as
i(µ, η) := (µ×η)(DG/π1(S)). Then i is finite, continuous, symmetric and bilinear,
and generalizes the geometric intersection number of homotopy classes of closed
curves on S [2, Proposition 4.5]. In order to prove that the space PC := C/R>0

of projectivized geodesic currents is compact, we make us of the compactness
criterion: Let α ∈ C be such that every geodesic in G intersects a geodesic in
the support of α, then {β ∈ C | i(α, β) ≤ 1} is compact [3, Proposition 4]. The

continuous map C \ {0} → C, β 7→ β
i(α,β) factors through PC, hence the latter is

compact [3, Corollary 5].
The above considerations cummulate in the following results [3, Corollary 16,

Theorem 17, Propostion 18].

Theorem 1. The map f : T (S) → PC is a homeomorphism onto its image, and

f(T (S)) is homeomorphic to Thurston’s compactification.

To associate to a representation in a higher rank Teichmüller space a geodesic
current, we will make use of positive cross-ratios. A positive cross-ratio is a π1(S)-
invariant continuous function B : ∂∞π1(S)

[4] → R>0, defined on distinct ordered
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four-tuples of points, that is symmetric and additive. The B-period of a non-
trivial γ ∈ π1(S) is ℓB(γ) := B(γ+, γ−, x, γx) for some (any) x ∈ ∂∞π1(S) \ {γ

±},
where γ+ respectively γ− is the attracting respectively repelling fixed point of
γ. A geodesic current µ ∈ C is an intersection current for B if for every non-
trivial γ ∈ π1(S) we have ℓB(γ) = i(µ, γ). If B is positive there exists a unique
intersection current for B [4]. Let ρ : π1(S)→ PSL(n,R) be Pk-Anosov. Martone-
Zhang prove in [5, Proposition 2.24] that there exists a unique cross-ratio Bρ

k such
that for all non-trivial γ ∈ π1(S)

ℓBρ

k
(γ) = log

λ1(ρ(γ)) · . . . · λk(ρ(γ))

λn−k+1(ρ(γ)) · . . . · λn(ρ(γ))
,

where λ1(ρ(γ)) ≥ . . . ≥ λn(ρ(γ)) are the absolute values of the generalized eigen-
values of ρ(γ). They define a Pk-Anosov representation ρ to be Pk-positively ratioed
if Bρ

k is positive [5, Definition 2.25]. Putting everything together we conclude that
to a positively ratioed representation ρ we can assign its unique intersection cur-
rent µρ ∈ C. Examples of such representations include Hitchin representations in
PSL(n,R) [5, Theorem 3.4], maximal representations in Sp(2n,R) [6, Section 4.2],
and Θ-positive representations in PO(p, q) [1, Theorem 4.9]. To summarize we
obtain the following. If T is a higher rank Teichmüller space that consists entirely
of Pk-positively ratioed representations, then the map

f : T → PC, [ρ] 7→ [µρ]

is continuous with relatively compact image, and f(T ) provides a compactification
of T . Contrary to the case of Teichmüller space, f is in general not injective. For
example, a Hitchin representation in PSL(n,R) and its contragradient representa-
tion have the same intersection current.

In rank two, there is yet another way of associating to a representation in
a higher rank Teichmüller space a geodesic current as described in [8], [9] and
[10]. We focus here on the case of PSL(3,R) as in [9]. Denote by T3 the Hitchin
component in PSL(3,R). For a Hitchin representation ρ : π1(S)→ PSL(3,R) the
associated equivariant hyperbolic affine sphere carries a strictly negatively curved
Riemannian metric, the Blaschke metric, which descends to a strictly negatively
curved metric mρ on S. Since strictly negatively curved metrics can be viewed as
geodesic currents [7, Theorem 1], we obtain the following continuous map

f : T3 → PC, [ρ] 7→ [µmρ
].

