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CONVOLUTION IN DUAL CESÀRO SEQUENCE SPACES

GUILLERMO P. CURBERA AND WERNER J. RICKER

Abstract. We investigate convolution operators in the sequence spaces dp, for 1 ≤ p <
∞. These spaces, for p > 1, arise as dual spaces of the Cesàro sequence spaces cesp
thoroughly investigated by G. Bennett. A detailed study is also made of the algebra
of those sequences which convolve dp into dp. It turns out that such multiplier spaces
exhibit features which are very different to the classical multiplier spaces of `p.

1. Introduction

In 1966, in a celebrated paper, [16], N. K. Nikolskii initiated the study of multipliers
acting on the classical sequence spaces `p = `p(N0), with N0 = {0, 1, 2, . . . }, where

`p :=
{
a = (an)∞n=0 ∈ CN0 :

∞∑
n=0

|ak|p <∞
}
, 1 ≤ p <∞.

A sequence b = (bn)∞n=0 ∈ CN0 defines a multiplier on `p if the convolution a ∗ b ∈ CN0 ,
defined by

(1.1) (a ∗ b)n :=
n∑
j=0

ajbn−j, n ∈ N0,

belongs to `p, for every a ∈ `p. The multiplier algebra M (`p) of `p is the collection
of all such b ∈ CN0 . Nikolskii established the following fundamental properties of these
multiplier algebras:

a) `1 ( M (`p) ( `p, for 1 < p <∞;
b) M (`p) = M (`p

′
), for 1/p+ 1/p′ = 1;

c) M (`p1) ( M (`p2), for 1 ≤ p1 < p2 ≤ 2.

These multiplier algebras, except when p ∈ {1, 2}, are not well understood and their
investigation is far from finalized. Important contributions were made by Vinogradov,
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2 G. P. CURBERA AND W. J. RICKER

Verbitskii and others; see, for example, [4, §6.41–6.43], and [8] for a recent account of the
state of the art.

The Cesàro sequence spaces cesp, for 1 < p <∞, are intimately connected to the spaces
`p via the Cesàro averaging operator which maps each element of `p to the sequence of
its averages (again an element of `p). The spaces cesp were throughly investigated by
G. Bennett, [2]; see also [12] and the references therein. They have the property that
`p ( cesp, for all 1 < p < ∞. However, in contrast to `p, the situation regarding the
multipliers of cesp is completely different: the multiplier algebra M (cesp) = `1, for every
1 < p <∞, [10, Theorem 4.1].

The purpose of this note is to investigate the multiplier algebras M (dp) of the sequence
spaces dp, also spaces closely related to `p, which are defined by

(1.2) dp :=
{
a = (an)∞n=0 ∈ CN0 :

∞∑
n=0

sup
k≥n
|ak|p <∞

}
, 1 ≤ p <∞.

They were defined and studied by G. Bennett, [2], when he obtained a tractable identi-
fication of the dual Banach space of cesp. More precisely, the dual Banach space (cesp)

∗

is isomorphic to dq, for p ∈ (1,∞), where 1
p

+ 1
q

= 1; [2, Corollary 12.17]. Despite having

similarities in their definition, the spaces `p and dp are rather different. A significant
difference is that the canonical vectors en := (δn,k)

∞
k=0, for n ∈ N0, are all unit vectors

in every space `p, for p ∈ [1,∞], but they have norm ‖en‖dp = (n + 1)1/p whenever
1 ≤ p <∞ and n ∈ N0. For further properties of the spaces dp, see [5], for example. Note
that dp ( `p ( cesp, for 1 < p <∞.

The multiplier algebras M (dp) of dp consist of all b ∈ CN0 which convolve dp into itself.
Differences between the spaces `p and dp induce drastically different features between their
respective multiplier spaces M (`p) and M (dp). In contrast to property a) above, we have
that

M (dp) ( `1 and M (d1) = d1 ( M (dp) ( dp, 1 < p <∞;

see Theorem 4.2 and Corollary 4.3. That is, all the spaces M (dp) are inside `1. In contrast
to properties b) and c) above, it turns out that

M (dp1) ( M (dp2), 1 ≤ p1 < p2 <∞;

see Theorem 4.5. That is, there is no largest space with the role that M (`2) has in the
`p setting.

As for M (`p), with p 6∈ {1, 2}, no characterization of the entire algebra M (dp) is
known (except for p = 1). Nevertheless, we devote some effort to identify natural classes
of elements which do belong to M (dp). For example, the weighted Banach algebra `1(wp)
with wp(n) = (n + 1)1/p for n ∈ N0 is contained in M (dp) for every 1 ≤ p < ∞; see
Proposition 4.4. A characterization of those elements from `1 which belong to M (dp) is
presented in Theorem 5.1. A more tractable sufficient condition for a sequence b ∈ `1 to
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be a multiplier for dp, in terms of its coefficients, namely that

∞∑
n=0

2np sup
2n≤k<2n+1

|bk|p <∞,

is established in Theorem 5.2.
Together with M (dp) we also consider the associated algebra Mop(dp) of all (necessarily)

bounded, linear convolution operators Tb on dp induced by the elements b of M (dp); see
Section 2 for the definitions. As for the spaces `p, the right-shift operator S (which maps
an element (a0, a1, . . . ) to (0, a0, a1, . . . ) ) also plays an important role for the spaces dp.
For instance, it turns out that the commutant algebra Mop(dp)

c of M (dp) equals

(1.3) Mop(dp)
c =

{
T ∈ L (dp) : TS = ST

}
, 1 ≤ p <∞,

where L (dp) is the space of all bounded linear operators of dp into itself. A crucial
difference between the `p and the dp setting is that the operator norm of Sn ∈ L (dp)
equals (n + 1)1/p for each n ∈ N0 and 1 ≤ p < ∞, whereas Sn ∈ M (`p) is an isometry
for all such n and p. Consequences of (1.3) are that M (dp) is complete for the weak
operator topology (cf. Section 3) and that the spectrum of an operator in the unital,
commutative Banach algebra Mop(dp), for 1 ≤ p < ∞, coincides with its spectrum as
an element of L (dp). The topic of the spectrum of operators belonging to Mop(dp) is
pursued in the final section. Of particular relevance are the distinct subspaces d1, `

1(wp)
and dpp ∩ `1 of M (dp) because, if b = (bn)∞n=0 belongs to any one of these subspaces, then
the corresponding multiplier operator Tb ∈Mop(dp) can be approximated in the operator
norm by the polynomial operators {

∑n
k=0 bkS

k}∞n=0; see Remark 6.6(ii) and Proposition
6.7.

The paper is organized as follows. Section 2 presents the necessary preliminaries re-
quired in the sequel. Section 3 treats various relevant properties of the operator algebras
Mop(dp), whereas Section 4 concentrates on the multiplier algebras M (dp). In Section 5
we identify various subspaces of M (dp). The final Section 6 is devoted to spectral and
Banach algebra properties of Mop(dp).

2. Preliminaries

For each p ∈ [1,∞) the sequence space dp defined in (1.2) is a Banach space for the
norm

(2.1) ‖a‖dp :=
( ∞∑
n=0

sup
k≥n
|ak|p

)1/p
, a ∈ dp.

A direct consequence of (2.1) is that dp ⊆ `p with a continuous inclusion. Given a =
(an)∞n=0 ∈ `∞, the least decreasing majorant of a is the sequence â := (supk≥n |ak|)∞n=0, [2,
(3.7)]. Then, a ∈ dp precisely when â ∈ `p and ‖a‖dp = ‖â‖p, where ‖ · ‖p is the usual
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norm in `p. The canonical vectors {en : n ∈ N0} satisfy

‖en‖dp = ‖ên‖`p =
∥∥(1, . . . , 1,

position n︷︸︸︷
1 , 0, 0, . . . )

∥∥
p

= (n+ 1)1/p.

