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HUTCHINSON’S INTERVALS AND ENTIRE FUNCTIONS FROM THE
LAGUERRE-POLYA CLASS

THU HIEN NGUYEN AND ANNA VISHNYAKOVA

ABSTRACT. We find the intervals [a, B()] such that if a univariate real polynomial or entire

ag_1
an—sar ©
[a, B(a)] for all k > 2, then f belongs to the Laguerre-Pdlya class. For instance, from
J.I. Hutchinson’s theorem, one can observe that f belongs to the Laguerre-Pdlya class (has
only real zeros) when gy (f) € [4,4+00). We are interested in finding those intervals which are
not subsets of [4, +00).

function f(z) = agp+a1z+a2z?+--- with positive coefficients satisfy the conditions

1. INTRODUCTION

We study zero localization of real univariate polynomials and entire functions f(z) = ag +
a12+a22%+- - - with positive coefficients. In 1923, J.I. Hutchinson proved that, if the inequalities
ai_, > dap_say, for all k > 2, are valid, then the function f belongs to the Laguerre-Pélya
class. In this short note, the chief object is to extend the sufficient conditions for a polynomial
or an entire function to belong to the Laguerre—Pdlya class obtained by J.I. Hutchinson, or,
more precisely, to find the intervals [, 5(«)] which are not subsets of [4, +00).

Let us recall some facts from the theory of entire functions.

1.1. The Laguerre—Pdlya class. We begin with the definitions of hyperbolic polynomials,
the Laguerre—Pdlya class and the Laguerre-Pdlya class of type 1.

Definition 1. A real polynomial P is said to be hyperbolic, written P € HP, if all its zeros
are real.

Definition 2. A real entire function f is said to be in the Laguerre—Polya class, written
feL—"P, if it can be expressed in the form

(1) flz) = el 0 Bz ﬁ (1 — z) 6”517

T
where ¢, o, B,z € R, 2 # 0, a > 0, n is a nonnegative integer and 220:1 x,;z < 00.

Definition 3. A real entire function f is said to be in the Laguerre—Pdlya class of type I,
written f € L — PI, if it can be expressed in the following form

@) F2) = e I (1 N xk) ,

k=1

where c € R, 8 > 0,z > 0, n is a nonnegative integer, and Ziozl x,;l < 00.
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2 T. H. NGUYEN AND A. VISHNYAKOVA

Note that the product on the right-hand sides in both definitions can be finite or empty (in
the latter case, the product equals 1).

Various important properties and characterizations of the Laguerre-Polya class and the
Laguerre—Pdlya class of type I can be found in works by I.I. Hirshman and D.V. Widder
[6], B.Ja. Levin [16], G. Pélya and G. Szego [23], G. Pélya and J. Schur [22], monograph by
N. Obreshkov [20, Chapter II] and many other works. These classes are essential in the theory
of entire functions since it appears that the polynomials with only real zeros (or only real and
nonpositive zeros) converge locally uniformly to these and only these functions. The following
prominent theorem provides an even stronger result.

Theorem A (E. Laguerre and G. Pdlya, see, for example, [6] p. 42-46] and [16, chapter VIII,
§3])-

(i) Let (Pn)22,, P,(0) =1, be a sequence of hyperbolic polynomials which converges uni-
formly on the disc |z| < A, A > 0. Then this sequence converges locally uniformly in C
to an entire function from the L — P class.

(ii) For any f € L — P there exists a sequence of hyperbolic polynomials, which converges
locally uniformly to f.

(iil) Let (Py)S%, Pn(0) = 1, be a sequence of hyperbolic polynomials having only negative
zeros which converges uniformly on the disc |z| < A, A > 0. Then this sequence converges
locally uniformly in C to an entire function from the class L — PI.

(iv) For any f € L —PI there is a sequence of hyperbolic polynomials with only negative
zeros which converges locally uniformly to f.

For a real entire function (not identically zero) of the order less than 2 the property of having
only real zeros is equivalent to belonging to the Laguerre-Poélya class. Similarly, for a real entire
function with positive coefficients of the order less than 1 having only real nonpositive zeros is
equivalent to belonging to the Laguerre—Pdlya class of type I. Strikingly, the situation changes
for the functions of order 2 in the case of the Laguerre-Podlya class and for the functions of order
1 in the case of the Laguerre-P6lya class of type I. For instance, the entire function f(x) = e~
belongs to the £ — P class while the entire function g(z) = € does not.