Ouyang-Tamburelli identify the boundary points, i.e. points in f(T3) \ f(T3), with
projectivized mixed structures [9, Theorem A]. A mixed structure is a geodesic
current, that comes from a singular flat metric on a subsurface of S and a measured
lamination on the complementary subsurface.
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Compactifications, buildings and geometric structures

Martin Ulirsch

Let A be a commutative ring with one. A prime cone P in A is a subset P ⊆ A
that fulfils the following axioms:

• P is closed under addition and multiplication, or in other words P+P ⊆ P
and P · P ⊆ P ;
• P ∪ (−P ) = A;
• the support P ∩ (−P ) of P is a prime ideal in A.

We write f >P 0 if −f /∈ P . The real spectrum Sper(A) of A may be defined as
the set of prime cones in A together with the coarsest topology that makes the
sets {P ∈ SpecA | f >P 0} for all f ∈ A open.

What makes this object surprisingly interesting to Higher Rank Teichmüller
Theory is the following: Let A = A(V ) be the coordinate ring of an affine real
algebraic set V . Then the set of points in V naturally embed as a dense and open
set into the subset of closed points Spercl(A) of Sper(A). But there are additional

closed points “at infinity” that make Spercl(A) into a compact Hausdorff space.

Therefore one may think of Spercl(A) as a canonical compactification of an affine
real algebraic set V . We refer the reader to [3] as the standard reference on the
many beautiful properties of the real spectrum.

Classical Teichmüller space is well-known to carry the structure of a real semi-
algebraic set. In [2] uses the real spectrum to construct a canonical compactifi-
cation of Teichmüller space and gives an interpretation of its boundary points in
terms of actions of the fundamental group Γ of a compact closed surface of genus
g ≥ 2 on certain R-trees.

In [1] the authors use the same principle to construct a canonical real spectrum
compactification for character varieties associated to a finitely generated group Γ
with values in a connected semisimple group G ≤ SLn defined over Q. Among
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their many announced results there is an interpretation of the boundary points
using operations of Γ on the building associated to G(K) (for a Robinson field K).

This is compatible with another construction of a compactification of the char-
acter variety given in [4]. In [4] Parreau, in particular, shows that the operation
of G(K) on the building of G(K) is naturally an ultralimit of the operation of G
on the symmetric space of G(R). In this sense, this provides us with a geometric
interpretation for points in the boundary of both compactifications.
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Rendus Mathématique. Académie des Sciences. Paris 359 (2021), 439–463.

[2] G. W. Brumfiel, The real spectrum compactification of Teichmüller space, Contemp. Math.
74 (1988), 51–75.

[3] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) 36 (1998), x+430.

[4] Anne Parreau, Compactification d’espaces de représentations de groupes de type fini, Math-
ematische Zeitschrift 272 (2012), 51–86.

The Symplectic Geometry of Higher Teichmüller Spaces

Fernando Camacho Cadena

(mentored by F. Mazzoli)

Let π denote the fundamental group of a compact oriented closed surface S of
genus g ≥ 2, and let G be a connected Lie group. The goal is to present Goldman’s
construction in [1] of a symplectic form on the space of conjugacy classes χ(π,G) :=
Hom(π,G)/Inn(G). The form is invariant under the group of outer automorphisms
of π, which in particular includes the mapping class group of S.

We begin by briefly recalling some symplectic geometry. A differential 2-form ω on
a manifoldM is symplectic if it is non-degenerate and closed. Flows on symplectic
manifolds can be constructed in the following way. Let f : M → R be a smooth
function. Then the Hamiltonian vector field of f is the unique vector field Hf on
M such that df(·) = ω(Hf , ·), and the flow of Hf is the Hamiltonian flow of f .
For χ(π,G) we will discuss the tangent space to define the Goldman symplectic
form. With that, we describe some explicit Hamiltonian flows on χ(π,G).

1. The Zariski tangent space

Note that Hom(π,G) is an algebraic variety when G is an algebraic group, and
has singular points. Nevertheless, there is a notion of Zariski tangent space at a
representation ρ, which we find in two steps. Let u : π → g be a function, and
define a small path ρt of representations given by ρt(γ) = exp(tu(γ) +O(t2))ρ(γ).
Since ρt is also a representation, one deduces that

(♦) u(αβ) = u(α) + Adρ(α)u(β).