For every p ∈ [1,∞), the vectors {en : n ∈ N0} form an unconditional basis in dp, [5,
Proposition 2.1]; see Section 4 for the case p = 1.

A combination of Cauchy’s condensation test for series and Abel’s summation formula
implies the following two useful equivalent expressions for the norm (2.1) in dp:

‖a‖dp �

(
sup
k≥0
|ak|p +

∞∑
n=0

2n sup
2n≤k<2n+1

|ak|p
)1/p

,(2.2)

‖a‖dp �

(
sup
k≥0
|ak|p + sup

k≥1
|ak|p +

∞∑
n=0

2n sup
2n<k≤2n+1

|ak|p
)1/p

,(2.3)

where A � B means that there exist absolute constants c, C > 0 such that cA ≤ B ≤ CA;
see also [12, Example 13.2] and [1, (3)].

As noted in Section 1, the space dq is isomorphic to (cesp)
∗, where cesp, [2], is defined,

for each 1 < p ≤ ∞, by

(2.4) cesp :=
{
a = (an)∞n=0 ∈ CN0 : ‖a‖cesp :=

( ∞∑
n=0

( 1

n+ 1

n∑
k=0

|ak|
)p)1/p}

,

that is, a ∈ cesp if and only if
(

1
n+1

∑n
k=0 |ak|

)∞
n=0
∈ `p.

The convolution of a, b ∈ CN0 is the sequence a ∗ b ∈ CN0 defined by (1.1). According
to Section 1 the multiplier algebra

M (dp) :=
{
b ∈ CN0 : a ∗ b ∈ dp, ∀a ∈ dp

}
.

Each b ∈ M (dp) defines a convolution operator a 7→ a ∗ b ∈ dp, for a ∈ dp, which is
continuous (due to the closed graph theorem). The multiplier algebra M (dp) endowed
with the norm

(2.5) ‖b‖M (dp) := sup
06=a∈dp

‖a ∗ b‖dp
‖a‖dp

,

is a Banach algebra; see Section 3. Since e0 ∈ dp satisfies e0 ∗ b = b for every b ∈ CN0 ,
it is clear that M (dp) ⊆ dp. This implies (as mentioned above) that M (dp) is a unital,
commutative algebra under convolution. Moreover, for each b ∈ M (dp), we have that
‖b‖dp = ‖e0 ∗ b‖dp/‖e0‖dp ≤ ‖b‖M (dp). Since ‖e0‖M (dp) = 1 = ‖e0‖dp , it follows that the
operator norm of the natural inclusion M (dp) ⊆ dp is precisely 1.
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3. The operator algebra Mop(dp)

Convolution operators on dp will be considered within the unital (non-commutative)
Banach algebra L (dp) of all bounded linear operators on dp equipped with the operator
norm. Given b ∈M (dp), denote by Tb the convolution operator defined by Tb(a) := a∗b ∈
dp, for each a ∈ dp, and set

Mop(dp) :=
{
Tb ∈ L (dp) : b ∈M (dp)

}
.

Observe that ‖Tb‖Mop(dp) = ‖b‖M (dp) for all b ∈M (dp). Clearly, Mop(dp) is a commutative,
unital subalgebra of L (dp), with the identity operator I = Te0 as its unit. Equipped with
the operator norm from L (dp), which we denote by ‖ · ‖Mop(dp), it becomes a normed
algebra.

The commutant algebra of M (dp) is defined by

Mop(dp)
c :=

{
R ∈ L (dp) : TbR = RTb, ∀b ∈M (dp)

}
.

The right-shift S : dp → dp is the linear map given by

Sa = (0, a0, a1, . . . ) = e1 ∗ a = Te1a, a ∈ dp.
It follows, for n ∈ N0, that

Sna = (0, . . . , 0,

position n︷︸︸︷
a0 , a1, . . . ) = en ∗ a = Tena, a ∈ dp.

Direct calculation yields ‖en‖dp = ‖Sn‖Mop(dp) = (n + 1)1/p, for n ∈ N0 and p ∈ [1,∞);
see [11, Lemma 4.12]. This is distinctly different to the situation for the spaces `p, where
‖en‖p = ‖Sn‖L (`p) = 1, for all n ∈ N0 and p ∈ [1,∞].

Proposition 3.1. Let p ∈ [1,∞). Then

(3.1) Mop(dp) =
{
R ∈ L (dp) : RS = SR

}
.

Moreover,

(3.2) Mop(dp) = Mop(dp)
c = Mop(dp)

cc.

Proof. Let T ∈ L (dp) satisfy TS = ST and set b := Te0 ∈ dp. Since e1 = Se0, we have
Te1 = TSe0 = STe0 = Sb = b ∗ e1. In a similar way, using en+1 = Sen, it follows that
Ten = Snb = b ∗ en for all n ∈ N0. Hence, Ta = b ∗ a for all a belonging to the linear span
of {en : n ∈ N0}. Since the canonical vectors {en : n ∈ N0} form a basis for dp, for every

a = (an)∞n=0 ∈ dp we have aN → a in dp, where aN =
∑N

j=0 ajej. Then TaN → Ta in dp
and so b ∗ aN → Ta in dp. Since convergence in dp implies coordinatewise convergence,
for each fixed n ∈ N0, we have

(b ∗ aN)n =
(
b ∗

N∑
j=0

ajej

)
n

=
( N∑
j=0

aj(b ∗ ej)
)
n
→ (Ta)n.
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Note, for N ≥ n, that( N∑
j=0

aj(b ∗ ej)
)
n

=
( n∑
j=0

aj(b ∗ ej)
)
n

=
( n∑
j=0

ajS
jb
)
n

= (b ∗ a)n.

Hence, (b ∗ a)n = (Ta)n for n ∈ N0, that is, b ∗ a = Ta and so, b ∗ a ∈ dp. Since a ∈ dp is
arbitrary, we have b ∈M (dp) and T = Tb.

The reverse inclusion in (3.1) follows easily as S = Te1 ∈Mop(dp).
Since Mop(dp) is commutative, it is contained in Mop(dp)

c. On the other hand, if
R ∈ Mop(dp)

c, then S = Te1 implies that RS = SR and so, by (3.1), the operator
R ∈Mop(dp). Hence, Mop(dp) = Mop(dp)

c. It then follows that

Mop(dp)
cc = (Mop(dp)

c)c = Mop(dp)
c = Mop(dp),

which is precisely (3.2). �

Remark 3.2. (i) For the spaces `p in place of dp, with p ∈ [1,∞), the identity (3.1) is
known, [16, Theorem 2(2)]. Also, for cesp in place of dp, with p ∈ (1,∞), the same proof
as in Proposition 3.1 applies to show that identities (3.1) and (3.2) hold. However, unlike
for `p and dp, we have the remarkable fact that

Mop(cesp) =
{
Tb : b ∈ `1

}
, p ∈ (1,∞),

and that ‖Tb‖cesp→cesp = ‖b‖1 for a ∈ `1; see [10, Theorem 4.1].
(ii) In view of (3.2) it is well known that Mop(dp) is inverse closed in L (dp), [6, I

Proposition 2.3], that is, if T ∈Mop(dp) is invertible in L (dp), then its inverse operator
T−1 ∈ L (dp) actually belongs to Mop(dp). In particular, the spectrum σ(R; Mop(dp))
of an operator R ∈ Mop(dp) coincides with its spectrum σ(R; L (dp)) as an element of
L (dp). For the definition of the spectrum of an element in a unital Banach algebra we
refer to [6], [15], for example.

Corollary 3.3. For each p ∈ [1,∞) the algebra Mop(dp) is closed in L (dp) for the weak
operator topology and hence, also for the strong operator topology and the operator norm
topology. In particular, Mop(dp) is a commutative Banach algebra (i.e., it is complete).