1.2. Hutchinson’s constant. The problem of understanding whether a given polynomial or
entire function has only real zeros is considered subtle and complicated. A simply verified
description of this class, in terms of the coeflicients of a series, is impossible since it is determined
by an infinite number of discriminant inequalities. In 1923, J. I. Hutchinson found a simple
sufficient condition in terms of coefficients for an entire function with positive coefficients to have
only real zeros, which was a generalization of the results by M. Petrovitch [2I] and G. Hardy
[3], or [, pp. 95 - 100].

To formulate the theorem, let us define the second quotients of Taylor coefficients of f. Let
f(2) = Yre arz® be an entire function with real nonzero coefficients, then

a2

3 = qn(f) = —=1 vyn>2.
®3) tn=(f) =~ - Vn=>
In addition, it follows straightforwardly from this definition that

ai\"1 1
4 a, = a1 (—)
( ) n ag qg,—lqg,—2 .

Theorem B (J.I. Hutchinson, [7]). Let f(z) = > poyarz®, ax > 0 for all k, be an entire
function. Then qi(f) > 4, for all k > 2, if and only if the following two conditions are fulfilled:

(i) The zeros of f are all real, simple and negative.

e q72¢71Qn .
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(ii) The zeros of any polynomial Zzzm apz®, m < n, formed by taking any number of
consecutive terms of f, are all real and non-positive.

For some extensions of Hutchinson’s result see, for example, the paper by T. Craven and
G. Csordas, [2] §4]. From Hutchinson’s theorem (Theorem [B)) we see that f has only real zeros
when ¢x(f) € [4, +00).

1.3. Some results related to Hutchinson’s constant. Strikingly, there are many results
which are stated in the following style: there exists a constant ¢ > 1 such that if a polynomial
or an entire function f with nonzero coefficients satisfies the conditions |gx(f)| > ¢ for all k,
then we can formulate a statement about the localization of the zeros of f. For example, in [2]
the authors obtained an analogue of the Hutchinson’s theorem for polynomials decomposed in
the Pochhammer basis. In [5], it was proved that, if for some constant ¢ > 0 a polynomial P
with positive coeflicients satisfies the conditions gx(P) > ¢ for all k, then all the zeros of P lie
in a special sector depending on c. In [10], the smallest possible constant ¢ > 0 was found such
that if a polynomial P with positive coefficients satisfies the conditions gx(P) > ¢ for all k, then
P is stable (all the zeros of P lie in the left half-plane). In [8], the smallest possible constant
¢ > 0 was found such that if a polynomial P with positive coefficients satisfies the conditions
qi(P) > c for all k, then P is a sign-independently hyperbolic polynomial. In [I], the smallest
possible constant ¢ > 0 was found such that if a polynomial P with complex coefficients satisfies
the conditions |gx(P)| > ¢ for all k, then P has only simple zeros.
The following special function

oo
ga(2) =Y ZFa™, a1,
k=0

which is called the partial theta function, plays a significant role in the mentioned circle of
problems. Strikingly, gx(g,) = a? for all kK > 2. One of the interesting questions is, for which
values of a this function belongs to the Laguerre-Pdlya class. The paper [9] by O.M. Katkova,
T. Lobova-Eisner, and A.M. Vishnyakova gives an exhaustive answer to this question. In partic-
ular, it is proved that there exists a constant g., ~ 3.23363666 such that g, € £ — P if and only
if a® > ¢oo. Moreover, the authors studied analogous questions for the Taylor sections of the
function g,. For more details on the partial theta function, see a series of works by V.P. Kostov
dedicated to its various properties [I1I, 12, 13, 4], his joint work with B. Shapiro [I5], and a
fascinating historical review by S.0. Warnaar [24].