The Zariski tangent space to ρ is thus identified with {u : π → g satisfying (♦)}.
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Now we turn to the Zariski tangent space to an Inn(G) orbit. Let gt = exp(tu0 +
O(t2)) be a path in G, for some u0 ∈ g. The path ρt(γ) = g−1

t ρ(γ)gt is in the
Inn(G) orbit. Rewriting ρt as before with a function u : π → g, one deduces that

(♥) u(γ) = Adρ(γ)u0 − u0.

Hence, the Zariski tangent space at ρ to Inn(G).ρ is identified with {u : π →
g satisfying (♥)}.

The Lie algebra g is turned into a π module through the adjoint action, denoted by
gAdρ . The equations (♦) and (♥) define respectively the cocycles and coboundaries
in the group cohomology of π with coefficients in gAdρ . The Zariski tangent space

to [ρ] is therefore identified with H1(π, gAdρ
).

What is meant by a symplectic form in our case, is a bilinear, alternating, non-
degenerate pairing at each Zariski tangent space, which is a closed form when
restricted to the smooth points. It is well known that Hitchin components are
smooth. More generally, Goldman found in [1] that ρ ∈ Hom(π,G) is a smooth
point if and only if dim(Z(ρ)/Z(G)) = 0, and that Inn(G) acts freely on the set of
smooth points.

2. The Goldman Symplectic Form

To define the Goldman symplectic form, we require that G admit an orthogonal
structure. That is, a bilinear, symmetric, non-degenerate, and AdG invariant
pairingB : g×g→ R. Semisimple Lie groups admit an orthognal structure through
the Killing form. More generally, reductive groups also admit such structures.

The Goldman pairing ω[ρ] on Zariski tangent spaces at an equivalence class [ρ] is

defined through H1(π; gAdρ
) × H1(π; gAdρ

)
B(·⌣·)
−−−−−→ H2(π,R)

⌢[π]
−−−→ R where ⌣

is the cup product on cohomology, and ⌢ [π] is integration with a fundamental
class (coming from the orientation of S) inducing Poincaré duality. The following
theorem is due to Goldman in [1].

Theorem. The pairing ω[ρ] is bilinear, alternating and non-degenerate for every
[ρ] ∈ χ(π,G). Moreover, the form ω is closed on the smooth part of χ(π,G), and
is Out(π) invariant.

In the case when G = PSL(2,R) and B(X,Y ) = trace(XY ) the symplectic
form ω restricts to a symplectic form on Teichmüller space T (S). Goldman then
obtains that ω = −2ωWP , where ωWP is the Weil-Petersson symplectic form.

The Weil-Petersson metric is also a Kähler form on T (S). Labourie and Went-
worth showed in [3] that the pressure metric on Hitchin components obtained by
using the highest eigenvalue is not compatible with the Goldman symplectic form.
Nevertheless, Kim and Zhang in [4] and Labourie in [5] show that when G has
real rank 2, the Hitchin component carries a family of Kähler structures, but their
relationship to the Goldman form remains mysterious.
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3. Hamiltonian Flows

We can now describe some Hamiltonian flows in χ(π,G), generalizing the well
known twist flows in Teichmüller space. Fix a simple separating curve α in S. A
twist along α in T (S) is a deformation of a hyperbolic structure given by cutting S
along α into S1 and S2, and then regluing after twisting S2. Let ρ be the holonomy
of a hyperbolic structure and Xα ∈ sl(2,R) such that ρ(α) = exp(ℓα(ρ)Xα/2),
where ℓα(ρ) is the length of α in the hyperbolic metric induced by ρ. Then the twist
is given by ρt(γ) = exp(tXα)ρ(γ)exp(−tXα) if γ ∈ π1(S1) and by ρt(γ) = ρ(γ)
if γ ∈ π1(S2). The key observation here is that Xα ∈ Z(ρ(α)), which allows us
to reglue the representations along α. In general, given ρ ∈ Hom(π,G), and a
path ζt ∈ Z(ρ(α)), a generalized twist flow is defined by ρt(γ) = ζtρ(γ)ζ