Proof. Let {T (α)} ⊆Mop(dp) be a net and T ∈ L (dp) such that T (α) α→ T for the weak
operator topology. Proposition 3.1 yields T (α)S = ST (α) for all α. Fix a ∈ dp and y∗ ∈ d∗p.
Then, with S∗ ∈ L (d∗p) denoting the adjoint operator of S, we have

〈STa, y∗〉 = 〈Ta, S∗y∗〉 = lim
α
〈T (α)a, S∗y∗〉

= lim
α
〈ST (α)a, y∗〉 = lim

α
〈T (α)Sa, y∗〉 = 〈TSa, y∗〉.

It follows that TS = ST and hence, that T ∈Mop(dp). �
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4. The multiplier algebra M (dp)

In this section we study various properties of the multiplier algebras M (dp). We begin
with p = 1 which is simpler and is already known. Recall that

d1 :=
{
a = (an)∞n=0 ∈ CN0 : ‖a‖d1 :=

∞∑
n=0

sup
k≥n
|ak| <∞

}
,

which can be traced back to the work of Beurling, [3]; see Remark 4.1 below. The canonical
vectors {en : n ∈ N0} form an unconditional basis in d1. This follows from a necessary
condition for a sequence a = (an)∞n=0 to belong to dp, namely that

lim
n
n sup
k≥n
|ak|p = 0,

which is a consequence of Pringsheim’s theorem for convergent series of positive decreasing
terms. Indeed, for a ∈ d1, we have for N →∞ that∥∥∥a− N∑

n=0

anen

∥∥∥
d1

=
∥∥∥( sup

k≥N+1
|ak|, . . . ,

position N+1︷ ︸︸ ︷
sup

k≥N+1
|ak|, sup

k≥N+2
|ak|, . . .

∥∥∥
`1

= N sup
k≥N+1

|ak|+
∞∑

n=N+1

sup
k≥n
|ak| → 0.

The bounded multiplier test ensures the unconditionality of the basis. The space d1 is
known to be an algebra for convolution with unit e0 (see the proof of [1, Proposition 1]).
So, M (d1) and d1 coincide as sets and have equivalent norms, that is, for some C > 0 we
have

‖b‖d1 ≤ ‖b‖M (d1) ≤ C ‖b‖d1 , b ∈ d1,
where we have used ‖b‖d1 = ‖Tbe0‖d1 and (2.5). In particular, M (d1) ( `1 (since |a| ≤ â
and [11, Remark 4.20(i)] imply that d1 ( `1).

Remark 4.1. A result of Beurling concerning the absolute convergence of contracted
Fourier series is based on imposing on the Fourier coefficients (an)∞−∞ of an integrable
function on [0, 2π] the condition

∞∑
n=0

sup
|k|≥n
|ak| <∞,

[3, Theorem V]. Note that d1 corresponds to this condition when an = 0 for n < 0.

The following result already indicates how different the multiplier algebras M (dp) and
M (`p) are.

Theorem 4.2. For each p ∈ [1,∞), the following continuous inclusion holds:

M (dp) ⊆ `1.
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Proof. For p = 1 this is d1 ' M (d1) ⊆ `1. For p ∈ (1,∞), let 0 6= b ∈ M (dp). Denote
by n0 the smallest n ∈ N0 such that bn 6= 0. Fix n ≥ n0. For any a ∈ dp, it follows from
(2.2) that

‖a ∗ b‖pdp ≥ 2n sup
2n≤k<2n+1

|(a ∗ b)k|p ≥ 2n|(a ∗ b)2n|p = 2n
∣∣∣ 2n∑
j=0

bja2n−j

∣∣∣p.
Define a = (an)∞n=0 ∈ dp via a2n−j = |bj|/bj for 0 ≤ j ≤ 2n (with a2n−j = 0 if bj = 0) and
aj = 0 for j > 2n. Then

2n∑
j=0

bja2n−j =
2n∑
j=0

|bj|.

Note that ‖a‖pdp ≤ (2n + 1). Consequently,

‖b‖pM (dp)
= sup

06=a∈dp

‖a ∗ b‖pdp
‖a‖pdp

≥

2n
( 2n∑
j=0

|bj|
)p

2n + 1
≥ 1

2

( 2n∑
j=0

|bj|
)p
.

It follows that b ∈ `1 and
∑∞

j=0 |bj| ≤ 21/p‖b‖M (dp). �

Corollary 4.3. Let p ∈ (1,∞). The following assertions hold.

(i) M (dp) ( dp.
(ii) M (dp) 6= `1.

Proof. (i) We have already seen in Section 2 that M (dp) ⊆ dp. Let a = (1/(n + 1))∞n=0.
Since it is a decreasing sequence and a ∈ `p, we see that a ∈ dp. However, since a 6∈ `1,
we have a 6∈ M (dp). Note that a is the sequence of Taylor coefficients of the analytic
function log(1− z) 6∈ H∞(D).

(ii) Suppose that M (dp) = `1. Since M (dp) ⊆ dp this would imply that `1 ⊆ dp, which
is not the case; see [5, Remark 2.8(i)]. �

Consider the weight wp := ((n+ 1)1/p)∞n=0 and the corresponding weighted `1-space

`1(wp) :=
{

(an)∞n=0 :
∞∑
n=0

(n+ 1)1/p|an| <∞
}
,

equipped with the norm ‖a‖1,wp :=
∑∞

n=0(n + 1)1/p|an|. Observe that wp(m + n) ≤
wp(m)wp(n) for all m,n ∈ N0.

Proposition 4.4. For each p ∈ [1,∞) the following continuous embedding holds:

`1(wp) ⊆M (dp).
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Proof. Let m ∈ N0. The canonical vector em ∈ dp defines a multiplier in dp. Indeed, fix
a ∈ dp. Since

em ∗ a = (

m︷ ︸︸ ︷
0, . . . , 0, a0, a1, . . . ),

the least decreasing majorant of em ∗ a is

(em ∗ a)̂ =

( m+1︷ ︸︸ ︷
sup
k≥0
|ak|, . . . , sup

k≥0
|ak|, sup

k≥1
|ak|, . . .

)
.

But, a ∈ dp and so â ∈ `p. By the previous identity it is clear that (em ∗ a)̂ ∈ `p and∥∥em ∗ a∥∥dp =
∥∥∥(em ∗ a)̂

∥∥∥
p

=
(
m
(

sup
k≥0
|ak|
)p

+ ‖a‖pdp
)1/p

.

In particular,
∥∥em ∗ a∥∥dp ≤ (m+ 1)1/p‖a‖dp . Consequently, em ∈M (dp) and ‖em‖M (dp) ≤

(m+1)1/p. This bound is sharp as can be seen by selecting a = e0, in which case em ∗e0 =
em with êm =

∑m
n=0 en. So, ‖em‖M (dp) ≥ (m+ 1)1/p. Hence, ‖em‖M (dp) = (m+ 1)1/p.

Let a = (an)∞n=0 ∈ `1(wp). Consider in M (dp) the series
∑∞

n=0 anen. It is absolutely
convergent in M (dp) because

∞∑
n=0

‖anen‖M (dp) =
∞∑
n=0

|an|‖en‖M (dp) =
∞∑
n=0

|an|(n+ 1)1/p = ‖a‖1,wp .

Since the space M (dp) 'Mop(dp) is complete (cf. Corollary 3.3), it follows that the series
is convergent in M (dp). �

Theorem 4.5. Let 1 ≤ p1 < p2 < ∞. Then M (dp1) ( M (dp2). In particular, d1 ⊆
M (dp) for all 1 ≤ p <∞.

Proof. We first show, for 1 ≤ p1 < p2 <∞, that dp2 is an interpolation space between dp1
and `∞. More precisely, we will show that

(4.1) (dp1)
θ(`∞)1−θ = dp2 , for θ :=

p1
p2
∈ (0, 1),

where (dp1)
θ(`∞)1−θ is a Calderón space, [7, 13.5]. Observe that each space dp is the

Tandori space corresponding to `p since, in the notation of [13], for a = (an)∞n=0 ∈ `∞, we
have ã = â, [13, §1]. Recall that â is the decreasing majorant of a (cf. §2). Consequently,˜̀p = dp, for 1 ≤ p <∞; see [13, (1.6)]. It is clear that ˜̀∞ = `∞.