It is easy to show that, if the estimation of ¢x(f) only from below is given then the constant
4 in g (f) > 4 is the smallest possible to conclude that f € £ — P (that is, Theorem remains
valid when omitting (ii)). However, if we only have the estimation of g from below and require
monotonicity, then the constant 4 in the condition ¢ > 4 can be reduced to conclude that
f € L —"P. As an example, in [I7], it was proved that if the entire functions have the decreasing
qx such that lim,, ., gx = ¢ > ¢, then the function belongs to the Laguerre-Pdlya class.

In this work, we show that if the estimations on ¢x(f) from below and from above are
given, then the constant 4 can be decreased. We would like to investigate such problems where
assumption gi(f) > ¢ for all k is changed by ¢i(f) € [a, 5] for all k for some given segment
[, B]. As far as we know, the first result of such kind was obtained in [9] where the following
theorem was proved.

Theorem C (O.M. Katkova, T. Lobova, and A.M. Vishnyakova, [9]). Let f(z) = > po, arz®,
ar > 0, be an entire function and o € [3.43;4]. Then qi(f) € [a, 2\(}'595&} for all k > 2 implies
feL—-"r.
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2. HUTCHINSON’S INTERVALS

We present our main result.

Theorem 2.1. Let P(z) =Y, _, axz”, ar, > 0, be a polynomial, and n > 4. Suppose that there
exists o, 1 ++/5 < a < 4, such that q,(P) € [a, ﬁ] forallk=2,3,...,n. Then P € HP.

The following statement is a simple corollary of the above result.

Corollary 2.2. Let f(z) =Y 1o, axz®, ax > 0, be an entire function. Suppose that there ezists
a,1++5 < a <4, such that qi(f) € [mﬁ] forallk=2,3,... Then f € L—P.

Remark 2.3. As it follows from the result about the partial theta-function by [9], the constant
« in the statement of Theorem can not be less than ¢, ~ 3.23363666. We observe that
1+ /5 ~ 3.23606797.

2.1. Proof of Theorem For a polynomial P(z) = Y_}'_, arz® with positive coefficients,
without loss of generality, we can assume that ag = a; = 1, since we can consider a polynomial
T(x) = ag'P(aga; ') instead of P(z), due to the fact that such rescaling of P preserves its
property of having real zeros and preserves the second quotients: ¢x(T) = gq(P) for all k.
For the sake of brevity, we further use notation g instead of g (P). Thereafter, we consider a
polynomial

kxk

(5) Qz) =T(-z) _1_$+Z k1k2

=292 43 qk 19k

instead of P (see for the formulas for coefficients).
Our proof is based on the following lemma.

Lemma 2.4. Let [a, ], 0 < a < B, be a given segment. Then the following two statements are
equivalent:

(a) For every polynomial

z? 3 x?

S p)=1l—-04+—"—— S— + ———
t2.35.04(7) @ 4B 43430
such that q; € [a,B] for all j = 2,3,4, there exists a point xo € (1,a) such that
Sq2,95,a1(T0) < 0.
(b) The following inequalities are valid: o > 1+ /5, and, if a < 4 then § < (4 Ik

Proof. Suppose that the Statement (a) of Lemmais valid. Then for the polynomial Sy o, (%)

=1l-x+Z — @ + ’”6, there exists a point z¢ € (1, a) such that Sy o,0(z0) < 0. It is easy to
check the followmg identity

2 2 /1 2 1
— (L2 4q) o (24222
(6> Sa’(La(ZC) (043 2 + ) (4 + Oé3 Oé) xz

If (i + 5 — é) < 0, then for every € R we have S, o, (x) > 0. Thus,

(1+21>1a1+\/5)(a2)(a1\/5)20,

4 o3 « 4a3 (

whence a € (0,2] U [1 + /5, 00).
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First we consider the case « € (0,2]. By (@, we have

22 1 1 2 1
Sa,a,a(z): <a3 <2+ 4+a3a>ft+1>
X 12 1 14_3 l _|_1
o3 2 17w o))" '

We have two quadratic polynomials in brackets with the following discriminants:

2
1 1 2 1 4
Di=|-%t4/-"+—=——] ——=.
= <2 4 + fo% a) fo%
If Dy <0and D_ <0, then for every z € R we have S, o,o(z) > 0. Thus, at least one of these
two discriminants is nonnegative, whence Dy > 0, and we obtain

1 2 1 _ 4—a3?
- = > -
(7) 4+a3 a = 2a3/2

We observe that 4 — /2 > 0 for « € (0,2]. Thus, the inequality implies

U(a) = —a? 42232 —2>0.