−1
t when

γ ∈ π1(S2) and by ρt(γ) = ρ(γ) if γ ∈ π1(S1). Goldman obtains in [2] that such
flows are Hamiltonian flows for functions of the form fα : [ρ] 7→ f(ρ(α)), where
f : G→ R is a conjugation invariant function. In particular, when G = PSL(2,R)
and ℓα is the length of α on a hyperbolic structure, the Hamiltonian flow is the
twist flow in T (S). One can use this fact to justify Wolpert’s magic formula ωWP =∑3g−3

i=1 dℓci ∧ dτci in Fenchel-Nielsen coordinates.

An interesting observation is that in T (S), the hyperbolic structure on a pair of
pants is completely determined by the lengths of the boundary curves, i.e. by
the conjugacy classes for the corresponding representation. It is no longer true
that in higher rank, a representation on a pair of pants is fully determined by the
conjugacy classes of the boundary curves.

Figure 1. Eruption Flow

New Hamiltonian flows were de-
fined by Wienhard and Zhang in [6]
for Hit(π,PGL(3,R)), called eruption
flows. These flows deform the inte-
rior of a pair of pants, while preserving
the conjugacy classes of the boundary.
They are roughly described as follows,
with the figure inspired from [6]. Take
an ideal triangulation T, T ′ (in teal and
green) of a pair of pants. A Hitchin
representation determines a boundary
map ξ : ∂∞π → F(R

3). The endpoints
of lifts of T are sent to flags whose 2
dimensional parts determine a triangle
∆ (in black) in RP

2. Connecting the one dimensional part of the flag to the vertex
of ∆ opposite of it, one obtains a smaller equilateral (with respect to the Hilbert
metric induced by ∆) triangle Λ (in purple). The eruption flow increases the side-
length of Λ by shifting the one dimensional parts of ξ along the two dimensional
parts. The process is repeated for T ′ but decreasing the length, and then repeated
for the other lifts.
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Higher Degree Complex Structures

Alexander Nolte

(mentored by A. Thomas)

The aim of this talk is to present the current state of the theory of higher complex
structures, as introduced by Fock and Thomas in [1]. Our starting point is the
following perspective on complex structures on a closed, oriented surface S.

A complex structure on S is equivalent to an endomorphism J ∈ End(T ∗S) so
that J2 = −Id. At a point x ∈ S, the action of J on the complexified cotangent
space T ∗C

x diagonalizes along two eigenspaces V ±i
x with eigenvalues ±i. As J is an

endomorphism of the real cotangent bundle, V i
x and V −i

x must be conjugate under
the natural conjugation on T ∗C(S). As a consequence, J is entirely determined by
its −i eigenspaces, which are linear directions within the complexified cotangent
bundle.

The idea of higher complex structures is to replace these linear directions with
“polynomial directions.” These are encoded as sections of a bundle whose fibers are
special ideals in algebras of polynomials on fibers of T ∗S. The “higher” in “higher
complex structures” refers to raising the degree of polynomials considered: degree
n− 1 polynomials correspond to n-complex structures.

In our exposition, the relevant algebras of polynomials on T ∗S consist of ap-
propriate restrictions along the zero section Z∗S of the cotangent bundle of jets
of functions f : T ∗S → C that vanish on Z∗S, as in [2]. Diffeomorphisms of T ∗S
that map Z∗S to itself act on these functions on the right by pre-composition, and
this gives rise to an action on higher complex structures.

The symplectic structure of T ∗S allows us to pick out the right group of these
diffeomorphisms to use as an equivalence relation in our setting. This turns out to
be the group Ham0

c(T
∗S) consisting of Hamiltonian diffeomorphisms of T ∗S gen-

erated by compactly supported Hamiltonian flows that setwise fix the zero section

This material is based upon work supported by the National Science Foundation under Grant
No. 1842494.
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at all times. The group Ham0
c(T

∗S) is called the higher degree diffeomorphism
group.