Theorem 4 in [13] states, for suitable spaces X0, X1 and an adequate function ϕ (cf.
[13, §3]), that

ϕ(X̃0, X̃1) = [ϕ(X0, X1)] .̃

We apply this result to the spaces X0 = `p1 , X1 = `∞ and the function ϕ(s, t) := sθt1−θ

with θ := p1/p2 ∈ (0, 1). Then, X̃0 = dp1 , X̃1 = `∞ and ϕ(X0, X1) = (`p1)θ(`∞)1−θ = `p2 ,
so that [ϕ(X0, X1)]˜= dp2 . Thus, the equality (4.1) follows.
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Let b ∈M (dp1). Then Tb : dp1 → dp1 . Theorem 4.2 yields that b ∈ `1. This implies, for
a ∈ `∞ and every n ∈ N0, that |(a ∗ b)n| ≤

∑n
j=0 |ajbn−j| ≤ ‖a‖∞‖b‖1, that is, Tba ∈ `∞.

Hence, Tb : `∞ → `∞. The equality (4.1) implies that dp2 is a Calderón θ-space for dp1
and `∞. So, dp2 is an interpolation space between dp1 and `∞, [7, 33.5]. This yields that
Tb : dp2 → dp2 , that is, b ∈M (dp2).

To show that M (dp1) 6= M (dp2), let b = (bn)∞n=0 be defined by bn = 2−k/p1 when n = 2k

(for k ∈ N0) and bn = 0 otherwise. Since 1
p1
> 1

p2
, it follows that

∞∑
n=0

|bn|(n+ 1)1/p2 =
∞∑
k=0

(2k + 1)1/p2

2k/p1
<∞,

and so b ∈ `1(wp2). From Proposition 4.4 we have `1(wp2) ⊆M (dp2), that is, b ∈M (dp2).
However, b 6∈ dp1 because

∞∑
n=0

2n sup
2n≤k<2n+1

|bk|p1 =
∞∑
n=0

2n|b2n|p1 =
∞∑
n=0

2n

(2n/p1)p1
=∞.

Since M (dp1) ⊆ dp1 , it follows that b 6∈M (dp1). Hence, M (dp1) ( M (dp2).
By the discussion prior to Remark 4.1 we have that d1 = M (d1), which implies that

d1 ⊆M (dp) for all 1 ≤ p <∞. �

Remark 4.6. (i) We also refer to [14, §15 p.176] for spaces of the form Xθ
0X

1−θ
1 and [20,

Theorem 3] for an interpolation theorem for these spaces.
(ii) In the proof of Theorem 4.5, an alternative way of showing that dp2 is an interpo-

lation space between dp1 and `∞, for 1 ≤ p1 < p2 < ∞, is via an interpolation result for

Wiener-Beurling spaces. More precisely, Theorem 5.1(i) in [17] applied to WB
1/p1
∞,p1(N0) =

dp1 , WB0
∞,∞(N0) = `∞ and WB

1/p2
∞,p2(N0) = dp2 yields (dp1 , `

∞)1− p1
p2
,p2 = dp2 .

Let H(D) denote the space of all analytic functions on D. Consider the space of those
functions in H(D) whose Taylor coefficients belong to dp, namely,

H(dp) :=
{
fa(z) :=

∞∑
n=0

anz
n : (an)∞n=0 ∈ dp

}
⊆ H(D),

where the notation fa indicates that a = (an)∞n=0 is the sequence of Taylor coefficients of
fa. Since dp ⊆ `∞, it is clear that fa is indeed analytic in D for each a ∈ dp. The norm in
H(dp) is defined by

‖fa‖H(dp) =
∥∥∥ ∞∑
n=0

anz
n
∥∥∥
H(dp)

:= ‖(an)∞n=0‖dp , fa ∈ H(dp).

Accordingly, as Banach spaces dp and H(dp) are linearly isomorphic and isometric via the
map a ↔ fa. Consequently, the dual space H(dp)

∗ of H(dp) is isomorphic to the space
H(cesq) of analytic functions with Taylor coefficients in cesq.
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Given z ∈ D the point evaluation functional δz on H(dp), for p ∈ [1,∞), is defined by

fa ∈ H(dp) 7−→ δz(fa) := fa(z) =
∞∑
n=0

anz
n ∈ C.

Proposition 4.7. Let p ∈ [1,∞). For each z ∈ D the functional δz on H(dp) is linear
and bounded, that is, δz ∈ H(dp)

∗. For p ∈ (1,∞) its norm satisfies

1/p

1− |z|

( ∞∑
n=0

(
1− |z|n+1

n+ 1

)q)1/q
≤ ‖δz‖H(dp)∗ ≤

(q − 1)1/q

1− |z|

( ∞∑
n=0

(
1− |z|n+1

n+ 1

)q)1/q
,

where 1
p

+ 1
q

= 1. In particular,

1

p
ζ(q)1/q ≤ ‖δz‖H(dp)∗ ≤

(q − 1)1/q

1− |z|
ζ(q)1/q.

For p = 1, the functional δz acting on H(d1) has norm one.

Proof. Fix z ∈ D. Consider fa(z) =
∑∞

n=0 anz
n ∈ H(dp). Then

(4.2) δz(fa) = fa(z) =
∞∑
n=0

anz
n =

〈(
zn
)∞
n=0

, (an)∞n=0

〉
.

For p ∈ (1,∞), we have a ∈ dp and (zn)∞n=1 ∈ `q ⊆ cesq, which is isomorphic to d∗p. Thus,
δz acting on H(dp) can be identified with the sequence (zn)∞n=0 ∈ (dp)

∗ acting on dp. Since
H(dp) and dp are isometric, the norms of δz as an element of H(dp)

∗ and of (zn)∞n=0 as an
element of d∗p coincide. The equivalence of the norms between dq and (cesp)

∗ is given by

(4.3)
1

q
‖a‖dq ≤ ‖a‖(cesp)∗ ≤ (p− 1)1/p‖a‖dq , a ∈ (cesp)

∗,

where p and q are conjugate indices, i.e., 1
p

+ 1
q

= 1, [2, p. 61 and Corollary 12.17]. From

(4.3) it follows that the equivalence of the norms between (dp)
∗ and cesq is given by

1

p
‖a‖cesq ≤ ‖a‖(dp)∗ ≤ (q − 1)1/q‖a‖cesq , a ∈ (dp)

∗.

In our case this yields

(4.4)
1

p
‖(zn)∞n=0‖cesq ≤ ‖δz‖H(dp)∗ ≤ (q − 1)1/q‖(zn)∞n=0‖cesq .

The norm of (zn)∞n=0 in cesq is given by

‖(zn)∞n=0‖qcesq =
∞∑
n=0

(
1

n+ 1

n∑
k=0

|zk|
)q

=
1

(1− |z|)q
∞∑
n=0

(
1− |z|n+1

n+ 1

)q
.

Since

(1− |z|)q
∞∑
n=0

1

(n+ 1)q
≤

∞∑
n=0

(
1− |z|n+1

n+ 1

)q
≤

∞∑
n=0

1

(n+ 1)q
,
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we can conclude that

ζ(q) ≤ ‖(zn)∞n=0‖qcesq ≤
ζ(q)

(1− |z|)q
.

The claim now follows from (4.4).
For p = 1, from (4.2) we have a ∈ d1 and (zn)∞n=1 ∈ ces∞, which is isometric to d∗1, [10,

Remark 6.3]. Thus, δz acting on H(d1) can be identified with the sequence (zn)∞n=0 ∈ (d1)
∗

acting on d1. Hence, the norm of δz equals the norm of (zn)∞n=0 in ces∞, that is,

∥∥(zn)∞n=0‖ces∞ = sup
n≥0

1

n+ 1

n∑
k=0

|z|k = 1.