The derivative of ¥ (a)) has a unique positive root ag = %, and the maximal value of ¥ for a > 0
is ¢ (§) = —& < 0. Thus, if the statement (a) of Lemma [2.4]is valid then o > 1+ V/5.
Further, we assume that o > 1 + \/5, and suppose that the statement (a) of Lemma is
valid. Let Sy, 45,4, (2) be an arbitrary polynomial such that ¢; € [a, §] for all j = 2,3,4. We
want to investigate whether there exists xo € (1, ) such that Sy, ¢,.q, (z0) < 0. We observe that

forallz >0

2 .173 l‘4

x
S x)< S r)y=l—-z+——- F5—+ 5.
Q2,QS7Q4( ) qz,q:ha( ) 0o Q%QS ngga
Thus, for every polynomial S, 4,4, () With g; € [a, §] for all j = 2, 3,4, there exists a point
zo € (1,a) such that Sy, g.4.(x0) < 0 if and only if for every polynomial Sy, ¢, «(2) with
q; € [, B] for all j = 2,3, there exists a point z € (1, ) such that Sy, ¢,.a(z0) < 0.
Next, we compute the derivative of Sy, 4, o With respect to g3. We get
0 x3 224
Ao Sazsas.0(T) = 55 = 55—
dqs %G BBe
We observe that ‘lﬁ—z — % >0z < B2 g for all z € (1,a) we get that S,, 4,0 1S
q593 q5q5¢ 2 92,93,
increasing in ¢3. Whence we have

2 3 4

X X xX
Sumania(®) < Sgypal@) =1 — a4 — — o p L
427%701() Q2ﬁa() Py qgﬂ q%ﬂQa

Analogously, we consider the derivative of Sg, 3. (x) with respect to g2 to understand the mono-
tonicity and we get

0 g (2) x? n 223 3zt
—_— €Tr) = —— —_—_—— —_—
gy "0 @ BB G
We show that %Sq%ﬁ,a(x) < 0 for z € (1,a), or, equivalently,

(8) 322 — 2gpafz + g2 > 0.
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Under our assumption that o > 1 + /5, we compute the discriminant of the lefthand side of
and observe that D = ¢3B%a(a — 3) > 0, so the quadratic expression has two positive roots

_ @af £ gf\/ala—3)
3 )

To prove , it is sufficient to check that a < z_, or ¢28\/a(a —3) < geaff — 3. The last
inequality is equivalent to ¢332 + 3a — 2¢2a8 = ¢23(q23 — 2) + 3a > 0, which holds under our
assumptions since ga > «, and 8 > « > 2. Thus, we have proved that for all z € (1, «):

2 3 4
S ) < Sapal@) =1=2+ = g+ .
Consequently, for every polynomial S, 4,4, () such that ¢; € [a, 5] for all j = 2,3,4, there
exists a point z¢ € (1, ) such that Sy, ¢, ¢, (20) < 0 if and only if for the polynomial S, g.q ()
there exists a point zg € (1, ) such that S, g.o (o) < 0.

Now we consider the polynomial S, g (z) for 2 € (1,a). Set x =: ay/By. Since = € (1, ),
we have y € (—= VB f) Hence, after change of variables, we get a self-reciprocal polynomial

P(y) := Sapalav/By) =1 —av/By + aBy? — a/By® + y*
(( Zhy?) — /By +) +aﬁ)

Set w := y~t+y. We want to investigate whether there exists a point wy € (v/B+
such that

&
o
3
+

Q

o+

Ig(wo) = w? — a/Bwo + af -2 <0.

We consider the vertex of the parabola w, = M , and check if it lies in (f + iﬁ, a/B+ #) .