The action of the higher degree diffeomorphism group on n-complex structures
has a rather different flavor than the action of the group Diff0(S) of diffeomor-
phisms isotopic to the identity on complex structures. A new difficulty in working
with the action of Ham0

c(T
∗S) is that for n > 2, the quotient of Ham0

c(T
∗S) by the

kernel of its action on degree-n complex structures acts neither properly nor freely.
On the other hand, the action of Ham0

c(T
∗S) on general n-complex structures has

some useful algebraic structure which is not present in the n = 2 case.
In any matter, the key definition of this talk is:

Definition 1. The degree-n Fock-Thomas space T n(S) is the quotient of the
collection of all orientation-compatible1 degree-n complex structures on S by the
action of the higher degree diffeomorphism group.

This all may seem rather abstract, but there are coordinate systems in which
higher complex structures can be worked with quite concretely. Following [1] (c.f.
[2], §6), one way to do this begins by fixing a reference complex structure Σc.
Then take a local holomorphic coordinate z, and write p := ∂z, p := ∂z̄. Any
orientation-compatible n-complex structure I has a unique expression of the form
I = 〈−p + µ2p + · · · + µnp

n−1〉 with |µ2| < 1. The coefficients µk (k = 2, ..., n)
transform as (−k + 1, 1)-tensors on the reference Riemann surface Σc and give
coordinates for the space of all orientation-compatible n-complex structures on S.
In particular, µ2 is a Beltrami differential on Σc.

It is worth mentioning that in this perspective, the orbit of the µ2-coordinate
of a n-complex structure under Ham0

c(T
∗S) coincides exactly with the orbit of the

Beltrami differential µ2 on Σc under the standard action of Diff0(S) on complex
structures on S. This gives rise to a natural identification of the degree-2 Fock-
Thomas space T 2(S) and the Teichmüller space T (S).

In the following, suppose that S has genus at least 2. The basic structural
features of Fock-Thomas spaces are:

Theorem 2 (Fock-Thomas [1]). The degree-n Fock-Thomas space T n(S) has:

(1) Natural projections pk : T n(S)→ T k(S), (k < n) and p : T n(S)→ T (S),
(2) A natural injection in : T (S)→ T n(S),
(3) A mapping class group action.

The projections in Theorem 2 come from truncating polynomials, the inclusion
is in the above coordinates [µ] 7→ [(µ2, 0, ..., 0)], and the mapping class group action
is analogous to the mapping class group action on Teichmüller space.

Further structural results follow from recent analysis by the speaker of the
structure of the action of higher degree diffeomorphisms on n-complex structures:

Theorem 3 (Nolte [2]). Let T n(S) be the degree-n Fock-Thomas space.

(1) T n(S) has a natural smooth structure, diffeomorphic to R(2g−2)(n2−1),

1Degree-n complex structures have underlying complex structures. This means that the
orientation induced by the underlying complex structure agrees with the orientation of S.
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(2) T n(S) has a natural complex structure and a real-dimension n− 2 family
of compatible Kähler metrics,

(3) The projections pk : T n(S) → T k(S) and p : T n(S) → T (S) are holo-
morphic vector-bundle fibrations. The zero section of the vector bundle
structure over T (S) is the image of the injection in : T (S)→ T n(S).

(4) The mapping class group action on T n(S) is proper, and preserves all
above structures.

The guiding conjecture in the study of higher complex structures, and the point
of connection to the theme of this arbeitgemeinschaft, is:

Conjecture 4 (Fock-Thomas). There is a canonical, mapping class group equi-
variant diffeomorphism between T n(S) and the PSL(n,R) Hitchin component.

We mention that analogues of n-complex structures have been defined for gen-
eral semi-simple Lie groups by Thomas [4], and are conjectured to parametrize
other higher Teichmüller spaces.

Fock and Thomas’ conjecture is known to be true for n = 2 and n = 3 ([1],
[2] respectively), though the proof for n = 3 relies strongly on tools specific to
rank 2 Hitchin components. Some other evidence in favor of the conjecture is
that the two spaces are non-canonically diffeomorphic, both possess distinguished
copies of Teichmüller space, and both have natural proper mapping class group
actions. Additionally, Thomas has introduced a program to address the conjecture
in general [3].