�

In view of the proof of the above result and the isomorphism dp ' H(dp), it is clear, for
each z ∈ D, that δz ∈ H(dp)

∗ corresponds to the element of d∗p given by a 7→
∑∞

n=0 anz
n,

for a ∈ dp.
The Taylor coefficients of the pointwise product of two analytic functions fa and fb in

D are obtained via the convolution of a and b, that is, fafb = fa∗b. Consequently, the
space

M (H(dp)) :=
{
ϕ ∈ H(D) : ϕf ∈ H(dp),∀f ∈ H(dp)

}
of analytic multipliers forH(dp) is linearly isomorphic and isometric to the spaceH(M (dp))
of analytic functions on D with Taylor coefficients in the algebra M (dp), that is, to the
algebra

H(M (dp)) :=
{
ϕa(z) =

∞∑
n=0

anz
n : (an)∞n=0 ∈M (dp)

}
⊆ H(D)

equipped with the norm ‖ϕa‖H(M (dp)) := ‖a‖M (dp). Note the identification between
M (H(dp)) and H(M (dp)). Observe that H(M (dp)) ⊆ H(dp) because M (dp) ⊆ dp.

With obvious notation (that is, interchanging dp ↔ `p) it is known that

(4.5) `1 ⊆M (`p) 'M (H(`p)) ⊆ H∞(D), 1 < p <∞,

where H∞(D) is the space of all bounded analytic functions on D, [16, Theorem 4]. The
containment in the right-side of (4.5) can be sharpened when we consider dp in place
of `p. This is because fa(z) =

∑∞
n=0 anz

n ∈ H(M (dp)) implies, via Theorem 4.2, that
a = (an)∞n=0 ∈ `1, and so in (4.5) we can replace the space H∞(D) by the classical (one-
sided) analytic Wiener algebra, [15, §11.6], denoted by `1A in [16], consisting of all analytic
functions on D with absolutely convergent Taylor coefficients. That is,

d1 ⊆M (dp) 'M (H(dp)) ⊆ `1A, 1 < p <∞.
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5. Subspaces of M (dp)

Theorem 4.2 shows for b ∈ CN0 that a necessary condition for being a multiplier for dp
is that b ∈ `1. This fact allows the formulation of a necessary and sufficient condition for
b ∈ `1 to belong to M (dp), which has the advantage that, for each n ∈ N0, in the n-th
term of the series in (5.1) below only the terms bj for 2n−1 < j < 2n+1 occur.

Theorem 5.1. Let p ∈ (1,∞) and b ∈ `1. Then b ∈M (dp) if and only if

(5.1)
∞∑
n=0

2n sup
2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣p <∞, a ∈ dp.

Proof. Recall that b ∈M (dp) if and only if a∗ b ∈ dp, for every a ∈ dp. This is equivalent,
via (2.2), to

sup
n≥0
|(a ∗ b)n|p +

∞∑
n=0

2n sup
2n≤k<2n+1

∣∣(a ∗ b)k∣∣p <∞, a ∈ dp.

Since b ∈ `1, given any a ∈ dp ⊆ `p it follows that a ∗ b ∈ `p and so, a ∗ b is bounded.
Hence, b ∈M (dp) if and only if

(5.2)
∞∑
n=0

2n sup
2n≤k<2n+1

∣∣(a ∗ b)k∣∣p <∞, a ∈ dp.

First assume that the condition (5.1) is satisfied. To prove that b ∈ M (dp) it suffices
to establish (5.2). Let a ∈ dp. Then, for each k ∈ N0, we have∣∣(a ∗ b)k∣∣ =

∣∣∣ k∑
j=0

bjak−j

∣∣∣ =
∣∣∣ ∑
0≤j≤ k

2

bjak−j +
∑

k
2
<j≤k

bjak−j

∣∣∣
≤
( ∑

0≤j≤ k
2

|bj|
)

sup
0≤j≤ k

2

|ak−j|+
∣∣∣ ∑

k
2
<j≤k

bjak−j

∣∣∣(5.3)

≤ ‖b‖1 sup
k
2
≤j≤k
|aj|+

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣.
Fix n ∈ N0. It follows from (5.3) that

sup
2n≤k<2n+1

∣∣(a ∗ b)k∣∣p =
(

sup
2n≤k<2n+1

∣∣(a ∗ b)k∣∣)p
≤
(

sup
2n≤k<2n+1

‖b‖1 sup
k
2
≤j≤k
|aj|+ sup

2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣)p(5.4)

=
(
‖b‖1 sup

2n−1≤k<2n+1

|aj|+ sup
2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣)p.
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The inequality (5.4) implies that

∞∑
n=0

2n sup
2n≤k<2n+1

∣∣(a ∗ b)k∣∣p ≤ ∞∑
n=0

2n
(
‖b‖1 sup

2n−1≤k<2n+1

|aj|

+ sup
2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣)p
Applying Minkowski’s inequality yields( ∞∑

n=0

2n sup
2n≤k<2n+1

∣∣(a ∗ b)k∣∣p)1/p ≤ ( ∞∑
n=0

2n
(
‖b‖1 sup

2n−1≤k<2n+1

|aj|
)p)1/p

+
( ∞∑
n=0

2n sup
2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣p)1/p.(5.5)

The second term in the right-side of (5.5) is finite because of (5.1). Regarding the first
term in the right-side of (5.5), note that

∞∑
n=0

2n sup
2n−1≤k<2n+1

|aj|p ≤
∞∑
n=0

2n sup
2n−1≤k<2n

|aj|p +
∞∑
n=0

2n sup
2n≤k<2n+1

|aj|p

= 2
∞∑
n=0

2n−1 sup
2n−1≤k<2n

|aj|p +
∞∑
n=0

2n sup
2n≤k<2n+1

|aj|p(5.6)

≤ 3
∞∑
n=0

2n sup
2n≤k<2n+1

|aj|p.

Then

(5.7)
( ∞∑
n=0

2n
(
‖b‖1 sup

2n−1≤k<2n+1

|aj|
)p)1/p ≤ ‖b‖131/p

( ∞∑
n=0

2n sup
2n≤k<2n+1

|aj|p
)1/p

,

which is also finite since b ∈ `1 and a ∈ dp. Hence, (5.2) is finite for every a ∈ dp and so,
b ∈M (dp).

Conversely, we need to show that condition (5.1) is necessary. So, assume that b ∈
M (dp). Fix a ∈ dp. Then

∞∑
n=0

2n sup
2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣p =
∞∑
n=0

2n sup
2n≤k<2n+1

∣∣∣ ∑
0≤j≤k

bjak−j −
∑

0≤j≤ k
2

bjak−j

∣∣∣p
≤

∞∑
n=0

2n sup
2n≤k<2n+1

(∣∣(a ∗ b)k∣∣+
∣∣∣ ∑
0≤j≤ k

2

bjak−j

∣∣∣)p
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≤
∞∑
n=0

2n sup
2n≤k<2n+1

(∣∣(a ∗ b)k∣∣+
( ∑

0≤j≤ k
2

|bj|
)

sup
0≤j≤ k

2

|ak−j|
)p

≤
∞∑
n=0

2n sup
2n≤k<2n+1

(∣∣(a ∗ b)k∣∣+ ‖b‖1 sup
k
2
≤j≤k
|aj|
)p

≤
∞∑
n=0

2n
(

sup
2n≤k<2n+1

∣∣(a ∗ b)k∣∣+ ‖b‖1 sup
2n≤k<2n+1

sup
k
2
≤j≤k
|aj|
)p

=
∞∑
n=0

2n
(

sup
2n≤k<2n+1

∣∣(a ∗ b)k∣∣+ ‖b‖1 sup
2n−1≤k<2n+1

|aj|
)p
.