Obviously, w, = a\f < avB+ \F We show that the following inequality is fulfilled af >

VB + ﬁ, or, equlvalently, 8 > a% It is sufficient to prove that a > and it is equiv-

2
a3
alent to a®> — 2o — 2 > 0, which is fulfilled under our assumption o > 1 + \/5; Since w, €

1 1 ot 1 1) . 5 :
<\/B—|— \/B,a\/B—&— ax/B) , there exists wg € (\/B—I— \/B,a\/B—&— ax/B) such that P(wg) < 0 if
and only if the discriminant of this quadratic function is non-negative:

(9) D =a’B8—4aB+8 = fafa—4)+8>0.

The inequality above is equivalent to the following statement: if & < 4 then § < ﬁ. d

Remark 2.5. Lemma is an analog of Theorem 1.5 from [I8]. This theorem states that if
f(z) =1+z+ 3 12, apz” is an entire function with positive coefficients, and 3 < ¢o(f) < 4,
qa(f) >3and 2 < g3(f) < ﬁ, where d = min(gz(f), ga(f)), then there exists ¢ € [—ga2(f), 0]
such that f(z9) <O0.

Now we can prove Theorem Let Qz) =1—-z+ >}, % be a polynomial,
k

3 Gy
n > 4, and there exists « € [1 + V5, 4) such that g € [a, m} forall k =2,3,...,n. Let us

fix an arbitrary j such that 1 < j < |%], and suppose that z € (g2q3 - - - ¢;,q2q3 - - - ¢jqj4+1) (for

j =1 we assume that 1 < z < g2). Then we observe that
2 3 J
T T T
(10) 1<$<7<7< <W,
a2 %43 G q3 " qj
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and
xd i+l
(11) T B O o S S
2 43 95 9293 9595+1
I t2 ™
i+1 1 2, 2
BTG CC 12 N S

We have the following representation:

(12) (—1)j_1Q(ﬂf):<(_1)j_1—(—1)j_1x+_ k,fgjjilfk )

PV Qp_1k

i 1 k+j—1.k N n _1)k+jflxk
k—2 k—1 k—2

=14 q3 R4k kejta 92 43 T 10

—El,a( ) 9;(x) + X2 ().

We note that, for some j the sum X5 ;(x) can be empty (and equal to zero), but for n > 5 we
have j +3 < [§] 43 < n, so all 5 summands in g;(z) are nonzero. We later consider the case
n=4.

For € (g2q3---qj,9293 - - qjq;j+1), we observe that the terms in 3 ;(z) are alternating
in sign and and their moduli are increasing, while the summands in ¥, j(z) are alternating
in sign and their moduli are decreasing. Hence, ¥ j(z) < 0 and X ;(z) < 0 for all z €

(92g3 - 45,0293 - - 4jqj+1), whence we get

(13) (-1)77'Q(z) < gj(x) VY € (g2q3 - G5, 243+~ qjqj+1)-
We have
xdi—1 x x?
gi(r) = ——— <1 — +
! a2 T G243 G105 9393 45149+

23 N xt )
BB C PG GG 0t

Set y = m, and for = € (g293 - - 45,9203 - - - 4jqj+1) we have y € (1, ¢j41). Therefore, we

obtain

2 1 45—
hi(y) = gi(q2as - G—105%) = @3 - @10} 'y

2 3 4
Y Y Y
(1 -yt T3 + 35— )
4G+1  GG195+2 9G1954295+3

Since gj4+1,9j+2,¢j+3 € [a, ﬁ] for some a, where 1 + /5 < a < 4, the polynomial in
brackets satisfies the assumptions of Lemma Thus, there exists y; € (1,q;41) such that

hj(y;) < 0. Hence, there exists ©; = g2q3---qj—1¢;¥; € (g293 - qj,9293 - - qjq;+1), such that
gj(z;) < 0. Taking into account 7 for every n > 5 we obtain

) . _n .
(14) Vi, 1< < |_§Jv Jz; € (¢2q3 - 45,4203 - qjqj+1) = (=1 7'Q(z;) <0

The only problem for n = 4 is when j = 2. In the latter case, we have

z? 3 x? T 2 3
q2 4543 4549344 q2 4543 4549344
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We highlight that the polynomial in brackets is of degree 3, however, we can estimate it from
above with a polynomial of degree 4 as follows:

x x? 3 T x? a3 x?
Q@) <z ({l-—dF 5= =5 | <z|l- =4 5= — 55—+ 555 :
q2 q54s3 459344 q2 4293 454344 45934194
Therefore, we can further reason in the same way as before. Thus, we conclude that is
valid for all n > 4.
Now let us fix an arbitrary j, 5 |+1 < j < n—1, and suppose that = € (¢2q3 - - - ¢, G293 - - ¢j@j+1)-
Then both and are valid, and we have the following representation:

. . k+j 1 k
(15) (_1)3_162(37) = ((_1)J_1 Z 1 k 2 >

e d3 %—1%
Jii (—1)k+i=1gk n (—1)k+i—1gk
+ BT k=2 + k—1 k—2
i=j—3 2 3 SRRy kejt2 92 43 SRk

= 215() + g;(2) + X2,5(2).

We note that for some j, the sum ¥ ;(z) can be empty (and equal to zero), although for n > 4,
we have j —3 > [§] —2 >0, so all 5 summands in g;(z) are nonzero.

For © € (g293---¢j,q293 - - ¢jgj+1), we obeserve that the terms in ¥; ;(x) are alternating
in sign and and their moduli are increasing, while the summands in 3 j(x) are alternating
in sign and their moduli are decreasing. Hence, X1 ;(z) < 0 and X ,(z) < 0 for all x €
(@293 -+ 45,9293 - * - ¢;¢j+1), Whence we get

(16) (=1)77'Q(z) < g;(®) Vo € (q2q3- - G5, Q243+~ G5 j+1)-
We have

i+l

20202 20
gj(x) _ % <1 0243 q5-1495495+1 + 4293 45-19595+1

JJj—1 2 2
4493 4595+ x T

B @ ol P BG4 o0 14
B x3 + x4 '

Set y = LEAAUBEL and we observe that for x € (qaqs- - qj,q2q3 - - - ¢j¢;+1) We have y €

(1,¢j41). Thus, we obtain

2 1
h o 9293 - - q5-1954954+1 \ Q2Q3 qj 1Q§ Q§+1
](y) A g] y - y-]+1

2 3 4
X (1 —y+ vy 2y + = y2 >
qj+1 54195 454195951

Since ¢;+1,4;,q-1 € [a, ﬁ} for some a € [1 4 v/5,4), the polynomial in brackets satisfies
the assumptions of Lemma [2.4f Thus, there exists y; € (1,¢;11) such that h;(y;) < 0. Whence,
there exists x; = w (g293 - - - G5, 9293 - - - ¢jq;+1), such that g;(x;) < 0. Taking into
account (| . for every n > 4 we obtain

(17 vy, L§J +1<j<n—1, 3z; € (g3 g q2gs - 1) : (—1)771Q(z;) < 0.

Since g¢; > 1 for all j = 2,3,...,n, we get 1 < ¢2 < q2q3 < q2q3qs < ... < G243q4 " qn,
whence 1 < 9 < ... < xp_1. By and we have

Q(O) > 07 _Q(xl) > OvQ(xZ) > 07 _Q(xd) > 07 R
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(—=1)"'Q(zy_1) > 0,(~1)"Q(4+00) > 0.
Thus, we have proved that all the zeros of @) are real.
Theorem is proved.

Remark 2.6. Assumptions on g; in Theorem could be slightly weakened for entire functions
and polynomials of higher degrees if we obtain an analogue of Lemma for polynomials of
even degrees that are greater than 4. As it is shown in the proof of Lemma [2.4] an important
role in such considerations is played by special polynomials which have the following property:
a=@=qp=qg=...,and B=qg3=¢qs =¢r = ..., when a < 5.

The paper [19] by T.H. Nguyen and A. Vishnyakova studies the entire functions with alter-
nating second quotients of Taylor coefficients. Let f,p(z) =1 -2+ > 0, % be an

entire function such that o =qu =g =... =, g3 =¢ =q¢;=... = f,and 1 < a < . In [19),
it is proved that the function f,; belongs to the LaguerrefPélya Class if and only if there exists
zo € [0, g2] such that f,5(x0) < 0. In addition, it is proved that if the function f,; belongs to
the Laguerre-Polya class, then a > ¢o-
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