Confirmation of Fock and Thomas’ conjecture would answer a number of open
problems in higher Teichmüller theory. In particular, a positive resolution would
give PSL(n,R) Hitchin components natural vector bundle structures over T (S),
mapping class group invariant complex structures, and natural mapping class
group invariant Kähler structures, as Fock-Thomas spaces have all of these. Addi-
tionally, this would substantially further our understanding of the mapping class
group action on PSL(n,R) Hitchin components, since the mapping class group
action on T n(S) is well-understood.

Most compellingly, though, a proof of Fock and Thomas’ conjecture would open
up an avenue of investigation of Hitchin components analogous to the Ahlfors-Bers
development of Teichmüller theory. The interplay between the complex-geometric,
hyperbolic-geometric, and algebraic perspectives on Teichmüller space is at the
center of Teichmüller theory. Fock and Thomas’ conjecture gives a compelling
candidate for an analogue of the complex-geometric perspective on Teichmüller
space in the higher rank setting, where it is currently largely absent.
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Universal Higher Teichmuller Spaces

Charlie Reid

In this talk we discussed two spaces which are claimed to be n = ∞ versions of
the SL(n,R) Hitchin components for a Riemann surface S: Labourie’s space [4] of

homomorphisms π1(S)→ Diffh(S1)⋉C1,h, and Hitchin’s space [2] of Hyperkahler
disk bundles in T ∗S. Labourie’s space is analogous to finite rank Hitchin compo-
nents in that it parametrizes a collection of homomorphisms out of π1(S), and is
universal in the sense that it contains all the SLnR Hitchin components. Hitchin’s
space on the other hand depends on a complex structure on S, and parametrizes
geometric objects which are are analogous to solutions to Hitchin’s equation. The
relationship between these two spaces is still mysterious, but there are intriguing
connections.

Labourie first proves that all SLnR Hitchin components of S, as well as the
space of negatively curved metrics on S, naturally embed into the space of cross
ratios on ∂π1(S) ≃ S1. He defines a cross ratio to be a hölder function of tuples
of 4 points in ∂π1(S) satisfying a list of 5 axioms.

The negatively curved metric case [5] elucidates these axioms, and the way
Labourie goes beyond cross ratios later. Fix a negatively curved metric g on S,
and choose 4 distinct points x, x′, y, y′ in the Gromov boundary ∂π1(S). The
metric lets us define a visual boundary of the universal cover, which gets identified
with ∂π1(S). After choosing horospheres around the 4 points we define the cross
ratio to be the following combination of lengths of geodesic segments.

ab

d

c

x'

y'

x

y

bg(x, y, x
′, y′) = a+ b− c− d

Note that this quantity does not depend on the choice of horocycles. Amazingly,
b(x, y, x′, y′) can be interpreted as a holonomy. The unit tangent bundle T 1S̃ maps
to G = ∂π1(S) × ∂π1(S)\∆, via extending a unit vector to a complete geodesic

and recording the endpoints. Geodesic flow makes T 1S̃ into a principal R bundle
over G. The horocyclic and antihorocyclic distributions on T 1S̃ span a horizontal
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distribution on this principal R bundle, and b(x, y, x′, y′) is its holonomy around
the rectangle [x, x′]× [y, y′] ⊂ G.

(x,y) (x',y)

(x,y') (x',y')

The axioms Labourie gives for a cross ratio are simply the equations satisfied by the
holonomy of a connection of a principal R bundle on G, with some non-degeneracy
and completeness conditions on its curvature.

We can also associate cross ratios to Hitchin representations. Let V be a real
vector space with volume form, and let ρ be a Hitchin representation π1(S) →
SL(V ). Let ξ : ∂Γ→ P(V ) and ξ∗ : ∂Γ→ P(V ∗) be the limit curves.