Minkowski’s inequality and (5.6) yield( ∞∑
n=0

2n sup
2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣p)1/p ≤ ( ∞∑
n=0

2n sup
2n≤k<2n+1

∣∣(a ∗ b)k∣∣p)1/p
+ ‖b‖1

( ∞∑
n=0

2n sup
2n−1≤k<2n+1

|aj|p
)1/p

≤ ‖a ∗ b‖dp + 3‖b‖1‖a‖dp .

So, (5.1) holds. �

The equivalent norms for dp given in (2.2) and (2.3) suggest, for each 1 ≤ p < ∞, to
introduce the sequence space

(5.8) dpp :=
{
a = (an)∞n=0 ∈ CN0 :

∞∑
n=0

2np sup
2n≤k<2n+1

|ak|p <∞
}
,

equipped with the norm

‖a‖dpp :=

(
sup
k≥0
|ak|p +

∞∑
n=0

2np sup
2n≤k<2n+1

|ak|p
)1/p

, a ∈ dpp.(5.9)

The canonical vectors {en : n ∈ N0} form an unconditional basis in dpp. To see this fix
a = (an)∞n=0 ∈ dpp. For each N ∈ N0 let n0 ∈ N0 satisfy 2n0 ≤ N < 2n0+1. Then, for
N →∞, we have∥∥∥a− N∑

n=0

anen

∥∥∥p
dpp
≤ sup

k>N
|ak|p +

∞∑
n>n0

2np sup
2n≤k<2n+1

|ak|p → 0.

The bounded multiplier test ensures the unconditionality of the basis.

Theorem 5.2. Let p ∈ [1,∞). Then dpp ∩ `1 ( M (dp) with a continuous inclusion.
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Proof. Since M (d1) = d1 = d11, we only need to consider the case when p ∈ (1,∞). Fix
b ∈ dpp ∩ `1. We apply Theorem 5.1 by verifying that (5.1) holds. Given a ∈ dp we have

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣ ≤ ( k/2∑
j=0

|aj|
)

sup
k
2
<j≤k
|bj|, k ≥ 1,

and so Hölder’s inequality together with dp ⊆ `p yields

sup
2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣p ≤ sup
2n≤k<2n+1

( k/2∑
j=0

|aj|
)p

sup
k
2
<j≤k
|bj|p

≤
( 2n−1∑

j=0

|aj|
)p

sup
2n−1<j<2n+1

|bj|p

≤ 2n(p/q)‖a‖pdp sup
2n−1≤j<2n+1

|bj|p.

Hence, arguing as in (5.6), it follows that

∞∑
n=0

2n sup
2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣p ≤ ∞∑
n=0

2n2n(p/q)‖a‖pdp sup
2n−1≤j<2n+1

|bj|p(5.10)

= ‖a‖pdp
∞∑
n=0

2np sup
2n−1≤j<2n+1

|bj|p

≤ 3‖a‖pdp
∞∑
n=0

2np sup
2n≤j<2n+1

|bj|p <∞,

which is finite since b ∈ dpp. So, dpp ∩ `1 ⊆M (dp).
In view of (5.5) and (5.9), it follows from (5.7) and (5.10) that there exists a constant

K > 0 such that

‖b ∗ a‖dp ≤ K‖a‖dp max
{
‖b‖1, ‖b‖dpp

}
, a ∈ dp.

Since the space dpp ∩ `1 is normed by ‖b‖dpp∩`1 := max{‖b‖1, ‖b‖dpp}, it follows that the
natural inclusion dpp ∩ `1 ⊆M (dp) is continuous.

It remains to show that there exists b ∈M (dp) \ dpp. Consider b = (bn)∞n=0 defined by
bn = 1/n for n = 2k with k ∈ N0, and bn = 0 elsewhere. Then b 6∈ dpp since

∞∑
n=0

2np sup
2n≤k<2n+1

|bk|p =
∞∑
n=0

2np
( 1

2n

)p
=∞.
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However, b ∈M (dp). Indeed, via Theorem 5.1 and the fact that b ∈ `1 we have
∞∑
n=0

2n sup
2n≤k<2n+1

∣∣∣ ∑
k
2
<j≤k

bjak−j

∣∣∣p =
∞∑
n=0

2n
∣∣∣a0
2n

∣∣∣p <∞, a ∈ dp.

�

The containment d1 ⊆ dpp follows directly from (5.8) because of (2.2), (5.9) and
∞∑
n=0

2np sup
2n≤j<2n+1

|aj|p ≤
( ∞∑
n=0

2n sup
2n≤j<2n+1

|aj|
)p
.

Thus, Theorem 5.1 and the fact that d1 = M (d1) imply the following result (a strength-
ening of part of Theorem 4.5).

Corollary 5.3. Let p ∈ [1,∞). The following continuous inclusion holds:

d1 ⊆M (dp).

Let H(D) denote the algebra, under pointwise multiplication, of all C-valued functions
which are holomorphic in some open set containing D.

Corollary 5.4. Let p ∈ [1,∞). The following inclusions hold:{
b = (bn)∞n=0 : fb ∈ H(D)

}
⊆ d1 ⊆M (dp).

Proof. Given fb ∈ H(D), the power series of fb has radius of convergence r > 1 and
so its Taylor coefficients satisfy |bn| ≤ C/rn, for some C > 0 and all n ∈ N0. Hence,
b ∈ d1 ⊆M (dp) for all p ∈ [1,∞). �

Corollary 5.5. Let p ∈ [1,∞). For b = (bn)∞n=0 belonging to any one of the spaces `1(wp)
or dpp ∩ `1 or d1, it is the case, for N →∞, that∥∥∥b− N∑

n=0

bnen

∥∥∥
M (dp)

→ 0.

Equivalently, ∥∥∥Tb − N∑
n=0

bnS
n
∥∥∥

Mop(dp)
→ 0.

Proof. The sequence {en : n ∈ N0} is a basis for each of these spaces. This, together with
Proposition 4.4, Theorem 5.2 and Corollary 5.3, proves the result. �

Remark 5.6. We compare the various subspaces of M (dp) which have already appeared.
(i) For every p ∈ [1,∞) the spaces d1 and `1(wp) are different. Indeed, b = (bn)∞n=0 given

by bn := 1/(n+ 1)1+
1
p , for n ∈ N0, satisfies b ∈ d1 but b 6∈ `1(wp). So, b ∈M (dp) \ `1(wp).

On the other hand, the example b in the proof of Theorem 5.2 satisfies b ∈ `1(wp) but
b 6∈ d1 as b 6∈ dpp. So, b ∈M (dp) \ d1.
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(ii) For every p ∈ (1,∞) we have dpp ( dp. The containment is direct from (2.2) and
(5.8). To see that it is strict, consider again the example b in the proof of Theorem 5.2.
Then b ∈ dp but b 6∈ dpp.

(iii) For every p ∈ (1,∞) we have `1 6⊆ dpp. The proof of Corollary 4.3(ii) yields
`1 6⊆ dp. To see that dpp 6⊆ `1, consider b = (bn)∞n=0 with b0 = 0 and bn = 1/(k2k) when
2k ≤ n < 2k+1 and k ∈ N0. Then b ∈ dpp but b 6∈ `1. This sequence b shows that
d1 ( dpp ∩ `1, since it satisfies b ∈ dpp ∩ `1 and b 6∈ d1.

(iv) For every p ∈ [1,∞) the spaces dpp and `1(wp) are different. Indeed, b = (bn)∞n=0

given by bn := 1/(n + 1)1+
1
p , for n ∈ N0, satisfies b ∈ dpp but b 6∈ `1(wp). On the other

hand, the example b in the proof of Theorem 5.2 satisfies b ∈ `1(wp) and b 6∈ dpp.

6. Spectral properties of M (dp)

It was noted in Section 1 that the multiplier algebra M (cesp) = `1 for every 1 < p <∞.
For elements b ∈ `1, the spectrum of the corresponding operator Tb ∈ L (cesp) is precisely
known, [18, Theorem 2]. The proof requires a knowledge of the spectrum of the right-
shift S ∈ L (cesp), which is identified in [18, Proposition 6]. The aim of this section is to
investigate the spectrum of multiplier operators Tb ∈M (dp) for 1 ≤ p < ∞. Due to the
more involved nature of the Banach algebras M (dp) this is significantly more complicated
than the situation for cesp. We begin with the right-shift S ∈ L (dp). The spectrum of
S ∈ L (dp) is well known, [9, VII Proposition 6.5].

Proposition 6.1. Let p ∈ [1,∞). The right-shift operator S : dp → dp satisfies

(6.1) σ(S; L (dp)) = D.
Moreover, the point spectrum

σpt(S; L (dp)) = ∅
and the residual spectrum satisfies

D ⊆ σr(S; L (dp)).

Whenever p ∈ (1,∞), the continuous spectrum satisfies

(6.2) σc(S; L (dp)) = D \ D.

Proof. The proof proceeds via a series of steps. All steps, but for for the last one, concern
p ∈ [1,∞).

Step 1. We have that
σpt(S; L (dp)) = ∅.

To prove this, suppose that λ ∈ σpt(S; L (dp)). Then there exist 0 6= a ∈ dp such that
Sa = λa. Since a ∈ `p this implies that a is an eigenvalue of S : `p → `p. This cannot be
since σpt(S; L (`p)) = ∅; see [9, Proposition VII.6.5].

Step 2. For the range R(S − λI) of S − λI it is the case that

e0 6∈ R(S − λI) ⊆ dp, λ ∈ D.
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To prove this, fix λ ∈ D. Suppose there exists a ∈ dp such that (S−λI)a = e0. Necessarily
a 6= 0. If λ = 0, then Sa = e0, which is impossible. For 0 < |λ| ≤ 1 we have

−λa0 = 1, −λan+1 = an, n ∈ N0.

Proceeding recursively yields an = 1/λn+1 for n ∈ N0. But, then a 6∈ dp as 1/|λ| ≥ 1.
Step 3. The same calculations as in Step 2, for `p in place of dp and the right-shift

operator S ∈ L (`p) show that

e0 6∈ R(S − λI) ⊆ `p, λ ∈ D.

Step 4. For each λ ∈ D, it is the case that

e0 6∈ R(S − λI) ⊆ dp,

where the bar denotes closure. To prove this, fix λ ∈ D. Suppose, on the contrary, that
there exists a sequence {am}∞m=0 ⊆ dp such that (S − λI)am → e0 in dp. Then also
e0 ∈ `p and the sequence {am}∞m=0 ⊆ `p satisfies (S − λI)am → e0 in `p. But, the range
R(S − λI) is closed in `p; see Proposition VII.6.5 in [9]. Hence, e0 ∈ R(S − λI) ⊆ `p

which contradicts Step 3.
Step 5. For the residual spectrum we have the inclusion

D ⊆ σr(S; L (dp)).

To prove this note, by Step 1, that S − λI is injective for every λ ∈ D. Accordingly, for
each λ ∈ D, Step 4 shows that R(S − λI) 6= dp and hence, that λ ∈ σr(S; L (dp)).

Step 6. The claim is that

σ(S; L (dp)) ⊆ D.
To prove this, recall that ‖Sn‖L (dp) = (n + 1)1/p for n ∈ N0. Accordingly, the spectral

radius r(S) = limn ‖Sn‖1/nL (dp)
= 1 from which the result follows, [6, I Theorem 5.8].

Step 7. The identity (6.1) is valid, that is,

σ(S; L (dp)) = D.

To prove this, note that Steps 5 and 6 yield

D ⊆ σr(S; L (dp)) ⊆ σ(S; L (dp)) ⊆ D.

Since the spectrum of S is a closed set in C the desired conclusion follows.
Step 8. For every λ ∈ C \ {0} it is the case that{

− λe0 +
1

λn
en+1 : n ∈ N0

}
⊆ R(S − λI) ⊆ dp.

To verify this define, for each n ∈ N0, the element

a[n] :=
n∑
j=0

1

λj
ej =

(
1,

1

λ
, . . . ,

position n+1︷︸︸︷
1

λn
, 0, . . .

)
∈ dp.
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Direct calculation yields

(S − λI)a[n] =
(
− λ, 0, . . . , 0,

position n+2︷︸︸︷
1

λn
, 0, . . .

)
= −λe0 +

1

λn
en+1.

Step 9. Consider now p ∈ (1,∞). Then

σc(S; L (dp)) = D \ D.
To prove this, recall that d∗p = cesq, with 1

p
+ 1

q
= 1. Fix λ ∈ D \D. Let y∗ = (yn)∞n=0 ∈ d∗p

satisfy

(6.3)
〈
− λe0 +

1

λn
en+1, y

∗〉 = 0, n ∈ N0.

Substituting n = 0, 1, . . . successively into (6.3) yields yn = λny0, for all n ∈ N0, and so
y∗ = (y0λ

n)∞n=0. Then |y∗| = (|y0|)∞n=0 ∈ d∗p = cesq. The definition of cesq in (2.4) implies
that |y∗| = C|y∗| ∈ `q which implies that y0 = 0, that is, y∗ = 0.

Now let y∗ ∈ d∗p satisfy 〈a, y∗〉 = 0 for all a ∈ R(S − λI). According to Step 8, y∗ also

satisfies (6.3) and hence, y∗ = 0. It follows that R(S − λI) = dp. Since λ ∈ σ(S; L (dp)),
due to Step 7, and S−λI is injective (see Step 1), we can conclude that λ ∈ σc(S; L (dp)).

That is, D \ D ⊆ σc(S; L (dp)). Now Steps 5 and 7 yield σc(S; L (dp)) = D \ D.
The proof is thereby complete. �

The omission of p = 1 in (6.2) is necessary, as seen by the following result.

Proposition 6.2. For p = 1 we have that

σ(S; L (d1)) = σr(S; L (d1)) = D.
In particular,

σpt(S; L (d1)) = σc(S; L (d1)) = ∅.
Proof. According to Proposition 6.1 we only need to show that if |λ| = 1, then λ ∈
σr(S; L (d1)). Recall that d∗1 = (ces0)

∗∗ = ces∞, [10, Remark 6.3]. Set y∗ := (λn)∞n=0.
Observe that |y∗| = (1)∞n=0 and, for C the Cesàro averaging operator, that C|y∗| = (1)∞n=0 ∈
`∞. Hence, by definition y∗ ∈ ces∞ = d∗1.

Let a ∈ d1 be arbitrary. Then

〈(S − λI)a, y∗〉 =
〈
(−λa0, a0 − λa1, a1 − λa2, . . . ), (1, λ, λ2, . . . )

〉
= −λa0 + λ(a0 − λa1) + λ2(a1 − λa2) + · · ·
= 0.

That is, y∗ 6= 0 in d∗1 satisfies 〈u, y∗〉 = 0 for all u ∈ R(S − λI) ⊆ d1. Accordingly,

R(S − λI) 6= d1. Since S − λI is injective, we can conclude that λ ∈ σr(S; L (d1)). �

The above knowledge of the spectrum for the right-shift operator has implications for
other multipliers. Given f ∈ H(D), let bf = (bn)∞n=0 denote the sequence of its Taylor
coefficients.
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Proposition 6.3. Let p ∈ [1,∞). For every f ∈ H(D) we have that bf ∈M (dp) and

σ(Tbf ; Mop(dp)) = σ(Tbf ; L (dp)) = f(D).

Proof. Fix f ∈ H(D). We know (cf. Corollary 5.4) that bf ∈M (dp) and so Tbf ∈Mop(dp).
Via the functional calculus for unital Banach algebras, [6, Ch.I, §7], [19, Ch.10 & 11], the
operator f(S) ∈Mop(dp) is defined by the Cauchy integral formula

f(S) :=
1

2πi

∫
γ

f(z)(zI − S)−1dz

for a suitable contour γ surrounding D = σ(S; Mop(dp)), where we use Remark 3.2(ii) and
(6.1).