Bρ(x, y, x
′, y′) :=

〈ξ(x), ξ∗(y)〉〈ξ(x′), ξ∗(y′)〉

〈ξ(x), ξ∗(y′)〉〈ξ(x′), ξ∗(y)〉

Labourie shows that Hitchin representations are determined by their cross ratios,
and gives a complete characterization of the cross ratios arising from SLnR Hitchin
representations.

We define bρ = log|Bρ| to get an additive cross ratio which we can compare
with bg from above. Labourie raises the interesting question of wether cross ratios
associated to negatively curved metrics can be obtained as limits of cross ratios
associated with Hitchin representations.
Bρ turns out to be the holonomy of a natural R∗ bundleX → G with connection.

The total space X is the set of pairs (v, α) ∈ V × V ∗ such that [v] is in the image
of ξ, [α] is in the image of ξ∗, and α(v) = 1. The connection is again spanned
by two natural foliations: the foliation by curves of constant v, and the foliation
by curves of constant α. The quotient Γ\X has all the salient features of a unit
tangent bundle of S for a negatively curved metric, except for a projection to S.

Labourie could have declared the universal Hitchin component of S to be the
space of all Γ invariant cross ratios on ∂Γ, but he decided to single out cross ratios
which are holonomies of equivariant principal R bundles X → G such that Γ\X
is a compact holder manifold, and the R action descends to an Anosov flow. The
horocyclic and anti-horocyclic foliations are determined by this Anosov flow, and
give rise to the connection. In this setting, there is a unique, (up to Diffh(S1) ⋉
C1,h(S1)), way to identify X with the space of 1-jets of functions on S1, such

that π1(S) gets taken to a subgroup of Diffh(S1) ⋉ C1,h(S1). This is roughly
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how Labourie is lead to studying conjugacy classes of homomorphisms π1(S) →

Diffh(S1)⋉ C1,h(S1).
While Labourie studies dynamical structures on the unit tangent bundle,

Hitchin studies differential-geometric structures on the unit disk bundle in T ∗S.
The starting point is the standard SU(2) harmonic bundle coming from the hy-
perbolic metric g on S.

E = K1/2 ⊕K−1/2 ϕ =

[
0 0
1 0

]
h = g−1/2 ⊕ g1/2

SU(2) acts on CP 1 so we can take the associated CP 1 bundle. The total space
is simply P (K1/2 ⊕K−1/2). Hitchin explains how the harmonic bundle (E,ϕ, h)
translates to a hyperkahler structure on P (K1/2 ⊕K−1/2) which has a “fold sin-
gularity” along the equatorial circle bundle. For instance, the Chern connection
Dh corresponds to the horizontal distribution given by Riemannian complements
to the fibers, and the circle of flat connections

{Dh + ζ−1ϕ+ ζϕ† : ζ ∈ U(1)}

corresponds to the circle of complex structures perpendicular to the standard one.
The real structure on (E,ϕ, h) corresponds to an anti-holomorphic involution of
P (K1/2⊕K−1/2) which fixes this circle bundle, and swaps northern and southern
hemispheres. Quotienting by this involution leaves us with a hyperkahler manifold
M , identified holomorphic-symplectically with the unit disk bundle in T ∗S, with
hyperkahler metric satisfying a particular boundary condition.

Hitchin proposed that the SL(∞,R) Hitchin component is the space of all de-
formations of this structure, and conjectured that it is parametrized by an infinite
dimensional vector space. ⊕

n≥2

H0(S,Kn)

Biquard [1] has shown that indeed an open neighborhood in the moduli space of
these folded hyperkahler disk bundles in T ∗S is parametrized by an open neigh-
borhood in this vector space.

A disk bundle in T ∗S, which is a small deformation of the unit disk bundle of
a hyperbolic metric, defines a negatively curved Finsler metric [3], which has a
geodesic flow, and thus defines a point in Labourie’s universal Hitchin component.
The extent to which this map from Hitchin’s space to Labourie’s space is or isn’t
globally defined, injective, and surjective, are all interesting questions.
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ETH-Zürich
ETH Zentrum
Rämistrasse 101
8092 Zürich
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Winterthurerstrasse 190
8057 Zürich
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