Fix n ∈ N0. Given z ∈ γ a direct calculation yields (as |z| > 1) that

(zI − S)−1en =
(

0, . . . , 0,

position n︷︸︸︷
1

z
,

1

z2
,

1

z3
, 0, . . .

)
∈ d1 ⊆ dp.

Accordingly,

f(S)en =
1

2πi

∫
γ

f(z)(zI − S)−1en dz =
∞∑
k=0

1

2πi

∫
γ

f(z)

zk+1
dz · ek+n.

Since bf = ( 1
2πi

∫
γ
f(z)
zk+1 dz)∞k=0, it follows that

f(S)en =
(

0, . . . , 0,

position n︷︸︸︷
b0 , b1, b2, . . .

)
= bf ∗ en.

But, bf ∈ M (dp), that is, Tbf ∈ Mop(dp) and so f(S)en = Tbf en for all n ∈ N0. Since
{en : n ∈ N0} is basis for dp, we can conclude that f(S) = Tbf . By the spectral mapping
theorem for f(S) and (6.1) we have

σ(f(S); L (dp)) = f(σ(S; L (dp))) = f(D).

Since σ(f(S); L (dp)) = σ(f(S); Mop(dp)) = σ(Tbf ; Mop(dp)), the proof is complete. �

Proposition 6.4. The maximal ideal space of M (d1) is homeomorphic to D. Moreover,
for each b ∈M (d1) = d1, its spectrum is given by

σ(b; M (d1)) = σ(Tb; Mop(d1)) = fb(D).

Proof. Recall that d1 is an algebra, that is, M (d1) = d1 with equivalence of norms.
Moreover, the unital Banach algebra M (d1) is generated by e1. To see this, let b =
(bn)∞n=0 ∈ M (d1) = d1. Recall that em = em1 for all m ≥ 1 and so each element bn :=
b0e0 +

∑n
j=1 bjej, for n ∈ N0, belongs to the algebra 〈e0, e1〉 generated by e0 and e1. Since

{en : n ∈ N0} is a basis for d1 and M (d1) = d1, it follows that bn → b in the norm of d1
and hence, in the norm of M (d1). So, the closure of 〈e0, e1〉 in M (d1) is M (d1).
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Theorem 2 on p. 98 of [6] implies that the maximal ideal space Φ of M (d1) is home-
omorphic with the spectrum σ(e1; M (d1)) of the generator e1. Since M (d1) is isometric
to Mop(d1) we know from Proposition 6.1 that

σ(e1; M (d1)) = σ(Te1 ; Mop(d1)) = σ(S; Mop(d1)) = σ(S; L (d1)) = D.

More explicitly, each z ∈ D ' Φ defines the multiplicative, linear functional on M (d1)
via point evaluation, namely

b 7→ fb(z), b ∈M (d1) = d1.

Since b ∈ d1 ⊆ `1, the continuity is immediate from |fb(z)| = |
∑∞

n=0 bnz
n| ≤

∑∞
n=0 |bn| ≤

‖b‖d1 , for b ∈ M (d1). The Gelfand transform b̂ : Φ → C, of each b ∈ M (d1) is given

by b̂(z) = fb(z), for z ∈ D. It follows from Theorem 11.9.(c) in [19] that σ(b; M (d1)) =

b̂(Φ) = fb(D) for each b ∈M (d1). �

Fix p ∈ [1,∞) and let A (S, dp) denote the closure in Mop(dp) of the algebra 〈I, S〉
consisting of all operators which are polynomials in S.

Proposition 6.5. Let p ∈ [1,∞). The maximal ideal space of A (S, dp) is homeomorphic

to D. Moreover, for each Tb ∈ A (S, dp), that is, for each b ∈ M (dp) such that Tb ∈
A (S, dp), its spectrum is given by

σ(Tb; A (S, dp)) = fb(D).

Proof. The discussion at the beginning of the proof of Proposition 6.4 shows that A (S, d1) =
Mop(d1) = d1 and so Proposition 6.4 establishes the desired identity.

Next consider p ∈ (1,∞). Since the multiplication in any Banach algebra is jointly con-
tinuous, it follows that A (S, dp) is a closed subalgebra of Mop(dp). Moreover, σ(S; Mop(dp)) =

D; see Remark 3.2(ii) and Proposition 6.1. Since C\D is a connected set, it follows from [6,
I Proposition 5.14] that also σ(S; A (S, dp)) = D. In particular, the maximal ideal space

of A (S, dp) is homeomorphic to D (cf. [6, II Theorem 19.2]) and so, for any polynomial
f , we have that

σ(f(S); A (S, dp)) = σ(f(S); Mop(dp)) = f(D).

Every T ∈ A (S, dp) ⊆ Mop(dp) is of the form T = Tb for some unique element b ∈
M (dp). Each z ∈ D defines the linear, multiplicative functional on A (S, dp) via

Tb 7→ fb(z), Tb ∈ A (S, dp),

which is automatically continuous, [6, II Proposition 16.3]. The Gelfand transform

T̂b : D → C, of each Tb ∈ A (S, dp), is given by T̂b(z) = fb(z), for z ∈ D. Again by

Theorem 11.9(c) in [19] we can conclude that σ(Tb; A (S, dp)) = T̂b(D). �

Remark 6.6. (i) Let b ∈ M (d1) belong to the radical. Proposition 6.4 together with

Theorem 11.9.(c) in [19] imply, for the Gelfand transform b̂, that ‖b̂‖∞ = 0, that is,
fb(D) = 0 and so b = 0. Hence, rad(M (d1)) = {0}, that is, M (d1) is semisimple. An
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analogous argument (now using Proposition 6.5) shows that also A (S, dp) is a semisimple
algebra for all p ∈ [1,∞).

(ii) Given p ∈ [1,∞), which elements b ∈ M (dp) satisfy Tb ∈ A (S, dp)? According
to Corollary 5.5, this includes the space d1 (hence, also the Taylor coefficients bf of any

function f ∈ H(D) via Corollary 5.4), the weighted space `1(wp) and dpp ∩ `1. Actually,
for every b = (bn)∞n=0 belonging to any one of these spaces, the approximation of Tb can
be achieved by using the Taylor polynomials of b. That is, for n→∞, we have∥∥∥Tb − n∑

j=0

bjS
j
∥∥∥

A (S,dp)
=
∥∥∥Tb − n∑

j=0

bjS
j
∥∥∥

Mop(dp)
→ 0.

The following identities occur in Proposition 6.3, namely

σ(Tbf ; A (S, dp)) = σ(Tbf ; Mop(dp)) = f(D), f ∈ H(D).

For certain other multipliers an inclusion is possible.

Proposition 6.7. Let p ∈ [1,∞) and b ∈M (dp) satisfy

(6.4)
∥∥∥Tb − n∑

j=0

bjS
j
∥∥∥

Mop(dp)
→ 0 for n→∞.

Then

σ(Tb; A (S, dp)) =
{ ∞∑
n=0

bnλ
n : λ ∈ D

}
⊆ σ(Tb; Mop(dp)) = σ(Tb; L (dp)).

Proof. Fix λ ∈ D. Since b ∈ `1 (cf. Theorem 4.2) the series
∑∞

j=0 bjλ
j converges absolutely

in C. Define αn :=
∑n

j=0 bjλ
j, for n ∈ N0, in which case αn → α :=

∑∞
j=0 bjλ

j for n→∞.

Moreover, setting Rn :=
∑n

j=0 bjS
j we have that Rn ∈Mop(dp) and so

σ(Rn; Mop(dp)) =
{ n∑

j=0

bjz
j : z ∈ D = σ(S; Mop(dp))

}
, n ∈ N0.

That is, αn ∈ σ(Rn; Mop(dp)) for n ∈ N0. For A := Mop(dp) it follows from (6.4) that
Rn → Tb in A and so [9, Ex. 5, p.199] implies that

∑∞
j=0 bjλ

j ∈ σ(Tb; Mop(dp)). �
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